xref: /openbmc/linux/drivers/mfd/twl4030-irq.c (revision 9ac8d3fb)
1 /*
2  * twl4030-irq.c - TWL4030/TPS659x0 irq support
3  *
4  * Copyright (C) 2005-2006 Texas Instruments, Inc.
5  *
6  * Modifications to defer interrupt handling to a kernel thread:
7  * Copyright (C) 2006 MontaVista Software, Inc.
8  *
9  * Based on tlv320aic23.c:
10  * Copyright (c) by Kai Svahn <kai.svahn@nokia.com>
11  *
12  * Code cleanup and modifications to IRQ handler.
13  * by syed khasim <x0khasim@ti.com>
14  *
15  * This program is free software; you can redistribute it and/or modify
16  * it under the terms of the GNU General Public License as published by
17  * the Free Software Foundation; either version 2 of the License, or
18  * (at your option) any later version.
19  *
20  * This program is distributed in the hope that it will be useful,
21  * but WITHOUT ANY WARRANTY; without even the implied warranty of
22  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
23  * GNU General Public License for more details.
24  *
25  * You should have received a copy of the GNU General Public License
26  * along with this program; if not, write to the Free Software
27  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
28  */
29 
30 #include <linux/init.h>
31 #include <linux/interrupt.h>
32 #include <linux/irq.h>
33 #include <linux/kthread.h>
34 
35 #include <linux/i2c/twl4030.h>
36 
37 
38 /*
39  * TWL4030 IRQ handling has two stages in hardware, and thus in software.
40  * The Primary Interrupt Handler (PIH) stage exposes status bits saying
41  * which Secondary Interrupt Handler (SIH) stage is raising an interrupt.
42  * SIH modules are more traditional IRQ components, which support per-IRQ
43  * enable/disable and trigger controls; they do most of the work.
44  *
45  * These chips are designed to support IRQ handling from two different
46  * I2C masters.  Each has a dedicated IRQ line, and dedicated IRQ status
47  * and mask registers in the PIH and SIH modules.
48  *
49  * We set up IRQs starting at a platform-specified base, always starting
50  * with PIH and the SIH for PWR_INT and then usually adding GPIO:
51  *	base + 0  .. base + 7	PIH
52  *	base + 8  .. base + 15	SIH for PWR_INT
53  *	base + 16 .. base + 33	SIH for GPIO
54  */
55 
56 /* PIH register offsets */
57 #define REG_PIH_ISR_P1			0x01
58 #define REG_PIH_ISR_P2			0x02
59 #define REG_PIH_SIR			0x03	/* for testing */
60 
61 
62 /* Linux could (eventually) use either IRQ line */
63 static int irq_line;
64 
65 struct sih {
66 	char	name[8];
67 	u8	module;			/* module id */
68 	u8	control_offset;		/* for SIH_CTRL */
69 	bool	set_cor;
70 
71 	u8	bits;			/* valid in isr/imr */
72 	u8	bytes_ixr;		/* bytelen of ISR/IMR/SIR */
73 
74 	u8	edr_offset;
75 	u8	bytes_edr;		/* bytelen of EDR */
76 
77 	/* SIR ignored -- set interrupt, for testing only */
78 	struct irq_data {
79 		u8	isr_offset;
80 		u8	imr_offset;
81 	} mask[2];
82 	/* + 2 bytes padding */
83 };
84 
85 #define SIH_INITIALIZER(modname, nbits) \
86 	.module		= TWL4030_MODULE_ ## modname, \
87 	.control_offset = TWL4030_ ## modname ## _SIH_CTRL, \
88 	.bits		= nbits, \
89 	.bytes_ixr	= DIV_ROUND_UP(nbits, 8), \
90 	.edr_offset	= TWL4030_ ## modname ## _EDR, \
91 	.bytes_edr	= DIV_ROUND_UP((2*(nbits)), 8), \
92 	.mask = { { \
93 		.isr_offset	= TWL4030_ ## modname ## _ISR1, \
94 		.imr_offset	= TWL4030_ ## modname ## _IMR1, \
95 	}, \
96 	{ \
97 		.isr_offset	= TWL4030_ ## modname ## _ISR2, \
98 		.imr_offset	= TWL4030_ ## modname ## _IMR2, \
99 	}, },
100 
101 /* register naming policies are inconsistent ... */
102 #define TWL4030_INT_PWR_EDR		TWL4030_INT_PWR_EDR1
103 #define TWL4030_MODULE_KEYPAD_KEYP	TWL4030_MODULE_KEYPAD
104 #define TWL4030_MODULE_INT_PWR		TWL4030_MODULE_INT
105 
106 
107 /* Order in this table matches order in PIH_ISR.  That is,
108  * BIT(n) in PIH_ISR is sih_modules[n].
