1 /* 2 * Copyright 2014 IBM Corp. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 */ 9 10 #include <linux/spinlock.h> 11 #include <linux/sched.h> 12 #include <linux/sched/clock.h> 13 #include <linux/slab.h> 14 #include <linux/mutex.h> 15 #include <linux/mm.h> 16 #include <linux/uaccess.h> 17 #include <linux/delay.h> 18 #include <asm/synch.h> 19 #include <asm/switch_to.h> 20 #include <misc/cxl-base.h> 21 22 #include "cxl.h" 23 #include "trace.h" 24 25 static int afu_control(struct cxl_afu *afu, u64 command, u64 clear, 26 u64 result, u64 mask, bool enabled) 27 { 28 u64 AFU_Cntl; 29 unsigned long timeout = jiffies + (HZ * CXL_TIMEOUT); 30 int rc = 0; 31 32 spin_lock(&afu->afu_cntl_lock); 33 pr_devel("AFU command starting: %llx\n", command); 34 35 trace_cxl_afu_ctrl(afu, command); 36 37 AFU_Cntl = cxl_p2n_read(afu, CXL_AFU_Cntl_An); 38 cxl_p2n_write(afu, CXL_AFU_Cntl_An, (AFU_Cntl & ~clear) | command); 39 40 AFU_Cntl = cxl_p2n_read(afu, CXL_AFU_Cntl_An); 41 while ((AFU_Cntl & mask) != result) { 42 if (time_after_eq(jiffies, timeout)) { 43 dev_warn(&afu->dev, "WARNING: AFU control timed out!\n"); 44 rc = -EBUSY; 45 goto out; 46 } 47 48 if (!cxl_ops->link_ok(afu->adapter, afu)) { 49 afu->enabled = enabled; 50 rc = -EIO; 51 goto out; 52 } 53 54 pr_devel_ratelimited("AFU control... (0x%016llx)\n", 55 AFU_Cntl | command); 56 cpu_relax(); 57 AFU_Cntl = cxl_p2n_read(afu, CXL_AFU_Cntl_An); 58 } 59 60 if (AFU_Cntl & CXL_AFU_Cntl_An_RA) { 61 /* 62 * Workaround for a bug in the XSL used in the Mellanox CX4 63 * that fails to clear the RA bit after an AFU reset, 64 * preventing subsequent AFU resets from working. 65 */ 66 cxl_p2n_write(afu, CXL_AFU_Cntl_An, AFU_Cntl & ~CXL_AFU_Cntl_An_RA); 67 } 68 69 pr_devel("AFU command complete: %llx\n", command); 70 afu->enabled = enabled; 71 out: 72 trace_cxl_afu_ctrl_done(afu, command, rc); 73 spin_unlock(&afu->afu_cntl_lock); 74 75 return rc; 76 } 77 78 static int afu_enable(struct cxl_afu *afu) 79 { 80 pr_devel("AFU enable request\n"); 81 82 return afu_control(afu, CXL_AFU_Cntl_An_E, 0, 83 CXL_AFU_Cntl_An_ES_Enabled, 84 CXL_AFU_Cntl_An_ES_MASK, true); 85 } 86 87 int cxl_afu_disable(struct cxl_afu *afu) 88 { 89 pr_devel("AFU disable request\n"); 90 91 return afu_control(afu, 0, CXL_AFU_Cntl_An_E, 92 CXL_AFU_Cntl_An_ES_Disabled, 93 CXL_AFU_Cntl_An_ES_MASK, false); 94 } 95 96 /* This will disable as well as reset */ 97 static int native_afu_reset(struct cxl_afu *afu) 98 { 99 int rc; 100 u64 serr; 101 102 pr_devel("AFU reset request\n"); 103 104 rc = afu_control(afu, CXL_AFU_Cntl_An_RA, 0, 105 CXL_AFU_Cntl_An_RS_Complete | CXL_AFU_Cntl_An_ES_Disabled, 106 CXL_AFU_Cntl_An_RS_MASK | CXL_AFU_Cntl_An_ES_MASK, 107 false); 108 109 /* 110 * Re-enable any masked interrupts when the AFU is not 111 * activated to avoid side effects after attaching a process 112 * in dedicated mode. 113 */ 114 if (afu->current_mode == 0) { 115 serr = cxl_p1n_read(afu, CXL_PSL_SERR_An); 116 serr &= ~CXL_PSL_SERR_An_IRQ_MASKS; 117 cxl_p1n_write(afu, CXL_PSL_SERR_An, serr); 118 } 119 120 return rc; 121 } 122 123 static int native_afu_check_and_enable(struct cxl_afu *afu) 124 { 125 if (!cxl_ops->link_ok(afu->adapter, afu)) { 126 WARN(1, "Refusing to enable afu while link down!\n"); 127 return -EIO; 128 } 129 if (afu->enabled) 130 return 0; 131 return afu_enable(afu); 132 } 133 134 int cxl_psl_purge(struct cxl_afu *afu) 135 { 136 u64 PSL_CNTL = cxl_p1n_read(afu, CXL_PSL_SCNTL_An); 137 u64 AFU_Cntl = cxl_p2n_read(afu, CXL_AFU_Cntl_An); 138 u64 dsisr, dar; 139 u64 start, end; 140 u64 trans_fault = 0x0ULL; 141 unsigned long timeout = jiffies + (HZ * CXL_TIMEOUT); 142 int rc = 0; 143 144 trace_cxl_psl_ctrl(afu, CXL_PSL_SCNTL_An_Pc); 145 146 pr_devel("PSL purge request\n"); 147 148 if (cxl_is_power8()) 149 trans_fault = CXL_PSL_DSISR_TRANS; 150 if (cxl_is_power9()) 151 trans_fault = CXL_PSL9_DSISR_An_TF; 152 153 if (!cxl_ops->link_ok(afu->adapter, afu)) { 154 dev_warn(&afu->dev, "PSL Purge called with link down, ignoring\n"); 155 rc = -EIO; 156 goto out; 157 } 158 159 if ((AFU_Cntl & CXL_AFU_Cntl_An_ES_MASK) != CXL_AFU_Cntl_An_ES_Disabled) { 160 WARN(1, "psl_purge request while AFU not disabled!\n"); 161 cxl_afu_disable(afu); 162 } 163 164 cxl_p1n_write(afu, CXL_PSL_SCNTL_An, 165 PSL_CNTL | CXL_PSL_SCNTL_An_Pc); 166 start = local_clock(); 167 PSL_CNTL = cxl_p1n_read(afu, CXL_PSL_SCNTL_An); 168 while ((PSL_CNTL & CXL_PSL_SCNTL_An_Ps_MASK) 169 == CXL_PSL_SCNTL_An_Ps_Pending) { 170 if (time_after_eq(jiffies, timeout)) { 171 dev_warn(&afu->dev, "WARNING: PSL Purge timed out!\n"); 172 rc = -EBUSY; 173 goto out; 174 } 175 if (!cxl_ops->link_ok(afu->adapter, afu)) { 176 rc = -EIO; 177 goto out; 178 } 179 180 dsisr = cxl_p2n_read(afu, CXL_PSL_DSISR_An); 181 pr_devel_ratelimited("PSL purging... PSL_CNTL: 0x%016llx PSL_DSISR: 0x%016llx\n", 182 PSL_CNTL, dsisr); 183 184 if (dsisr & trans_fault) { 185 dar = cxl_p2n_read(afu, CXL_PSL_DAR_An); 186 dev_notice(&afu->dev, "PSL purge terminating pending translation, DSISR: 0x%016llx, DAR: 0x%016llx\n", 187 dsisr, dar); 188 cxl_p2n_write(afu, CXL_PSL_TFC_An, CXL_PSL_TFC_An_AE); 189 } else if (dsisr) { 190 dev_notice(&afu->dev, "PSL purge acknowledging pending non-translation fault, DSISR: 0x%016llx\n", 191 dsisr); 192 cxl_p2n_write(afu, CXL_PSL_TFC_An, CXL_PSL_TFC_An_A); 193 } else { 194 cpu_relax(); 195 } 196 PSL_CNTL = cxl_p1n_read(afu, CXL_PSL_SCNTL_An); 197 } 198 end = local_clock(); 199 pr_devel("PSL purged in %lld ns\n", end - start); 200 201 cxl_p1n_write(afu, CXL_PSL_SCNTL_An, 202 PSL_CNTL & ~CXL_PSL_SCNTL_An_Pc); 203 out: 204 trace_cxl_psl_ctrl_done(afu, CXL_PSL_SCNTL_An_Pc, rc); 205 return rc; 206 } 207 208 static int spa_max_procs(int spa_size) 209 { 210 /* 211 * From the CAIA: 212 * end_of_SPA_area = SPA_Base + ((n+4) * 128) + (( ((n*8) + 127) >> 7) * 128) + 255 213 * Most of that junk is really just an overly-complicated way of saying 214 * the last 256 bytes are __aligned(128), so it's really: 215 * end_of_SPA_area = end_of_PSL_queue_area + __aligned(128) 255 216 * and 217 * end_of_PSL_queue_area = SPA_Base + ((n+4) * 128) + (n*8) - 1 218 * so 219 * sizeof(SPA) = ((n+4) * 128) + (n*8) + __aligned(128) 256 220 * Ignore the alignment (which is safe in this case as long as we are 221 * careful with our rounding) and solve for n: 222 */ 223 return ((spa_size / 8) - 96) / 17; 224 } 225 226 static int cxl_alloc_spa(struct cxl_afu *afu, int mode) 227 { 228 unsigned spa_size; 229 230 /* Work out how many pages to allocate */ 231 afu->native->spa_order = -1; 232 do { 233 afu->native->spa_order++; 234 spa_size = (1 << afu->native->spa_order) * PAGE_SIZE; 235 236 if (spa_size > 0x100000) { 237 dev_warn(&afu->dev, "num_of_processes too large for the SPA, limiting to %i (0x%x)\n", 238 afu->native->spa_max_procs, afu->native->spa_size); 239 if (mode != CXL_MODE_DEDICATED) 240 afu->num_procs = afu->native->spa_max_procs; 241 break; 242 } 243 244 afu->native->spa_size = spa_size; 245 afu->native->spa_max_procs = spa_max_procs(afu->native->spa_size); 246 } while (afu->native->spa_max_procs < afu->num_procs); 247 248 if (!