xref: /openbmc/linux/drivers/mfd/menelaus.c (revision d2168146)
1 /*
2  * Copyright (C) 2004 Texas Instruments, Inc.
3  *
4  * Some parts based tps65010.c:
5  * Copyright (C) 2004 Texas Instruments and
6  * Copyright (C) 2004-2005 David Brownell
7  *
8  * Some parts based on tlv320aic24.c:
9  * Copyright (C) by Kai Svahn <kai.svahn@nokia.com>
10  *
11  * Changes for interrupt handling and clean-up by
12  * Tony Lindgren <tony@atomide.com> and Imre Deak <imre.deak@nokia.com>
13  * Cleanup and generalized support for voltage setting by
14  * Juha Yrjola
15  * Added support for controlling VCORE and regulator sleep states,
16  * Amit Kucheria <amit.kucheria@nokia.com>
17  * Copyright (C) 2005, 2006 Nokia Corporation
18  *
19  * This program is free software; you can redistribute it and/or modify
20  * it under the terms of the GNU General Public License as published by
21  * the Free Software Foundation; either version 2 of the License, or
22  * (at your option) any later version.
23  *
24  * This program is distributed in the hope that it will be useful,
25  * but WITHOUT ANY WARRANTY; without even the implied warranty of
26  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
27  * GNU General Public License for more details.
28  *
29  * You should have received a copy of the GNU General Public License
30  * along with this program; if not, write to the Free Software
31  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
32  */
33 
34 #include <linux/module.h>
35 #include <linux/i2c.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/mutex.h>
39 #include <linux/workqueue.h>
40 #include <linux/delay.h>
41 #include <linux/rtc.h>
42 #include <linux/bcd.h>
43 #include <linux/slab.h>
44 #include <linux/mfd/menelaus.h>
45 
46 #include <asm/mach/irq.h>
47 
48 #include <asm/gpio.h>
49 
50 #define DRIVER_NAME			"menelaus"
51 
52 #define MENELAUS_I2C_ADDRESS		0x72
53 
54 #define MENELAUS_REV			0x01
55 #define MENELAUS_VCORE_CTRL1		0x02
56 #define MENELAUS_VCORE_CTRL2		0x03
57 #define MENELAUS_VCORE_CTRL3		0x04
58 #define MENELAUS_VCORE_CTRL4		0x05
59 #define MENELAUS_VCORE_CTRL5		0x06
60 #define MENELAUS_DCDC_CTRL1		0x07
61 #define MENELAUS_DCDC_CTRL2		0x08
62 #define MENELAUS_DCDC_CTRL3		0x09
63 #define MENELAUS_LDO_CTRL1		0x0A
64 #define MENELAUS_LDO_CTRL2		0x0B
65 #define MENELAUS_LDO_CTRL3		0x0C
66 #define MENELAUS_LDO_CTRL4		0x0D
67 #define MENELAUS_LDO_CTRL5		0x0E
68 #define MENELAUS_LDO_CTRL6		0x0F
69 #define MENELAUS_LDO_CTRL7		0x10
70 #define MENELAUS_LDO_CTRL8		0x11
71 #define MENELAUS_SLEEP_CTRL1		0x12
72 #define MENELAUS_SLEEP_CTRL2		0x13
73 #define MENELAUS_DEVICE_OFF		0x14
74 #define MENELAUS_OSC_CTRL		0x15
75 #define MENELAUS_DETECT_CTRL		0x16
76 #define MENELAUS_INT_MASK1		0x17
77 #define MENELAUS_INT_MASK2		0x18
78 #define MENELAUS_INT_STATUS1		0x19
79 #define MENELAUS_INT_STATUS2		0x1A
80 #define MENELAUS_INT_ACK1		0x1B
81 #define MENELAUS_INT_ACK2		0x1C
82 #define MENELAUS_GPIO_CTRL		0x1D
83 #define MENELAUS_GPIO_IN		0x1E
84 #define MENELAUS_GPIO_OUT		0x1F
85 #define MENELAUS_BBSMS			0x20
86 #define MENELAUS_RTC_CTRL		0x21
87 #define MENELAUS_RTC_UPDATE		0x22
88 #define MENELAUS_RTC_SEC		0x23
89 #define MENELAUS_RTC_MIN		0x24
