xref: /openbmc/linux/drivers/misc/eeprom/at24.c (revision 56a0eccd)
1 /*
2  * at24.c - handle most I2C EEPROMs
3  *
4  * Copyright (C) 2005-2007 David Brownell
5  * Copyright (C) 2008 Wolfram Sang, Pengutronix
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  */
12 #include <linux/kernel.h>
13 #include <linux/init.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/delay.h>
17 #include <linux/mutex.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/log2.h>
20 #include <linux/bitops.h>
21 #include <linux/jiffies.h>
22 #include <linux/of.h>
23 #include <linux/acpi.h>
24 #include <linux/i2c.h>
25 #include <linux/nvmem-provider.h>
26 #include <linux/regmap.h>
27 #include <linux/platform_data/at24.h>
28 
29 /*
30  * I2C EEPROMs from most vendors are inexpensive and mostly interchangeable.
31  * Differences between different vendor product lines (like Atmel AT24C or
32  * MicroChip 24LC, etc) won't much matter for typical read/write access.
33  * There are also I2C RAM chips, likewise interchangeable. One example
34  * would be the PCF8570, which acts like a 24c02 EEPROM (256 bytes).
35  *
36  * However, misconfiguration can lose data. "Set 16-bit memory address"
37  * to a part with 8-bit addressing will overwrite data. Writing with too
38  * big a page size also loses data. And it's not safe to assume that the
39  * conventional addresses 0x50..0x57 only hold eeproms; a PCF8563 RTC
40  * uses 0x51, for just one example.
41  *
42  * Accordingly, explicit board-specific configuration data should be used
43  * in almost all cases. (One partial exception is an SMBus used to access
44  * "SPD" data for DRAM sticks. Those only use 24c02 EEPROMs.)
45  *
46  * So this driver uses "new style" I2C driver binding, expecting to be
47  * told what devices exist. That may be in arch/X/mach-Y/board-Z.c or
48  * similar kernel-resident tables; or, configuration data coming from
49  * a bootloader.
50  *
51  * Other than binding model, current differences from "eeprom" driver are
52  * that this one handles write access and isn't restricted to 24c02 devices.
53  * It also handles larger devices (32 kbit and up) with two-byte addresses,
54  * which won't work on pure SMBus systems.
55  */
56 
57 struct at24_data {
58 	struct at24_platform_data chip;
59 	int use_smbus;
60 	int use_smbus_write;
61 
62 	/*
63 	 * Lock protects against activities from other Linux tasks,
64 	 * but not from changes by other I2C masters.
65 	 */
66 	struct mutex lock;
67 
68 	u8 *writebuf;
69 	unsigned write_max;
70 	unsigned num_addresses;
71 
72 	struct regmap_config regmap_config;
73 	struct nvmem_config nvmem_config;
74 	struct nvmem_device *nvmem;
75 
76 	/*
77 	 * Some chips tie up multiple I2C addresses; dummy devices reserve
78 	 * them for us, and we'll use them with SMBus calls.
79 	 */
80 	struct i2c_client *client[];
81 };
82 
83 /*
84  * This parameter is to help this driver avoid blocking other drivers out
85  * of I2C for potentially troublesome amounts of time. With a 100 kHz I2C
86  * clock, one 256 byte read takes about 1/43 second which is excessive;
87  * but the 1/170 second it takes at 400 kHz may be quite reasonable; and
88  * at 1 MHz (Fm+) a 1/430 second delay could easily be invisible.
89  *
90  * This value is forced to be a power of two so that writes align on pages.
91  */
92 static unsigned io_limit = 128;
93 module_param(io_limit, uint, 0);
94 MODULE_PARM_DESC(io_limit, "Maximum bytes per I/O (default 128)");
95 
96 /*
97  * Specs often allow 5 msec for a page write, sometimes 20 msec;
98  * it's important to recover from write timeouts.