(afu->native->spa = (struct cxl_process_element *) 249 __get_free_pages(GFP_KERNEL | __GFP_ZERO, afu->native->spa_order))) { 250 pr_err("cxl_alloc_spa: Unable to allocate scheduled process area\n"); 251 return -ENOMEM; 252 } 253 pr_devel("spa pages: %i afu->spa_max_procs: %i afu->num_procs: %i\n", 254 1<<afu->native->spa_order, afu->native->spa_max_procs, afu->num_procs); 255 256 return 0; 257 } 258 259 static void attach_spa(struct cxl_afu *afu) 260 { 261 u64 spap; 262 263 afu->native->sw_command_status = (__be64 *)((char *)afu->native->spa + 264 ((afu->native->spa_max_procs + 3) * 128)); 265 266 spap = virt_to_phys(afu->native->spa) & CXL_PSL_SPAP_Addr; 267 spap |= ((afu->native->spa_size >> (12 - CXL_PSL_SPAP_Size_Shift)) - 1) & CXL_PSL_SPAP_Size; 268 spap |= CXL_PSL_SPAP_V; 269 pr_devel("cxl: SPA allocated at 0x%p. Max processes: %i, sw_command_status: 0x%p CXL_PSL_SPAP_An=0x%016llx\n", 270 afu->native->spa, afu->native->spa_max_procs, 271 afu->native->sw_command_status, spap); 272 cxl_p1n_write(afu, CXL_PSL_SPAP_An, spap); 273 } 274 275 static inline void detach_spa(struct cxl_afu *afu) 276 { 277 cxl_p1n_write(afu, CXL_PSL_SPAP_An, 0); 278 } 279 280 void cxl_release_spa(struct cxl_afu *afu) 281 { 282 if (afu->native->spa) { 283 free_pages((unsigned long) afu->native->spa, 284 afu->native->spa_order); 285 afu->native->spa = NULL; 286 } 287 } 288 289 /* 290 * Invalidation of all ERAT entries is no longer required by CAIA2. Use 291 * only for debug. 292 */ 293 int cxl_invalidate_all_psl9(struct cxl *adapter) 294 { 295 unsigned long timeout = jiffies + (HZ * CXL_TIMEOUT); 296 u64 ierat; 297 298 pr_devel("CXL adapter - invalidation of all ERAT entries\n"); 299 300 /* Invalidates all ERAT entries for Radix or HPT */ 301 ierat = CXL_XSL9_IERAT_IALL; 302 if (radix_enabled()) 303 ierat |= CXL_XSL9_IERAT_INVR; 304 cxl_p1_write(adapter, CXL_XSL9_IERAT, ierat); 305 306 while (cxl_p1_read(adapter, CXL_XSL9_IERAT) & CXL_XSL9_IERAT_IINPROG) { 307 if (time_after_eq(jiffies, timeout)) { 308 dev_warn(&adapter->dev, 309 "WARNING: CXL adapter invalidation of all ERAT entries timed out!\n"); 310 return -EBUSY; 311 } 312 if (!cxl_ops->link_ok(adapter, NULL)) 313 return -EIO; 314 cpu_relax(); 315 } 316 return 0; 317 } 318 319 int cxl_invalidate_all_psl8(struct cxl *adapter) 320 { 321 unsigned long timeout = jiffies + (HZ * CXL_TIMEOUT); 322 323 pr_devel("CXL adapter wide TLBIA & SLBIA\n"); 324 325 cxl_p1_write(adapter, CXL_PSL_AFUSEL, CXL_PSL_AFUSEL_A); 326 327 cxl_p1_write(adapter, CXL_PSL_TLBIA, CXL_TLB_SLB_IQ_ALL); 328 while (cxl_p1_read(adapter, CXL_PSL_TLBIA) & CXL_TLB_SLB_P) { 329 if (time_after_eq(jiffies, timeout)) { 330 dev_warn(&adapter->dev, "WARNING: CXL adapter wide TLBIA timed out!\n"); 331 return -EBUSY; 332 } 333 if (!cxl_ops->link_ok(adapter, NULL)) 334 return -EIO; 335 cpu_relax(); 336 } 337 338 cxl_p1_write(adapter, CXL_PSL_SLBIA, CXL_TLB_SLB_IQ_ALL); 339 while (cxl_p1_read(adapter, CXL_PSL_SLBIA) & CXL_TLB_SLB_P) { 340 if (time_after_eq(jiffies, timeout)) { 341 dev_warn(&adapter->dev, "WARNING: CXL adapter wide SLBIA timed out!\n"); 342 return -EBUSY; 343 } 344 if (!cxl_ops->link_ok(adapter, NULL)) 345 return -EIO; 346 cpu_relax(); 347 } 348 return 0; 349 } 350 351 int cxl_data_cache_flush(struct cxl *adapter) 352 { 353 u64 reg; 354 unsigned long timeout = jiffies + (HZ * CXL_TIMEOUT); 355 356 /* 357 * Do a datacache flush only if datacache is available. 358 * In case of PSL9D datacache absent hence flush operation. 359 * would timeout. 360 */ 361 if (adapter->native->no_data_cache) { 362 pr_devel("No PSL data cache. Ignoring cache flush req.\n"); 363 return 0; 364 } 365 366 pr_devel("Flushing data cache\n"); 367 reg = cxl_p1_read(adapter, CXL_PSL_Control); 368 reg |= CXL_PSL_Control_Fr; 369 cxl_p1_write(adapter, CXL_PSL_Control, reg); 370 371 reg = cxl_p1_read(adapter, CXL_PSL_Control); 372 while ((reg & CXL_PSL_Control_Fs_MASK) != CXL_PSL_Control_Fs_Complete) { 373 if (time_after_eq(jiffies, timeout)) { 374 dev_warn(&adapter->dev, "WARNING: cache flush timed out!\n"); 375 return -EBUSY; 376 } 377 378 if (!cxl_ops->link_ok(adapter, NULL)) { 379 dev_warn(&adapter->dev, "WARNING: link down when flushing cache\n"); 380 return -EIO; 381 } 382 cpu_relax(); 383 reg = cxl_p1_read(adapter, CXL_PSL_Control); 384 } 385 386 reg &= ~CXL_PSL_Control_Fr; 387 cxl_p1_write(adapter, CXL_PSL_Control, reg); 388 return 0; 389 } 390 391 static int cxl_write_sstp(struct cxl_afu *afu, u64 sstp0, u64 sstp1) 392 { 393 int rc; 394 395 /* 1. Disable SSTP by writing 0 to SSTP1[V] */ 396 cxl_p2n_write(afu, CXL_SSTP1_An, 0); 397 398 /* 2. Invalidate all SLB entries */ 399 if ((rc = cxl_afu_slbia(afu))) 400 return rc; 401 402 /* 3. Set SSTP0_An */ 403 cxl_p2n_write(afu, CXL_SSTP0_An, sstp0); 404 405 /* 4. Set SSTP1_An */ 406 cxl_p2n_write(afu, CXL_SSTP1_An, sstp1); 407 408 return 0; 409 } 410 411 /* Using per slice version may improve performance here. (ie. SLBIA_An) */ 412 static void slb_invalid(struct cxl_context *ctx) 413 { 414 struct cxl *adapter = ctx->afu->adapter; 415 u64 slbia; 416 417 WARN_ON(!mutex_is_locked(&ctx->afu->native->spa_mutex)); 418 419 cxl_p1_write(adapter, CXL_PSL_LBISEL, 420 ((u64)be32_to_cpu(ctx->elem->common.pid) << 32) | 421 be32_to_cpu(ctx->elem->lpid)); 422 cxl_p1_write(adapter, CXL_PSL_SLBIA, CXL_TLB_SLB_IQ_LPIDPID); 423 424 while (1) { 425 if (!cxl_ops->link_ok(adapter, NULL)) 426 break; 427 slbia = cxl_p1_read(adapter, CXL_PSL_SLBIA); 428 if (!