109  */
110 static const struct sih sih_modules[6] = {
111 	[0] = {
112 		.name		= "gpio",
113 		.module		= TWL4030_MODULE_GPIO,
114 		.control_offset	= REG_GPIO_SIH_CTRL,
115 		.set_cor	= true,
116 		.bits		= TWL4030_GPIO_MAX,
117 		.bytes_ixr	= 3,
118 		/* Note: *all* of these IRQs default to no-trigger */
119 		.edr_offset	= REG_GPIO_EDR1,
120 		.bytes_edr	= 5,
121 		.mask = { {
122 			.isr_offset	= REG_GPIO_ISR1A,
123 			.imr_offset	= REG_GPIO_IMR1A,
124 		}, {
125 			.isr_offset	= REG_GPIO_ISR1B,
126 			.imr_offset	= REG_GPIO_IMR1B,
127 		}, },
128 	},
129 	[1] = {
130 		.name		= "keypad",
131 		.set_cor	= true,
132 		SIH_INITIALIZER(KEYPAD_KEYP, 4)
133 	},
134 	[2] = {
135 		.name		= "bci",
136 		.module		= TWL4030_MODULE_INTERRUPTS,
137 		.control_offset	= TWL4030_INTERRUPTS_BCISIHCTRL,
138 		.bits		= 12,
139 		.bytes_ixr	= 2,
140 		.edr_offset	= TWL4030_INTERRUPTS_BCIEDR1,
141 		/* Note: most of these IRQs default to no-trigger */
142 		.bytes_edr	= 3,
143 		.mask = { {
144 			.isr_offset	= TWL4030_INTERRUPTS_BCIISR1A,
145 			.imr_offset	= TWL4030_INTERRUPTS_BCIIMR1A,
146 		}, {
147 			.isr_offset	= TWL4030_INTERRUPTS_BCIISR1B,
148 			.imr_offset	= TWL4030_INTERRUPTS_BCIIMR1B,
149 		}, },
150 	},
151 	[3] = {
152 		.name		= "madc",
153 		SIH_INITIALIZER(MADC, 4)
154 	},
155 	[4] = {
156 		/* USB doesn't use the same SIH organization */
157 		.name		= "usb",
158 	},
159 	[5] = {
160 		.name		= "power",
161 		.set_cor	= true,
162 		SIH_INITIALIZER(INT_PWR, 8)
163 	},
164 		/* there are no SIH modules #6 or #7 ... */
165 };
166 
167 #undef TWL4030_MODULE_KEYPAD_KEYP
168 #undef TWL4030_MODULE_INT_PWR
169 #undef TWL4030_INT_PWR_EDR
170 
171 /*----------------------------------------------------------------------*/
172 
173 static unsigned twl4030_irq_base;
174 
175 static struct completion irq_event;
176 
177 /*
178  * This thread processes interrupts reported by the Primary Interrupt Handler.