90 #define MENELAUS_RTC_HR			0x25
91 #define MENELAUS_RTC_DAY		0x26
92 #define MENELAUS_RTC_MON		0x27
93 #define MENELAUS_RTC_YR			0x28
94 #define MENELAUS_RTC_WKDAY		0x29
95 #define MENELAUS_RTC_AL_SEC		0x2A
96 #define MENELAUS_RTC_AL_MIN		0x2B
97 #define MENELAUS_RTC_AL_HR		0x2C
98 #define MENELAUS_RTC_AL_DAY		0x2D
99 #define MENELAUS_RTC_AL_MON		0x2E
100 #define MENELAUS_RTC_AL_YR		0x2F
101 #define MENELAUS_RTC_COMP_MSB		0x30
102 #define MENELAUS_RTC_COMP_LSB		0x31
103 #define MENELAUS_S1_PULL_EN		0x32
104 #define MENELAUS_S1_PULL_DIR		0x33
105 #define MENELAUS_S2_PULL_EN		0x34
106 #define MENELAUS_S2_PULL_DIR		0x35
107 #define MENELAUS_MCT_CTRL1		0x36
108 #define MENELAUS_MCT_CTRL2		0x37
109 #define MENELAUS_MCT_CTRL3		0x38
110 #define MENELAUS_MCT_PIN_ST		0x39
111 #define MENELAUS_DEBOUNCE1		0x3A
112 
113 #define IH_MENELAUS_IRQS		12
114 #define MENELAUS_MMC_S1CD_IRQ		0	/* MMC slot 1 card change */
115 #define MENELAUS_MMC_S2CD_IRQ		1	/* MMC slot 2 card change */
116 #define MENELAUS_MMC_S1D1_IRQ		2	/* MMC DAT1 low in slot 1 */
117 #define MENELAUS_MMC_S2D1_IRQ		3	/* MMC DAT1 low in slot 2 */
118 #define MENELAUS_LOWBAT_IRQ		4	/* Low battery */
119 #define MENELAUS_HOTDIE_IRQ		5	/* Hot die detect */
120 #define MENELAUS_UVLO_IRQ		6	/* UVLO detect */
121 #define MENELAUS_TSHUT_IRQ		7	/* Thermal shutdown */
122 #define MENELAUS_RTCTMR_IRQ		8	/* RTC timer */
123 #define MENELAUS_RTCALM_IRQ		9	/* RTC alarm */
124 #define MENELAUS_RTCERR_IRQ		10	/* RTC error */
125 #define MENELAUS_PSHBTN_IRQ		11	/* Push button */
126 #define MENELAUS_RESERVED12_IRQ		12	/* Reserved */
127 #define MENELAUS_RESERVED13_IRQ		13	/* Reserved */
128 #define MENELAUS_RESERVED14_IRQ		14	/* Reserved */
129 #define MENELAUS_RESERVED15_IRQ		15	/* Reserved */
130 
131 /* VCORE_CTRL1 register */
132 #define VCORE_CTRL1_BYP_COMP		(1 << 5)
133 #define VCORE_CTRL1_HW_NSW		(1 << 7)
134 
135 /* GPIO_CTRL register */
136 #define GPIO_CTRL_SLOTSELEN		(1 << 5)
137 #define GPIO_CTRL_SLPCTLEN		(1 << 6)
138 #define GPIO1_DIR_INPUT			(1 << 0)
139 #define GPIO2_DIR_INPUT			(1 << 1)
140 #define GPIO3_DIR_INPUT			(1 << 2)
141 
142 /* MCT_CTRL1 register */
143 #define MCT_CTRL1_S1_CMD_OD		(1 << 2)
144 #define MCT_CTRL1_S2_CMD_OD		(1 << 3)
145 
146 /* MCT_CTRL2 register */
147 #define MCT_CTRL2_VS2_SEL_D0		(1 << 0)
148 #define MCT_CTRL2_VS2_SEL_D1		(1 << 1)
149 #define MCT_CTRL2_S1CD_BUFEN		(1 << 4)
150 #define MCT_CTRL2_S2CD_BUFEN		(1 << 5)
151 #define MCT_CTRL2_S1CD_DBEN		(1 << 6)
152 #define MCT_CTRL2_S2CD_BEN		(1 << 7)
153 
154 /* MCT_CTRL3 register */
155 #define MCT_CTRL3_SLOT1_EN		(1 << 0)
156 #define MCT_CTRL3_SLOT2_EN		(1 << 1)
157 #define MCT_CTRL3_S1_AUTO_EN		(1 << 2)
158 #define MCT_CTRL3_S2_AUTO_EN		(1 << 3)
159 
160 /* MCT_PIN_ST register */
161 #define MCT_PIN_ST_S1_CD_ST		(1 << 0)
162 #define MCT_PIN_ST_S2_CD_ST		(1 << 1)
163 
164 static void menelaus_work(struct work_struct *_menelaus);
165 
166 struct menelaus_chip {
167 	struct mutex		lock;
168 	struct i2c_client	*client;
169 	struct work_struct	work;
170 #ifdef CONFIG_RTC_DRV_TWL92330
171 	struct rtc_device	*rtc;
172 	u8			rtc_control;
173 	unsigned		uie:1;
174 #endif
175 	unsigned		vcore_hw_mode:1;