(slbia & CXL_TLB_SLB_P)) 429 break; 430 cpu_relax(); 431 } 432 } 433 434 static int do_process_element_cmd(struct cxl_context *ctx, 435 u64 cmd, u64 pe_state) 436 { 437 u64 state; 438 unsigned long timeout = jiffies + (HZ * CXL_TIMEOUT); 439 int rc = 0; 440 441 trace_cxl_llcmd(ctx, cmd); 442 443 WARN_ON(!ctx->afu->enabled); 444 445 ctx->elem->software_state = cpu_to_be32(pe_state); 446 smp_wmb(); 447 *(ctx->afu->native->sw_command_status) = cpu_to_be64(cmd | 0 | ctx->pe); 448 smp_mb(); 449 cxl_p1n_write(ctx->afu, CXL_PSL_LLCMD_An, cmd | ctx->pe); 450 while (1) { 451 if (time_after_eq(jiffies, timeout)) { 452 dev_warn(&ctx->afu->dev, "WARNING: Process Element Command timed out!\n"); 453 rc = -EBUSY; 454 goto out; 455 } 456 if (!cxl_ops->link_ok(ctx->afu->adapter, ctx->afu)) { 457 dev_warn(&ctx->afu->dev, "WARNING: Device link down, aborting Process Element Command!\n"); 458 rc = -EIO; 459 goto out; 460 } 461 state = be64_to_cpup(ctx->afu->native->sw_command_status); 462 if (state == ~0ULL) { 463 pr_err("cxl: Error adding process element to AFU\n"); 464 rc = -1; 465 goto out; 466 } 467 if ((state & (CXL_SPA_SW_CMD_MASK | CXL_SPA_SW_STATE_MASK | CXL_SPA_SW_LINK_MASK)) == 468 (cmd | (cmd >> 16) | ctx->pe)) 469 break; 470 /* 471 * The command won't finish in the PSL if there are 472 * outstanding DSIs. Hence we need to yield here in 473 * case there are outstanding DSIs that we need to 474 * service. Tuning possiblity: we could wait for a 475 * while before sched 476 */ 477 schedule(); 478 479 } 480 out: 481 trace_cxl_llcmd_done(ctx, cmd, rc); 482 return rc; 483 } 484 485 static int add_process_element(struct cxl_context *ctx) 486 { 487 int rc = 0; 488 489 mutex_lock(&ctx->afu->native->spa_mutex); 490 pr_devel("%s Adding pe: %i started\n", __func__, ctx->pe); 491 if (!(rc = do_process_element_cmd(ctx, CXL_SPA_SW_CMD_ADD, CXL_PE_SOFTWARE_STATE_V))) 492 ctx->pe_inserted = true; 493 pr_devel("%s Adding pe: %i finished\n", __func__, ctx->pe); 494 mutex_unlock(&ctx->afu->native->spa_mutex); 495 return rc; 496 } 497 498 static int terminate_process_element(struct cxl_context *ctx) 499 { 500 int rc = 0; 501 502 /* fast path terminate if it's already invalid */ 503 if (!(ctx->elem->software_state & cpu_to_be32(CXL_PE_SOFTWARE_STATE_V))) 504 return rc; 505 506 mutex_lock(&ctx->afu->native->spa_mutex); 507 pr_devel("%s Terminate pe: %i started\n", __func__, ctx->pe); 508 /* We could be asked to terminate when the hw is down. That 509 * should always succeed: it's not running if the hw has gone 510 * away and is being reset. 511 */ 512 if (cxl_ops->link_ok(ctx->afu->adapter, ctx->afu)) 513 rc = do_process_element_cmd(ctx, CXL_SPA_SW_CMD_TERMINATE, 514 CXL_PE_SOFTWARE_STATE_V | CXL_PE_SOFTWARE_STATE_T); 515 ctx->elem->software_state = 0; /* Remove Valid bit */ 516 pr_devel("%s Terminate pe: %i finished\n", __func__, ctx->pe); 517 mutex_unlock(&ctx->afu->native->spa_mutex); 518 return rc; 519 } 520 521 static int remove_process_element(struct cxl_context *ctx) 522 { 523 int rc = 0; 524 525 mutex_lock(&ctx->afu->native->spa_mutex); 526 pr_devel("%s Remove pe: %i started\n", __func__, ctx->pe); 527 528 /* We could be asked to remove when the hw is down. Again, if 529 * the hw is down, the PE is gone, so we succeed. 530 */ 531 if (cxl_ops->link_ok(ctx->afu->adapter, ctx->afu)) 532 rc = do_process_element_cmd(ctx, CXL_SPA_SW_CMD_REMOVE, 0); 533 534 if (!rc) 535 ctx->pe_inserted = false; 536 if (cxl_is_power8()) 537 slb_invalid(ctx); 538 pr_devel("%s Remove pe: %i finished\n", __func__, ctx->pe); 539 mutex_unlock(&ctx->afu->native->spa_mutex); 540 541 return rc; 542 } 543 544 void cxl_assign_psn_space(struct cxl_context *ctx) 545 { 546 if (!ctx->afu->pp_size || ctx->master) { 547 ctx->psn_phys = ctx->afu->psn_phys; 548 ctx->psn_size = ctx->afu->adapter->ps_size; 549 } else { 550 ctx->psn_phys = ctx->afu->psn_phys + 551 (ctx->afu->native->pp_offset + ctx->afu->pp_size * ctx->pe); 552 ctx->psn_size = ctx->afu->pp_size; 553 } 554 } 555 556 static int activate_afu_directed(struct cxl_afu *afu) 557 { 558 int rc; 559 560 dev_info(&afu->dev, "Activating AFU directed mode\n"); 561 562 afu->num_procs = afu->max_procs_virtualised; 563 if (afu->native->spa == NULL) { 564 if (cxl_alloc_spa(afu, CXL_MODE_DIRECTED)) 565 return -ENOMEM; 566 } 567 attach_spa(afu); 568 569 cxl_p1n_write(afu, CXL_PSL_SCNTL_An, CXL_PSL_SCNTL_An_PM_AFU); 570 if (cxl_is_power8()) 571 cxl_p1n_write(afu, CXL_PSL_AMOR_An, 0xFFFFFFFFFFFFFFFFULL); 572 cxl_p1n_write(afu, CXL_PSL_ID_An, CXL_PSL_ID_An_F | CXL_PSL_ID_An_L); 573 574 afu->current_mode = CXL_MODE_DIRECTED; 575 576 if ((rc = cxl_chardev_m_afu_add(afu))) 577 return rc; 578 579 if ((rc = cxl_sysfs_afu_m_add(afu))) 580 goto err; 581 582 if ((rc = cxl_chardev_s_afu_add(afu))) 583 goto err1; 584 585 return 0; 586 err1: 587 cxl_sysfs_afu_m_remove(afu); 588 err: 589 cxl_chardev_afu_remove(afu); 590 return rc; 591 } 592 593 #ifdef CONFIG_CPU_LITTLE_ENDIAN 594 #define set_endian(sr) ((sr) |= CXL_PSL_SR_An_LE) 595 #else 596 #define set_endian(sr) ((sr) &= ~(CXL_PSL_SR_An_LE)) 597 #endif 598 599 u64 cxl_calculate_sr(bool master, bool kernel, bool real_mode, bool p9) 600 { 601 u64 sr = 0; 602 603 set_endian(sr); 604 if (master) 605 sr |= CXL_PSL_SR_An_MP; 606 if (mfspr(SPRN_LPCR) & LPCR_TC) 607 sr |= CXL_PSL_SR_An_TC; 608 609 if (kernel) { 610 if (!real_mode) 611 sr |= CXL_PSL_SR_An_R; 612 sr |= (mfmsr() & MSR_SF) | CXL_PSL_SR_An_HV; 613 } else { 614 sr |= CXL_PSL_SR_An_PR | CXL_PSL_SR_An_R; 615 if (radix_enabled()) 616 sr |= CXL_PSL_SR_An_HV; 617 else 618 sr &= ~(CXL_PSL_SR_An_HV); 619 if (!test_tsk_thread_flag(current, TIF_32BIT)) 620 sr |= CXL_PSL_SR_An_SF; 621 } 622 if (p9) { 623 if (radix_enabled()) 624 sr |= CXL_PSL_SR_An_XLAT_ror; 625 else 626 sr |= CXL_PSL_SR_An_XLAT_hpt; 627 } 628 return sr; 629 } 630 631 static u64 calculate_sr(struct cxl_context *ctx) 632 { 633 return cxl_calculate_sr(ctx->master, ctx->kernel, false, 634 cxl_is_power9()); 635 } 636 637 static void