xref: /openbmc/linux/drivers/misc/eeprom/at24.c (revision 15b7cc78)
1 /*
2  * at24.c - handle most I2C EEPROMs
3  *
4  * Copyright (C) 2005-2007 David Brownell
5  * Copyright (C) 2008 Wolfram Sang, Pengutronix
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  */
12 #include <linux/kernel.h>
13 #include <linux/init.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/delay.h>
17 #include <linux/mutex.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/log2.h>
20 #include <linux/bitops.h>
21 #include <linux/jiffies.h>
22 #include <linux/of.h>
23 #include <linux/acpi.h>
24 #include <linux/i2c.h>
25 #include <linux/nvmem-provider.h>
26 #include <linux/platform_data/at24.h>
27 
28 /*
29  * I2C EEPROMs from most vendors are inexpensive and mostly interchangeable.
30  * Differences between different vendor product lines (like Atmel AT24C or
31  * MicroChip 24LC, etc) won't much matter for typical read/write access.
32  * There are also I2C RAM chips, likewise interchangeable. One example
33  * would be the PCF8570, which acts like a 24c02 EEPROM (256 bytes).
34  *
35  * However, misconfiguration can lose data. "Set 16-bit memory address"
36  * to a part with 8-bit addressing will overwrite data. Writing with too
37  * big a page size also loses data. And it's not safe to assume that the
38  * conventional addresses 0x50..0x57 only hold eeproms; a PCF8563 RTC
39  * uses 0x51, for just one example.
40  *
41  * Accordingly, explicit board-specific configuration data should be used
42  * in almost all cases. (One partial exception is an SMBus used to access
43  * "SPD" data for DRAM sticks. Those only use 24c02 EEPROMs.)
44  *
45  * So this driver uses "new style" I2C driver binding, expecting to be
46  * told what devices exist. That may be in arch/X/mach-Y/board-Z.c or
47  * similar kernel-resident tables; or, configuration data coming from
48  * a bootloader.
49  *
50  * Other than binding model, current differences from "eeprom" driver are
51  * that this one handles write access and isn't restricted to 24c02 devices.
52  * It also handles larger devices (32 kbit and up) with two-byte addresses,
53  * which won't work on pure SMBus systems.
54  */
55 
56 struct at24_data {
57 	struct at24_platform_data chip;
58 	int use_smbus;
59 	int use_smbus_write;
60 
61 	/*
62 	 * Lock protects against activities from other Linux tasks,
63 	 * but not from changes by other I2C masters.
64 	 */
65 	struct mutex lock;
66 
67 	u8 *writebuf;
68 	unsigned write_max;
69 	unsigned num_addresses;
70 
71 	struct nvmem_config nvmem_config;
72 	struct nvmem_device *nvmem;
73 
74 	/*
75 	 * Some chips tie up multiple I2C addresses; dummy devices reserve
76 	 * them for us, and we'll use them with SMBus calls.
77 	 */
78 	struct i2c_client *client[];
79 };
80 
81 /*
82  * This parameter is to help this driver avoid blocking other drivers out
83  * of I2C for potentially troublesome amounts of time. With a 100 kHz I2C
84  * clock, one 256 byte read takes about 1/43 second which is excessive;
85  * but the 1/170 second it takes at 400 kHz may be quite reasonable; and
86  * at 1 MHz (Fm+) a 1/430 second delay could easily be invisible.
87  *
88  * This value is forced to be a power of two so that writes align on pages.
89  */
90 static unsigned io_limit = 128;
91 module_param(io_limit, uint, 0);
92 MODULE_PARM_DESC(io_limit, "Maximum bytes per I/O (default 128)");
93 
94 /*
95  * Specs often allow 5 msec for a page write, sometimes 20 msec;
96  * it's important to recover from write timeouts.