179  */
180 static int twl4030_irq_thread(void *data)
181 {
182 	long irq = (long)data;
183 	irq_desc_t *desc = irq_desc + irq;
184 	static unsigned i2c_errors;
185 	const static unsigned max_i2c_errors = 100;
186 
187 	current->flags |= PF_NOFREEZE;
188 
189 	while (!kthread_should_stop()) {
190 		int ret;
191 		int module_irq;
192 		u8 pih_isr;
193 
194 		/* Wait for IRQ, then read PIH irq status (also blocking) */
195 		wait_for_completion_interruptible(&irq_event);
196 
197 		ret = twl4030_i2c_read_u8(TWL4030_MODULE_PIH, &pih_isr,
198 					  REG_PIH_ISR_P1);
199 		if (ret) {
200 			pr_warning("twl4030: I2C error %d reading PIH ISR\n",
201 					ret);
202 			if (++i2c_errors >= max_i2c_errors) {
203 				printk(KERN_ERR "Maximum I2C error count"
204 						" exceeded.  Terminating %s.\n",
205 						__func__);
206 				break;
207 			}
208 			complete(&irq_event);
209 			continue;
210 		}
211 
212 		/* these handlers deal with the relevant SIH irq status */
213 		local_irq_disable();
214 		for (module_irq = twl4030_irq_base;
215 				pih_isr;
216 				pih_isr >>= 1, module_irq++) {
217 			if (pih_isr & 0x1) {
218 				irq_desc_t *d = irq_desc + module_irq;
219 
220 				/* These can't be masked ... always warn
221 				 * if we get any surprises.
222 				 */
223 				if (d->status & IRQ_DISABLED)
224 					note_interrupt(module_irq, d,
225 							IRQ_NONE);
226 				else
227 					d->handle_irq(module_irq, d);
228 			}
229 		}
230 		local_irq_enable();
231 
232 		desc->chip->unmask(irq);
233 	}
234 
235 	return 0;
236 }
237 
238 /*
239  * handle_twl4030_pih() is the desc->handle method for the twl4030 interrupt.
240  * This is a chained interrupt, so there is no desc->action method for it.
241  * Now we need to query the interrupt controller in the twl4030 to determine
242  * which module is generating the interrupt request.  However, we can't do i2c
243  * transactions in interrupt context, so we must defer that work to a kernel
244  * thread.  All we do here is acknowledge and mask the interrupt and wakeup
245  * the kernel thread.
246  */
247 static void handle_twl4030_pih(unsigned int irq, irq_desc_t *desc)
248 {
249 	/* Acknowledge, clear *AND* mask the interrupt... */
250 	desc->chip->ack(irq);
251 	complete(&irq_event);
252 }
253 
254 static struct task_struct *start_twl4030_irq_thread(long irq)
255 {
256 	struct task_struct *thread;
257 
258 	init_completion(&irq_event);
259 	thread = kthread_run(twl4030_irq_thread, (void *)irq, "twl4030-irq");
260 	if (!thread)
261 		pr_err("twl4030: could not create irq %ld thread!\n", irq);
262 
263 	return thread;
264 }
265 
266 /*----------------------------------------------------------------------*/
267 
268 /*
269  * twl4030_init_sih_modules() ... start from a known state where no
270  * IRQs will be coming in, and where we can quickly enable them then
271  * handle them as they arrive.  Mask all IRQs: maybe init SIH_CTRL.
272  *
273  * NOTE:  we don't touch EDR registers here; they stay with hardware
274  * defaults or whatever the last value was.  Note that when both EDR
275  * bits for an IRQ are clear, that's as if its IMR bit is set...
276  */
277 static int twl4030_init_sih_modules(unsigned line)
278 {
279 	const struct sih *sih;
280 	u8 buf[4];
281 	int i;
282 	int status;
283 
284 	/* line 0 == int1_n signal; line 1 == int2_n signal */
285 	if (line > 1)
286 		return -EINVAL;
287 
288 	irq_line = line;
289 
290 	/* disable all interrupts on our line */
291 	memset(buf, 0xff, sizeof buf);
292 	sih = sih_modules;
293 	for (i = 0; i < ARRAY_SIZE(sih_modules); i++, sih++) {
294 
295 		/* skip USB -- it's funky */
296 		if (!sih->bytes_ixr)
297 			continue;
298 
299 		status = twl4030_i2c_write(sih->module, buf,
300 				sih->mask[line].imr_offset, sih->bytes_ixr);
301 		if (status < 0)
302 			pr_err("twl4030: err %d initializing %s %s\n",
303 					status, sih->name, "IMR");
304 
305 		/* Maybe disable "exclusive" mode; buffer second pending irq;
306 		 * set Clear-On-Read (COR) bit.