update_ivtes_directed(struct cxl_context *ctx) 638 { 639 bool need_update = (ctx->status == STARTED); 640 int r; 641 642 if (need_update) { 643 WARN_ON(terminate_process_element(ctx)); 644 WARN_ON(remove_process_element(ctx)); 645 } 646 647 for (r = 0; r < CXL_IRQ_RANGES; r++) { 648 ctx->elem->ivte_offsets[r] = cpu_to_be16(ctx->irqs.offset[r]); 649 ctx->elem->ivte_ranges[r] = cpu_to_be16(ctx->irqs.range[r]); 650 } 651 652 /* 653 * Theoretically we could use the update llcmd, instead of a 654 * terminate/remove/add (or if an atomic update was required we could 655 * do a suspend/update/resume), however it seems there might be issues 656 * with the update llcmd on some cards (including those using an XSL on 657 * an ASIC) so for now it's safest to go with the commands that are 658 * known to work. In the future if we come across a situation where the 659 * card may be performing transactions using the same PE while we are 660 * doing this update we might need to revisit this. 661 */ 662 if (need_update) 663 WARN_ON(add_process_element(ctx)); 664 } 665 666 static int process_element_entry_psl9(struct cxl_context *ctx, u64 wed, u64 amr) 667 { 668 u32 pid; 669 int rc; 670 671 cxl_assign_psn_space(ctx); 672 673 ctx->elem->ctxtime = 0; /* disable */ 674 ctx->elem->lpid = cpu_to_be32(mfspr(SPRN_LPID)); 675 ctx->elem->haurp = 0; /* disable */ 676 677 if (ctx->kernel) 678 pid = 0; 679 else { 680 if (ctx->mm == NULL) { 681 pr_devel("%s: unable to get mm for pe=%d pid=%i\n", 682 __func__, ctx->pe, pid_nr(ctx->pid)); 683 return -EINVAL; 684 } 685 pid = ctx->mm->context.id; 686 } 687 688 /* Assign a unique TIDR (thread id) for the current thread */ 689 if (!(ctx->tidr) && (ctx->assign_tidr)) { 690 rc = set_thread_tidr(current); 691 if (rc) 692 return -ENODEV; 693 ctx->tidr = current->thread.tidr; 694 pr_devel("%s: current tidr: %d\n", __func__, ctx->tidr); 695 } 696 697 ctx->elem->common.tid = cpu_to_be32(ctx->tidr); 698 ctx->elem->common.pid = cpu_to_be32(pid); 699 700 ctx->elem->sr = cpu_to_be64(calculate_sr(ctx)); 701 702 ctx->elem->common.csrp = 0; /* disable */ 703 704 cxl_prefault(ctx, wed); 705 706 /* 707 * Ensure we have the multiplexed PSL interrupt set up to take faults 708 * for kernel contexts that may not have allocated any AFU IRQs at all: 709 */ 710 if (ctx->irqs.range[0] == 0) { 711 ctx->irqs.offset[0] = ctx->afu->native->psl_hwirq; 712 ctx->irqs.range[0] = 1; 713 } 714 715 ctx->elem->common.amr = cpu_to_be64(amr); 716 ctx->elem->common.wed = cpu_to_be64(wed); 717 718 return 0; 719 } 720 721 int cxl_attach_afu_directed_psl9(struct cxl_context *ctx, u64 wed, u64 amr) 722 { 723 int result; 724 725 /* fill the process element entry */ 726 result = process_element_entry_psl9(ctx, wed, amr); 727 if (result) 728 return result; 729 730 update_ivtes_directed(ctx); 731 732 /* first guy needs to enable */ 733 result = cxl_ops->afu_check_and_enable(ctx->afu); 734 if (result) 735 return result; 736 737 return add_process_element(ctx); 738 } 739 740 int cxl_attach_afu_directed_psl8(struct cxl_context *ctx, u64 wed, u64 amr) 741 { 742 u32 pid; 743 int result; 744 745 cxl_assign_psn_space(ctx); 746 747 ctx->elem->ctxtime = 0; /* disable */ 748 ctx->elem->lpid = cpu_to_be32(mfspr(SPRN_LPID)); 749 ctx->elem->haurp = 0; /* disable */ 750 ctx->elem->u.sdr = cpu_to_be64(mfspr(SPRN_SDR1)); 751 752 pid = current->pid; 753 if (ctx->kernel) 754 pid = 0; 755 ctx->elem->common.tid = 0; 756 ctx->elem->common.pid = cpu_to_be32(pid); 757 758 ctx->elem->sr = cpu_to_be64(calculate_sr(ctx)); 759 760 ctx->elem->common.csrp = 0; /* disable */ 761 ctx->elem->common.u.psl8.aurp0 = 0; /* disable */ 762 ctx->elem->common.u.psl8.aurp1 = 0; /* disable */ 763 764 cxl_prefault(ctx, wed); 765 766 ctx->elem->common.u.psl8.sstp0 = cpu_to_be64(ctx->sstp0); 767 ctx->elem->common.u.psl8.sstp1 = cpu_to_be64(ctx->sstp1); 768 769 /* 770 * Ensure we have the multiplexed PSL interrupt set up to take faults 771 * for kernel contexts that may not have allocated any AFU IRQs at all: 772 */ 773 if (ctx->irqs.range[0] == 0) { 774 ctx->irqs.offset[0] = ctx->afu->native->psl_hwirq; 775 ctx->irqs.range[0] = 1; 776 } 777 778 update_ivtes_directed(ctx); 779 780 ctx->elem->common.amr = cpu_to_be64(amr); 781 ctx->elem->common.wed = cpu_to_be64(wed); 782 783 /* first guy needs to enable */ 784 if ((result = cxl_ops->afu_check_and_enable(ctx->afu))) 785 return result; 786 787 return add_process_element(ctx); 788 } 789 790 static int deactivate_afu_directed(struct cxl_afu *afu) 791 { 792 dev_info(&afu->dev, "Deactivating AFU directed mode\n"); 793 794 afu->current_mode = 0; 795 afu->num_procs = 0; 796 797 cxl_sysfs_afu_m_remove(afu); 798 cxl_chardev_afu_remove(afu); 799 800 /* 801 * The CAIA section 2.2.1 indicates that the procedure for starting and 802 * stopping an AFU in AFU directed mode is AFU specific, which is not 803 * ideal since this code is generic and with one exception has no 804 * knowledge of the AFU. This is in contrast to the procedure for 805 * disabling a dedicated process AFU, which is documented to just 806 * require a reset. The architecture does indicate that both an AFU 807 * reset and an AFU disable should result in the AFU being disabled and 808 * we do both followed by a PSL purge for safety. 809 * 810 * Notably we used to have some issues with the disable sequence on PSL 811 * cards, which is why we ended up using this heavy weight procedure in 812 * the first place, however a bug was discovered that had rendered the 813 * disable operation ineffective, so it is conceivable that was the 814 * sole explanation for those difficulties. Careful regression testing 815 * is recommended if anyone attempts to remove or reorder these 816 * operations. 817 * 818 * The XSL on the Mellanox CX4 behaves a little differently from the 819 * PSL based cards and will time out an AFU reset if the AFU is still 820 * enabled. That card is special in that we do have a means to identify 821 * it from this code, so in that case we skip the reset and just use a 822 * disable/purge to avoid the timeout and corresponding noise in the 823 * kernel log. 824 */ 825 if (afu->adapter->native->sl_ops->needs_reset_before_disable) 826 cxl_ops->afu_reset(afu); 827 cxl_afu_disable(afu); 828 cxl_psl_purge(afu); 829 830 return 0; 831 } 832 833 int cxl_activate_dedicated_process_psl9(struct cxl_afu *afu) 834 { 835 dev_info(&afu->dev, "Activating dedicated process mode\n"); 836 837 /* 838 * If XSL is set to dedicated mode (Set in PSL_SCNTL reg), the 839 * XSL and AFU are programmed to work with a single context. 