1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright 2014 IBM Corp. 4 */ 5 6 #include <linux/spinlock.h> 7 #include <linux/sched.h> 8 #include <linux/sched/clock.h> 9 #include <linux/slab.h> 10 #include <linux/mutex.h> 11 #include <linux/mm.h> 12 #include <linux/uaccess.h> 13 #include <linux/delay.h> 14 #include <asm/synch.h> 15 #include <asm/switch_to.h> 16 #include <misc/cxl-base.h> 17 18 #include "cxl.h" 19 #include "trace.h" 20 21 static int afu_control(struct cxl_afu *afu, u64 command, u64 clear, 22 u64 result, u64 mask, bool enabled) 23 { 24 u64 AFU_Cntl; 25 unsigned long timeout = jiffies + (HZ * CXL_TIMEOUT); 26 int rc = 0; 27 28 spin_lock(&afu->afu_cntl_lock); 29 pr_devel("AFU command starting: %llx\n", command); 30 31 trace_cxl_afu_ctrl(afu, command); 32 33 AFU_Cntl = cxl_p2n_read(afu, CXL_AFU_Cntl_An); 34 cxl_p2n_write(afu, CXL_AFU_Cntl_An, (AFU_Cntl & ~clear) | command); 35 36 AFU_Cntl = cxl_p2n_read(afu, CXL_AFU_Cntl_An); 37 while ((AFU_Cntl & mask) != result) { 38 if (time_after_eq(jiffies, timeout)) { 39 dev_warn(&afu->dev, "WARNING: AFU control timed out!\n"); 40 rc = -EBUSY; 41 goto out; 42 } 43 44 if (!cxl_ops->link_ok(afu->adapter, afu)) { 45 afu->enabled = enabled; 46 rc = -EIO; 47 goto out; 48 } 49 50 pr_devel_ratelimited("AFU control... (0x%016llx)\n", 51 AFU_Cntl | command); 52 cpu_relax(); 53 AFU_Cntl = cxl_p2n_read(afu, CXL_AFU_Cntl_An); 54 } 55 56 if (AFU_Cntl & CXL_AFU_Cntl_An_RA) { 57 /* 58 * Workaround for a bug in the XSL used in the Mellanox CX4 59 * that fails to clear the RA bit after an AFU reset, 60 * preventing subsequent AFU resets from working. 61 */ 62 cxl_p2n_write(afu, CXL_AFU_Cntl_An, AFU_Cntl & ~CXL_AFU_Cntl_An_RA); 63 } 64 65 pr_devel("AFU command complete: %llx\n", command); 66 afu->enabled = enabled; 67 out: 68 trace_cxl_afu_ctrl_done(afu, command, rc); 69 spin_unlock(&afu->afu_cntl_lock); 70 71 return rc; 72 } 73 74 static int afu_enable(struct cxl_afu *afu) 75 { 76 pr_devel("AFU enable request\n"); 77 78 return afu_control(afu, CXL_AFU_Cntl_An_E, 0, 79 CXL_AFU_Cntl_An_ES_Enabled, 80 CXL_AFU_Cntl_An_ES_MASK, true); 81 } 82 83 int cxl_afu_disable(struct cxl_afu *afu) 84 { 85 pr_devel("AFU disable request\n"); 86 87 return afu_control(afu, 0, CXL_AFU_Cntl_An_E, 88 CXL_AFU_Cntl_An_ES_Disabled, 89 CXL_AFU_Cntl_An_ES_MASK, false); 90 } 91 92 /* This will disable as well as reset */ 93 static int native_afu_reset(struct cxl_afu *afu) 94 { 95 int rc; 96 u64 serr; 97 98 pr_devel("AFU reset request\n"); 99 100 rc = afu_control(afu, CXL_AFU_Cntl_An_RA, 0, 101 CXL_AFU_Cntl_An_RS_Complete | CXL_AFU_Cntl_An_ES_Disabled, 102 CXL_AFU_Cntl_An_RS_MASK | CXL_AFU_Cntl_An_ES_MASK, 103 false); 104 105 /* 106 * Re-enable any masked interrupts when the AFU is not 107 * activated to avoid side effects after attaching a process 108 * in dedicated mode. 109 */ 110 if (afu->current_mode == 0) { 111 serr = cxl_p1n_read(afu, CXL_PSL_SERR_An); 112 serr &= ~CXL_PSL_SERR_An_IRQ_MASKS; 113 cxl_p1n_write(afu, CXL_PSL_SERR_An, serr); 114 } 115 116 return rc; 117 } 118 119 static int native_afu_check_and_enable(struct cxl_afu *afu) 120 { 121 if (!cxl_ops->link_ok(afu->adapter, afu)) { 122 WARN(1, "Refusing to enable afu while link down!\n"); 123 return -EIO; 124 } 125 if (afu->enabled) 126 return 0; 127 return afu_enable(afu); 128 } 129 130 int cxl_psl_purge(struct cxl_afu *afu) 131 { 132 u64 PSL_CNTL = cxl_p1n_read(afu, CXL_PSL_SCNTL_An); 133 u64 AFU_Cntl = cxl_p2n_read(afu, CXL_AFU_Cntl_An); 134 u64 dsisr, dar; 135 u64 start, end; 136 u64 trans_fault = 0x0ULL; 137 unsigned long timeout = jiffies + (HZ * CXL_TIMEOUT); 138 int rc = 0; 139 140 trace_cxl_psl_ctrl(afu, CXL_PSL_SCNTL_An_Pc); 141 142 pr_devel("PSL purge request\n"); 143 144 if (cxl_is_power8()) 145 trans_fault = CXL_PSL_DSISR_TRANS; 146 if (cxl_is_power9()) 147 trans_fault = CXL_PSL9_DSISR_An_TF; 148 149 if (!cxl_ops->link_ok(afu->adapter, afu)) { 150 dev_warn(&afu->dev, "PSL Purge called with link down, ignoring\n"); 151 rc = -EIO; 152 goto out; 153 } 154 155 if ((AFU_Cntl & CXL_AFU_Cntl_An_ES_MASK) != CXL_AFU_Cntl_An_ES_Disabled) { 156 WARN(1, "psl_purge request while AFU not disabled!\n"); 157 cxl_afu_disable(afu); 158 } 159 160 cxl_p1n_write(afu, CXL_PSL_SCNTL_An, 161 PSL_CNTL | CXL_PSL_SCNTL_An_Pc); 162 start = local_clock(); 163 PSL_CNTL = cxl_p1n_read(afu, CXL_PSL_SCNTL_An); 164 while ((PSL_CNTL & CXL_PSL_SCNTL_An_Ps_MASK) 165 == CXL_PSL_SCNTL_An_Ps_Pending) { 166 if (time_after_eq(jiffies, timeout)) { 167 dev_warn(&afu->dev, "WARNING: PSL Purge timed out!\n"); 168 rc = -EBUSY; 169 goto out; 170 } 171 if (!cxl_ops->link_ok(afu->adapter, afu)) { 172 rc = -EIO; 173 goto out; 174 } 175 176 dsisr = cxl_p2n_read(afu, CXL_PSL_DSISR_An); 177 pr_devel_ratelimited("PSL purging... PSL_CNTL: 0x%016llx PSL_DSISR: 0x%016llx\n", 178 PSL_CNTL, dsisr); 179 180 if (dsisr & trans_fault) { 181 dar = cxl_p2n_read(afu, CXL_PSL_DAR_An); 182 dev_notice(&afu->dev, "PSL purge terminating pending translation, DSISR: 0x%016llx, DAR: 0x%016llx\n", 183 dsisr, dar); 184 cxl_p2n_write(afu, CXL_PSL_TFC_An, CXL_PSL_TFC_An_AE); 185 } else if (dsisr) { 186 dev_notice(&afu->dev, "PSL purge acknowledging pending non-translation fault, DSISR: 0x%016llx\n", 187 dsisr); 188 cxl_p2n_write(afu, CXL_PSL_TFC_An, CXL_PSL_TFC_An_A); 189 } else { 190 cpu_relax(); 191 } 192 PSL_CNTL = cxl_p1n_read(afu, CXL_PSL_SCNTL_An); 193 } 194 end = local_clock(); 195 pr_devel("PSL purged in %lld ns\n", end - start); 196 197 cxl_p1n_write(afu, CXL_PSL_SCNTL_An, 198 PSL_CNTL & ~CXL_PSL_SCNTL_An_Pc); 199 out: 200 trace_cxl_psl_ctrl_done(afu, CXL_PSL_SCNTL_An_Pc, rc); 201 return rc; 202 } 203 204 static int spa_max_procs(int spa_size) 205 { 206 /* 207 * From the CAIA: 208 * end_of_SPA_area = SPA_Base + ((n+4) * 128) + (( ((n*8) + 127) >> 7) * 128) + 255 209 * Most of that junk is really just an overly-complicated way of saying 210 * the last 256 bytes are __aligned(128), so it's really: 211 * end_of_SPA_area = end_of_PSL_queue_area + __aligned(128) 255 212 * and 213 * end_of_PSL_queue_area = SPA_Base + ((n+4) * 128) + (n*8) - 1 214 * so 215 * sizeof(SPA) = ((n+4) * 128) + (n*8) + __aligned(128) 256 216 * Ignore the alignment (which is safe in this case as long as we are 217 * careful with our rounding) and solve for n: 218 */ 219 return ((spa_size / 8) - 96) / 17; 220 } 221 222 static int cxl_alloc_spa(struct cxl_afu *afu, int mode) 223 { 224 unsigned spa_size; 225 226 /* Work out how many pages to allocate */ 227 afu->native->spa_order = -1; 228 do { 229 afu->native->spa_order++; 230 spa_size = (1 << afu->native->spa_order) * PAGE_SIZE; 231 232 if (spa_size > 0x100000) { 233 dev_warn(&afu->dev, "num_of_processes too large for the SPA, limiting to %i (0x%x)\n", 234 afu->native->spa_max_procs, afu->native->spa_size); 235 if (mode != CXL_MODE_DEDICATED) 236 afu->num_procs = afu->native->spa_max_procs; 237 break; 238 } 239 240 afu->native->spa_size = spa_size; 241 afu->native->spa_max_procs = spa_max_procs(afu->native->spa_size); 242 } while (afu->native->spa_max_procs < afu->num_procs); 243 244 if (!