xref: /openbmc/linux/drivers/mfd/ucb1x00-ts.c (revision 0af5e4c3)
1 /*
2  *  Touchscreen driver for UCB1x00-based touchscreens
3  *
4  *  Copyright (C) 2001 Russell King, All Rights Reserved.
5  *  Copyright (C) 2005 Pavel Machek
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * 21-Jan-2002 <jco@ict.es> :
12  *
13  * Added support for synchronous A/D mode. This mode is useful to
14  * avoid noise induced in the touchpanel by the LCD, provided that
15  * the UCB1x00 has a valid LCD sync signal routed to its ADCSYNC pin.
16  * It is important to note that the signal connected to the ADCSYNC
17  * pin should provide pulses even when the LCD is blanked, otherwise
18  * a pen touch needed to unblank the LCD will never be read.
19  */
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/init.h>
23 #include <linux/smp.h>
24 #include <linux/sched.h>
25 #include <linux/completion.h>
26 #include <linux/delay.h>
27 #include <linux/string.h>
28 #include <linux/input.h>
29 #include <linux/device.h>
30 #include <linux/freezer.h>
31 #include <linux/slab.h>
32 #include <linux/kthread.h>
33 #include <linux/mfd/ucb1x00.h>
34 
35 #include <mach/dma.h>
36 #include <mach/collie.h>
37 #include <asm/mach-types.h>
38 
39 
40 
41 struct ucb1x00_ts {
42 	struct input_dev	*idev;
43 	struct ucb1x00		*ucb;
44 
45 	wait_queue_head_t	irq_wait;
46 	struct task_struct	*rtask;
47 	u16			x_res;
48 	u16			y_res;
49 
50 	unsigned int		adcsync:1;
51 };
52 
53 static int adcsync;
54 
55 static inline void ucb1x00_ts_evt_add(struct ucb1x00_ts *ts, u16 pressure, u16 x, u16 y)
56 {
57 	struct input_dev *idev = ts->idev;
58 
59 	input_report_abs(idev, ABS_X, x);
60 	input_report_abs(idev, ABS_Y, y);
61 	input_report_abs(idev, ABS_PRESSURE, pressure);
62 	input_report_key(idev, BTN_TOUCH, 1);
63 	input_sync(idev);
64 }
65 
66 static inline void ucb1x00_ts_event_release(struct ucb1x00_ts *ts)
67 {
68 	struct input_dev *idev = ts->idev;
69 
70 	input_report_abs(idev, ABS_PRESSURE, 0);
71 	input_report_key(idev, BTN_TOUCH, 0);
72 	input_sync(idev);
73 }
74 
75 /*
76  * Switch to interrupt mode.
77  */
78 static inline void ucb1x00_ts_mode_int(struct ucb1x00_ts *ts)
79 {
80 	ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
81 			UCB_TS_CR_TSMX_POW | UCB_TS_CR_TSPX_POW |
82 			UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_GND |
83 			UCB_TS_CR_MODE_INT);
84 }
85 
86 /*
87  * Switch to pressure mode, and read pressure.  We don't need to wait
88  * here, since both plates are being driven.
89  */
90 static inline unsigned int ucb1x00_ts_read_pressure(struct ucb1x00_ts *ts)
91 {
92 	if (machine_is_collie()) {
93 		ucb1x00_io_write(ts->ucb, COLLIE_TC35143_GPIO_TBL_CHK, 0);
94 		ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
95 				  UCB_TS_CR_TSPX_POW | UCB_TS_CR_TSMX_POW |
96 				  UCB_TS_CR_MODE_POS | UCB_TS_CR_BIAS_ENA);
97 
98 		udelay(55);
99 
100 		return ucb1x00_adc_read(ts->ucb, UCB_ADC_INP_AD2, ts->adcsync);
101 	} else {
102 		ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
103 				  UCB_TS_CR_TSMX_POW | UCB_TS_CR_TSPX_POW |
104 				  UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_GND |
105 				  UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
106 
107 		return ucb1x00_adc_read(ts->ucb, UCB_ADC_INP_TSPY, ts->adcsync);
108 	}
109 }
110 
111 /*
112  * Switch to X position mode and measure Y plate.  We switch the plate
113  * configuration in pressure mode, then switch to position mode.  This
114  * gives a faster response time.  Even so, we need to wait about 55us
115  * for things to stabilise.