97  */
98 static unsigned write_timeout = 25;
99 module_param(write_timeout, uint, 0);
100 MODULE_PARM_DESC(write_timeout, "Time (in ms) to try writes (default 25)");
101 
102 #define AT24_SIZE_BYTELEN 5
103 #define AT24_SIZE_FLAGS 8
104 
105 #define AT24_BITMASK(x) (BIT(x) - 1)
106 
107 /* create non-zero magic value for given eeprom parameters */
108 #define AT24_DEVICE_MAGIC(_len, _flags) 		\
109 	((1 << AT24_SIZE_FLAGS | (_flags)) 		\
110 	    << AT24_SIZE_BYTELEN | ilog2(_len))
111 
112 static const struct i2c_device_id at24_ids[] = {
113 	/* needs 8 addresses as A0-A2 are ignored */
114 	{ "24c00", AT24_DEVICE_MAGIC(128 / 8, AT24_FLAG_TAKE8ADDR) },
115 	/* old variants can't be handled with this generic entry! */
116 	{ "24c01", AT24_DEVICE_MAGIC(1024 / 8, 0) },
117 	{ "24c02", AT24_DEVICE_MAGIC(2048 / 8, 0) },
118 	/* spd is a 24c02 in memory DIMMs */
119 	{ "spd", AT24_DEVICE_MAGIC(2048 / 8,
120 		AT24_FLAG_READONLY | AT24_FLAG_IRUGO) },
121 	{ "24c04", AT24_DEVICE_MAGIC(4096 / 8, 0) },
122 	/* 24rf08 quirk is handled at i2c-core */
123 	{ "24c08", AT24_DEVICE_MAGIC(8192 / 8, 0) },
124 	{ "24c16", AT24_DEVICE_MAGIC(16384 / 8, 0) },
125 	{ "24c32", AT24_DEVICE_MAGIC(32768 / 8, AT24_FLAG_ADDR16) },
126 	{ "24c64", AT24_DEVICE_MAGIC(65536 / 8, AT24_FLAG_ADDR16) },
127 	{ "24c128", AT24_DEVICE_MAGIC(131072 / 8, AT24_FLAG_ADDR16) },
128 	{ "24c256", AT24_DEVICE_MAGIC(262144 / 8, AT24_FLAG_ADDR16) },
129 	{ "24c512", AT24_DEVICE_MAGIC(524288 / 8, AT24_FLAG_ADDR16) },
130 	{ "24c1024", AT24_DEVICE_MAGIC(1048576 / 8, AT24_FLAG_ADDR16) },
131 	{ "at24", 0 },
132 	{ /* END OF LIST */ }
133 };
134 MODULE_DEVICE_TABLE(i2c, at24_ids);
135 
136 static const struct acpi_device_id at24_acpi_ids[] = {
137 	{ "INT3499", AT24_DEVICE_MAGIC(8192 / 8, 0) },
138 	{ }
139 };
140 MODULE_DEVICE_TABLE(acpi, at24_acpi_ids);
141 
142 /*-------------------------------------------------------------------------*/
143 
144 /*
145  * This routine supports chips which consume multiple I2C addresses. It
146  * computes the addressing information to be used for a given r/w request.
147  * Assumes that sanity checks for offset happened at sysfs-layer.
148  */
149 static struct i2c_client *at24_translate_offset(struct at24_data *at24,
150 		unsigned *offset)
151 {
152 	unsigned i;
153 
154 	if (at24->chip.flags & AT24_FLAG_ADDR16) {
155 		i = *offset >> 16;
156 		*offset &= 0xffff;
157 	} else {
158 		i = *offset >> 8;
159 		*offset &= 0xff;
160 	}
161 
162 	return at24->client[i];
163 }
164 
165 static ssize_t at24_eeprom_read(struct at24_data *at24, char *buf,
166 		unsigned offset, size_t count)
167 {
168 	struct i2c_msg msg[2];
169 	u8 msgbuf[2];
170 	struct i2c_client *client;
171 	unsigned long timeout, read_time;
172 	int status, i;
173 
174 	memset(msg, 0, sizeof(msg));
175 
176 	/*
177 	 * REVISIT some multi-address chips don't rollover page reads to
178 	 * the next slave address, so we may need to truncate the count.
179 	 * Those chips might need another quirk flag.
180 	 *
181 	 * If the real hardware used four adjacent 24c02 chips and that
182 	 * were misconfigured as one 24c08, that would be a similar effect:
183 	 * one "eeprom" file not four, but larger reads would fail when
184 	 * they crossed certain pages.
185 	 */
186 
187 	/*
188 	 * Slave address and byte offset derive from the offset. Always
189 	 * set the byte address; on a multi-master board, another master
190 	 * may have changed the chip's "current" address pointer.