176 	u8			mask1, mask2;
177 	void			(*handlers[16])(struct menelaus_chip *);
178 	void			(*mmc_callback)(void *data, u8 mask);
179 	void			*mmc_callback_data;
180 };
181 
182 static struct menelaus_chip *the_menelaus;
183 
184 static int menelaus_write_reg(int reg, u8 value)
185 {
186 	int val = i2c_smbus_write_byte_data(the_menelaus->client, reg, value);
187 
188 	if (val < 0) {
189 		pr_err(DRIVER_NAME ": write error");
190 		return val;
191 	}
192 
193 	return 0;
194 }
195 
196 static int menelaus_read_reg(int reg)
197 {
198 	int val = i2c_smbus_read_byte_data(the_menelaus->client, reg);
199 
200 	if (val < 0)
201 		pr_err(DRIVER_NAME ": read error");
202 
203 	return val;
204 }
205 
206 static int menelaus_enable_irq(int irq)
207 {
208 	if (irq > 7) {
209 		irq -= 8;
210 		the_menelaus->mask2 &= ~(1 << irq);
211 		return menelaus_write_reg(MENELAUS_INT_MASK2,
212 				the_menelaus->mask2);
213 	} else {
214 		the_menelaus->mask1 &= ~(1 << irq);
215 		return menelaus_write_reg(MENELAUS_INT_MASK1,
216 				the_menelaus->mask1);
217 	}
218 }
219 
220 static int menelaus_disable_irq(int irq)
221 {
222 	if (irq > 7) {
223 		irq -= 8;
224 		the_menelaus->mask2 |= (1 << irq);
225 		return menelaus_write_reg(MENELAUS_INT_MASK2,
226 				the_menelaus->mask2);
227 	} else {
228 		the_menelaus->mask1 |= (1 << irq);
229 		return menelaus_write_reg(MENELAUS_INT_MASK1,
230 				the_menelaus->mask1);
231 	}
232 }
233 
234 static int menelaus_ack_irq(int irq)
235 {
236 	if (irq > 7)
237 		return menelaus_write_reg(MENELAUS_INT_ACK2, 1 << (irq - 8));
238 	else
239 		return menelaus_write_reg(MENELAUS_INT_ACK1, 1 << irq);
240 }
241 
242 /* Adds a handler for an interrupt. Does not run in interrupt context */
243 static int menelaus_add_irq_work(int irq,
244 		void (*handler)(struct menelaus_chip *))
245 {
246 	int ret = 0;
247 
248 	mutex_lock(&the_menelaus->lock);
249 	the_menelaus->handlers[irq] = handler;
250 	ret = menelaus_enable_irq(irq);
251 	mutex_unlock(&the_menelaus->lock);
252 
253 	return ret;
254 }
255 
256 /* Removes handler for an interrupt */
257 static int menelaus_remove_irq_work(int irq)
258 {
259 	int ret = 0;
260 
261 	mutex_lock(&the_menelaus->lock);
262 	ret = menelaus_disable_irq(irq);
263 	the_menelaus->handlers[irq] = NULL;
264 	mutex_unlock(&the_menelaus->lock);
265 
266 	return ret;
267 }
268 
269 /*
270  * Gets scheduled when a card detect interrupt happens. Note that in some cases
271  * this line is wired to card cover switch rather than the card detect switch
272  * in each slot. In this case the cards are not seen by menelaus.
273  * FIXME: Add handling for D1 too
274  */
275 static void menelaus_mmc_cd_work(struct menelaus_chip *menelaus_hw)
276 {
277 	int reg;
278 	unsigned char card_mask = 0;
279 
280 	reg = menelaus_read_reg(MENELAUS_MCT_PIN_ST);
281 	if (reg < 0)
282 		return;
283 
284 	if (!(reg & 0x1))
285 		card_mask |= MCT_PIN_ST_S1_CD_ST;
286 
287 	if (!(reg & 0x2))
288 		card_mask |= MCT_PIN_ST_S2_CD_ST;
289 
290 	if (menelaus_hw->mmc_callback)
291 		menelaus_hw->mmc_callback(menelaus_hw->mmc_callback_data,
292 					  card_mask);
293 }
294 
295 /*
296  * Toggles the MMC slots between open-drain and push-pull mode.