99  */
100 static unsigned write_timeout = 25;
101 module_param(write_timeout, uint, 0);
102 MODULE_PARM_DESC(write_timeout, "Time (in ms) to try writes (default 25)");
103 
104 #define AT24_SIZE_BYTELEN 5
105 #define AT24_SIZE_FLAGS 8
106 
107 #define AT24_BITMASK(x) (BIT(x) - 1)
108 
109 /* create non-zero magic value for given eeprom parameters */
110 #define AT24_DEVICE_MAGIC(_len, _flags) 		\
111 	((1 << AT24_SIZE_FLAGS | (_flags)) 		\
112 	    << AT24_SIZE_BYTELEN | ilog2(_len))
113 
114 static const struct i2c_device_id at24_ids[] = {
115 	/* needs 8 addresses as A0-A2 are ignored */
116 	{ "24c00", AT24_DEVICE_MAGIC(128 / 8, AT24_FLAG_TAKE8ADDR) },
117 	/* old variants can't be handled with this generic entry! */
118 	{ "24c01", AT24_DEVICE_MAGIC(1024 / 8, 0) },
119 	{ "24c02", AT24_DEVICE_MAGIC(2048 / 8, 0) },
120 	/* spd is a 24c02 in memory DIMMs */
121 	{ "spd", AT24_DEVICE_MAGIC(2048 / 8,
122 		AT24_FLAG_READONLY | AT24_FLAG_IRUGO) },
123 	{ "24c04", AT24_DEVICE_MAGIC(4096 / 8, 0) },
124 	/* 24rf08 quirk is handled at i2c-core */
125 	{ "24c08", AT24_DEVICE_MAGIC(8192 / 8, 0) },
126 	{ "24c16", AT24_DEVICE_MAGIC(16384 / 8, 0) },
127 	{ "24c32", AT24_DEVICE_MAGIC(32768 / 8, AT24_FLAG_ADDR16) },
128 	{ "24c64", AT24_DEVICE_MAGIC(65536 / 8, AT24_FLAG_ADDR16) },
129 	{ "24c128", AT24_DEVICE_MAGIC(131072 / 8, AT24_FLAG_ADDR16) },
130 	{ "24c256", AT24_DEVICE_MAGIC(262144 / 8, AT24_FLAG_ADDR16) },
131 	{ "24c512", AT24_DEVICE_MAGIC(524288 / 8, AT24_FLAG_ADDR16) },
132 	{ "24c1024", AT24_DEVICE_MAGIC(1048576 / 8, AT24_FLAG_ADDR16) },
133 	{ "at24", 0 },
134 	{ /* END OF LIST */ }
135 };
136 MODULE_DEVICE_TABLE(i2c, at24_ids);
137 
138 static const struct acpi_device_id at24_acpi_ids[] = {
139 	{ "INT3499", AT24_DEVICE_MAGIC(8192 / 8, 0) },
140 	{ }
141 };
142 MODULE_DEVICE_TABLE(acpi, at24_acpi_ids);
143 
144 /*-------------------------------------------------------------------------*/
145 
146 /*
147  * This routine supports chips which consume multiple I2C addresses. It
148  * computes the addressing information to be used for a given r/w request.
149  * Assumes that sanity checks for offset happened at sysfs-layer.
150  */
151 static struct i2c_client *at24_translate_offset(struct at24_data *at24,
152 		unsigned *offset)
153 {
154 	unsigned i;
155 
156 	if (at24->chip.flags & AT24_FLAG_ADDR16) {
157 		i = *offset >> 16;
158 		*offset &= 0xffff;
159 	} else {
160 		i = *offset >> 8;
161 		*offset &= 0xff;
162 	}
163 
164 	return at24->client[i];
165 }
166 
167 static ssize_t at24_eeprom_read(struct at24_data *at24, char *buf,
168 		unsigned offset, size_t count)
169 {
170 	struct i2c_msg msg[2];
171 	u8 msgbuf[2];
172 	struct i2c_client *client;
173 	unsigned long timeout, read_time;
174 	int status, i;
175 
176 	memset(msg, 0, sizeof(msg));
177 
178 	/*
179 	 * REVISIT some multi-address chips don't rollover page reads to
180 	 * the next slave address, so we may need to truncate the count.