(afu->native->spa = (struct cxl_process_element *) 245 __get_free_pages(GFP_KERNEL | __GFP_ZERO, afu->native->spa_order))) { 246 pr_err("cxl_alloc_spa: Unable to allocate scheduled process area\n"); 247 return -ENOMEM; 248 } 249 pr_devel("spa pages: %i afu->spa_max_procs: %i afu->num_procs: %i\n", 250 1<<afu->native->spa_order, afu->native->spa_max_procs, afu->num_procs); 251 252 return 0; 253 } 254 255 static void attach_spa(struct cxl_afu *afu) 256 { 257 u64 spap; 258 259 afu->native->sw_command_status = (__be64 *)((char *)afu->native->spa + 260 ((afu->native->spa_max_procs + 3) * 128)); 261 262 spap = virt_to_phys(afu->native->spa) & CXL_PSL_SPAP_Addr; 263 spap |= ((afu->native->spa_size >> (12 - CXL_PSL_SPAP_Size_Shift)) - 1) & CXL_PSL_SPAP_Size; 264 spap |= CXL_PSL_SPAP_V; 265 pr_devel("cxl: SPA allocated at 0x%p. Max processes: %i, sw_command_status: 0x%p CXL_PSL_SPAP_An=0x%016llx\n", 266 afu->native->spa, afu->native->spa_max_procs, 267 afu->native->sw_command_status, spap); 268 cxl_p1n_write(afu, CXL_PSL_SPAP_An, spap); 269 } 270 271 static inline void detach_spa(struct cxl_afu *afu) 272 { 273 cxl_p1n_write(afu, CXL_PSL_SPAP_An, 0); 274 } 275 276 void cxl_release_spa(struct cxl_afu *afu) 277 { 278 if (afu->native->spa) { 279 free_pages((unsigned long) afu->native->spa, 280 afu->native->spa_order); 281 afu->native->spa = NULL; 282 } 283 } 284 285 /* 286 * Invalidation of all ERAT entries is no longer required by CAIA2. Use 287 * only for debug. 288 */ 289 int cxl_invalidate_all_psl9(struct cxl *adapter) 290 { 291 unsigned long timeout = jiffies + (HZ * CXL_TIMEOUT); 292 u64 ierat; 293 294 pr_devel("CXL adapter - invalidation of all ERAT entries\n"); 295 296 /* Invalidates all ERAT entries for Radix or HPT */ 297 ierat = CXL_XSL9_IERAT_IALL; 298 if (radix_enabled()) 299 ierat |= CXL_XSL9_IERAT_INVR; 300 cxl_p1_write(adapter, CXL_XSL9_IERAT, ierat); 301 302 while (cxl_p1_read(adapter, CXL_XSL9_IERAT) & CXL_XSL9_IERAT_IINPROG) { 303 if (time_after_eq(jiffies, timeout)) { 304 dev_warn(&adapter->dev, 305 "WARNING: CXL adapter invalidation of all ERAT entries timed out!\n"); 306 return -EBUSY; 307 } 308 if (!cxl_ops->link_ok(adapter, NULL)) 309 return -EIO; 310 cpu_relax(); 311 } 312 return 0; 313 } 314 315 int cxl_invalidate_all_psl8(struct cxl *adapter) 316 { 317 unsigned long timeout = jiffies + (HZ * CXL_TIMEOUT); 318 319 pr_devel("CXL adapter wide TLBIA & SLBIA\n"); 320 321 cxl_p1_write(adapter, CXL_PSL_AFUSEL, CXL_PSL_AFUSEL_A); 322 323 cxl_p1_write(adapter, CXL_PSL_TLBIA, CXL_TLB_SLB_IQ_ALL); 324 while (cxl_p1_read(adapter, CXL_PSL_TLBIA) & CXL_TLB_SLB_P) { 325 if (time_after_eq(jiffies, timeout)) { 326 dev_warn(&adapter->dev, "WARNING: CXL adapter wide TLBIA timed out!\n"); 327 return -EBUSY; 328 } 329 if (!cxl_ops->link_ok(adapter, NULL)) 330 return -EIO; 331 cpu_relax(); 332 } 333 334 cxl_p1_write(adapter, CXL_PSL_SLBIA, CXL_TLB_SLB_IQ_ALL); 335 while (cxl_p1_read(adapter, CXL_PSL_SLBIA) & CXL_TLB_SLB_P) { 336 if (time_after_eq(jiffies, timeout)) { 337 dev_warn(&adapter->dev, "WARNING: CXL adapter wide SLBIA timed out!\n"); 338 return -EBUSY; 339 } 340 if (!cxl_ops->link_ok(adapter, NULL)) 341 return -EIO; 342 cpu_relax(); 343 } 344 return 0; 345 } 346 347 int cxl_data_cache_flush(struct cxl *adapter) 348 { 349 u64 reg; 350 unsigned long timeout = jiffies + (HZ * CXL_TIMEOUT); 351 352 /* 353 * Do a datacache flush only if datacache is available. 354 * In case of PSL9D datacache absent hence flush operation. 355 * would timeout. 356 */ 357 if (adapter->native->no_data_cache) { 358 pr_devel("No PSL data cache. Ignoring cache flush req.\n"); 359 return 0; 360 } 361 362 pr_devel("Flushing data cache\n"); 363 reg = cxl_p1_read(adapter, CXL_PSL_Control); 364 reg |= CXL_PSL_Control_Fr; 365 cxl_p1_write(adapter, CXL_PSL_Control, reg); 366 367 reg = cxl_p1_read(adapter, CXL_PSL_Control); 368 while ((reg & CXL_PSL_Control_Fs_MASK) != CXL_PSL_Control_Fs_Complete) { 369 if (time_after_eq(jiffies, timeout)) { 370 dev_warn(&adapter->dev, "WARNING: cache flush timed out!\n"); 371 return -EBUSY; 372 } 373 374 if (!cxl_ops->link_ok(adapter, NULL)) { 375 dev_warn(&adapter->dev, "WARNING: link down when flushing cache\n"); 376 return -EIO; 377 } 378 cpu_relax(); 379 reg = cxl_p1_read(adapter, CXL_PSL_Control); 380 } 381 382 reg &= ~CXL_PSL_Control_Fr; 383 cxl_p1_write(adapter, CXL_PSL_Control, reg); 384 return 0; 385 } 386 387 static int cxl_write_sstp(struct cxl_afu *afu, u64 sstp0, u64 sstp1) 388 { 389 int rc; 390 391 /* 1. Disable SSTP by writing 0 to SSTP1[V] */ 392 cxl_p2n_write(afu, CXL_SSTP1_An, 0); 393 394 /* 2. Invalidate all SLB entries */ 395 if ((rc = cxl_afu_slbia(afu))) 396 return rc; 397 398 /* 3. Set SSTP0_An */ 399 cxl_p2n_write(afu, CXL_SSTP0_An, sstp0); 400 401 /* 4. Set SSTP1_An */ 402 cxl_p2n_write(afu, CXL_SSTP1_An, sstp1); 403 404 return 0; 405 } 406 407 /* Using per slice version may improve performance here. (ie. SLBIA_An) */ 408 static void slb_invalid(struct cxl_context *ctx) 409 { 410 struct cxl *adapter = ctx->afu->adapter; 411 u64 slbia; 412 413 WARN_ON(!mutex_is_locked(&ctx->afu->native->spa_mutex)); 414 415 cxl_p1_write(adapter, CXL_PSL_LBISEL, 416 ((u64)be32_to_cpu(ctx->elem->common.pid) << 32) | 417 be32_to_cpu(ctx->elem->lpid)); 418 cxl_p1_write(adapter, CXL_PSL_SLBIA, CXL_TLB_SLB_IQ_LPIDPID); 419 420 while (1) { 421 if (!cxl_ops->link_ok(adapter, NULL)) 422 break; 423 slbia = cxl_p1_read(adapter, CXL_PSL_SLBIA); 424 if (!