297  */
298 int menelaus_set_mmc_opendrain(int slot, int enable)
299 {
300 	int ret, val;
301 
302 	if (slot != 1 && slot != 2)
303 		return -EINVAL;
304 	mutex_lock(&the_menelaus->lock);
305 	ret = menelaus_read_reg(MENELAUS_MCT_CTRL1);
306 	if (ret < 0) {
307 		mutex_unlock(&the_menelaus->lock);
308 		return ret;
309 	}
310 	val = ret;
311 	if (slot == 1) {
312 		if (enable)
313 			val |= MCT_CTRL1_S1_CMD_OD;
314 		else
315 			val &= ~MCT_CTRL1_S1_CMD_OD;
316 	} else {
317 		if (enable)
318 			val |= MCT_CTRL1_S2_CMD_OD;
319 		else
320 			val &= ~MCT_CTRL1_S2_CMD_OD;
321 	}
322 	ret = menelaus_write_reg(MENELAUS_MCT_CTRL1, val);
323 	mutex_unlock(&the_menelaus->lock);
324 
325 	return ret;
326 }
327 EXPORT_SYMBOL(menelaus_set_mmc_opendrain);
328 
329 int menelaus_set_slot_sel(int enable)
330 {
331 	int ret;
332 
333 	mutex_lock(&the_menelaus->lock);
334 	ret = menelaus_read_reg(MENELAUS_GPIO_CTRL);
335 	if (ret < 0)
336 		goto out;
337 	ret |= GPIO2_DIR_INPUT;
338 	if (enable)
339 		ret |= GPIO_CTRL_SLOTSELEN;
340 	else
341 		ret &= ~GPIO_CTRL_SLOTSELEN;
342 	ret = menelaus_write_reg(MENELAUS_GPIO_CTRL, ret);
343 out:
344 	mutex_unlock(&the_menelaus->lock);
345 	return ret;
346 }
347 EXPORT_SYMBOL(menelaus_set_slot_sel);
348 
349 int menelaus_set_mmc_slot(int slot, int enable, int power, int cd_en)
350 {
351 	int ret, val;
352 
353 	if (slot != 1 && slot != 2)
354 		return -EINVAL;
355 	if (power >= 3)
356 		return -EINVAL;
357 
358 	mutex_lock(&the_menelaus->lock);
359 
360 	ret = menelaus_read_reg(MENELAUS_MCT_CTRL2);
361 	if (ret < 0)
362 		goto out;
363 	val = ret;
364 	if (slot == 1) {
365 		if (cd_en)
366 			val |= MCT_CTRL2_S1CD_BUFEN | MCT_CTRL2_S1CD_DBEN;
367 		else
368 			val &= ~(MCT_CTRL2_S1CD_BUFEN | MCT_CTRL2_S1CD_DBEN);
369 	} else {
370 		if (cd_en)
371 			val |= MCT_CTRL2_S2CD_BUFEN | MCT_CTRL2_S2CD_BEN;
372 		else
373 			val &= ~(MCT_CTRL2_S2CD_BUFEN | MCT_CTRL2_S2CD_BEN);
374 	}
375 	ret = menelaus_write_reg(MENELAUS_MCT_CTRL2, val);
376 	if (ret < 0)
377 		goto out;
378 
379 	ret = menelaus_read_reg(MENELAUS_MCT_CTRL3);
380 	if (ret < 0)
381 		goto out;
382 	val = ret;
383 	if (slot == 1) {
384 		if (enable)
385 			val |= MCT_CTRL3_SLOT1_EN;
386 		else
387 			val &= ~MCT_CTRL3_SLOT1_EN;
388 	} else {
389 		int b;
390 
391 		if (enable)
392 			val |= MCT_CTRL3_SLOT2_EN;
393 		else
394 			val &= ~MCT_CTRL3_SLOT2_EN;
395 		b = menelaus_read_reg(MENELAUS_MCT_CTRL2);
396 		b &= ~(MCT_CTRL2_VS2_SEL_D0 | MCT_CTRL2_VS2_SEL_D1);
397 		b |= power;
398 		ret = menelaus_write_reg(MENELAUS_MCT_CTRL2, b);
399 		if (ret < 0)
400 			goto out;
401 	}
402 	/* Disable autonomous shutdown */
403 	val &= ~(MCT_CTRL3_S1_AUTO_EN | MCT_CTRL3_S2_AUTO_EN);
404 	ret = menelaus_write_reg(MENELAUS_MCT_CTRL3, val);
405 out:
406 	mutex_unlock(&the_menelaus->lock);
407 	return ret;
408 }
409 EXPORT_SYMBOL(menelaus_set_mmc_slot);
410 
411 int menelaus_register_mmc_callback(void (*callback)(void *data, u8 card_mask),
412 				   void *data)
413 {
414 	int ret = 0;
415 
416 	the_menelaus->mmc_callback_data = data;
417 	the_menelaus->mmc_callback = callback;
418 	ret = menelaus_add_irq_work(MENELAUS_MMC_S1CD_IRQ,
419 				    menelaus_mmc_cd_work);
420 	if (ret < 0)
421 		return ret;
422 	ret = menelaus_add_irq_work(MENELAUS_MMC_S2CD_IRQ,
423 				    menelaus_mmc_cd_work);
424 	if (ret < 0)
425 		return ret;
426 	ret = menelaus_add_irq_work(MENELAUS_MMC_S1D1_IRQ,
427 				    menelaus_mmc_cd_work);
428 	if (ret < 0)
429 		return ret;