840 * The context information should be configured in the SPA area 841 * index 0 (so PSL_SPAP must be configured before enabling the 842 * AFU). 843 */ 844 afu->num_procs = 1; 845 if (afu->native->spa == NULL) { 846 if (cxl_alloc_spa(afu, CXL_MODE_DEDICATED)) 847 return -ENOMEM; 848 } 849 attach_spa(afu); 850 851 cxl_p1n_write(afu, CXL_PSL_SCNTL_An, CXL_PSL_SCNTL_An_PM_Process); 852 cxl_p1n_write(afu, CXL_PSL_ID_An, CXL_PSL_ID_An_F | CXL_PSL_ID_An_L); 853 854 afu->current_mode = CXL_MODE_DEDICATED; 855 856 return cxl_chardev_d_afu_add(afu); 857 } 858 859 int cxl_activate_dedicated_process_psl8(struct cxl_afu *afu) 860 { 861 dev_info(&afu->dev, "Activating dedicated process mode\n"); 862 863 cxl_p1n_write(afu, CXL_PSL_SCNTL_An, CXL_PSL_SCNTL_An_PM_Process); 864 865 cxl_p1n_write(afu, CXL_PSL_CtxTime_An, 0); /* disable */ 866 cxl_p1n_write(afu, CXL_PSL_SPAP_An, 0); /* disable */ 867 cxl_p1n_write(afu, CXL_PSL_AMOR_An, 0xFFFFFFFFFFFFFFFFULL); 868 cxl_p1n_write(afu, CXL_PSL_LPID_An, mfspr(SPRN_LPID)); 869 cxl_p1n_write(afu, CXL_HAURP_An, 0); /* disable */ 870 cxl_p1n_write(afu, CXL_PSL_SDR_An, mfspr(SPRN_SDR1)); 871 872 cxl_p2n_write(afu, CXL_CSRP_An, 0); /* disable */ 873 cxl_p2n_write(afu, CXL_AURP0_An, 0); /* disable */ 874 cxl_p2n_write(afu, CXL_AURP1_An, 0); /* disable */ 875 876 afu->current_mode = CXL_MODE_DEDICATED; 877 afu->num_procs = 1; 878 879 return cxl_chardev_d_afu_add(afu); 880 } 881 882 void cxl_update_dedicated_ivtes_psl9(struct cxl_context *ctx) 883 { 884 int r; 885 886 for (r = 0; r < CXL_IRQ_RANGES; r++) { 887 ctx->elem->ivte_offsets[r] = cpu_to_be16(ctx->irqs.offset[r]); 888 ctx->elem->ivte_ranges[r] = cpu_to_be16(ctx->irqs.range[r]); 889 } 890 } 891 892 void cxl_update_dedicated_ivtes_psl8(struct cxl_context *ctx) 893 { 894 struct cxl_afu *afu = ctx->afu; 895 896 cxl_p1n_write(afu, CXL_PSL_IVTE_Offset_An, 897 (((u64)ctx->irqs.offset[0] & 0xffff) << 48) | 898 (((u64)ctx->irqs.offset[1] & 0xffff) << 32) | 899 (((u64)ctx->irqs.offset[2] & 0xffff) << 16) | 900 ((u64)ctx->irqs.offset[3] & 0xffff)); 901 cxl_p1n_write(afu, CXL_PSL_IVTE_Limit_An, (u64) 902 (((u64)ctx->irqs.range[0] & 0xffff) << 48) | 903 (((u64)ctx->irqs.range[1] & 0xffff) << 32) | 904 (((u64)ctx->irqs.range[2] & 0xffff) << 16) | 905 ((u64)ctx->irqs.range[3] & 0xffff)); 906 } 907 908 int cxl_attach_dedicated_process_psl9(struct cxl_context *ctx, u64 wed, u64 amr) 909 { 910 struct cxl_afu *afu = ctx->afu; 911 int result; 912 913 /* fill the process element entry */ 914 result = process_element_entry_psl9(ctx, wed, amr); 915 if (result) 916 return result; 917 918 if (ctx->afu->adapter->native->sl_ops->update_dedicated_ivtes) 919 afu->adapter->native->sl_ops->update_dedicated_ivtes(ctx); 920 921 ctx->elem->software_state = cpu_to_be32(CXL_PE_SOFTWARE_STATE_V); 922 /* 923 * Ideally we should do a wmb() here to make sure the changes to the 924 * PE are visible to the card before we call afu_enable. 925 * On ppc64 though all mmios are preceded by a 'sync' instruction hence 926 * we dont dont need one here. 927 */ 928 929 result = cxl_ops->afu_reset(afu); 930 if (result) 931 return result; 932 933 return afu_enable(afu); 934 } 935 936 int cxl_attach_dedicated_process_psl8(struct cxl_context *ctx, u64 wed, u64 amr) 937 { 938 struct cxl_afu *afu = ctx->afu; 939 u64 pid; 940 int rc; 941 942 pid = (u64)current->pid << 32; 943 if (ctx->kernel) 944 pid = 0; 945 cxl_p2n_write(afu, CXL_PSL_PID_TID_An, pid); 946 947 cxl_p1n_write(afu, CXL_PSL_SR_An, calculate_sr(ctx)); 948 949 if ((rc = cxl_write_sstp(afu, ctx->sstp0, ctx->sstp1))) 950 return rc; 951 952 cxl_prefault(ctx, wed); 953 954 if (ctx->afu->adapter->native->sl_ops->update_dedicated_ivtes) 955 afu->adapter->native->sl_ops->update_dedicated_ivtes(ctx); 956 957 cxl_p2n_write(afu, CXL_PSL_AMR_An, amr); 958 959 /* master only context for dedicated */ 960 cxl_assign_psn_space(ctx); 961 962 if ((rc = cxl_ops->afu_reset(afu))) 963 return rc; 964 965 cxl_p2n_write(afu, CXL_PSL_WED_An, wed); 966 967 return afu_enable(afu); 968 } 969 970 static int deactivate_dedicated_process(struct cxl_afu *afu) 971 { 972 dev_info(&afu->dev, "Deactivating dedicated process mode\n"); 973 974 afu->current_mode = 0; 975 afu->num_procs = 0; 976 977 cxl_chardev_afu_remove(afu); 978 979 return 0; 980 } 981 982 static int native_afu_deactivate_mode(struct cxl_afu *afu, int mode) 983 { 984 if (mode == CXL_MODE_DIRECTED) 985 return deactivate_afu_directed(afu); 986 if (mode == CXL_MODE_DEDICATED) 987 return deactivate_dedicated_process(afu); 988 return 0; 989 } 990 991 static int native_afu_activate_mode(struct cxl_afu *afu, int mode) 992 { 993 if (!mode) 994 return 0; 995 if (!(mode & afu->modes_supported)) 996 return -EINVAL; 997 998 if (!cxl_ops->link_ok(afu->adapter, afu)) { 999 WARN(1, "Device link is down, refusing to activate!\n"); 1000 return -EIO; 1001 } 1002 1003 if (mode == CXL_MODE_DIRECTED) 1004 return activate_afu_directed(afu); 1005 if ((mode == CXL_MODE_DEDICATED) && 1006 (afu->adapter->native->sl_ops->activate_dedicated_process)) 1007 return afu->adapter->native->sl_ops->activate_dedicated_process(afu); 1008 1009 return -EINVAL; 1010 } 1011 1012 static int native_attach_process(struct cxl_context *ctx, bool kernel, 1013 u64 wed, u64 amr) 1014 { 1015 if (!cxl_ops->link_ok(ctx->afu->adapter, ctx->afu)) { 1016 WARN(1, "Device link is down, refusing to attach process!