181 	 * Those chips might need another quirk flag.
182 	 *
183 	 * If the real hardware used four adjacent 24c02 chips and that
184 	 * were misconfigured as one 24c08, that would be a similar effect:
185 	 * one "eeprom" file not four, but larger reads would fail when
186 	 * they crossed certain pages.
187 	 */
188 
189 	/*
190 	 * Slave address and byte offset derive from the offset. Always
191 	 * set the byte address; on a multi-master board, another master
192 	 * may have changed the chip's "current" address pointer.
193 	 */
194 	client = at24_translate_offset(at24, &offset);
195 
196 	if (count > io_limit)
197 		count = io_limit;
198 
199 	if (at24->use_smbus) {
200 		/* Smaller eeproms can work given some SMBus extension calls */
201 		if (count > I2C_SMBUS_BLOCK_MAX)
202 			count = I2C_SMBUS_BLOCK_MAX;
203 	} else {
204 		/*
205 		 * When we have a better choice than SMBus calls, use a
206 		 * combined I2C message. Write address; then read up to
207 		 * io_limit data bytes. Note that read page rollover helps us
208 		 * here (unlike writes). msgbuf is u8 and will cast to our
209 		 * needs.
210 		 */
211 		i = 0;
212 		if (at24->chip.flags & AT24_FLAG_ADDR16)
213 			msgbuf[i++] = offset >> 8;
214 		msgbuf[i++] = offset;
215 
216 		msg[0].addr = client->addr;
217 		msg[0].buf = msgbuf;
218 		msg[0].len = i;
219 
220 		msg[1].addr = client->addr;
221 		msg[1].flags = I2C_M_RD;
222 		msg[1].buf = buf;
223 		msg[1].len = count;
224 	}
225 
226 	/*
227 	 * Reads fail if the previous write didn't complete yet. We may
228 	 * loop a few times until this one succeeds, waiting at least
229 	 * long enough for one entire page write to work.
230 	 */
231 	timeout = jiffies + msecs_to_jiffies(write_timeout);
232 	do {
233 		read_time = jiffies;
234 		if (at24->use_smbus) {
235 			status = i2c_smbus_read_i2c_block_data_or_emulated(client, offset,
236 									   count, buf);
237 		} else {
238 			status = i2c_transfer(client->adapter, msg, 2);
239 			if (status == 2)
240 				status = count;
241 		}
242 		dev_dbg(&client->dev, "read %zu@%d --> %d (%ld)\n",
243 				count, offset, status, jiffies);
244 
245 		if (status == count)
246 			return count;
247 
248 		/* REVISIT: at HZ=100, this is sloooow */
249 		msleep(1);
250 	} while (time_before(read_time, timeout));
251 
252 	return -ETIMEDOUT;
253 }
254 
255 static ssize_t at24_read(struct at24_data *at24,
256 		char *buf, loff_t off, size_t count)
257 {
258 	ssize_t retval = 0;
259 
260 	if (unlikely(!count))
261 		return count;
262 
263 	/*
264 	 * Read data from chip, protecting against concurrent updates
265 	 * from this host, but not from other I2C masters.
266 	 */
267 	mutex_lock(&at24->lock);
268 
269 	while (count) {
270 		ssize_t	status;
271 
272 		status = at24_eeprom_read(at24, buf, off, count);
273 		if (status <= 0) {
274 			if (retval == 0)
275 				retval = status;
276 			break;
277 		}
278 		buf += status;
279 		off += status;
280 		count -= status;
281 		retval += status;
282 	}
283 
284 	mutex_unlock(&at24->lock);
285 
286 	return retval;
287 }
288 
289 /*
290  * Note that if the hardware write-protect pin is pulled high, the whole
291  * chip is normally write protected. But there are plenty of product
292  * variants here, including OTP fuses and partial chip protect.