(slbia & CXL_TLB_SLB_P)) 425 break; 426 cpu_relax(); 427 } 428 } 429 430 static int do_process_element_cmd(struct cxl_context *ctx, 431 u64 cmd, u64 pe_state) 432 { 433 u64 state; 434 unsigned long timeout = jiffies + (HZ * CXL_TIMEOUT); 435 int rc = 0; 436 437 trace_cxl_llcmd(ctx, cmd); 438 439 WARN_ON(!ctx->afu->enabled); 440 441 ctx->elem->software_state = cpu_to_be32(pe_state); 442 smp_wmb(); 443 *(ctx->afu->native->sw_command_status) = cpu_to_be64(cmd | 0 | ctx->pe); 444 smp_mb(); 445 cxl_p1n_write(ctx->afu, CXL_PSL_LLCMD_An, cmd | ctx->pe); 446 while (1) { 447 if (time_after_eq(jiffies, timeout)) { 448 dev_warn(&ctx->afu->dev, "WARNING: Process Element Command timed out!\n"); 449 rc = -EBUSY; 450 goto out; 451 } 452 if (!cxl_ops->link_ok(ctx->afu->adapter, ctx->afu)) { 453 dev_warn(&ctx->afu->dev, "WARNING: Device link down, aborting Process Element Command!\n"); 454 rc = -EIO; 455 goto out; 456 } 457 state = be64_to_cpup(ctx->afu->native->sw_command_status); 458 if (state == ~0ULL) { 459 pr_err("cxl: Error adding process element to AFU\n"); 460 rc = -1; 461 goto out; 462 } 463 if ((state & (CXL_SPA_SW_CMD_MASK | CXL_SPA_SW_STATE_MASK | CXL_SPA_SW_LINK_MASK)) == 464 (cmd | (cmd >> 16) | ctx->pe)) 465 break; 466 /* 467 * The command won't finish in the PSL if there are 468 * outstanding DSIs. Hence we need to yield here in 469 * case there are outstanding DSIs that we need to 470 * service. Tuning possiblity: we could wait for a 471 * while before sched 472 */ 473 schedule(); 474 475 } 476 out: 477 trace_cxl_llcmd_done(ctx, cmd, rc); 478 return rc; 479 } 480 481 static int add_process_element(struct cxl_context *ctx) 482 { 483 int rc = 0; 484 485 mutex_lock(&ctx->afu->native->spa_mutex); 486 pr_devel("%s Adding pe: %i started\n", __func__, ctx->pe); 487 if (!(rc = do_process_element_cmd(ctx, CXL_SPA_SW_CMD_ADD, CXL_PE_SOFTWARE_STATE_V))) 488 ctx->pe_inserted = true; 489 pr_devel("%s Adding pe: %i finished\n", __func__, ctx->pe); 490 mutex_unlock(&ctx->afu->native->spa_mutex); 491 return rc; 492 } 493 494 static int terminate_process_element(struct cxl_context *ctx) 495 { 496 int rc = 0; 497 498 /* fast path terminate if it's already invalid */ 499 if (!(ctx->elem->software_state & cpu_to_be32(CXL_PE_SOFTWARE_STATE_V))) 500 return rc; 501 502 mutex_lock(&ctx->afu->native->spa_mutex); 503 pr_devel("%s Terminate pe: %i started\n", __func__, ctx->pe); 504 /* We could be asked to terminate when the hw is down. That 505 * should always succeed: it's not running if the hw has gone 506 * away and is being reset. 507 */ 508 if (cxl_ops->link_ok(ctx->afu->adapter, ctx->afu)) 509 rc = do_process_element_cmd(ctx, CXL_SPA_SW_CMD_TERMINATE, 510 CXL_PE_SOFTWARE_STATE_V | CXL_PE_SOFTWARE_STATE_T); 511 ctx->elem->software_state = 0; /* Remove Valid bit */ 512 pr_devel("%s Terminate pe: %i finished\n", __func__, ctx->pe); 513 mutex_unlock(&ctx->afu->native->spa_mutex); 514 return rc; 515 } 516 517 static int remove_process_element(struct cxl_context *ctx) 518 { 519 int rc = 0; 520 521 mutex_lock(&ctx->afu->native->spa_mutex); 522 pr_devel("%s Remove pe: %i started\n", __func__, ctx->pe); 523 524 /* We could be asked to remove when the hw is down. Again, if 525 * the hw is down, the PE is gone, so we succeed. 526 */ 527 if (cxl_ops->link_ok(ctx->afu->adapter, ctx->afu)) 528 rc = do_process_element_cmd(ctx, CXL_SPA_SW_CMD_REMOVE, 0); 529 530 if (!rc) 531 ctx->pe_inserted = false; 532 if (cxl_is_power8()) 533 slb_invalid(ctx); 534 pr_devel("%s Remove pe: %i finished\n", __func__, ctx->pe); 535 mutex_unlock(&ctx->afu->native->spa_mutex); 536 537 return rc; 538 } 539 540 void cxl_assign_psn_space(struct cxl_context *ctx) 541 { 542 if (!ctx->afu->pp_size || ctx->master) { 543 ctx->psn_phys = ctx->afu->psn_phys; 544 ctx->psn_size = ctx->afu->adapter->ps_size; 545 } else { 546 ctx->psn_phys = ctx->afu->psn_phys + 547 (ctx->afu->native->pp_offset + ctx->afu->pp_size * ctx->pe); 548 ctx->psn_size = ctx->afu->pp_size; 549 } 550 } 551 552 static int activate_afu_directed(struct cxl_afu *afu) 553 { 554 int rc; 555 556 dev_info(&afu->dev, "Activating AFU directed mode\n"); 557 558 afu->num_procs = afu->max_procs_virtualised; 559 if (afu->native->spa == NULL) { 560 if (cxl_alloc_spa(afu, CXL_MODE_DIRECTED)) 561 return -ENOMEM; 562 } 563 attach_spa(afu); 564 565 cxl_p1n_write(afu, CXL_PSL_SCNTL_An, CXL_PSL_SCNTL_An_PM_AFU); 566 if (cxl_is_power8()) 567 cxl_p1n_write(afu, CXL_PSL_AMOR_An, 0xFFFFFFFFFFFFFFFFULL); 568 cxl_p1n_write(afu, CXL_PSL_ID_An, CXL_PSL_ID_An_F | CXL_PSL_ID_An_L); 569 570 afu->current_mode = CXL_MODE_DIRECTED; 571 572 if ((rc = cxl_chardev_m_afu_add(afu))) 573 return rc; 574 575 if ((rc = cxl_sysfs_afu_m_add(afu))) 576 goto err; 577 578 if ((rc = cxl_chardev_s_afu_add(afu))) 579 goto err1; 580 581 return 0; 582 err1: 583 cxl_sysfs_afu_m_remove(afu); 584 err: 585 cxl_chardev_afu_remove(afu); 586 return rc; 587 } 588 589 #ifdef CONFIG_CPU_LITTLE_ENDIAN 590 #define set_endian(sr) ((sr) |= CXL_PSL_SR_An_LE) 591 #else 592 #define set_endian(sr) ((sr) &= ~(CXL_PSL_SR_An_LE)) 593 #endif 594 595 u64 cxl_calculate_sr(bool master, bool kernel, bool real_mode, bool p9) 596 { 597 u64 sr = 0; 598 599 set_endian(sr); 600 if (master) 601 sr |= CXL_PSL_SR_An_MP; 602 if (mfspr(SPRN_LPCR) & LPCR_TC) 603 sr |= CXL_PSL_SR_An_TC; 604 605 if (kernel) { 606 if (!real_mode) 607 sr |= CXL_PSL_SR_An_R; 608 sr |= (mfmsr() & MSR_SF) | CXL_PSL_SR_An_HV; 609 } else { 610 sr |= CXL_PSL_SR_An_PR | CXL_PSL_SR_An_R; 611 if (radix_enabled()) 612 sr |= CXL_PSL_SR_An_HV; 613 else 614 sr &= ~(CXL_PSL_SR_An_HV); 615 if (!test_tsk_thread_flag(current, TIF_32BIT)) 616 sr |= CXL_PSL_SR_An_SF; 617 } 618 if (p9) { 619 if (radix_enabled()) 620 sr |= CXL_PSL_SR_An_XLAT_ror; 621 else 622 sr |= CXL_PSL_SR_An_XLAT_hpt; 623 } 624 return sr; 625 } 626 627 static u64 calculate_sr(struct cxl_context *ctx) 628 { 629 return cxl_calculate_sr(ctx->master, ctx->kernel, false, 630 cxl_is_power9()); 631 } 632 633 static void update_ivtes_directed(struct