\n"); 1017 return -EIO; 1018 } 1019 1020 ctx->kernel = kernel; 1021 if ((ctx->afu->current_mode == CXL_MODE_DIRECTED) && 1022 (ctx->afu->adapter->native->sl_ops->attach_afu_directed)) 1023 return ctx->afu->adapter->native->sl_ops->attach_afu_directed(ctx, wed, amr); 1024 1025 if ((ctx->afu->current_mode == CXL_MODE_DEDICATED) && 1026 (ctx->afu->adapter->native->sl_ops->attach_dedicated_process)) 1027 return ctx->afu->adapter->native->sl_ops->attach_dedicated_process(ctx, wed, amr); 1028 1029 return -EINVAL; 1030 } 1031 1032 static inline int detach_process_native_dedicated(struct cxl_context *ctx) 1033 { 1034 /* 1035 * The CAIA section 2.1.1 indicates that we need to do an AFU reset to 1036 * stop the AFU in dedicated mode (we therefore do not make that 1037 * optional like we do in the afu directed path). It does not indicate 1038 * that we need to do an explicit disable (which should occur 1039 * implicitly as part of the reset) or purge, but we do these as well 1040 * to be on the safe side. 1041 * 1042 * Notably we used to have some issues with the disable sequence 1043 * (before the sequence was spelled out in the architecture) which is 1044 * why we were so heavy weight in the first place, however a bug was 1045 * discovered that had rendered the disable operation ineffective, so 1046 * it is conceivable that was the sole explanation for those 1047 * difficulties. Point is, we should be careful and do some regression 1048 * testing if we ever attempt to remove any part of this procedure. 1049 */ 1050 cxl_ops->afu_reset(ctx->afu); 1051 cxl_afu_disable(ctx->afu); 1052 cxl_psl_purge(ctx->afu); 1053 return 0; 1054 } 1055 1056 static void native_update_ivtes(struct cxl_context *ctx) 1057 { 1058 if (ctx->afu->current_mode == CXL_MODE_DIRECTED) 1059 return update_ivtes_directed(ctx); 1060 if ((ctx->afu->current_mode == CXL_MODE_DEDICATED) && 1061 (ctx->afu->adapter->native->sl_ops->update_dedicated_ivtes)) 1062 return ctx->afu->adapter->native->sl_ops->update_dedicated_ivtes(ctx); 1063 WARN(1, "native_update_ivtes: Bad mode\n"); 1064 } 1065 1066 static inline int detach_process_native_afu_directed(struct cxl_context *ctx) 1067 { 1068 if (!ctx->pe_inserted) 1069 return 0; 1070 if (terminate_process_element(ctx)) 1071 return -1; 1072 if (remove_process_element(ctx)) 1073 return -1; 1074 1075 return 0; 1076 } 1077 1078 static int native_detach_process(struct cxl_context *ctx) 1079 { 1080 trace_cxl_detach(ctx); 1081 1082 if (ctx->afu->current_mode == CXL_MODE_DEDICATED) 1083 return detach_process_native_dedicated(ctx); 1084 1085 return detach_process_native_afu_directed(ctx); 1086 } 1087 1088 static int native_get_irq_info(struct cxl_afu *afu, struct cxl_irq_info *info) 1089 { 1090 /* If the adapter has gone away, we can't get any meaningful 1091 * information. 1092 */ 1093 if (!cxl_ops->link_ok(afu->adapter, afu)) 1094 return -EIO; 1095 1096 info->dsisr = cxl_p2n_read(afu, CXL_PSL_DSISR_An); 1097 info->dar = cxl_p2n_read(afu, CXL_PSL_DAR_An); 1098 if (cxl_is_power8()) 1099 info->dsr = cxl_p2n_read(afu, CXL_PSL_DSR_An); 1100 info->afu_err = cxl_p2n_read(afu, CXL_AFU_ERR_An); 1101 info->errstat = cxl_p2n_read(afu, CXL_PSL_ErrStat_An); 1102 info->proc_handle = 0; 1103 1104 return 0; 1105 } 1106 1107 void cxl_native_irq_dump_regs_psl9(struct cxl_context *ctx) 1108 { 1109 u64 fir1, serr; 1110 1111 fir1 = cxl_p1_read(ctx->afu->adapter, CXL_PSL9_FIR1); 1112 1113 dev_crit(&ctx->afu->dev, "PSL_FIR1: 0x%016llx\n", fir1); 1114 if (ctx->afu->adapter->native->sl_ops->register_serr_irq) { 1115 serr = cxl_p1n_read(ctx->afu, CXL_PSL_SERR_An); 1116 cxl_afu_decode_psl_serr(ctx->afu, serr); 1117 } 1118 } 1119 1120 void cxl_native_irq_dump_regs_psl8(struct cxl_context *ctx) 1121 { 1122 u64 fir1, fir2, fir_slice, serr, afu_debug; 1123 1124 fir1 = cxl_p1_read(ctx->afu->adapter, CXL_PSL_FIR1); 1125 fir2 = cxl_p1_read(ctx->afu->adapter, CXL_PSL_FIR2); 1126 fir_slice = cxl_p1n_read(ctx->afu, CXL_PSL_FIR_SLICE_An); 1127 afu_debug = cxl_p1n_read(ctx->afu, CXL_AFU_DEBUG_An); 1128 1129 dev_crit(&ctx->afu->dev, "PSL_FIR1: 0x%016llx\n", fir1); 1130 dev_crit(&ctx->afu->dev, "PSL_FIR2: 0x%016llx\n", fir2); 1131 if (ctx->afu->adapter->native->sl_ops->register_serr_irq) { 1132 serr = cxl_p1n_read(ctx->afu, CXL_PSL_SERR_An); 1133 cxl_afu_decode_psl_serr(ctx->afu, serr); 1134 } 1135 dev_crit(&ctx->afu->dev, "PSL_FIR_SLICE_An: 0x%016llx\n", fir_slice); 1136 dev_crit(&ctx->afu->dev, "CXL_PSL_AFU_DEBUG_An: 0x%016llx\n", afu_debug); 1137 } 1138 1139 static irqreturn_t native_handle_psl_slice_error(struct cxl_context *ctx, 1140 u64 dsisr, u64 errstat) 1141 { 1142 1143 dev_crit(&ctx->afu->dev, "PSL ERROR STATUS: 0x%016llx\n", errstat); 1144 1145 if (ctx->afu->adapter->native->sl_ops->psl_irq_dump_registers) 1146 ctx->afu->adapter->native->sl_ops->psl_irq_dump_registers(ctx); 1147 1148 if (ctx->afu->adapter->native->sl_ops->debugfs_stop_trace) { 1149 dev_crit(&ctx->afu->dev, "STOPPING CXL TRACE\n"); 1150 ctx->afu->adapter->native->sl_ops->debugfs_stop_trace(ctx->afu->adapter); 1151 } 1152 1153 return cxl_ops->ack_irq(ctx, 0, errstat); 1154 } 1155 1156 static bool cxl_is_translation_fault(struct cxl_afu *afu, u64 dsisr) 1157 { 1158 if ((cxl_is_power8()) && (dsisr & CXL_PSL_DSISR_TRANS)) 1159 return true; 1160 1161 if ((cxl_is_power9()) && (dsisr & CXL_PSL9_DSISR_An_TF)) 1162 return true; 1163 1164 return false; 1165 } 1166 1167 irqreturn_t cxl_fail_irq_psl(struct cxl_afu *afu, struct cxl_irq_info *irq_info) 1168 { 1169 if (cxl_is_translation_fault(afu, irq_info->dsisr)) 1170 cxl_p2n_write(afu, CXL_PSL_TFC_An, CXL_PSL_TFC_An_AE); 1171 else 1172 cxl_p2n_write(afu, CXL_PSL_TFC_An, CXL_PSL_TFC_An_A); 1173 1174 return IRQ_HANDLED; 1175 } 1176 1177 static irqreturn_t native_irq_multiplexed(int irq, void *data) 1178 { 1179 struct cxl_afu *afu = data; 1180 struct cxl_context *ctx; 1181 struct cxl_irq_info irq_info; 1182 u64 phreg = cxl_p2n_read(afu, CXL_PSL_PEHandle_An); 1183 int ph, ret = IRQ_HANDLED, res; 1184 1185 /* check if eeh kicked in while the interrupt was in flight */ 1186 if (unlikely(phreg == ~0ULL)) { 1187 dev_warn(&afu->dev, 1188 "Ignoring slice interrupt(%d) due to fenced card", 1189 irq); 1190 return IRQ_HANDLED; 1191 } 1192 /* Mask the pe-handle from register value */ 1193 ph = phreg & 0xffff; 1194 if ((res = native_get_irq_info(afu, &irq_info))) { 1195 WARN(1, "Unable to get CXL IRQ Info: %i\n", res); 1196 if (afu->adapter->native->sl_ops->fail_irq) 1197 return afu->adapter->native->sl_ops->fail_irq(afu, &irq_info); 1198 return ret; 1199 } 1200 1201 rcu_read_lock(); 1202 ctx = idr_find(&afu->contexts_idr, ph); 1203 if (ctx) { 1204 if (afu->adapter->native->sl_ops->handle_interrupt) 1205 ret = afu->adapter->native->sl_ops->handle_interrupt(irq, ctx, &irq_info); 1206 rcu_read_unlock(); 1207 return ret; 1208 } 1209 rcu_read_unlock(); 1210 1211 WARN(1, "Unable to demultiplex CXL PSL IRQ for PE %i DSISR %016llx DAR" 1212 " %016llx\n(Possible AFU HW issue - was a term/remove acked" 1213 " with outstanding transactions?)