430 	ret = menelaus_add_irq_work(MENELAUS_MMC_S2D1_IRQ,
431 				    menelaus_mmc_cd_work);
432 
433 	return ret;
434 }
435 EXPORT_SYMBOL(menelaus_register_mmc_callback);
436 
437 void menelaus_unregister_mmc_callback(void)
438 {
439 	menelaus_remove_irq_work(MENELAUS_MMC_S1CD_IRQ);
440 	menelaus_remove_irq_work(MENELAUS_MMC_S2CD_IRQ);
441 	menelaus_remove_irq_work(MENELAUS_MMC_S1D1_IRQ);
442 	menelaus_remove_irq_work(MENELAUS_MMC_S2D1_IRQ);
443 
444 	the_menelaus->mmc_callback = NULL;
445 	the_menelaus->mmc_callback_data = NULL;
446 }
447 EXPORT_SYMBOL(menelaus_unregister_mmc_callback);
448 
449 struct menelaus_vtg {
450 	const char *name;
451 	u8 vtg_reg;
452 	u8 vtg_shift;
453 	u8 vtg_bits;
454 	u8 mode_reg;
455 };
456 
457 struct menelaus_vtg_value {
458 	u16 vtg;
459 	u16 val;
460 };
461 
462 static int menelaus_set_voltage(const struct menelaus_vtg *vtg, int mV,
463 				int vtg_val, int mode)
464 {
465 	int val, ret;
466 	struct i2c_client *c = the_menelaus->client;
467 
468 	mutex_lock(&the_menelaus->lock);
469 	if (!vtg)
470 		goto set_voltage;
471 
472 	ret = menelaus_read_reg(vtg->vtg_reg);
473 	if (ret < 0)
474 		goto out;
475 	val = ret & ~(((1 << vtg->vtg_bits) - 1) << vtg->vtg_shift);
476 	val |= vtg_val << vtg->vtg_shift;
477 
478 	dev_dbg(&c->dev, "Setting voltage '%s'"
479 			 "to %d mV (reg 0x%02x, val 0x%02x)\n",
480 			vtg->name, mV, vtg->vtg_reg, val);
481 
482 	ret = menelaus_write_reg(vtg->vtg_reg, val);
483 	if (ret < 0)
484 		goto out;
485 set_voltage:
486 	ret = menelaus_write_reg(vtg->mode_reg, mode);
487 out:
488 	mutex_unlock(&the_menelaus->lock);
489 	if (ret == 0) {
490 		/* Wait for voltage to stabilize */
491 		msleep(1);
492 	}
493 	return ret;
494 }
495 
496 static int menelaus_get_vtg_value(int vtg, const struct menelaus_vtg_value *tbl,
497 				  int n)
498 {
499 	int i;
500 
501 	for (i = 0; i < n; i++, tbl++)
502 		if (tbl->vtg == vtg)
503 			return tbl->val;
504 	return -EINVAL;
505 }
506 
507 /*
508  * Vcore can be programmed in two ways:
509  * SW-controlled: Required voltage is programmed into VCORE_CTRL1
510  * HW-controlled: Required range (roof-floor) is programmed into VCORE_CTRL3
511  * and VCORE_CTRL4
512  *
513  * Call correct 'set' function accordingly
514  */
515 
516 static const struct menelaus_vtg_value vcore_values[] = {
517 	{ 1000, 0 },
518 	{ 1025, 1 },
519 	{ 1050, 2 },
520 	{ 1075, 3 },
521 	{ 1100, 4 },
522 	{ 1125, 5 },
523 	{ 1150, 6 },
524 	{ 1175, 7 },
525 	{ 1200, 8 },
526 	{ 1225, 9 },
527 	{ 1250, 10 },
528 	{ 1275, 11 },
529 	{ 1300, 12 },
530 	{ 1325, 13 },
531 	{ 1350, 14 },
532 	{ 1375, 15 },
533 	{ 1400, 16 },
534 	{ 1425, 17 },
535 	{ 1450, 18 },
536 };
537 
538 int menelaus_set_vcore_sw(unsigned int mV)
539 {
540 	int val, ret;
541 	struct i2c_client *c = the_menelaus->client;
542 
543 	val = menelaus_get_vtg_value(mV, vcore_values,
544 				     ARRAY_SIZE(vcore_values));
545 	if (val < 0)
546 		return -EINVAL;
547 
548 	dev_dbg(&c->dev, "Setting VCORE to %d mV (val 0x%02x)\n", mV, val);
549 
550 	/* Set SW mode and the voltage in one go. */
551 	mutex_lock(&the_menelaus->lock);
552 	ret = menelaus_write_reg(MENELAUS_VCORE_CTRL1, val);
553 	if (ret == 0)
554 		the_menelaus->vcore_hw_mode = 0;
555 	mutex_unlock(&the_menelaus->lock);
556 	msleep(1);
557 
558 	return ret;
559 }
560 
561 int menelaus_set_vcore_hw(unsigned int roof_mV, unsigned int floor_mV)
562 {
563 	int fval, rval, val, ret;
564 	struct i2c_client *c = the_menelaus->client;
565 