cxl_context *ctx) 634 { 635 bool need_update = (ctx->status == STARTED); 636 int r; 637 638 if (need_update) { 639 WARN_ON(terminate_process_element(ctx)); 640 WARN_ON(remove_process_element(ctx)); 641 } 642 643 for (r = 0; r < CXL_IRQ_RANGES; r++) { 644 ctx->elem->ivte_offsets[r] = cpu_to_be16(ctx->irqs.offset[r]); 645 ctx->elem->ivte_ranges[r] = cpu_to_be16(ctx->irqs.range[r]); 646 } 647 648 /* 649 * Theoretically we could use the update llcmd, instead of a 650 * terminate/remove/add (or if an atomic update was required we could 651 * do a suspend/update/resume), however it seems there might be issues 652 * with the update llcmd on some cards (including those using an XSL on 653 * an ASIC) so for now it's safest to go with the commands that are 654 * known to work. In the future if we come across a situation where the 655 * card may be performing transactions using the same PE while we are 656 * doing this update we might need to revisit this. 657 */ 658 if (need_update) 659 WARN_ON(add_process_element(ctx)); 660 } 661 662 static int process_element_entry_psl9(struct cxl_context *ctx, u64 wed, u64 amr) 663 { 664 u32 pid; 665 int rc; 666 667 cxl_assign_psn_space(ctx); 668 669 ctx->elem->ctxtime = 0; /* disable */ 670 ctx->elem->lpid = cpu_to_be32(mfspr(SPRN_LPID)); 671 ctx->elem->haurp = 0; /* disable */ 672 673 if (ctx->kernel) 674 pid = 0; 675 else { 676 if (ctx->mm == NULL) { 677 pr_devel("%s: unable to get mm for pe=%d pid=%i\n", 678 __func__, ctx->pe, pid_nr(ctx->pid)); 679 return -EINVAL; 680 } 681 pid = ctx->mm->context.id; 682 } 683 684 /* Assign a unique TIDR (thread id) for the current thread */ 685 if (!(ctx->tidr) && (ctx->assign_tidr)) { 686 rc = set_thread_tidr(current); 687 if (rc) 688 return -ENODEV; 689 ctx->tidr = current->thread.tidr; 690 pr_devel("%s: current tidr: %d\n", __func__, ctx->tidr); 691 } 692 693 ctx->elem->common.tid = cpu_to_be32(ctx->tidr); 694 ctx->elem->common.pid = cpu_to_be32(pid); 695 696 ctx->elem->sr = cpu_to_be64(calculate_sr(ctx)); 697 698 ctx->elem->common.csrp = 0; /* disable */ 699 700 cxl_prefault(ctx, wed); 701 702 /* 703 * Ensure we have the multiplexed PSL interrupt set up to take faults 704 * for kernel contexts that may not have allocated any AFU IRQs at all: 705 */ 706 if (ctx->irqs.range[0] == 0) { 707 ctx->irqs.offset[0] = ctx->afu->native->psl_hwirq; 708 ctx->irqs.range[0] = 1; 709 } 710 711 ctx->elem->common.amr = cpu_to_be64(amr); 712 ctx->elem->common.wed = cpu_to_be64(wed); 713 714 return 0; 715 } 716 717 int cxl_attach_afu_directed_psl9(struct cxl_context *ctx, u64 wed, u64 amr) 718 { 719 int result; 720 721 /* fill the process element entry */ 722 result = process_element_entry_psl9(ctx, wed, amr); 723 if (result) 724 return result; 725 726 update_ivtes_directed(ctx); 727 728 /* first guy needs to enable */ 729 result = cxl_ops->afu_check_and_enable(ctx->afu); 730 if (result) 731 return result; 732 733 return add_process_element(ctx); 734 } 735 736 int cxl_attach_afu_directed_psl8(struct cxl_context *ctx, u64 wed, u64 amr) 737 { 738 u32 pid; 739 int result; 740 741 cxl_assign_psn_space(ctx); 742 743 ctx->elem->ctxtime = 0; /* disable */ 744 ctx->elem->lpid = cpu_to_be32(mfspr(SPRN_LPID)); 745 ctx->elem->haurp = 0; /* disable */ 746 ctx->elem->u.sdr = cpu_to_be64(mfspr(SPRN_SDR1)); 747 748 pid = current->pid; 749 if (ctx->kernel) 750 pid = 0; 751 ctx->elem->common.tid = 0; 752 ctx->elem->common.pid = cpu_to_be32(pid); 753 754 ctx->elem->sr = cpu_to_be64(calculate_sr(ctx)); 755 756 ctx->elem->common.csrp = 0; /* disable */ 757 ctx->elem->common.u.psl8.aurp0 = 0; /* disable */ 758 ctx->elem->common.u.psl8.aurp1 = 0; /* disable */ 759 760 cxl_prefault(ctx, wed); 761 762 ctx->elem->common.u.psl8.sstp0 = cpu_to_be64(ctx->sstp0); 763 ctx->elem->common.u.psl8.sstp1 = cpu_to_be64(ctx->sstp1); 764 765 /* 766 * Ensure we have the multiplexed PSL interrupt set up to take faults 767 * for kernel contexts that may not have allocated any AFU IRQs at all: 768 */ 769 if (ctx->irqs.range[0] == 0) { 770 ctx->irqs.offset[0] = ctx->afu->native->psl_hwirq; 771 ctx->irqs.range[0] = 1; 772 } 773 774 update_ivtes_directed(ctx); 775 776 ctx->elem->common.amr = cpu_to_be64(amr); 777 ctx->elem->common.wed = cpu_to_be64(wed); 778 779 /* first guy needs to enable */ 780 if ((result = cxl_ops->afu_check_and_enable(ctx->afu))) 781 return result; 782 783 return add_process_element(ctx); 784 } 785 786 static int deactivate_afu_directed(struct cxl_afu *afu) 787 { 788 dev_info(&afu->dev, "Deactivating AFU directed mode\n"); 789 790 afu->current_mode = 0; 791 afu->num_procs = 0; 792 793 cxl_sysfs_afu_m_remove(afu); 794 cxl_chardev_afu_remove(afu); 795 796 /* 797 * The CAIA section 2.2.1 indicates that the procedure for starting and 798 * stopping an AFU in AFU directed mode is AFU specific, which is not 799 * ideal since this code is generic and with one exception has no 800 * knowledge of the AFU. This is in contrast to the procedure for 801 * disabling a dedicated process AFU, which is documented to just 802 * require a reset. The architecture does indicate that both an AFU 803 * reset and an AFU disable should result in the AFU being disabled and 804 * we do both followed by a PSL purge for safety. 805 * 806 * Notably we used to have some issues with the disable sequence on PSL 807 * cards, which is why we ended up using this heavy weight procedure in 808 * the first place, however a bug was discovered that had rendered the 809 * disable operation ineffective, so it is conceivable that was the 810 * sole explanation for those difficulties. Careful regression testing 811 * is recommended if anyone attempts to remove or reorder these 812 * operations. 813 * 814 * The XSL on the Mellanox CX4 behaves a little differently from the 815 * PSL based cards and will time out an AFU reset if the AFU is still 816 * enabled. That card is special in that we do have a means to identify 817 * it from this code, so in that case we skip the reset and just use a 818 * disable/purge to avoid the timeout and corresponding noise in the 819 * kernel log. 820 */ 821 if (afu->adapter->native->sl_ops->needs_reset_before_disable) 822 cxl_ops->afu_reset(afu); 823 cxl_afu_disable(afu); 824 cxl_psl_purge(afu); 825 826 return 0; 827 } 828 829 int cxl_activate_dedicated_process_psl9(struct cxl_afu *afu) 830 { 831 dev_info(&afu->dev, "Activating dedicated process mode\n"); 832 833 /* 834 * If XSL is set to dedicated mode (Set in PSL_SCNTL reg), the 835 * XSL and AFU are programmed to work with a single context. 