293  *
294  * We only use page mode writes; the alternative is sloooow. This routine
295  * writes at most one page.
296  */
297 static ssize_t at24_eeprom_write(struct at24_data *at24, const char *buf,
298 		unsigned offset, size_t count)
299 {
300 	struct i2c_client *client;
301 	struct i2c_msg msg;
302 	ssize_t status = 0;
303 	unsigned long timeout, write_time;
304 	unsigned next_page;
305 
306 	/* Get corresponding I2C address and adjust offset */
307 	client = at24_translate_offset(at24, &offset);
308 
309 	/* write_max is at most a page */
310 	if (count > at24->write_max)
311 		count = at24->write_max;
312 
313 	/* Never roll over backwards, to the start of this page */
314 	next_page = roundup(offset + 1, at24->chip.page_size);
315 	if (offset + count > next_page)
316 		count = next_page - offset;
317 
318 	/* If we'll use I2C calls for I/O, set up the message */
319 	if (!at24->use_smbus) {
320 		int i = 0;
321 
322 		msg.addr = client->addr;
323 		msg.flags = 0;
324 
325 		/* msg.buf is u8 and casts will mask the values */
326 		msg.buf = at24->writebuf;
327 		if (at24->chip.flags & AT24_FLAG_ADDR16)
328 			msg.buf[i++] = offset >> 8;
329 
330 		msg.buf[i++] = offset;
331 		memcpy(&msg.buf[i], buf, count);
332 		msg.len = i + count;
333 	}
334 
335 	/*
336 	 * Writes fail if the previous one didn't complete yet. We may
337 	 * loop a few times until this one succeeds, waiting at least
338 	 * long enough for one entire page write to work.
339 	 */
340 	timeout = jiffies + msecs_to_jiffies(write_timeout);
341 	do {
342 		write_time = jiffies;
343 		if (at24->use_smbus_write) {
344 			switch (at24->use_smbus_write) {
345 			case I2C_SMBUS_I2C_BLOCK_DATA:
346 				status = i2c_smbus_write_i2c_block_data(client,
347 						offset, count, buf);
348 				break;
349 			case I2C_SMBUS_BYTE_DATA:
350 				status = i2c_smbus_write_byte_data(client,
351 						offset, buf[0]);
352 				break;
353 			}
354 
355 			if (status == 0)
356 				status = count;
357 		} else {
358 			status = i2c_transfer(client->adapter, &msg, 1);
359 			if (status == 1)
360 				status = count;
361 		}
362 		dev_dbg(&client->dev, "write %zu@%d --> %zd (%ld)\n",
363 				count, offset, status, jiffies);
364 
365 		if (status == count)
366 			return count;
367 
368 		/* REVISIT: at HZ=100, this is sloooow */
369 		msleep(1);
370 	} while (time_before(write_time, timeout));
371 
372 	return -ETIMEDOUT;
373 }
374 
375 static ssize_t at24_write(struct at24_data *at24, const char *buf, loff_t off,
376 			  size_t count)
377 {
378 	ssize_t retval = 0;
379 
380 	if (unlikely(!count))
381 		return count;
382 
383 	/*
384 	 * Write data to chip, protecting against concurrent updates
385 	 * from this host, but not from other I2C masters.