116  */
117 static inline unsigned int ucb1x00_ts_read_xpos(struct ucb1x00_ts *ts)
118 {
119 	if (machine_is_collie())
120 		ucb1x00_io_write(ts->ucb, 0, COLLIE_TC35143_GPIO_TBL_CHK);
121 	else {
122 		ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
123 				  UCB_TS_CR_TSMX_GND | UCB_TS_CR_TSPX_POW |
124 				  UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
125 		ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
126 				  UCB_TS_CR_TSMX_GND | UCB_TS_CR_TSPX_POW |
127 				  UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
128 	}
129 	ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
130 			UCB_TS_CR_TSMX_GND | UCB_TS_CR_TSPX_POW |
131 			UCB_TS_CR_MODE_POS | UCB_TS_CR_BIAS_ENA);
132 
133 	udelay(55);
134 
135 	return ucb1x00_adc_read(ts->ucb, UCB_ADC_INP_TSPY, ts->adcsync);
136 }
137 
138 /*
139  * Switch to Y position mode and measure X plate.  We switch the plate
140  * configuration in pressure mode, then switch to position mode.  This
141  * gives a faster response time.  Even so, we need to wait about 55us
142  * for things to stabilise.
143  */
144 static inline unsigned int ucb1x00_ts_read_ypos(struct ucb1x00_ts *ts)
145 {
146 	if (machine_is_collie())
147 		ucb1x00_io_write(ts->ucb, 0, COLLIE_TC35143_GPIO_TBL_CHK);
148 	else {
149 		ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
150 				  UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_POW |
151 				  UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
152 		ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
153 				  UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_POW |
154 				  UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
155 	}
156 
157 	ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
158 			UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_POW |
159 			UCB_TS_CR_MODE_POS | UCB_TS_CR_BIAS_ENA);
160 
161 	udelay(55);
162 
163 	return ucb1x00_adc_read(ts->ucb, UCB_ADC_INP_TSPX, ts->adcsync);
164 }
165 
166 /*
167  * Switch to X plate resistance mode.  Set MX to ground, PX to
168  * supply.  Measure current.
169  */
170 static inline unsigned int ucb1x00_ts_read_xres(struct ucb1x00_ts *ts)
171 {
172 	ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
173 			UCB_TS_CR_TSMX_GND | UCB_TS_CR_TSPX_POW |
174 			UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
175 	return ucb1x00_adc_read(ts->ucb, 0, ts->adcsync);
176 }
177 
178 /*
179  * Switch to Y plate resistance mode.  Set MY to ground, PY to
180  * supply.  Measure current.
181  */
182 static inline unsigned int ucb1x00_ts_read_yres(struct ucb1x00_ts *ts)
183 {
184 	ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
185 			UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_POW |
186 			UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
187 	return ucb1x00_adc_read(ts->ucb, 0, ts->adcsync);
188 }
189 
190 static inline int ucb1x00_ts_pen_down(struct ucb1x00_ts *ts)
191 {
192 	unsigned int val = ucb1x00_reg_read(ts->ucb, UCB_TS_CR);
193 
194 	if (machine_is_collie())
195 		return (!(val & (UCB_TS_CR_TSPX_LOW)));
196 	else
197 		return (val & (UCB_TS_CR_TSPX_LOW | UCB_TS_CR_TSMX_LOW));
198 }
199 
200 /*
201  * This is a RT kernel thread that handles the ADC accesses
202  * (mainly so we can use semaphores in the UCB1200 core code
203  * to serialise accesses to the ADC).