307 		 *
308 		 * NOTE that sometimes COR polarity is documented as being
309 		 * inverted:  for MADC and BCI, COR=1 means "clear on write".
310 		 * And for PWR_INT it's not documented...
311 		 */
312 		if (sih->set_cor) {
313 			status = twl4030_i2c_write_u8(sih->module,
314 					TWL4030_SIH_CTRL_COR_MASK,
315 					sih->control_offset);
316 			if (status < 0)
317 				pr_err("twl4030: err %d initializing %s %s\n",
318 						status, sih->name, "SIH_CTRL");
319 		}
320 	}
321 
322 	sih = sih_modules;
323 	for (i = 0; i < ARRAY_SIZE(sih_modules); i++, sih++) {
324 		u8 rxbuf[4];
325 		int j;
326 
327 		/* skip USB */
328 		if (!sih->bytes_ixr)
329 			continue;
330 
331 		/* Clear pending interrupt status.  Either the read was
332 		 * enough, or we need to write those bits.  Repeat, in
333 		 * case an IRQ is pending (PENDDIS=0) ... that's not
334 		 * uncommon with PWR_INT.PWRON.
335 		 */
336 		for (j = 0; j < 2; j++) {
337 			status = twl4030_i2c_read(sih->module, rxbuf,
338 				sih->mask[line].isr_offset, sih->bytes_ixr);
339 			if (status < 0)
340 				pr_err("twl4030: err %d initializing %s %s\n",
341 					status, sih->name, "ISR");
342 
343 			if (!sih->set_cor)
344 				status = twl4030_i2c_write(sih->module, buf,
345 					sih->mask[line].isr_offset,
346 					sih->bytes_ixr);
347 			/* else COR=1 means read sufficed.
348 			 * (for most SIH modules...)
349 			 */
350 		}
351 	}
352 
353 	return 0;
354 }
355 
356 static inline void activate_irq(int irq)
357 {
358 #ifdef CONFIG_ARM
359 	/* ARM requires an extra step to clear IRQ_NOREQUEST, which it
360 	 * sets on behalf of every irq_chip.  Also sets IRQ_NOPROBE.
361 	 */
362 	set_irq_flags(irq, IRQF_VALID);
363 #else
364 	/* same effect on other architectures */
365 	set_irq_noprobe(irq);
366 #endif
367 }
368 
369 /*----------------------------------------------------------------------*/
370 
371 static DEFINE_SPINLOCK(sih_agent_lock);
372 
373 static struct workqueue_struct *wq;
374 
375 struct sih_agent {
376 	int			irq_base;
377 	const struct sih	*sih;
378 
379 	u32			imr;
380 	bool			imr_change_pending;
381 	struct work_struct	mask_work;
382 
383 	u32			edge_change;
384 	struct work_struct	edge_work;
385 };
386 
387 static void twl4030_sih_do_mask(struct work_struct *work)
388 {
389 	struct sih_agent	*agent;
390 	const struct sih	*sih;
391 	union {
392 		u8	bytes[4];
393 		u32	word;
394 	}			imr;
395 	int			status;
396 
397 	agent = container_of(work, struct sih_agent, mask_work);
398 
399 	/* see what work we have */
400 	spin_lock_irq(&sih_agent_lock);
401 	if (agent->imr_change_pending) {
402 		sih = agent->sih;
403 		/* byte[0] gets overwritten as we write ... */
404 		imr.word = cpu_to_le32(agent->imr << 8);
405 		agent->imr_change_pending = false;
406 	} else
407 		sih = NULL;
408 	spin_unlock_irq(&sih_agent_lock);
409 	if (!sih)
410 		return;
411 
412 	/* write the whole mask ... simpler than subsetting it */
413 	status = twl4030_i2c_write(sih->module, imr.bytes,
414 			sih->mask[irq_line].imr_offset, sih->bytes_ixr);
415 	if (status)
416 		pr_err("twl4030: %s, %s --> %d\n", __func__,
417 				"write", status);
418 }
419 
420 static void twl4030_sih_do_edge(struct work_struct *work)
421 {
422 	struct sih_agent	*agent;
423 	const struct sih	*sih;
424 	u8			bytes[6];
425 	u32			edge_change;
426 	int			status;
427 
428 	agent = container_of(work, struct sih_agent, edge_work);
429 
430 	/* see what work we have */
431 	spin_lock_irq(&sih_agent_lock);
432 	edge_change = agent->edge_change;
433 	agent->edge_change = 0;;
434 	sih = edge_change ? agent->sih : NULL;
435 	spin_unlock_irq(&sih_agent_lock);
436 	if (!sih)
437 		return;
438 
439 	/* Read, reserving first byte for write scratch.  Yes, this
440 	 * could be cached for some speedup ... but be careful about
441 	 * any processor on the other IRQ line, EDR registers are
442 	 * shared.