386 	 */
387 	mutex_lock(&at24->lock);
388 
389 	while (count) {
390 		ssize_t	status;
391 
392 		status = at24_eeprom_write(at24, buf, off, count);
393 		if (status <= 0) {
394 			if (retval == 0)
395 				retval = status;
396 			break;
397 		}
398 		buf += status;
399 		off += status;
400 		count -= status;
401 		retval += status;
402 	}
403 
404 	mutex_unlock(&at24->lock);
405 
406 	return retval;
407 }
408 
409 /*-------------------------------------------------------------------------*/
410 
411 /*
412  * Provide a regmap interface, which is registered with the NVMEM
413  * framework
414 */
415 static int at24_regmap_read(void *context, const void *reg, size_t reg_size,
416 			    void *val, size_t val_size)
417 {
418 	struct at24_data *at24 = context;
419 	off_t offset = *(u32 *)reg;
420 	int err;
421 
422 	err = at24_read(at24, val, offset, val_size);
423 	if (err)
424 		return err;
425 	return 0;
426 }
427 
428 static int at24_regmap_write(void *context, const void *data, size_t count)
429 {
430 	struct at24_data *at24 = context;
431 	const char *buf;
432 	u32 offset;
433 	size_t len;
434 	int err;
435 
436 	memcpy(&offset, data, sizeof(offset));
437 	buf = (const char *)data + sizeof(offset);
438 	len = count - sizeof(offset);
439 
440 	err = at24_write(at24, buf, offset, len);
441 	if (err)
442 		return err;
443 	return 0;
444 }
445 
446 static const struct regmap_bus at24_regmap_bus = {
447 	.read = at24_regmap_read,
448 	.write = at24_regmap_write,
449 	.reg_format_endian_default = REGMAP_ENDIAN_NATIVE,
450 };
451 
452 /*-------------------------------------------------------------------------*/
453 
454 #ifdef CONFIG_OF
455 static void at24_get_ofdata(struct i2c_client *client,
456 		struct at24_platform_data *chip)
457 {
458 	const __be32 *val;
459 	struct device_node *node = client->dev.of_node;
460 
461 	if (node) {
462 		if (of_get_property(node, "read-only", NULL))
463 			chip->flags |= AT24_FLAG_READONLY;
464 		val = of_get_property(node, "pagesize", NULL);
465 		if (val)
466 			chip->page_size = be32_to_cpup(val);
467 	}
468 }
469 #else
470 static void at24_get_ofdata(struct i2c_client *client,
471 		struct at24_platform_data *chip)
472 { }
473 #endif /* CONFIG_OF */
474 
475 static int at24_probe(struct i2c_client *client, const struct i2c_device_id *id)
476 {
477 	struct at24_platform_data chip;
478 	kernel_ulong_t magic = 0;
479 	bool writable;
480 	int use_smbus = 0;
481 	int use_smbus_write = 0;
482 	struct at24_data *at24;
483 	int err;
484 	unsigned i, num_addresses;
485 	struct regmap *regmap;
486 
487 	if (client->dev.platform_data) {
488 		chip = *(struct at24_platform_data *)client->dev.platform_data;
489 	} else {
490 		if (id) {
491 			magic = id->driver_data;
492 		} else {
493 			const struct acpi_device_id *aid;
494 
495 			aid = acpi_match_device(at24_acpi_ids, &client->dev);
496 			if (aid)
497 				magic = aid->driver_data;
498 		}
499 		if (!magic)
500 			return -ENODEV;
501 
502 		chip.byte_len = BIT(magic & AT24_BITMASK(AT24_SIZE_BYTELEN));
503 		magic >>= AT24_SIZE_BYTELEN;
504 		chip.flags = magic & AT24_BITMASK(AT24_SIZE_FLAGS);
505 		/*
506 		 * This is slow, but we can't know all eeproms, so we better
507 		 * play safe. Specifying custom eeprom-types via platform_data
508 		 * is recommended anyhow.