\n", ph, irq_info.dsisr, 1214 irq_info.dar); 1215 if (afu->adapter->native->sl_ops->fail_irq) 1216 ret = afu->adapter->native->sl_ops->fail_irq(afu, &irq_info); 1217 return ret; 1218 } 1219 1220 static void native_irq_wait(struct cxl_context *ctx) 1221 { 1222 u64 dsisr; 1223 int timeout = 1000; 1224 int ph; 1225 1226 /* 1227 * Wait until no further interrupts are presented by the PSL 1228 * for this context. 1229 */ 1230 while (timeout--) { 1231 ph = cxl_p2n_read(ctx->afu, CXL_PSL_PEHandle_An) & 0xffff; 1232 if (ph != ctx->pe) 1233 return; 1234 dsisr = cxl_p2n_read(ctx->afu, CXL_PSL_DSISR_An); 1235 if (cxl_is_power8() && 1236 ((dsisr & CXL_PSL_DSISR_PENDING) == 0)) 1237 return; 1238 if (cxl_is_power9() && 1239 ((dsisr & CXL_PSL9_DSISR_PENDING) == 0)) 1240 return; 1241 /* 1242 * We are waiting for the workqueue to process our 1243 * irq, so need to let that run here. 1244 */ 1245 msleep(1); 1246 } 1247 1248 dev_warn(&ctx->afu->dev, "WARNING: waiting on DSI for PE %i" 1249 " DSISR %016llx!\n", ph, dsisr); 1250 return; 1251 } 1252 1253 static irqreturn_t native_slice_irq_err(int irq, void *data) 1254 { 1255 struct cxl_afu *afu = data; 1256 u64 errstat, serr, afu_error, dsisr; 1257 u64 fir_slice, afu_debug, irq_mask; 1258 1259 /* 1260 * slice err interrupt is only used with full PSL (no XSL) 1261 */ 1262 serr = cxl_p1n_read(afu, CXL_PSL_SERR_An); 1263 errstat = cxl_p2n_read(afu, CXL_PSL_ErrStat_An); 1264 afu_error = cxl_p2n_read(afu, CXL_AFU_ERR_An); 1265 dsisr = cxl_p2n_read(afu, CXL_PSL_DSISR_An); 1266 cxl_afu_decode_psl_serr(afu, serr); 1267 1268 if (cxl_is_power8()) { 1269 fir_slice = cxl_p1n_read(afu, CXL_PSL_FIR_SLICE_An); 1270 afu_debug = cxl_p1n_read(afu, CXL_AFU_DEBUG_An); 1271 dev_crit(&afu->dev, "PSL_FIR_SLICE_An: 0x%016llx\n", fir_slice); 1272 dev_crit(&afu->dev, "CXL_PSL_AFU_DEBUG_An: 0x%016llx\n", afu_debug); 1273 } 1274 dev_crit(&afu->dev, "CXL_PSL_ErrStat_An: 0x%016llx\n", errstat); 1275 dev_crit(&afu->dev, "AFU_ERR_An: 0x%.16llx\n", afu_error); 1276 dev_crit(&afu->dev, "PSL_DSISR_An: 0x%.16llx\n", dsisr); 1277 1278 /* mask off the IRQ so it won't retrigger until the AFU is reset */ 1279 irq_mask = (serr & CXL_PSL_SERR_An_IRQS) >> 32; 1280 serr |= irq_mask; 1281 cxl_p1n_write(afu, CXL_PSL_SERR_An, serr); 1282 dev_info(&afu->dev, "Further such interrupts will be masked until the AFU is reset\n"); 1283 1284 return IRQ_HANDLED; 1285 } 1286 1287 void cxl_native_err_irq_dump_regs_psl9(struct cxl *adapter) 1288 { 1289 u64 fir1; 1290 1291 fir1 = cxl_p1_read(adapter, CXL_PSL9_FIR1); 1292 dev_crit(&adapter->dev, "PSL_FIR: 0x%016llx\n", fir1); 1293 } 1294 1295 void cxl_native_err_irq_dump_regs_psl8(struct cxl *adapter) 1296 { 1297 u64 fir1, fir2; 1298 1299 fir1 = cxl_p1_read(adapter, CXL_PSL_FIR1); 1300 fir2 = cxl_p1_read(adapter, CXL_PSL_FIR2); 1301 dev_crit(&adapter->dev, 1302 "PSL_FIR1: 0x%016llx\nPSL_FIR2: 0x%016llx\n", 1303 fir1, fir2); 1304 } 1305 1306 static irqreturn_t native_irq_err(int irq, void *data) 1307 { 1308 struct cxl *adapter = data; 1309 u64 err_ivte; 1310 1311 WARN(1, "CXL ERROR interrupt %i\n", irq); 1312 1313 err_ivte = cxl_p1_read(adapter, CXL_PSL_ErrIVTE); 1314 dev_crit(&adapter->dev, "PSL_ErrIVTE: 0x%016llx\n", err_ivte); 1315 1316 if (adapter->native->sl_ops->debugfs_stop_trace) { 1317 dev_crit(&adapter->dev, "STOPPING CXL TRACE\n"); 1318 adapter->native->sl_ops->debugfs_stop_trace(adapter); 1319 } 1320 1321 if (adapter->native->sl_ops->err_irq_dump_registers) 1322 adapter->native->sl_ops->err_irq_dump_registers(adapter); 1323 1324 return IRQ_HANDLED; 1325 } 1326 1327 int cxl_native_register_psl_err_irq(struct cxl *adapter) 1328 { 1329 int rc; 1330 1331 adapter->irq_name = kasprintf(GFP_KERNEL, "cxl-%s-err", 1332 dev_name(&adapter->dev)); 1333 if (!adapter->irq_name) 1334 return -ENOMEM; 1335 1336 if ((rc = cxl_register_one_irq(adapter, native_irq_err, adapter, 1337 &adapter->native->err_hwirq, 1338 &adapter->native->err_virq, 1339 adapter->irq_name))) { 1340 kfree(adapter->irq_name); 1341 adapter->irq_name = NULL; 1342 return rc; 1343 } 1344 1345 cxl_p1_write(adapter, CXL_PSL_ErrIVTE, adapter->native->err_hwirq & 0xffff); 1346 1347 return 0; 1348 } 1349 1350 void cxl_native_release_psl_err_irq(struct cxl *adapter) 1351 { 1352 if (adapter->native->err_virq == 0 || 1353 adapter->native->err_virq != 1354 irq_find_mapping(NULL, adapter->native->err_hwirq)) 1355 return; 1356 1357 cxl_p1_write(adapter, CXL_PSL_ErrIVTE, 0x0000000000000000); 1358 cxl_unmap_irq(adapter->native->err_virq, adapter); 1359 cxl_ops->release_one_irq(adapter, adapter->native->err_hwirq); 1360 kfree(adapter->irq_name); 1361 adapter->native->err_virq = 0; 1362 } 1363 1364 int cxl_native_register_serr_irq(struct cxl_afu *afu) 1365 { 1366 u64 serr; 1367 int rc; 1368 1369 afu->err_irq_name = kasprintf(GFP_KERNEL, "cxl-%s-err", 1370 dev_name(&afu->dev)); 1371 if (!afu->err_irq_name) 1372 return -ENOMEM; 1373 1374 if ((rc = cxl_register_one_irq(afu->adapter, native_slice_irq_err, afu, 1375 &afu->serr_hwirq, 1376 &afu->serr_virq, afu->err_irq_name))) { 1377 kfree(afu->err_irq_name); 1378 afu->err_irq_name = NULL; 1379 return rc; 1380 } 1381 1382 serr = cxl_p1n_read(afu, CXL_PSL_SERR_An); 1383 if (cxl_is_power8()) 1384 serr = (serr & 0x00ffffffffff0000ULL) | (afu->serr_hwirq & 0xffff); 1385 if (cxl_is_power9()) { 1386 /* 1387 * By default, all errors are masked. So don't set all masks. 1388 * Slice errors will be transfered. 