443 	 */
444 	status = twl4030_i2c_read(sih->module, bytes + 1,
445 			sih->edr_offset, sih->bytes_edr);
446 	if (status) {
447 		pr_err("twl4030: %s, %s --> %d\n", __func__,
448 				"read", status);
449 		return;
450 	}
451 
452 	/* Modify only the bits we know must change */
453 	while (edge_change) {
454 		int		i = fls(edge_change) - 1;
455 		struct irq_desc	*d = irq_desc + i + agent->irq_base;
456 		int		byte = 1 + (i >> 2);
457 		int		off = (i & 0x3) * 2;
458 
459 		bytes[byte] &= ~(0x03 << off);
460 
461 		spin_lock_irq(&d->lock);
462 		if (d->status & IRQ_TYPE_EDGE_RISING)
463 			bytes[byte] |= BIT(off + 1);
464 		if (d->status & IRQ_TYPE_EDGE_FALLING)
465 			bytes[byte] |= BIT(off + 0);
466 		spin_unlock_irq(&d->lock);
467 
468 		edge_change &= ~BIT(i);
469 	}
470 
471 	/* Write */
472 	status = twl4030_i2c_write(sih->module, bytes,
473 			sih->edr_offset, sih->bytes_edr);
474 	if (status)
475 		pr_err("twl4030: %s, %s --> %d\n", __func__,
476 				"write", status);
477 }
478 
479 /*----------------------------------------------------------------------*/
480 
481 /*
482  * All irq_chip methods get issued from code holding irq_desc[irq].lock,
483  * which can't perform the underlying I2C operations (because they sleep).
484  * So we must hand them off to a thread (workqueue) and cope with asynch
485  * completion, potentially including some re-ordering, of these requests.
486  */
487 
488 static void twl4030_sih_mask(unsigned irq)
489 {
490 	struct sih_agent *sih = get_irq_chip_data(irq);
491 	unsigned long flags;
492 
493 	spin_lock_irqsave(&sih_agent_lock, flags);
494 	sih->imr |= BIT(irq - sih->irq_base);
495 	sih->imr_change_pending = true;
496 	queue_work(wq, &sih->mask_work);
497 	spin_unlock_irqrestore(&sih_agent_lock, flags);
498 }
499 
500 static void twl4030_sih_unmask(unsigned irq)
501 {
502 	struct sih_agent *sih = get_irq_chip_data(irq);
503 	unsigned long flags;
504 
505 	spin_lock_irqsave(&sih_agent_lock, flags);
506 	sih->imr &= ~BIT(irq - sih->irq_base);
507 	sih->imr_change_pending = true;
508 	queue_work(wq, &sih->mask_work);
509 	spin_unlock_irqrestore(&sih_agent_lock, flags);
510 }
511 
512 static int twl4030_sih_set_type(unsigned irq, unsigned trigger)
513 {
514 	struct sih_agent *sih = get_irq_chip_data(irq);
515 	struct irq_desc *desc = irq_desc + irq;
516 	unsigned long flags;
517 
518 	if (trigger & ~(IRQ_TYPE_EDGE_FALLING | IRQ_TYPE_EDGE_RISING))
519 		return -EINVAL;
520 
521 	spin_lock_irqsave(&sih_agent_lock, flags);
522 	if ((desc->status & IRQ_TYPE_SENSE_MASK) != trigger) {
523 		desc->status &= ~IRQ_TYPE_SENSE_MASK;
524 		desc->status |= trigger;
525 		sih->edge_change |= BIT(irq - sih->irq_base);
526 		queue_work(wq, &sih->edge_work);
527 	}
528 	spin_unlock_irqrestore(&sih_agent_lock, flags);
529 	return 0;
530 }
531 
532 static struct irq_chip twl4030_sih_irq_chip = {