204  */
205 static int ucb1x00_thread(void *_ts)
206 {
207 	struct ucb1x00_ts *ts = _ts;
208 	DECLARE_WAITQUEUE(wait, current);
209 	bool frozen, ignore = false;
210 	int valid = 0;
211 
212 	set_freezable();
213 	add_wait_queue(&ts->irq_wait, &wait);
214 	while (!kthread_freezable_should_stop(&frozen)) {
215 		unsigned int x, y, p;
216 		signed long timeout;
217 
218 		if (frozen)
219 			ignore = true;
220 
221 		ucb1x00_adc_enable(ts->ucb);
222 
223 		x = ucb1x00_ts_read_xpos(ts);
224 		y = ucb1x00_ts_read_ypos(ts);
225 		p = ucb1x00_ts_read_pressure(ts);
226 
227 		/*
228 		 * Switch back to interrupt mode.
229 		 */
230 		ucb1x00_ts_mode_int(ts);
231 		ucb1x00_adc_disable(ts->ucb);
232 
233 		msleep(10);
234 
235 		ucb1x00_enable(ts->ucb);
236 
237 
238 		if (ucb1x00_ts_pen_down(ts)) {
239 			set_current_state(TASK_INTERRUPTIBLE);
240 
241 			ucb1x00_enable_irq(ts->ucb, UCB_IRQ_TSPX, machine_is_collie() ? UCB_RISING : UCB_FALLING);
242 			ucb1x00_disable(ts->ucb);
243 
244 			/*
245 			 * If we spat out a valid sample set last time,
246 			 * spit out a "pen off" sample here.
247 			 */
248 			if (valid) {
249 				ucb1x00_ts_event_release(ts);
250 				valid = 0;
251 			}
252 
253 			timeout = MAX_SCHEDULE_TIMEOUT;
254 		} else {
255 			ucb1x00_disable(ts->ucb);
256 
257 			/*
258 			 * Filtering is policy.  Policy belongs in user
259 			 * space.  We therefore leave it to user space
260 			 * to do any filtering they please.
261 			 */
262 			if (!ignore) {
263 				ucb1x00_ts_evt_add(ts, p, x, y);
264 				valid = 1;
265 			}
266 
267 			set_current_state(TASK_INTERRUPTIBLE);
268 			timeout = HZ / 100;
269 		}
270 
271 		schedule_timeout(timeout);
272 	}
273 
274 	remove_wait_queue(&ts->irq_wait, &wait);
275 
276 	ts->rtask = NULL;
277 	return 0;
278 }
279 
280 /*
281  * We only detect touch screen _touches_ with this interrupt
282  * handler, and even then we just schedule our task.
283  */
284 static void ucb1x00_ts_irq(int idx, void *id)
285 {
286 	struct ucb1x00_ts *ts = id;
287 
288 	ucb1x00_disable_irq(ts->ucb, UCB_IRQ_TSPX, UCB_FALLING);
289 	wake_up(&ts->irq_wait);
290 }
291 
292 static int ucb1x00_ts_open(struct input_dev *idev)
293 {
294 	struct ucb1x00_ts *ts = input_get_drvdata(idev);
295 	int ret = 0;
296 
297 	BUG_ON(ts->rtask);
298 
299 	init_waitqueue_head(&ts->irq_wait);
300 	ret = ucb1x00_hook_irq(ts->ucb, UCB_IRQ_TSPX, ucb1x00_ts_irq, ts);
301 	if (ret < 0)
302 		goto out;
303 
304 	/*
305 	 * If we do this at all, we should allow the user to
306 	 * measure and read the X and Y resistance at any time.
307 	 */
308 	ucb1x00_adc_enable(ts->ucb);
309 	ts->x_res = ucb1x00_ts_read_xres(ts);
310 	ts->y_res = ucb1x00_ts_read_yres(ts);
311 	ucb1x00_adc_disable(ts->ucb);
312 
313 	ts->rtask = kthread_run(ucb1x00_thread, ts, "ktsd");
314 	if (!IS_ERR(ts->rtask)) {
315 		ret = 0;
316 	} else {
317 		ucb1x00_free_irq(ts->ucb, UCB_IRQ_TSPX, ts);
318 		ts->rtask = NULL;
319 		ret = -EFAULT;
320 	}
321 
322  out:
323 	return ret;
324 }
325 
326 /*
327  * Release touchscreen resources.  Disable IRQs.