191 	 */
192 	client = at24_translate_offset(at24, &offset);
193 
194 	if (count > io_limit)
195 		count = io_limit;
196 
197 	if (at24->use_smbus) {
198 		/* Smaller eeproms can work given some SMBus extension calls */
199 		if (count > I2C_SMBUS_BLOCK_MAX)
200 			count = I2C_SMBUS_BLOCK_MAX;
201 	} else {
202 		/*
203 		 * When we have a better choice than SMBus calls, use a
204 		 * combined I2C message. Write address; then read up to
205 		 * io_limit data bytes. Note that read page rollover helps us
206 		 * here (unlike writes). msgbuf is u8 and will cast to our
207 		 * needs.
208 		 */
209 		i = 0;
210 		if (at24->chip.flags & AT24_FLAG_ADDR16)
211 			msgbuf[i++] = offset >> 8;
212 		msgbuf[i++] = offset;
213 
214 		msg[0].addr = client->addr;
215 		msg[0].buf = msgbuf;
216 		msg[0].len = i;
217 
218 		msg[1].addr = client->addr;
219 		msg[1].flags = I2C_M_RD;
220 		msg[1].buf = buf;
221 		msg[1].len = count;
222 	}
223 
224 	/*
225 	 * Reads fail if the previous write didn't complete yet. We may
226 	 * loop a few times until this one succeeds, waiting at least
227 	 * long enough for one entire page write to work.
228 	 */
229 	timeout = jiffies + msecs_to_jiffies(write_timeout);
230 	do {
231 		read_time = jiffies;
232 		if (at24->use_smbus) {
233 			status = i2c_smbus_read_i2c_block_data_or_emulated(client, offset,
234 									   count, buf);
235 		} else {
236 			status = i2c_transfer(client->adapter, msg, 2);
237 			if (status == 2)
238 				status = count;
239 		}
240 		dev_dbg(&client->dev, "read %zu@%d --> %d (%ld)\n",
241 				count, offset, status, jiffies);
242 
243 		if (status == count)
244 			return count;
245 
246 		usleep_range(1000, 1500);
247 	} while (time_before(read_time, timeout));
248 
249 	return -ETIMEDOUT;
250 }
251 
252 static int at24_read(void *priv, unsigned int off, void *val, size_t count)
253 {
254 	struct at24_data *at24 = priv;
255 	char *buf = val;
256 
257 	if (unlikely(!count))
258 		return count;
259 
260 	/*
261 	 * Read data from chip, protecting against concurrent updates
262 	 * from this host, but not from other I2C masters.
263 	 */
264 	mutex_lock(&at24->lock);
265 
266 	while (count) {
267 		int	status;
268 
269 		status = at24_eeprom_read(at24, buf, off, count);
270 		if (status < 0) {
271 			mutex_unlock(&at24->lock);
272 			return status;
273 		}
274 		buf += status;
275 		off += status;
276 		count -= status;
277 	}
278 
279 	mutex_unlock(&at24->lock);
280 
281 	return 0;
282 }
283 
284 /*
285  * Note that if the hardware write-protect pin is pulled high, the whole
286  * chip is normally write protected. But there are plenty of product
287  * variants here, including OTP fuses and partial chip protect.
288  *
289  * We only use page mode writes; the alternative is sloooow. This routine
290  * writes at most one page.
291  */
292 static ssize_t at24_eeprom_write(struct at24_data *at24, const char *buf,
293 		unsigned offset, size_t count)
294 {
295 	struct i2c_client *client;
296 	struct i2c_msg msg;
297 	ssize_t status = 0;
298 	unsigned long timeout, write_time;
299 	unsigned next_page;
300 
301 	/* Get corresponding I2C address and adjust offset */
302 	client = at24_translate_offset(at24, &offset);
303 
304 	/* write_max is at most a page */
305 	if (count > at24->write_max)
306 		count = at24->write_max;
307 
308 	/* Never roll over backwards, to the start of this page */
309 	next_page = roundup(offset + 1, at24->chip.page_size);
310 	if (offset + count > next_page)
311 		count = next_page - offset;
312 
313 	/* If we'll use I2C calls for I/O, set up the message */
314 	if (!at24->use_smbus) {
315 		int i = 0;
316 
317 		msg.addr = client->addr;
318 		msg.flags = 0;
319 
320 		/* msg.buf is u8 and casts will mask the values */
321 		msg.buf = at24->writebuf;
322 		if (at24->chip.flags & AT24_FLAG_ADDR16)
323 			msg.buf[i++] = offset >> 8;
324 
325 		msg.buf[i++] = offset;
326 		memcpy(&msg.buf[i], buf, count);
327 		msg.len = i + count;
328 	}
329 
330 	/*
331 	 * Writes fail if the previous one didn't complete yet. We may
332 	 * loop a few times until this one succeeds, waiting at least
333 	 * long enough for one entire page write to work.