533 	.name		= "twl4030",
534 	.mask		= twl4030_sih_mask,
535 	.unmask		= twl4030_sih_unmask,
536 	.set_type	= twl4030_sih_set_type,
537 };
538 
539 /*----------------------------------------------------------------------*/
540 
541 static inline int sih_read_isr(const struct sih *sih)
542 {
543 	int status;
544 	union {
545 		u8 bytes[4];
546 		u32 word;
547 	} isr;
548 
549 	/* FIXME need retry-on-error ... */
550 
551 	isr.word = 0;
552 	status = twl4030_i2c_read(sih->module, isr.bytes,
553 			sih->mask[irq_line].isr_offset, sih->bytes_ixr);
554 
555 	return (status < 0) ? status : le32_to_cpu(isr.word);
556 }
557 
558 /*
559  * Generic handler for SIH interrupts ... we "know" this is called
560  * in task context, with IRQs enabled.
561  */
562 static void handle_twl4030_sih(unsigned irq, struct irq_desc *desc)
563 {
564 	struct sih_agent *agent = get_irq_data(irq);
565 	const struct sih *sih = agent->sih;
566 	int isr;
567 
568 	/* reading ISR acks the IRQs, using clear-on-read mode */
569 	local_irq_enable();
570 	isr = sih_read_isr(sih);
571 	local_irq_disable();
572 
573 	if (isr < 0) {
574 		pr_err("twl4030: %s SIH, read ISR error %d\n",
575 			sih->name, isr);
576 		/* REVISIT:  recover; eventually mask it all, etc */
577 		return;
578 	}
579 
580 	while (isr) {
581 		irq = fls(isr);
582 		irq--;
583 		isr &= ~BIT(irq);
584 
585 		if (irq < sih->bits)
586 			generic_handle_irq(agent->irq_base + irq);
587 		else
588 			pr_err("twl4030: %s SIH, invalid ISR bit %d\n",
589 				sih->name, irq);
590 	}
591 }
592 
593 static unsigned twl4030_irq_next;
594 
595 /* returns the first IRQ used by this SIH bank,
596  * or negative errno
597  */
598 int twl4030_sih_setup(int module)
599 {
600 	int			sih_mod;
601 	const struct sih	*sih = NULL;
602 	struct sih_agent	*agent;
603 	int			i, irq;
604 	int			status = -EINVAL;
605 	unsigned		irq_base = twl4030_irq_next;
606 
607 	/* only support modules with standard clear-on-read for now */
608 	for (sih_mod = 0, sih = sih_modules;
609 			sih_mod < ARRAY_SIZE(sih_modules);
610 			sih_mod++, sih++) {
611 		if (sih->module == module && sih->set_cor) {
612 			if (!WARN((irq_base + sih->bits) > NR_IRQS,
613 					"irq %d for %s too big\n",
614 					irq_base + sih->bits,
615 					sih->name))
616 				status = 0;
617 			break;
618 		}
619 	}
620 	if (status < 0)
621 		return status;
622 
623 	agent = kzalloc(sizeof *agent, GFP_KERNEL);
624 	if (!agent)
625 		return -ENOMEM;
626 
627 	status = 0;
628 
629 	agent->irq_base = irq_base;
630 	agent->sih = sih;
631 	agent->imr = ~0;
632 	INIT_WORK(&agent->mask_work, twl4030_sih_do_mask);
633 	INIT_WORK(&agent->edge_work, twl4030_sih_do_edge);
634 
635 	for (i = 0; i < sih->bits; i++) {
636 		irq = irq_base + i;
637 
638 		set_irq_chip_and_handler(irq, &twl4030_sih_irq_chip,
639 				handle_edge_irq);
640 		set_irq_chip_data(irq, agent);