328  */
329 static void ucb1x00_ts_close(struct input_dev *idev)
330 {
331 	struct ucb1x00_ts *ts = input_get_drvdata(idev);
332 
333 	if (ts->rtask)
334 		kthread_stop(ts->rtask);
335 
336 	ucb1x00_enable(ts->ucb);
337 	ucb1x00_free_irq(ts->ucb, UCB_IRQ_TSPX, ts);
338 	ucb1x00_reg_write(ts->ucb, UCB_TS_CR, 0);
339 	ucb1x00_disable(ts->ucb);
340 }
341 
342 
343 /*
344  * Initialisation.
345  */
346 static int ucb1x00_ts_add(struct ucb1x00_dev *dev)
347 {
348 	struct ucb1x00_ts *ts;
349 	struct input_dev *idev;
350 	int err;
351 
352 	ts = kzalloc(sizeof(struct ucb1x00_ts), GFP_KERNEL);
353 	idev = input_allocate_device();
354 	if (!ts || !idev) {
355 		err = -ENOMEM;
356 		goto fail;
357 	}
358 
359 	ts->ucb = dev->ucb;
360 	ts->idev = idev;
361 	ts->adcsync = adcsync ? UCB_SYNC : UCB_NOSYNC;
362 
363 	idev->name       = "Touchscreen panel";
364 	idev->id.product = ts->ucb->id;
365 	idev->open       = ucb1x00_ts_open;
366 	idev->close      = ucb1x00_ts_close;
367 
368 	idev->evbit[0]   = BIT_MASK(EV_ABS) | BIT_MASK(EV_KEY);
369 	idev->keybit[BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH);
370 
371 	input_set_drvdata(idev, ts);
372 
373 	ucb1x00_adc_enable(ts->ucb);
374 	ts->x_res = ucb1x00_ts_read_xres(ts);
375 	ts->y_res = ucb1x00_ts_read_yres(ts);
376 	ucb1x00_adc_disable(ts->ucb);
377 
378 	input_set_abs_params(idev, ABS_X, 0, ts->x_res, 0, 0);
379 	input_set_abs_params(idev, ABS_Y, 0, ts->y_res, 0, 0);
380 	input_set_abs_params(idev, ABS_PRESSURE, 0, 0, 0, 0);
381 
382 	err = input_register_device(idev);
383 	if (err)
384 		goto fail;
385 
386 	dev->priv = ts;
387 
388 	return 0;
389 
390  fail:
391 	input_free_device(idev);
392 	kfree(ts);
393 	return err;
394 }
395 
396 static void ucb1x00_ts_remove(struct ucb1x00_dev *dev)
397 {
398 	struct ucb1x00_ts *ts = dev->priv;
399 
400 	input_unregister_device(ts->idev);
401 	kfree(ts);
402 }
403 
404 static struct ucb1x00_driver ucb1x00_ts_driver = {
405 	.add		= ucb1x00_ts_add,
406 	.remove		= ucb1x00_ts_remove,
407 };
408 
409 static int __init ucb1x00_ts_init(void)
410 {
411 	return ucb1x00_register_driver(&ucb1x00_ts_driver);
412 }
413 
414 static void __exit ucb1x00_ts_exit(void)
415 {
416 	ucb1x00_unregister_driver(&ucb1x00_ts_driver);
417 }
418 
419 module_param(adcsync, int, 0444);
420 module_init(ucb1x00_ts_init);
421 module_exit(ucb1x00_ts_exit);
422 
423 MODULE_AUTHOR("Russell King <rmk@arm.linux.org.uk>");
424 MODULE_DESCRIPTION("UCB1x00 touchscreen driver");
425 MODULE_LICENSE("GPL");
426