566 	rval = menelaus_get_vtg_value(roof_mV, vcore_values,
567 				      ARRAY_SIZE(vcore_values));
568 	if (rval < 0)
569 		return -EINVAL;
570 	fval = menelaus_get_vtg_value(floor_mV, vcore_values,
571 				      ARRAY_SIZE(vcore_values));
572 	if (fval < 0)
573 		return -EINVAL;
574 
575 	dev_dbg(&c->dev, "Setting VCORE FLOOR to %d mV and ROOF to %d mV\n",
576 	       floor_mV, roof_mV);
577 
578 	mutex_lock(&the_menelaus->lock);
579 	ret = menelaus_write_reg(MENELAUS_VCORE_CTRL3, fval);
580 	if (ret < 0)
581 		goto out;
582 	ret = menelaus_write_reg(MENELAUS_VCORE_CTRL4, rval);
583 	if (ret < 0)
584 		goto out;
585 	if (!the_menelaus->vcore_hw_mode) {
586 		val = menelaus_read_reg(MENELAUS_VCORE_CTRL1);
587 		/* HW mode, turn OFF byte comparator */
588 		val |= (VCORE_CTRL1_HW_NSW | VCORE_CTRL1_BYP_COMP);
589 		ret = menelaus_write_reg(MENELAUS_VCORE_CTRL1, val);
590 		the_menelaus->vcore_hw_mode = 1;
591 	}
592 	msleep(1);
593 out:
594 	mutex_unlock(&the_menelaus->lock);
595 	return ret;
596 }
597 
598 static const struct menelaus_vtg vmem_vtg = {
599 	.name = "VMEM",
600 	.vtg_reg = MENELAUS_LDO_CTRL1,
601 	.vtg_shift = 0,
602 	.vtg_bits = 2,
603 	.mode_reg = MENELAUS_LDO_CTRL3,
604 };
605 
606 static const struct menelaus_vtg_value vmem_values[] = {
607 	{ 1500, 0 },
608 	{ 1800, 1 },
609 	{ 1900, 2 },
610 	{ 2500, 3 },
611 };
612 
613 int menelaus_set_vmem(unsigned int mV)
614 {
615 	int val;
616 
617 	if (mV == 0)
618 		return menelaus_set_voltage(&vmem_vtg, 0, 0, 0);
619 
620 	val = menelaus_get_vtg_value(mV, vmem_values, ARRAY_SIZE(vmem_values));
621 	if (val < 0)
622 		return -EINVAL;
623 	return menelaus_set_voltage(&vmem_vtg, mV, val, 0x02);
624 }
625 EXPORT_SYMBOL(menelaus_set_vmem);
626 
627 static const struct menelaus_vtg vio_vtg = {
628 	.name = "VIO",
629 	.vtg_reg = MENELAUS_LDO_CTRL1,
630 	.vtg_shift = 2,
631 	.vtg_bits = 2,
632 	.mode_reg = MENELAUS_LDO_CTRL4,
633 };
634 
635 static const struct menelaus_vtg_value vio_values[] = {
636 	{ 1500, 0 },
637 	{ 1800, 1 },
638 	{ 2500, 2 },
639 	{ 2800, 3 },
640 };
641 
642 int menelaus_set_vio(unsigned int mV)
643 {
644 	int val;
645 
646 	if (mV == 0)
647 		return menelaus_set_voltage(&vio_vtg, 0, 0, 0);
648 
649 	val = menelaus_get_vtg_value(mV, vio_values, ARRAY_SIZE(vio_values));
650 	if (val < 0)
651 		return -EINVAL;
652 	return menelaus_set_voltage(&vio_vtg, mV, val, 0x02);
653 }
654 EXPORT_SYMBOL(menelaus_set_vio);
655 
656 static const struct menelaus_vtg_value vdcdc_values[] = {
657 	{ 1500, 0 },
658 	{ 1800, 1 },
659 	{ 2000, 2 },
660 	{ 2200, 3 },
661 	{ 2400, 4 },
662 	{ 2800, 5 },
663 	{ 3000, 6 },
664 	{ 3300, 7 },
665 };
666 
667 static const struct menelaus_vtg vdcdc2_vtg = {
668 	.name = "VDCDC2",
669 	.vtg_reg = MENELAUS_DCDC_CTRL1,
670 	.vtg_shift = 0,
671 	.vtg_bits = 3,
672 	.mode_reg = MENELAUS_DCDC_CTRL2,
673 };
674 
675 static const struct menelaus_vtg vdcdc3_vtg = {
676 	.name = "VDCDC3",
677 	.vtg_reg = MENELAUS_DCDC_CTRL1,
678 	.vtg_shift = 3,
679 	.vtg_bits = 3,
680 	.mode_reg = MENELAUS_DCDC_CTRL3,
681 };
682 
683 int menelaus_set_vdcdc(int dcdc, unsigned int mV)
684 {
685 	const struct menelaus_vtg *vtg;
686 	int val;
687 
688 	if (dcdc != 2 && dcdc != 3)
689 		return -EINVAL;
690 	if (dcdc == 2)
691 		vtg = &vdcdc2_vtg;
692 	else
693 		vtg = &vdcdc3_vtg;
694 
695 	if (mV == 0)
696 		return menelaus_set_voltage(vtg, 0, 0, 0);
697 
698 	val = menelaus_get_vtg_value(mV, vdcdc_values,
699 				     ARRAY_SIZE(vdcdc_values));