509 		 */
510 		chip.page_size = 1;
511 
512 		/* update chipdata if OF is present */
513 		at24_get_ofdata(client, &chip);
514 
515 		chip.setup = NULL;
516 		chip.context = NULL;
517 	}
518 
519 	if (!is_power_of_2(chip.byte_len))
520 		dev_warn(&client->dev,
521 			"byte_len looks suspicious (no power of 2)!\n");
522 	if (!chip.page_size) {
523 		dev_err(&client->dev, "page_size must not be 0!\n");
524 		return -EINVAL;
525 	}
526 	if (!is_power_of_2(chip.page_size))
527 		dev_warn(&client->dev,
528 			"page_size looks suspicious (no power of 2)!\n");
529 
530 	/* Use I2C operations unless we're stuck with SMBus extensions. */
531 	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
532 		if (chip.flags & AT24_FLAG_ADDR16)
533 			return -EPFNOSUPPORT;
534 
535 		if (i2c_check_functionality(client->adapter,
536 				I2C_FUNC_SMBUS_READ_I2C_BLOCK)) {
537 			use_smbus = I2C_SMBUS_I2C_BLOCK_DATA;
538 		} else if (i2c_check_functionality(client->adapter,
539 				I2C_FUNC_SMBUS_READ_WORD_DATA)) {
540 			use_smbus = I2C_SMBUS_WORD_DATA;
541 		} else if (i2c_check_functionality(client->adapter,
542 				I2C_FUNC_SMBUS_READ_BYTE_DATA)) {
543 			use_smbus = I2C_SMBUS_BYTE_DATA;
544 		} else {
545 			return -EPFNOSUPPORT;
546 		}
547 	}
548 
549 	/* Use I2C operations unless we're stuck with SMBus extensions. */
550 	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
551 		if (i2c_check_functionality(client->adapter,
552 				I2C_FUNC_SMBUS_WRITE_I2C_BLOCK)) {
553 			use_smbus_write = I2C_SMBUS_I2C_BLOCK_DATA;
554 		} else if (i2c_check_functionality(client->adapter,
555 				I2C_FUNC_SMBUS_WRITE_BYTE_DATA)) {
556 			use_smbus_write = I2C_SMBUS_BYTE_DATA;
557 			chip.page_size = 1;
558 		}
559 	}
560 
561 	if (chip.flags & AT24_FLAG_TAKE8ADDR)
562 		num_addresses = 8;
563 	else
564 		num_addresses =	DIV_ROUND_UP(chip.byte_len,
565 			(chip.flags & AT24_FLAG_ADDR16) ? 65536 : 256);
566 
567 	at24 = devm_kzalloc(&client->dev, sizeof(struct at24_data) +
568 		num_addresses * sizeof(struct i2c_client *), GFP_KERNEL);
569 	if (!at24)
570 		return -ENOMEM;
571 
572 	mutex_init(&at24->lock);
573 	at24->use_smbus = use_smbus;
574 	at24->use_smbus_write = use_smbus_write;
575 	at24->chip = chip;
576 	at24->num_addresses = num_addresses;
577 
578 	writable = !(chip.flags & AT24_FLAG_READONLY);
579 	if (writable) {
580 		if (!use_smbus || use_smbus_write) {
581 
582 			unsigned write_max = chip.page_size;
583 
584 			if (write_max > io_limit)
585 				write_max = io_limit;
586 			if (use_smbus && write_max > I2C_SMBUS_BLOCK_MAX)
587 				write_max = I2C_SMBUS_BLOCK_MAX;
588 			at24->write_max = write_max;
589 
590 			/* buffer (data + address at the beginning) */
591 			at24->writebuf = devm_kzalloc(&client->dev,
592 				write_max + 2, GFP_KERNEL);
593 			if (!at24->writebuf)
594 				return -ENOMEM;
595 		} else {
596 			dev_warn(&client->dev,
597 				"cannot write due to controller restrictions.");
598 		}
599 	}
600 
601 	at24->client[0] = client;
602 
603 	/* use dummy devices for multiple-address chips */
604 	for (i = 1; i < num_addresses; i++) {