836 * The context information should be configured in the SPA area 837 * index 0 (so PSL_SPAP must be configured before enabling the 838 * AFU). 839 */ 840 afu->num_procs = 1; 841 if (afu->native->spa == NULL) { 842 if (cxl_alloc_spa(afu, CXL_MODE_DEDICATED)) 843 return -ENOMEM; 844 } 845 attach_spa(afu); 846 847 cxl_p1n_write(afu, CXL_PSL_SCNTL_An, CXL_PSL_SCNTL_An_PM_Process); 848 cxl_p1n_write(afu, CXL_PSL_ID_An, CXL_PSL_ID_An_F | CXL_PSL_ID_An_L); 849 850 afu->current_mode = CXL_MODE_DEDICATED; 851 852 return cxl_chardev_d_afu_add(afu); 853 } 854 855 int cxl_activate_dedicated_process_psl8(struct cxl_afu *afu) 856 { 857 dev_info(&afu->dev, "Activating dedicated process mode\n"); 858 859 cxl_p1n_write(afu, CXL_PSL_SCNTL_An, CXL_PSL_SCNTL_An_PM_Process); 860 861 cxl_p1n_write(afu, CXL_PSL_CtxTime_An, 0); /* disable */ 862 cxl_p1n_write(afu, CXL_PSL_SPAP_An, 0); /* disable */ 863 cxl_p1n_write(afu, CXL_PSL_AMOR_An, 0xFFFFFFFFFFFFFFFFULL); 864 cxl_p1n_write(afu, CXL_PSL_LPID_An, mfspr(SPRN_LPID)); 865 cxl_p1n_write(afu, CXL_HAURP_An, 0); /* disable */ 866 cxl_p1n_write(afu, CXL_PSL_SDR_An, mfspr(SPRN_SDR1)); 867 868 cxl_p2n_write(afu, CXL_CSRP_An, 0); /* disable */ 869 cxl_p2n_write(afu, CXL_AURP0_An, 0); /* disable */ 870 cxl_p2n_write(afu, CXL_AURP1_An, 0); /* disable */ 871 872 afu->current_mode = CXL_MODE_DEDICATED; 873 afu->num_procs = 1; 874 875 return cxl_chardev_d_afu_add(afu); 876 } 877 878 void cxl_update_dedicated_ivtes_psl9(struct cxl_context *ctx) 879 { 880 int r; 881 882 for (r = 0; r < CXL_IRQ_RANGES; r++) { 883 ctx->elem->ivte_offsets[r] = cpu_to_be16(ctx->irqs.offset[r]); 884 ctx->elem->ivte_ranges[r] = cpu_to_be16(ctx->irqs.range[r]); 885 } 886 } 887 888 void cxl_update_dedicated_ivtes_psl8(struct cxl_context *ctx) 889 { 890 struct cxl_afu *afu = ctx->afu; 891 892 cxl_p1n_write(afu, CXL_PSL_IVTE_Offset_An, 893 (((u64)ctx->irqs.offset[0] & 0xffff) << 48) | 894 (((u64)ctx->irqs.offset[1] & 0xffff) << 32) | 895 (((u64)ctx->irqs.offset[2] & 0xffff) << 16) | 896 ((u64)ctx->irqs.offset[3] & 0xffff)); 897 cxl_p1n_write(afu, CXL_PSL_IVTE_Limit_An, (u64) 898 (((u64)ctx->irqs.range[0] & 0xffff) << 48) | 899 (((u64)ctx->irqs.range[1] & 0xffff) << 32) | 900 (((u64)ctx->irqs.range[2] & 0xffff) << 16) | 901 ((u64)ctx->irqs.range[3] & 0xffff)); 902 } 903 904 int cxl_attach_dedicated_process_psl9(struct cxl_context *ctx, u64 wed, u64 amr) 905 { 906 struct cxl_afu *afu = ctx->afu; 907 int result; 908 909 /* fill the process element entry */ 910 result = process_element_entry_psl9(ctx, wed, amr); 911 if (result) 912 return result; 913 914 if (ctx->afu->adapter->native->sl_ops->update_dedicated_ivtes) 915 afu->adapter->native->sl_ops->update_dedicated_ivtes(ctx); 916 917 ctx->elem->software_state = cpu_to_be32(CXL_PE_SOFTWARE_STATE_V); 918 /* 919 * Ideally we should do a wmb() here to make sure the changes to the 920 * PE are visible to the card before we call afu_enable. 921 * On ppc64 though all mmios are preceded by a 'sync' instruction hence 922 * we dont dont need one here. 923 */ 924 925 result = cxl_ops->afu_reset(afu); 926 if (result) 927 return result; 928 929 return afu_enable(afu); 930 } 931 932 int cxl_attach_dedicated_process_psl8(struct cxl_context *ctx, u64 wed, u64 amr) 933 { 934 struct cxl_afu *afu = ctx->afu; 935 u64 pid; 936 int rc; 937 938 pid = (u64)current->pid << 32; 939 if (ctx->kernel) 940 pid = 0; 941 cxl_p2n_write(afu, CXL_PSL_PID_TID_An, pid); 942 943 cxl_p1n_write(afu, CXL_PSL_SR_An, calculate_sr(ctx)); 944 945 if ((rc = cxl_write_sstp(afu, ctx->sstp0, ctx->sstp1))) 946 return rc; 947 948 cxl_prefault(ctx, wed); 949 950 if (ctx->afu->adapter->native->sl_ops->update_dedicated_ivtes) 951 afu->adapter->native->sl_ops->update_dedicated_ivtes(ctx); 952 953 cxl_p2n_write(afu, CXL_PSL_AMR_An, amr); 954 955 /* master only context for dedicated */ 956 cxl_assign_psn_space(ctx); 957 958 if ((rc = cxl_ops->afu_reset(afu))) 959 return rc; 960 961 cxl_p2n_write(afu, CXL_PSL_WED_An, wed); 962 963 return afu_enable(afu); 964 } 965 966 static int deactivate_dedicated_process(struct cxl_afu *afu) 967 { 968 dev_info(&afu->dev, "Deactivating dedicated process mode\n"); 969 970 afu->current_mode = 0; 971 afu->num_procs = 0; 972 973 cxl_chardev_afu_remove(afu); 974 975 return 0; 976 } 977 978 static int native_afu_deactivate_mode(struct cxl_afu *afu, int mode) 979 { 980 if (mode == CXL_MODE_DIRECTED) 981 return deactivate_afu_directed(afu); 982 if (mode == CXL_MODE_DEDICATED) 983 return deactivate_dedicated_process(afu); 984 return 0; 985 } 986 987 static int native_afu_activate_mode(struct cxl_afu *afu, int mode) 988 { 989 if (!mode) 990 return 0; 991 if (!(mode & afu->modes_supported)) 992 return -EINVAL; 993 994 if (!cxl_ops->link_ok(afu->adapter, afu)) { 995 WARN(1, "Device link is down, refusing to activate!\n"); 996 return -EIO; 997 } 998 999 if (mode == CXL_MODE_DIRECTED) 1000 return activate_afu_directed(afu); 1001 if ((mode == CXL_MODE_DEDICATED) && 1002 (afu->adapter->native->sl_ops->activate_dedicated_process)) 1003 return afu->adapter->native->sl_ops->activate_dedicated_process(afu); 1004 1005 return -EINVAL; 1006 } 1007 1008 static int native_attach_process(struct cxl_context *ctx, bool kernel, 1009 u64 wed, u64 amr) 1010 { 1011 if (!cxl_ops->link_ok(ctx->afu->adapter, ctx->afu)) { 1012 WARN(1, "Device link is down, refusing to attach process!