700 	if (val < 0)
701 		return -EINVAL;
702 	return menelaus_set_voltage(vtg, mV, val, 0x03);
703 }
704 
705 static const struct menelaus_vtg_value vmmc_values[] = {
706 	{ 1850, 0 },
707 	{ 2800, 1 },
708 	{ 3000, 2 },
709 	{ 3100, 3 },
710 };
711 
712 static const struct menelaus_vtg vmmc_vtg = {
713 	.name = "VMMC",
714 	.vtg_reg = MENELAUS_LDO_CTRL1,
715 	.vtg_shift = 6,
716 	.vtg_bits = 2,
717 	.mode_reg = MENELAUS_LDO_CTRL7,
718 };
719 
720 int menelaus_set_vmmc(unsigned int mV)
721 {
722 	int val;
723 
724 	if (mV == 0)
725 		return menelaus_set_voltage(&vmmc_vtg, 0, 0, 0);
726 
727 	val = menelaus_get_vtg_value(mV, vmmc_values, ARRAY_SIZE(vmmc_values));
728 	if (val < 0)
729 		return -EINVAL;
730 	return menelaus_set_voltage(&vmmc_vtg, mV, val, 0x02);
731 }
732 EXPORT_SYMBOL(menelaus_set_vmmc);
733 
734 
735 static const struct menelaus_vtg_value vaux_values[] = {
736 	{ 1500, 0 },
737 	{ 1800, 1 },
738 	{ 2500, 2 },
739 	{ 2800, 3 },
740 };
741 
742 static const struct menelaus_vtg vaux_vtg = {
743 	.name = "VAUX",
744 	.vtg_reg = MENELAUS_LDO_CTRL1,
745 	.vtg_shift = 4,
746 	.vtg_bits = 2,
747 	.mode_reg = MENELAUS_LDO_CTRL6,
748 };
749 
750 int menelaus_set_vaux(unsigned int mV)
751 {
752 	int val;
753 
754 	if (mV == 0)
755 		return menelaus_set_voltage(&vaux_vtg, 0, 0, 0);
756 
757 	val = menelaus_get_vtg_value(mV, vaux_values, ARRAY_SIZE(vaux_values));
758 	if (val < 0)
759 		return -EINVAL;
760 	return menelaus_set_voltage(&vaux_vtg, mV, val, 0x02);
761 }
762 EXPORT_SYMBOL(menelaus_set_vaux);
763 
764 int menelaus_get_slot_pin_states(void)
765 {
766 	return menelaus_read_reg(MENELAUS_MCT_PIN_ST);
767 }
768 EXPORT_SYMBOL(menelaus_get_slot_pin_states);
769 
770 int menelaus_set_regulator_sleep(int enable, u32 val)
771 {
772 	int t, ret;
773 	struct i2c_client *c = the_menelaus->client;
774 
775 	mutex_lock(&the_menelaus->lock);
776 	ret = menelaus_write_reg(MENELAUS_SLEEP_CTRL2, val);
777 	if (ret < 0)
778 		goto out;
779 
780 	dev_dbg(&c->dev, "regulator sleep configuration: %02x\n", val);
781 
782 	ret = menelaus_read_reg(MENELAUS_GPIO_CTRL);
783 	if (ret < 0)
784 		goto out;
785 	t = (GPIO_CTRL_SLPCTLEN | GPIO3_DIR_INPUT);
786 	if (enable)
787 		ret |= t;
788 	else
789 		ret &= ~t;
790 	ret = menelaus_write_reg(MENELAUS_GPIO_CTRL, ret);
791 out:
792 	mutex_unlock(&the_menelaus->lock);
793 	return ret;
794 }
795 
796 /*-----------------------------------------------------------------------*/
797 
798 /* Handles Menelaus interrupts. Does not run in interrupt context */
799 static void menelaus_work(struct work_struct *_menelaus)
800 {
801 	struct menelaus_chip *menelaus =
802 			container_of(_menelaus, struct menelaus_chip, work);
803 	void (*handler)(struct menelaus_chip *menelaus);
804 
805 	while (1) {
806 		unsigned isr;
807 
808 		isr = (menelaus_read_reg(MENELAUS_INT_STATUS2)
809 				& ~menelaus->mask2) << 8;
810 		isr |= menelaus_read_reg(MENELAUS_INT_STATUS1)
811 				& ~menelaus->mask1;
812 		if (!isr)
813 			break;
814 
815 		while (isr) {
816 			int irq = fls(isr) - 1;
817 			isr &= ~(1 << irq);
818 
819 			mutex_lock(&menelaus->lock);
820 			menelaus_disable_irq(irq);
821 			menelaus_ack_irq(irq);
822 			handler = menelaus->handlers[irq];
823 			if (handler)
824 				handler(menelaus);
825 			menelaus_enable_irq(irq);
826 			mutex_unlock(&menelaus->lock);
827 		}
828 	}
829 	enable_irq(menelaus->client->irq);
830 }
831 
832 /*
833  * We cannot use I2C in interrupt context, so we just schedule work.