334 	 */
335 	timeout = jiffies + msecs_to_jiffies(write_timeout);
336 	do {
337 		write_time = jiffies;
338 		if (at24->use_smbus_write) {
339 			switch (at24->use_smbus_write) {
340 			case I2C_SMBUS_I2C_BLOCK_DATA:
341 				status = i2c_smbus_write_i2c_block_data(client,
342 						offset, count, buf);
343 				break;
344 			case I2C_SMBUS_BYTE_DATA:
345 				status = i2c_smbus_write_byte_data(client,
346 						offset, buf[0]);
347 				break;
348 			}
349 
350 			if (status == 0)
351 				status = count;
352 		} else {
353 			status = i2c_transfer(client->adapter, &msg, 1);
354 			if (status == 1)
355 				status = count;
356 		}
357 		dev_dbg(&client->dev, "write %zu@%d --> %zd (%ld)\n",
358 				count, offset, status, jiffies);
359 
360 		if (status == count)
361 			return count;
362 
363 		usleep_range(1000, 1500);
364 	} while (time_before(write_time, timeout));
365 
366 	return -ETIMEDOUT;
367 }
368 
369 static int at24_write(void *priv, unsigned int off, void *val, size_t count)
370 {
371 	struct at24_data *at24 = priv;
372 	char *buf = val;
373 
374 	if (unlikely(!count))
375 		return -EINVAL;
376 
377 	/*
378 	 * Write data to chip, protecting against concurrent updates
379 	 * from this host, but not from other I2C masters.
380 	 */
381 	mutex_lock(&at24->lock);
382 
383 	while (count) {
384 		int status;
385 
386 		status = at24_eeprom_write(at24, buf, off, count);
387 		if (status < 0) {
388 			mutex_unlock(&at24->lock);
389 			return status;
390 		}
391 		buf += status;
392 		off += status;
393 		count -= status;
394 	}
395 
396 	mutex_unlock(&at24->lock);
397 
398 	return 0;
399 }
400 
401 #ifdef CONFIG_OF
402 static void at24_get_ofdata(struct i2c_client *client,
403 		struct at24_platform_data *chip)
404 {
405 	const __be32 *val;
406 	struct device_node *node = client->dev.of_node;
407 
408 	if (node) {
409 		if (of_get_property(node, "read-only", NULL))
410 			chip->flags |= AT24_FLAG_READONLY;
411 		val = of_get_property(node, "pagesize", NULL);
412 		if (val)
413 			chip->page_size = be32_to_cpup(val);
414 	}
415 }
416 #else
417 static void at24_get_ofdata(struct i2c_client *client,
418 		struct at24_platform_data *chip)
419 { }
420 #endif /* CONFIG_OF */
421 
422 static int at24_probe(struct i2c_client *client, const struct i2c_device_id *id)
423 {
424 	struct at24_platform_data chip;
425 	kernel_ulong_t magic = 0;
426 	bool writable;
427 	int use_smbus = 0;
428 	int use_smbus_write = 0;
429 	struct at24_data *at24;
430 	int err;
431 	unsigned i, num_addresses;
432 
433 	if (client->dev.platform_data) {
434 		chip = *(struct at24_platform_data *)client->dev.platform_data;
435 	} else {
436 		if (id) {
437 			magic = id->driver_data;
438 		} else {
439 			const struct acpi_device_id *aid;
440 
441 			aid = acpi_match_device(at24_acpi_ids, &client->dev);
442 			if (aid)
443 				magic = aid->driver_data;
444 		}
445 		if (!magic)
446 			return -ENODEV;
447 
448 		chip.byte_len = BIT(magic & AT24_BITMASK(AT24_SIZE_BYTELEN));
449 		magic >>= AT24_SIZE_BYTELEN;
450 		chip.flags = magic & AT24_BITMASK(AT24_SIZE_FLAGS);
451 		/*
452 		 * This is slow, but we can't know all eeproms, so we better
453 		 * play safe. Specifying custom eeprom-types via platform_data
454 		 * is recommended anyhow.