1389 */ 1390 serr = (serr & ~0xff0000007fffffffULL) | (afu->serr_hwirq & 0xffff); 1391 } 1392 cxl_p1n_write(afu, CXL_PSL_SERR_An, serr); 1393 1394 return 0; 1395 } 1396 1397 void cxl_native_release_serr_irq(struct cxl_afu *afu) 1398 { 1399 if (afu->serr_virq == 0 || 1400 afu->serr_virq != irq_find_mapping(NULL, afu->serr_hwirq)) 1401 return; 1402 1403 cxl_p1n_write(afu, CXL_PSL_SERR_An, 0x0000000000000000); 1404 cxl_unmap_irq(afu->serr_virq, afu); 1405 cxl_ops->release_one_irq(afu->adapter, afu->serr_hwirq); 1406 kfree(afu->err_irq_name); 1407 afu->serr_virq = 0; 1408 } 1409 1410 int cxl_native_register_psl_irq(struct cxl_afu *afu) 1411 { 1412 int rc; 1413 1414 afu->psl_irq_name = kasprintf(GFP_KERNEL, "cxl-%s", 1415 dev_name(&afu->dev)); 1416 if (!afu->psl_irq_name) 1417 return -ENOMEM; 1418 1419 if ((rc = cxl_register_one_irq(afu->adapter, native_irq_multiplexed, 1420 afu, &afu->native->psl_hwirq, &afu->native->psl_virq, 1421 afu->psl_irq_name))) { 1422 kfree(afu->psl_irq_name); 1423 afu->psl_irq_name = NULL; 1424 } 1425 return rc; 1426 } 1427 1428 void cxl_native_release_psl_irq(struct cxl_afu *afu) 1429 { 1430 if (afu->native->psl_virq == 0 || 1431 afu->native->psl_virq != 1432 irq_find_mapping(NULL, afu->native->psl_hwirq)) 1433 return; 1434 1435 cxl_unmap_irq(afu->native->psl_virq, afu); 1436 cxl_ops->release_one_irq(afu->adapter, afu->native->psl_hwirq); 1437 kfree(afu->psl_irq_name); 1438 afu->native->psl_virq = 0; 1439 } 1440 1441 static void recover_psl_err(struct cxl_afu *afu, u64 errstat) 1442 { 1443 u64 dsisr; 1444 1445 pr_devel("RECOVERING FROM PSL ERROR... (0x%016llx)\n", errstat); 1446 1447 /* Clear PSL_DSISR[PE] */ 1448 dsisr = cxl_p2n_read(afu, CXL_PSL_DSISR_An); 1449 cxl_p2n_write(afu, CXL_PSL_DSISR_An, dsisr & ~CXL_PSL_DSISR_An_PE); 1450 1451 /* Write 1s to clear error status bits */ 1452 cxl_p2n_write(afu, CXL_PSL_ErrStat_An, errstat); 1453 } 1454 1455 static int native_ack_irq(struct cxl_context *ctx, u64 tfc, u64 psl_reset_mask) 1456 { 1457 trace_cxl_psl_irq_ack(ctx, tfc); 1458 if (tfc) 1459 cxl_p2n_write(ctx->afu, CXL_PSL_TFC_An, tfc); 1460 if (psl_reset_mask) 1461 recover_psl_err(ctx->afu, psl_reset_mask); 1462 1463 return 0; 1464 } 1465 1466 int cxl_check_error(struct cxl_afu *afu) 1467 { 1468 return (cxl_p1n_read(afu, CXL_PSL_SCNTL_An) == ~0ULL); 1469 } 1470 1471 static bool native_support_attributes(const char *attr_name, 1472 enum cxl_attrs type) 1473 { 1474 return true; 1475 } 1476 1477 static int native_afu_cr_read64(struct cxl_afu *afu, int cr, u64 off, u64 *out) 1478 { 1479 if (unlikely(!cxl_ops->link_ok(afu->adapter, afu))) 1480 return -EIO; 1481 if (unlikely(off >= afu->crs_len)) 1482 return -ERANGE; 1483 *out = in_le64(afu->native->afu_desc_mmio + afu->crs_offset + 1484 (cr * afu->crs_len) + off); 1485 return 0; 1486 } 1487 1488 static int native_afu_cr_read32(struct cxl_afu *afu, int cr, u64 off, u32 *out) 1489 { 1490 if (unlikely(!cxl_ops->link_ok(afu->adapter, afu))) 1491 return -EIO; 1492 if (unlikely(off >= afu->crs_len)) 1493 return -ERANGE; 1494 *out = in_le32(afu->native->afu_desc_mmio + afu->crs_offset + 1495 (cr * afu->crs_len) + off); 1496 return 0; 1497 } 1498 1499 static int native_afu_cr_read16(struct cxl_afu *afu, int cr, u64 off, u16 *out) 1500 { 1501 u64 aligned_off = off & ~0x3L; 1502 u32 val; 1503 int rc; 1504 1505 rc = native_afu_cr_read32(afu, cr, aligned_off, &val); 1506 if (!rc) 1507 *out = (val >> ((off & 0x3) * 8)) & 0xffff; 1508 return rc; 1509 } 1510 1511 static int native_afu_cr_read8(struct cxl_afu *afu, int cr, u64 off, u8 *out) 1512 { 1513 u64 aligned_off = off & ~0x3L; 1514 u32 val; 1515 int rc; 1516 1517 rc = native_afu_cr_read32(afu, cr, aligned_off, &val); 1518 if (!rc) 1519 *out = (val >> ((off & 0x3) * 8)) & 0xff; 1520 return rc; 1521 } 1522 1523 static int native_afu_cr_write32(struct cxl_afu *afu, int cr, u64 off, u32 in) 1524 { 1525 if (unlikely(!cxl_ops->link_ok(afu->adapter, afu))) 1526 return -EIO; 1527 if (unlikely(off >= afu->crs_len)) 1528 return -ERANGE; 1529 out_le32(afu->native->afu_desc_mmio + afu->crs_offset + 1530 (cr * afu->crs_len) + off, in); 1531 return 0; 1532 } 1533 1534 static int native_afu_cr_write16(struct cxl_afu *afu, int cr, u64 off, u16 in) 1535 { 1536 u64 aligned_off = off & ~0x3L; 1537 u32 val32, mask, shift; 1538 int rc; 1539 1540 rc = native_afu_cr_read32(afu, cr, aligned_off, &val32); 1541 if (rc) 1542 return rc; 1543 shift = (off & 0x3) * 8; 1544 WARN_ON(shift == 24); 1545 mask = 0xffff << shift; 1546 val32 = (val32 & ~mask) | (in << shift); 1547 1548 rc = native_afu_cr_write32(afu, cr, aligned_off, val32); 1549 return rc; 1550 } 1551 1552 static int native_afu_cr_write8(struct cxl_afu *afu, int cr, u64 off, u8 in) 1553 { 1554 u64 aligned_off = off & ~0x3L; 1555 u32 val32, mask, shift; 1556 int rc; 1557 1558 rc = native_afu_cr_read32(afu, cr, aligned_off, &val32); 1559 if (rc) 1560 return rc; 1561 shift = (off & 0x3) * 8; 1562 mask = 0xff << shift; 1563 val32 = (val32 & ~mask) | (in << shift); 1564 1565 rc = native_afu_cr_write32(afu, cr, aligned_off, val32); 1566 return rc; 1567 } 1568 1569 const struct cxl_backend_ops cxl_native_ops = { 1570 .module = THIS_MODULE, 1571 .adapter_reset = cxl_pci_reset, 1572 .alloc_one_irq = cxl_pci_alloc_one_irq, 1573 .release_one_irq = cxl_pci_release_one_irq, 1574 .alloc_irq_ranges = cxl_pci_alloc_irq_ranges, 1575 .release_irq_ranges = cxl_pci_release_irq_ranges, 1576 .setup_irq = cxl_pci_setup_irq, 1577 .handle_psl_slice_error = native_handle_psl_slice_error, 1578 .psl_interrupt = NULL, 1579 .ack_irq = native_ack_irq, 1580 .irq_wait = native_irq_wait, 1581 .attach_process = native_attach_process, 1582 .detach_process = native_detach_process, 1583 .update_ivtes = native_update_ivtes, 1584 .support_attributes = native_support_attributes, 1585 .link_ok = cxl_adapter_link_ok, 1586 .release_afu = cxl_pci_release_afu, 1587 .afu_read_err_buffer = cxl_pci_afu_read_err_buffer, 1588 .afu_check_and_enable = native_afu_check_and_enable, 1589 .afu_activate_mode = native_afu_activate_mode, 1590 .afu_deactivate_mode = native_afu_deactivate_mode, 1591 .afu_reset = native_afu_reset, 1592 .afu_cr_read8 = native_afu_cr_read8, 1593 .afu_cr_read16 = native_afu_cr_read16, 1594 .afu_cr_read32 = native_afu_cr_read32, 1595 .afu_cr_read64 = native_afu_cr_read64, 1596 .afu_cr_write8 = native_afu_cr_write8, 1597 .afu_cr_write16 = native_afu_cr_write16, 1598 .afu_cr_write32 = native_afu_cr_write32, 1599 .read_adapter_vpd = cxl_pci_read_adapter_vpd, 1600 }; 1601