\n"); 1013 return -EIO; 1014 } 1015 1016 ctx->kernel = kernel; 1017 if ((ctx->afu->current_mode == CXL_MODE_DIRECTED) && 1018 (ctx->afu->adapter->native->sl_ops->attach_afu_directed)) 1019 return ctx->afu->adapter->native->sl_ops->attach_afu_directed(ctx, wed, amr); 1020 1021 if ((ctx->afu->current_mode == CXL_MODE_DEDICATED) && 1022 (ctx->afu->adapter->native->sl_ops->attach_dedicated_process)) 1023 return ctx->afu->adapter->native->sl_ops->attach_dedicated_process(ctx, wed, amr); 1024 1025 return -EINVAL; 1026 } 1027 1028 static inline int detach_process_native_dedicated(struct cxl_context *ctx) 1029 { 1030 /* 1031 * The CAIA section 2.1.1 indicates that we need to do an AFU reset to 1032 * stop the AFU in dedicated mode (we therefore do not make that 1033 * optional like we do in the afu directed path). It does not indicate 1034 * that we need to do an explicit disable (which should occur 1035 * implicitly as part of the reset) or purge, but we do these as well 1036 * to be on the safe side. 1037 * 1038 * Notably we used to have some issues with the disable sequence 1039 * (before the sequence was spelled out in the architecture) which is 1040 * why we were so heavy weight in the first place, however a bug was 1041 * discovered that had rendered the disable operation ineffective, so 1042 * it is conceivable that was the sole explanation for those 1043 * difficulties. Point is, we should be careful and do some regression 1044 * testing if we ever attempt to remove any part of this procedure. 1045 */ 1046 cxl_ops->afu_reset(ctx->afu); 1047 cxl_afu_disable(ctx->afu); 1048 cxl_psl_purge(ctx->afu); 1049 return 0; 1050 } 1051 1052 static void native_update_ivtes(struct cxl_context *ctx) 1053 { 1054 if (ctx->afu->current_mode == CXL_MODE_DIRECTED) 1055 return update_ivtes_directed(ctx); 1056 if ((ctx->afu->current_mode == CXL_MODE_DEDICATED) && 1057 (ctx->afu->adapter->native->sl_ops->update_dedicated_ivtes)) 1058 return ctx->afu->adapter->native->sl_ops->update_dedicated_ivtes(ctx); 1059 WARN(1, "native_update_ivtes: Bad mode\n"); 1060 } 1061 1062 static inline int detach_process_native_afu_directed(struct cxl_context *ctx) 1063 { 1064 if (!ctx->pe_inserted) 1065 return 0; 1066 if (terminate_process_element(ctx)) 1067 return -1; 1068 if (remove_process_element(ctx)) 1069 return -1; 1070 1071 return 0; 1072 } 1073 1074 static int native_detach_process(struct cxl_context *ctx) 1075 { 1076 trace_cxl_detach(ctx); 1077 1078 if (ctx->afu->current_mode == CXL_MODE_DEDICATED) 1079 return detach_process_native_dedicated(ctx); 1080 1081 return detach_process_native_afu_directed(ctx); 1082 } 1083 1084 static int native_get_irq_info(struct cxl_afu *afu, struct cxl_irq_info *info) 1085 { 1086 /* If the adapter has gone away, we can't get any meaningful 1087 * information. 1088 */ 1089 if (!cxl_ops->link_ok(afu->adapter, afu)) 1090 return -EIO; 1091 1092 info->dsisr = cxl_p2n_read(afu, CXL_PSL_DSISR_An); 1093 info->dar = cxl_p2n_read(afu, CXL_PSL_DAR_An); 1094 if (cxl_is_power8()) 1095 info->dsr = cxl_p2n_read(afu, CXL_PSL_DSR_An); 1096 info->afu_err = cxl_p2n_read(afu, CXL_AFU_ERR_An); 1097 info->errstat = cxl_p2n_read(afu, CXL_PSL_ErrStat_An); 1098 info->proc_handle = 0; 1099 1100 return 0; 1101 } 1102 1103 void cxl_native_irq_dump_regs_psl9(struct cxl_context *ctx) 1104 { 1105 u64 fir1, serr; 1106 1107 fir1 = cxl_p1_read(ctx->afu->adapter, CXL_PSL9_FIR1); 1108 1109 dev_crit(&ctx->afu->dev, "PSL_FIR1: 0x%016llx\n", fir1); 1110 if (ctx->afu->adapter->native->sl_ops->register_serr_irq) { 1111 serr = cxl_p1n_read(ctx->afu, CXL_PSL_SERR_An); 1112 cxl_afu_decode_psl_serr(ctx->afu, serr); 1113 } 1114 } 1115 1116 void cxl_native_irq_dump_regs_psl8(struct cxl_context *ctx) 1117 { 1118 u64 fir1, fir2, fir_slice, serr, afu_debug; 1119 1120 fir1 = cxl_p1_read(ctx->afu->adapter, CXL_PSL_FIR1); 1121 fir2 = cxl_p1_read(ctx->afu->adapter, CXL_PSL_FIR2); 1122 fir_slice = cxl_p1n_read(ctx->afu, CXL_PSL_FIR_SLICE_An); 1123 afu_debug = cxl_p1n_read(ctx->afu, CXL_AFU_DEBUG_An); 1124 1125 dev_crit(&ctx->afu->dev, "PSL_FIR1: 0x%016llx\n", fir1); 1126 dev_crit(&ctx->afu->dev, "PSL_FIR2: 0x%016llx\n", fir2); 1127 if (ctx->afu->adapter->native->sl_ops->register_serr_irq) { 1128 serr = cxl_p1n_read(ctx->afu, CXL_PSL_SERR_An); 1129 cxl_afu_decode_psl_serr(ctx->afu, serr); 1130 } 1131 dev_crit(&ctx->afu->dev, "PSL_FIR_SLICE_An: 0x%016llx\n", fir_slice); 1132 dev_crit(&ctx->afu->dev, "CXL_PSL_AFU_DEBUG_An: 0x%016llx\n", afu_debug); 1133 } 1134 1135 static irqreturn_t native_handle_psl_slice_error(struct cxl_context *ctx, 1136 u64 dsisr, u64 errstat) 1137 { 1138 1139 dev_crit(&ctx->afu->dev, "PSL ERROR STATUS: 0x%016llx\n", errstat); 1140 1141 if (ctx->afu->adapter->native->sl_ops->psl_irq_dump_registers) 1142 ctx->afu->adapter->native->sl_ops->psl_irq_dump_registers(ctx); 1143 1144 if (ctx->afu->adapter->native->sl_ops->debugfs_stop_trace) { 1145 dev_crit(&ctx->afu->dev, "STOPPING CXL TRACE\n"); 1146 ctx->afu->adapter->native->sl_ops->debugfs_stop_trace(ctx->afu->adapter); 1147 } 1148 1149 return cxl_ops->ack_irq(ctx, 0, errstat); 1150 } 1151 1152 static bool cxl_is_translation_fault(struct cxl_afu *afu, u64 dsisr) 1153 { 1154 if ((cxl_is_power8()) && (dsisr & CXL_PSL_DSISR_TRANS)) 1155 return true; 1156 1157 if ((cxl_is_power9()) && (dsisr & CXL_PSL9_DSISR_An_TF)) 1158 return true; 1159 1160 return false; 1161 } 1162 1163 irqreturn_t cxl_fail_irq_psl(struct cxl_afu *afu, struct cxl_irq_info *irq_info) 1164 { 1165 if (cxl_is_translation_fault(afu, irq_info->dsisr)) 1166 cxl_p2n_write(afu, CXL_PSL_TFC_An, CXL_PSL_TFC_An_AE); 1167 else 1168 cxl_p2n_write(afu, CXL_PSL_TFC_An, CXL_PSL_TFC_An_A); 1169 1170 return IRQ_HANDLED; 1171 } 1172 1173 static irqreturn_t native_irq_multiplexed(int irq, void *data) 1174 { 1175 struct cxl_afu *afu = data; 1176 struct cxl_context *ctx; 1177 struct cxl_irq_info irq_info; 1178 u64 phreg = cxl_p2n_read(afu, CXL_PSL_PEHandle_An); 1179 int ph, ret = IRQ_HANDLED, res; 1180 1181 /* check if eeh kicked in while the interrupt was in flight */ 1182 if (unlikely(phreg == ~0ULL)) { 1183 dev_warn(&afu->dev, 1184 "Ignoring slice interrupt(%d) due to fenced card", 1185 irq); 1186 return IRQ_HANDLED; 1187 } 1188 /* Mask the pe-handle from register value */ 1189 ph = phreg & 0xffff; 1190 if ((res = native_get_irq_info(afu, &irq_info))) { 1191 WARN(1, "Unable to get CXL IRQ Info: %i\n", res); 1192 if (afu->adapter->native->sl_ops->fail_irq) 1193 return afu->adapter->native->sl_ops->fail_irq(afu, &irq_info); 1194 return ret; 1195 } 1196 1197 rcu_read_lock(); 1198 ctx = idr_find(&afu->contexts_idr, ph); 1199 if (ctx) { 1200 if (afu->adapter->native->sl_ops->handle_interrupt) 1201 ret = afu->adapter->native->sl_ops->handle_interrupt(irq, ctx, &irq_info); 1202 rcu_read_unlock(); 1203 return ret; 1204 } 1205 rcu_read_unlock(); 1206 1207 WARN(1, "Unable to demultiplex CXL PSL IRQ for PE %i DSISR %016llx DAR" 1208 " %016llx\n(Possible AFU HW issue - was a term/remove acked" 1209 " with outstanding transactions?)