605 		at24->client[i] = i2c_new_dummy(client->adapter,
606 					client->addr + i);
607 		if (!at24->client[i]) {
608 			dev_err(&client->dev, "address 0x%02x unavailable\n",
609 					client->addr + i);
610 			err = -EADDRINUSE;
611 			goto err_clients;
612 		}
613 	}
614 
615 	at24->regmap_config.reg_bits = 32;
616 	at24->regmap_config.val_bits = 8;
617 	at24->regmap_config.reg_stride = 1;
618 	at24->regmap_config.max_register = chip.byte_len - 1;
619 
620 	regmap = devm_regmap_init(&client->dev, &at24_regmap_bus, at24,
621 				  &at24->regmap_config);
622 	if (IS_ERR(regmap)) {
623 		dev_err(&client->dev, "regmap init failed\n");
624 		err = PTR_ERR(regmap);
625 		goto err_clients;
626 	}
627 
628 	at24->nvmem_config.name = dev_name(&client->dev);
629 	at24->nvmem_config.dev = &client->dev;
630 	at24->nvmem_config.read_only = !writable;
631 	at24->nvmem_config.root_only = true;
632 	at24->nvmem_config.owner = THIS_MODULE;
633 	at24->nvmem_config.compat = true;
634 	at24->nvmem_config.base_dev = &client->dev;
635 
636 	at24->nvmem = nvmem_register(&at24->nvmem_config);
637 
638 	if (IS_ERR(at24->nvmem)) {
639 		err = PTR_ERR(at24->nvmem);
640 		goto err_clients;
641 	}
642 
643 	i2c_set_clientdata(client, at24);
644 
645 	dev_info(&client->dev, "%u byte %s EEPROM, %s, %u bytes/write\n",
646 		chip.byte_len, client->name,
647 		writable ? "writable" : "read-only", at24->write_max);
648 	if (use_smbus == I2C_SMBUS_WORD_DATA ||
649 	    use_smbus == I2C_SMBUS_BYTE_DATA) {
650 		dev_notice(&client->dev, "Falling back to %s reads, "
651 			   "performance will suffer\n", use_smbus ==
652 			   I2C_SMBUS_WORD_DATA ? "word" : "byte");
653 	}
654 
655 	/* export data to kernel code */
656 	if (chip.setup)
657 		chip.setup(at24->nvmem, chip.context);
658 
659 	return 0;
660 
661 err_clients:
662 	for (i = 1; i < num_addresses; i++)
663 		if (at24->client[i])
664 			i2c_unregister_device(at24->client[i]);
665 
666 	return err;
667 }
668 
669 static int at24_remove(struct i2c_client *client)
670 {
671 	struct at24_data *at24;
672 	int i;
673 
674 	at24 = i2c_get_clientdata(client);
675 
676 	nvmem_unregister(at24->nvmem);
677 
678 	for (i = 1; i < at24->num_addresses; i++)
679 		i2c_unregister_device(at24->client[i]);
680 
681 	return 0;
682 }
683 
684 /*-------------------------------------------------------------------------*/
685 
686 static struct i2c_driver at24_driver = {
687 	.driver = {
688 		.name = "at24",
689 		.acpi_match_table = ACPI_PTR(at24_acpi_ids),
690 	},
691 	.probe = at24_probe,
692 	.remove = at24_remove,
693 	.id_table = at24_ids,
694 };
695 
696 static int __init at24_init(void)
697 {
698 	if (!io_limit) {
699 		pr_err("at24: io_limit must not be 0!\n");
700 		return -EINVAL;
701 	}
702 
703 	io_limit = rounddown_pow_of_two(io_limit);
704 	return i2c_add_driver(&at24_driver);
705 }
706 module_init(at24_init);
707 
708 static void __exit at24_exit(void)
709 {
710 	i2c_del_driver(&at24_driver);
711 }
712 module_exit(at24_exit);
713 
714 MODULE_DESCRIPTION("Driver for most I2C EEPROMs");
715 MODULE_AUTHOR("David Brownell and Wolfram Sang");
716 MODULE_LICENSE("GPL");
717