641 		activate_irq(irq);
642 	}
643 
644 	status = irq_base;
645 	twl4030_irq_next += i;
646 
647 	/* replace generic PIH handler (handle_simple_irq) */
648 	irq = sih_mod + twl4030_irq_base;
649 	set_irq_data(irq, agent);
650 	set_irq_chained_handler(irq, handle_twl4030_sih);
651 
652 	pr_info("twl4030: %s (irq %d) chaining IRQs %d..%d\n", sih->name,
653 			irq, irq_base, twl4030_irq_next - 1);
654 
655 	return status;
656 }
657 
658 /* FIXME need a call to reverse twl4030_sih_setup() ... */
659 
660 
661 /*----------------------------------------------------------------------*/
662 
663 /* FIXME pass in which interrupt line we'll use ... */
664 #define twl_irq_line	0
665 
666 int twl_init_irq(int irq_num, unsigned irq_base, unsigned irq_end)
667 {
668 	static struct irq_chip	twl4030_irq_chip;
669 
670 	int			status;
671 	int			i;
672 	struct task_struct	*task;
673 
674 	/*
675 	 * Mask and clear all TWL4030 interrupts since initially we do
676 	 * not have any TWL4030 module interrupt handlers present
677 	 */
678 	status = twl4030_init_sih_modules(twl_irq_line);
679 	if (status < 0)
680 		return status;
681 
682 	wq = create_singlethread_workqueue("twl4030-irqchip");
683 	if (!wq) {
684 		pr_err("twl4030: workqueue FAIL\n");
685 		return -ESRCH;
686 	}
687 
688 	twl4030_irq_base = irq_base;
689 
690 	/* install an irq handler for each of the SIH modules;
691 	 * clone dummy irq_chip since PIH can't *do* anything
692 	 */
693 	twl4030_irq_chip = dummy_irq_chip;
694 	twl4030_irq_chip.name = "twl4030";
695 
696 	twl4030_sih_irq_chip.ack = dummy_irq_chip.ack;
697 
698 	for (i = irq_base; i < irq_end; i++) {
699 		set_irq_chip_and_handler(i, &twl4030_irq_chip,
700 				handle_simple_irq);
701 		activate_irq(i);
702 	}
703 	twl4030_irq_next = i;
704 	pr_info("twl4030: %s (irq %d) chaining IRQs %d..%d\n", "PIH",
705 			irq_num, irq_base, twl4030_irq_next - 1);
706 
707 	/* ... and the PWR_INT module ... */
708 	status = twl4030_sih_setup(TWL4030_MODULE_INT);
709 	if (status < 0) {
710 		pr_err("twl4030: sih_setup PWR INT --> %d\n", status);
711 		goto fail;
712 	}
713 
714 	/* install an irq handler to demultiplex the TWL4030 interrupt */
715 	task = start_twl4030_irq_thread(irq_num);
716 	if (!task) {
717 		pr_err("twl4030: irq thread FAIL\n");
718 		status = -ESRCH;
719 		goto fail;
720 	}
721 
722 	set_irq_data(irq_num, task);
723 	set_irq_chained_handler(irq_num, handle_twl4030_pih);
724 
725 	return status;
726 
727 fail:
728 	for (i = irq_base; i < irq_end; i++)
729 		set_irq_chip_and_handler(i, NULL, NULL);
730 	destroy_workqueue(wq);
731 	wq = NULL;
732 	return status;
733 }
734 
735 int twl_exit_irq(void)
736 {
737 	/* FIXME undo twl_init_irq() */
738 	if (twl4030_irq_base) {
739 		pr_err("twl4030: can't yet clean up IRQs?\n");
740 		return -ENOSYS;
741 	}
742 	return 0;
743 }
744