455 		 */
456 		chip.page_size = 1;
457 
458 		/* update chipdata if OF is present */
459 		at24_get_ofdata(client, &chip);
460 
461 		chip.setup = NULL;
462 		chip.context = NULL;
463 	}
464 
465 	if (!is_power_of_2(chip.byte_len))
466 		dev_warn(&client->dev,
467 			"byte_len looks suspicious (no power of 2)!\n");
468 	if (!chip.page_size) {
469 		dev_err(&client->dev, "page_size must not be 0!\n");
470 		return -EINVAL;
471 	}
472 	if (!is_power_of_2(chip.page_size))
473 		dev_warn(&client->dev,
474 			"page_size looks suspicious (no power of 2)!\n");
475 
476 	/* Use I2C operations unless we're stuck with SMBus extensions. */
477 	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
478 		if (chip.flags & AT24_FLAG_ADDR16)
479 			return -EPFNOSUPPORT;
480 
481 		if (i2c_check_functionality(client->adapter,
482 				I2C_FUNC_SMBUS_READ_I2C_BLOCK)) {
483 			use_smbus = I2C_SMBUS_I2C_BLOCK_DATA;
484 		} else if (i2c_check_functionality(client->adapter,
485 				I2C_FUNC_SMBUS_READ_WORD_DATA)) {
486 			use_smbus = I2C_SMBUS_WORD_DATA;
487 		} else if (i2c_check_functionality(client->adapter,
488 				I2C_FUNC_SMBUS_READ_BYTE_DATA)) {
489 			use_smbus = I2C_SMBUS_BYTE_DATA;
490 		} else {
491 			return -EPFNOSUPPORT;
492 		}
493 
494 		if (i2c_check_functionality(client->adapter,
495 				I2C_FUNC_SMBUS_WRITE_I2C_BLOCK)) {
496 			use_smbus_write = I2C_SMBUS_I2C_BLOCK_DATA;
497 		} else if (i2c_check_functionality(client->adapter,
498 				I2C_FUNC_SMBUS_WRITE_BYTE_DATA)) {
499 			use_smbus_write = I2C_SMBUS_BYTE_DATA;
500 			chip.page_size = 1;
501 		}
502 	}
503 
504 	if (chip.flags & AT24_FLAG_TAKE8ADDR)
505 		num_addresses = 8;
506 	else
507 		num_addresses =	DIV_ROUND_UP(chip.byte_len,
508 			(chip.flags & AT24_FLAG_ADDR16) ? 65536 : 256);
509 
510 	at24 = devm_kzalloc(&client->dev, sizeof(struct at24_data) +
511 		num_addresses * sizeof(struct i2c_client *), GFP_KERNEL);
512 	if (!at24)
513 		return -ENOMEM;
514 
515 	mutex_init(&at24->lock);
516 	at24->use_smbus = use_smbus;
517 	at24->use_smbus_write = use_smbus_write;
518 	at24->chip = chip;
519 	at24->num_addresses = num_addresses;
520 
521 	writable = !(chip.flags & AT24_FLAG_READONLY);
522 	if (writable) {
523 		if (!use_smbus || use_smbus_write) {
524 
525 			unsigned write_max = chip.page_size;
526 
527 			if (write_max > io_limit)
528 				write_max = io_limit;
529 			if (use_smbus && write_max > I2C_SMBUS_BLOCK_MAX)
530 				write_max = I2C_SMBUS_BLOCK_MAX;
531 			at24->write_max = write_max;
532 
533 			/* buffer (data + address at the beginning) */
534 			at24->writebuf = devm_kzalloc(&client->dev,
535 				write_max + 2, GFP_KERNEL);
536 			if (!at24->writebuf)
537 				return -ENOMEM;
538 		} else {
539 			dev_warn(&client->dev,
540 				"cannot write due to controller restrictions.");
541 		}
542 	}
543 
544 	at24->client[0] = client;
545 
546 	/* use dummy devices for multiple-address chips */
547 	for (i = 1; i < num_addresses; i++) {