\n", ph, irq_info.dsisr, 1210 irq_info.dar); 1211 if (afu->adapter->native->sl_ops->fail_irq) 1212 ret = afu->adapter->native->sl_ops->fail_irq(afu, &irq_info); 1213 return ret; 1214 } 1215 1216 static void native_irq_wait(struct cxl_context *ctx) 1217 { 1218 u64 dsisr; 1219 int timeout = 1000; 1220 int ph; 1221 1222 /* 1223 * Wait until no further interrupts are presented by the PSL 1224 * for this context. 1225 */ 1226 while (timeout--) { 1227 ph = cxl_p2n_read(ctx->afu, CXL_PSL_PEHandle_An) & 0xffff; 1228 if (ph != ctx->pe) 1229 return; 1230 dsisr = cxl_p2n_read(ctx->afu, CXL_PSL_DSISR_An); 1231 if (cxl_is_power8() && 1232 ((dsisr & CXL_PSL_DSISR_PENDING) == 0)) 1233 return; 1234 if (cxl_is_power9() && 1235 ((dsisr & CXL_PSL9_DSISR_PENDING) == 0)) 1236 return; 1237 /* 1238 * We are waiting for the workqueue to process our 1239 * irq, so need to let that run here. 1240 */ 1241 msleep(1); 1242 } 1243 1244 dev_warn(&ctx->afu->dev, "WARNING: waiting on DSI for PE %i" 1245 " DSISR %016llx!\n", ph, dsisr); 1246 return; 1247 } 1248 1249 static irqreturn_t native_slice_irq_err(int irq, void *data) 1250 { 1251 struct cxl_afu *afu = data; 1252 u64 errstat, serr, afu_error, dsisr; 1253 u64 fir_slice, afu_debug, irq_mask; 1254 1255 /* 1256 * slice err interrupt is only used with full PSL (no XSL) 1257 */ 1258 serr = cxl_p1n_read(afu, CXL_PSL_SERR_An); 1259 errstat = cxl_p2n_read(afu, CXL_PSL_ErrStat_An); 1260 afu_error = cxl_p2n_read(afu, CXL_AFU_ERR_An); 1261 dsisr = cxl_p2n_read(afu, CXL_PSL_DSISR_An); 1262 cxl_afu_decode_psl_serr(afu, serr); 1263 1264 if (cxl_is_power8()) { 1265 fir_slice = cxl_p1n_read(afu, CXL_PSL_FIR_SLICE_An); 1266 afu_debug = cxl_p1n_read(afu, CXL_AFU_DEBUG_An); 1267 dev_crit(&afu->dev, "PSL_FIR_SLICE_An: 0x%016llx\n", fir_slice); 1268 dev_crit(&afu->dev, "CXL_PSL_AFU_DEBUG_An: 0x%016llx\n", afu_debug); 1269 } 1270 dev_crit(&afu->dev, "CXL_PSL_ErrStat_An: 0x%016llx\n", errstat); 1271 dev_crit(&afu->dev, "AFU_ERR_An: 0x%.16llx\n", afu_error); 1272 dev_crit(&afu->dev, "PSL_DSISR_An: 0x%.16llx\n", dsisr); 1273 1274 /* mask off the IRQ so it won't retrigger until the AFU is reset */ 1275 irq_mask = (serr & CXL_PSL_SERR_An_IRQS) >> 32; 1276 serr |= irq_mask; 1277 cxl_p1n_write(afu, CXL_PSL_SERR_An, serr); 1278 dev_info(&afu->dev, "Further such interrupts will be masked until the AFU is reset\n"); 1279 1280 return IRQ_HANDLED; 1281 } 1282 1283 void cxl_native_err_irq_dump_regs_psl9(struct cxl *adapter) 1284 { 1285 u64 fir1; 1286 1287 fir1 = cxl_p1_read(adapter, CXL_PSL9_FIR1); 1288 dev_crit(&adapter->dev, "PSL_FIR: 0x%016llx\n", fir1); 1289 } 1290 1291 void cxl_native_err_irq_dump_regs_psl8(struct cxl *adapter) 1292 { 1293 u64 fir1, fir2; 1294 1295 fir1 = cxl_p1_read(adapter, CXL_PSL_FIR1); 1296 fir2 = cxl_p1_read(adapter, CXL_PSL_FIR2); 1297 dev_crit(&adapter->dev, 1298 "PSL_FIR1: 0x%016llx\nPSL_FIR2: 0x%016llx\n", 1299 fir1, fir2); 1300 } 1301 1302 static irqreturn_t native_irq_err(int irq, void *data) 1303 { 1304 struct cxl *adapter = data; 1305 u64 err_ivte; 1306 1307 WARN(1, "CXL ERROR interrupt %i\n", irq); 1308 1309 err_ivte = cxl_p1_read(adapter, CXL_PSL_ErrIVTE); 1310 dev_crit(&adapter->dev, "PSL_ErrIVTE: 0x%016llx\n", err_ivte); 1311 1312 if (adapter->native->sl_ops->debugfs_stop_trace) { 1313 dev_crit(&adapter->dev, "STOPPING CXL TRACE\n"); 1314 adapter->native->sl_ops->debugfs_stop_trace(adapter); 1315 } 1316 1317 if (adapter->native->sl_ops->err_irq_dump_registers) 1318 adapter->native->sl_ops->err_irq_dump_registers(adapter); 1319 1320 return IRQ_HANDLED; 1321 } 1322 1323 int cxl_native_register_psl_err_irq(struct cxl *adapter) 1324 { 1325 int rc; 1326 1327 adapter->irq_name = kasprintf(GFP_KERNEL, "cxl-%s-err", 1328 dev_name(&adapter->dev)); 1329 if (!adapter->irq_name) 1330 return -ENOMEM; 1331 1332 if ((rc = cxl_register_one_irq(adapter, native_irq_err, adapter, 1333 &adapter->native->err_hwirq, 1334 &adapter->native->err_virq, 1335 adapter->irq_name))) { 1336 kfree(adapter->irq_name); 1337 adapter->irq_name = NULL; 1338 return rc; 1339 } 1340 1341 cxl_p1_write(adapter, CXL_PSL_ErrIVTE, adapter->native->err_hwirq & 0xffff); 1342 1343 return 0; 1344 } 1345 1346 void cxl_native_release_psl_err_irq(struct cxl *adapter) 1347 { 1348 if (adapter->native->err_virq == 0 || 1349 adapter->native->err_virq != 1350 irq_find_mapping(NULL, adapter->native->err_hwirq)) 1351 return; 1352 1353 cxl_p1_write(adapter, CXL_PSL_ErrIVTE, 0x0000000000000000); 1354 cxl_unmap_irq(adapter->native->err_virq, adapter); 1355 cxl_ops->release_one_irq(adapter, adapter->native->err_hwirq); 1356 kfree(adapter->irq_name); 1357 adapter->native->err_virq = 0; 1358 } 1359 1360 int cxl_native_register_serr_irq(struct cxl_afu *afu) 1361 { 1362 u64 serr; 1363 int rc; 1364 1365 afu->err_irq_name = kasprintf(GFP_KERNEL, "cxl-%s-err", 1366 dev_name(&afu->dev)); 1367 if (!afu->err_irq_name) 1368 return -ENOMEM; 1369 1370 if ((rc = cxl_register_one_irq(afu->adapter, native_slice_irq_err, afu, 1371 &afu->serr_hwirq, 1372 &afu->serr_virq, afu->err_irq_name))) { 1373 kfree(afu->err_irq_name); 1374 afu->err_irq_name = NULL; 1375 return rc; 1376 } 1377 1378 serr = cxl_p1n_read(afu, CXL_PSL_SERR_An); 1379 if (cxl_is_power8()) 1380 serr = (serr & 0x00ffffffffff0000ULL) | (afu->serr_hwirq & 0xffff); 1381 if (cxl_is_power9()) { 1382 /* 1383 * By default, all errors are masked. So don't set all masks. 1384 * Slice errors will be transfered. 