548 		at24->client[i] = i2c_new_dummy(client->adapter,
549 					client->addr + i);
550 		if (!at24->client[i]) {
551 			dev_err(&client->dev, "address 0x%02x unavailable\n",
552 					client->addr + i);
553 			err = -EADDRINUSE;
554 			goto err_clients;
555 		}
556 	}
557 
558 	at24->nvmem_config.name = dev_name(&client->dev);
559 	at24->nvmem_config.dev = &client->dev;
560 	at24->nvmem_config.read_only = !writable;
561 	at24->nvmem_config.root_only = true;
562 	at24->nvmem_config.owner = THIS_MODULE;
563 	at24->nvmem_config.compat = true;
564 	at24->nvmem_config.base_dev = &client->dev;
565 	at24->nvmem_config.reg_read = at24_read;
566 	at24->nvmem_config.reg_write = at24_write;
567 	at24->nvmem_config.priv = at24;
568 	at24->nvmem_config.stride = 4;
569 	at24->nvmem_config.word_size = 1;
570 	at24->nvmem_config.size = chip.byte_len;
571 
572 	at24->nvmem = nvmem_register(&at24->nvmem_config);
573 
574 	if (IS_ERR(at24->nvmem)) {
575 		err = PTR_ERR(at24->nvmem);
576 		goto err_clients;
577 	}
578 
579 	i2c_set_clientdata(client, at24);
580 
581 	dev_info(&client->dev, "%u byte %s EEPROM, %s, %u bytes/write\n",
582 		chip.byte_len, client->name,
583 		writable ? "writable" : "read-only", at24->write_max);
584 	if (use_smbus == I2C_SMBUS_WORD_DATA ||
585 	    use_smbus == I2C_SMBUS_BYTE_DATA) {
586 		dev_notice(&client->dev, "Falling back to %s reads, "
587 			   "performance will suffer\n", use_smbus ==
588 			   I2C_SMBUS_WORD_DATA ? "word" : "byte");
589 	}
590 
591 	/* export data to kernel code */
592 	if (chip.setup)
593 		chip.setup(at24->nvmem, chip.context);
594 
595 	return 0;
596 
597 err_clients:
598 	for (i = 1; i < num_addresses; i++)
599 		if (at24->client[i])
600 			i2c_unregister_device(at24->client[i]);
601 
602 	return err;
603 }
604 
605 static int at24_remove(struct i2c_client *client)
606 {
607 	struct at24_data *at24;
608 	int i;
609 
610 	at24 = i2c_get_clientdata(client);
611 
612 	nvmem_unregister(at24->nvmem);
613 
614 	for (i = 1; i < at24->num_addresses; i++)
615 		i2c_unregister_device(at24->client[i]);
616 
617 	return 0;
618 }
619 
620 /*-------------------------------------------------------------------------*/
621 
622 static struct i2c_driver at24_driver = {
623 	.driver = {
624 		.name = "at24",
625 		.acpi_match_table = ACPI_PTR(at24_acpi_ids),
626 	},
627 	.probe = at24_probe,
628 	.remove = at24_remove,
629 	.id_table = at24_ids,
630 };
631 
632 static int __init at24_init(void)
633 {
634 	if (!io_limit) {
635 		pr_err("at24: io_limit must not be 0!\n");
636 		return -EINVAL;
637 	}
638 
639 	io_limit = rounddown_pow_of_two(io_limit);
640 	return i2c_add_driver(&at24_driver);
641 }
642 module_init(at24_init);
643 
644 static void __exit at24_exit(void)
645 {
646 	i2c_del_driver(&at24_driver);
647 }
648 module_exit(at24_exit);
649 
650 MODULE_DESCRIPTION("Driver for most I2C EEPROMs");
651 MODULE_AUTHOR("David Brownell and Wolfram Sang");
652 MODULE_LICENSE("GPL");
653