1385 */ 1386 serr = (serr & ~0xff0000007fffffffULL) | (afu->serr_hwirq & 0xffff); 1387 } 1388 cxl_p1n_write(afu, CXL_PSL_SERR_An, serr); 1389 1390 return 0; 1391 } 1392 1393 void cxl_native_release_serr_irq(struct cxl_afu *afu) 1394 { 1395 if (afu->serr_virq == 0 || 1396 afu->serr_virq != irq_find_mapping(NULL, afu->serr_hwirq)) 1397 return; 1398 1399 cxl_p1n_write(afu, CXL_PSL_SERR_An, 0x0000000000000000); 1400 cxl_unmap_irq(afu->serr_virq, afu); 1401 cxl_ops->release_one_irq(afu->adapter, afu->serr_hwirq); 1402 kfree(afu->err_irq_name); 1403 afu->serr_virq = 0; 1404 } 1405 1406 int cxl_native_register_psl_irq(struct cxl_afu *afu) 1407 { 1408 int rc; 1409 1410 afu->psl_irq_name = kasprintf(GFP_KERNEL, "cxl-%s", 1411 dev_name(&afu->dev)); 1412 if (!afu->psl_irq_name) 1413 return -ENOMEM; 1414 1415 if ((rc = cxl_register_one_irq(afu->adapter, native_irq_multiplexed, 1416 afu, &afu->native->psl_hwirq, &afu->native->psl_virq, 1417 afu->psl_irq_name))) { 1418 kfree(afu->psl_irq_name); 1419 afu->psl_irq_name = NULL; 1420 } 1421 return rc; 1422 } 1423 1424 void cxl_native_release_psl_irq(struct cxl_afu *afu) 1425 { 1426 if (afu->native->psl_virq == 0 || 1427 afu->native->psl_virq != 1428 irq_find_mapping(NULL, afu->native->psl_hwirq)) 1429 return; 1430 1431 cxl_unmap_irq(afu->native->psl_virq, afu); 1432 cxl_ops->release_one_irq(afu->adapter, afu->native->psl_hwirq); 1433 kfree(afu->psl_irq_name); 1434 afu->native->psl_virq = 0; 1435 } 1436 1437 static void recover_psl_err(struct cxl_afu *afu, u64 errstat) 1438 { 1439 u64 dsisr; 1440 1441 pr_devel("RECOVERING FROM PSL ERROR... (0x%016llx)\n", errstat); 1442 1443 /* Clear PSL_DSISR[PE] */ 1444 dsisr = cxl_p2n_read(afu, CXL_PSL_DSISR_An); 1445 cxl_p2n_write(afu, CXL_PSL_DSISR_An, dsisr & ~CXL_PSL_DSISR_An_PE); 1446 1447 /* Write 1s to clear error status bits */ 1448 cxl_p2n_write(afu, CXL_PSL_ErrStat_An, errstat); 1449 } 1450 1451 static int native_ack_irq(struct cxl_context *ctx, u64 tfc, u64 psl_reset_mask) 1452 { 1453 trace_cxl_psl_irq_ack(ctx, tfc); 1454 if (tfc) 1455 cxl_p2n_write(ctx->afu, CXL_PSL_TFC_An, tfc); 1456 if (psl_reset_mask) 1457 recover_psl_err(ctx->afu, psl_reset_mask); 1458 1459 return 0; 1460 } 1461 1462 int cxl_check_error(struct cxl_afu *afu) 1463 { 1464 return (cxl_p1n_read(afu, CXL_PSL_SCNTL_An) == ~0ULL); 1465 } 1466 1467 static bool native_support_attributes(const char *attr_name, 1468 enum cxl_attrs type) 1469 { 1470 return true; 1471 } 1472 1473 static int native_afu_cr_read64(struct cxl_afu *afu, int cr, u64 off, u64 *out) 1474 { 1475 if (unlikely(!cxl_ops->link_ok(afu->adapter, afu))) 1476 return -EIO; 1477 if (unlikely(off >= afu->crs_len)) 1478 return -ERANGE; 1479 *out = in_le64(afu->native->afu_desc_mmio + afu->crs_offset + 1480 (cr * afu->crs_len) + off); 1481 return 0; 1482 } 1483 1484 static int native_afu_cr_read32(struct cxl_afu *afu, int cr, u64 off, u32 *out) 1485 { 1486 if (unlikely(!cxl_ops->link_ok(afu->adapter, afu))) 1487 return -EIO; 1488 if (unlikely(off >= afu->crs_len)) 1489 return -ERANGE; 1490 *out = in_le32(afu->native->afu_desc_mmio + afu->crs_offset + 1491 (cr * afu->crs_len) + off); 1492 return 0; 1493 } 1494 1495 static int native_afu_cr_read16(struct cxl_afu *afu, int cr, u64 off, u16 *out) 1496 { 1497 u64 aligned_off = off & ~0x3L; 1498 u32 val; 1499 int rc; 1500 1501 rc = native_afu_cr_read32(afu, cr, aligned_off, &val); 1502 if (!rc) 1503 *out = (val >> ((off & 0x3) * 8)) & 0xffff; 1504 return rc; 1505 } 1506 1507 static int native_afu_cr_read8(struct cxl_afu *afu, int cr, u64 off, u8 *out) 1508 { 1509 u64 aligned_off = off & ~0x3L; 1510 u32 val; 1511 int rc; 1512 1513 rc = native_afu_cr_read32(afu, cr, aligned_off, &val); 1514 if (!rc) 1515 *out = (val >> ((off & 0x3) * 8)) & 0xff; 1516 return rc; 1517 } 1518 1519 static int native_afu_cr_write32(struct cxl_afu *afu, int cr, u64 off, u32 in) 1520 { 1521 if (unlikely(!cxl_ops->link_ok(afu->adapter, afu))) 1522 return -EIO; 1523 if (unlikely(off >= afu->crs_len)) 1524 return -ERANGE; 1525 out_le32(afu->native->afu_desc_mmio + afu->crs_offset + 1526 (cr * afu->crs_len) + off, in); 1527 return 0; 1528 } 1529 1530 static int native_afu_cr_write16(struct cxl_afu *afu, int cr, u64 off, u16 in) 1531 { 1532 u64 aligned_off = off & ~0x3L; 1533 u32 val32, mask, shift; 1534 int rc; 1535 1536 rc = native_afu_cr_read32(afu, cr, aligned_off, &val32); 1537 if (rc) 1538 return rc; 1539 shift = (off & 0x3) * 8; 1540 WARN_ON(shift == 24); 1541 mask = 0xffff << shift; 1542 val32 = (val32 & ~mask) | (in << shift); 1543 1544 rc = native_afu_cr_write32(afu, cr, aligned_off, val32); 1545 return rc; 1546 } 1547 1548 static int native_afu_cr_write8(struct cxl_afu *afu, int cr, u64 off, u8 in) 1549 { 1550 u64 aligned_off = off & ~0x3L; 1551 u32 val32, mask, shift; 1552 int rc; 1553 1554 rc = native_afu_cr_read32(afu, cr, aligned_off, &val32); 1555 if (rc) 1556 return rc; 1557 shift = (off & 0x3) * 8; 1558 mask = 0xff << shift; 1559 val32 = (val32 & ~mask) | (in << shift); 1560 1561 rc = native_afu_cr_write32(afu, cr, aligned_off, val32); 1562 return rc; 1563 } 1564 1565 const struct cxl_backend_ops cxl_native_ops = { 1566 .module = THIS_MODULE, 1567 .adapter_reset = cxl_pci_reset, 1568 .alloc_one_irq = cxl_pci_alloc_one_irq, 1569 .release_one_irq = cxl_pci_release_one_irq, 1570 .alloc_irq_ranges = cxl_pci_alloc_irq_ranges, 1571 .release_irq_ranges = cxl_pci_release_irq_ranges, 1572 .setup_irq = cxl_pci_setup_irq, 1573 .handle_psl_slice_error = native_handle_psl_slice_error, 1574 .psl_interrupt = NULL, 1575 .ack_irq = native_ack_irq, 1576 .irq_wait = native_irq_wait, 1577 .attach_process = native_attach_process, 1578 .detach_process = native_detach_process, 1579 .update_ivtes = native_update_ivtes, 1580 .support_attributes = native_support_attributes, 1581 .link_ok = cxl_adapter_link_ok, 1582 .release_afu = cxl_pci_release_afu, 1583 .afu_read_err_buffer = cxl_pci_afu_read_err_buffer, 1584 .afu_check_and_enable = native_afu_check_and_enable, 1585 .afu_activate_mode = native_afu_activate_mode, 1586 .afu_deactivate_mode = native_afu_deactivate_mode, 1587 .afu_reset = native_afu_reset, 1588 .afu_cr_read8 = native_afu_cr_read8, 1589 .afu_cr_read16 = native_afu_cr_read16, 1590 .afu_cr_read32 = native_afu_cr_read32, 1591 .afu_cr_read64 = native_afu_cr_read64, 1592 .afu_cr_write8 = native_afu_cr_write8, 1593 .afu_cr_write16 = native_afu_cr_write16, 1594 .afu_cr_write32 = native_afu_cr_write32, 1595 .read_adapter_vpd = cxl_pci_read_adapter_vpd, 1596 }; 1597