834  */
835 static irqreturn_t menelaus_irq(int irq, void *_menelaus)
836 {
837 	struct menelaus_chip *menelaus = _menelaus;
838 
839 	disable_irq_nosync(irq);
840 	(void)schedule_work(&menelaus->work);
841 
842 	return IRQ_HANDLED;
843 }
844 
845 /*-----------------------------------------------------------------------*/
846 
847 /*
848  * The RTC needs to be set once, then it runs on backup battery power.
849  * It supports alarms, including system wake alarms (from some modes);
850  * and 1/second IRQs if requested.
851  */
852 #ifdef CONFIG_RTC_DRV_TWL92330
853 
854 #define RTC_CTRL_RTC_EN		(1 << 0)
855 #define RTC_CTRL_AL_EN		(1 << 1)
856 #define RTC_CTRL_MODE12		(1 << 2)
857 #define RTC_CTRL_EVERY_MASK	(3 << 3)
858 #define RTC_CTRL_EVERY_SEC	(0 << 3)
859 #define RTC_CTRL_EVERY_MIN	(1 << 3)
860 #define RTC_CTRL_EVERY_HR	(2 << 3)
861 #define RTC_CTRL_EVERY_DAY	(3 << 3)
862 
863 #define RTC_UPDATE_EVERY	0x08
864 
865 #define RTC_HR_PM		(1 << 7)
866 
867 static void menelaus_to_time(char *regs, struct rtc_time *t)
868 {
869 	t->tm_sec = bcd2bin(regs[0]);
870 	t->tm_min = bcd2bin(regs[1]);
871 	if (the_menelaus->rtc_control & RTC_CTRL_MODE12) {
872 		t->tm_hour = bcd2bin(regs[2] & 0x1f) - 1;
873 		if (regs[2] & RTC_HR_PM)
874 			t->tm_hour += 12;
875 	} else
876 		t->tm_hour = bcd2bin(regs[2] & 0x3f);
877 	t->tm_mday = bcd2bin(regs[3]);
878 	t->tm_mon = bcd2bin(regs[4]) - 1;
879 	t->tm_year = bcd2bin(regs[5]) + 100;
880 }
881 
882 static int time_to_menelaus(struct rtc_time *t, int regnum)
883 {
884 	int	hour, status;
885 
886 	status = menelaus_write_reg(regnum++, bin2bcd(t->tm_sec));
887 	if (status < 0)
888 		goto fail;
889 
890 	status = menelaus_write_reg(regnum++, bin2bcd(t->tm_min));
891 	if (status < 0)
892 		goto fail;
893 
894 	if (the_menelaus->rtc_control & RTC_CTRL_MODE12) {
895 		hour = t->tm_hour + 1;
896 		if (hour > 12)
897 			hour = RTC_HR_PM | bin2bcd(hour - 12);
898 		else
899 			hour = bin2bcd(hour);
900 	} else
901 		hour = bin2bcd(t->tm_hour);
902 	status = menelaus_write_reg(regnum++, hour);
903 	if (status < 0)
904 		goto fail;
905 
906 	status = menelaus_write_reg(regnum++, bin2bcd(t->tm_mday));
907 	if (status < 0)
908 		goto fail;
909 
910 	status = menelaus_write_reg(regnum++, bin2bcd(t->tm_mon + 1));
911 	if (status < 0)
912 		goto fail;
913 
914 	status = menelaus_write_reg(regnum++, bin2bcd(t->tm_year - 100));
915 	if (status < 0)
916 		goto fail;
917 
918 	return 0;
919 fail:
920 	dev_err(&the_menelaus->client->dev, "rtc write reg %02x, err %d\n",
921 			--regnum, status);
922 	return status;
923 }
924 
925 static int menelaus_read_time(struct device *dev, struct rtc_time *t)
926 {
927 	struct i2c_msg	msg[2];
928 	char		regs[7];
929 	int		status;
930 
931 	/* block read date and time registers */
932 	regs[0] = MENELAUS_RTC_SEC;
933 
934 	msg[0].addr = MENELAUS_I2C_ADDRESS;
935 	msg[0].flags = 0;
936 	msg[0].len = 1;
937 	msg[0].buf = regs;
938 
939 	msg[1].addr = MENELAUS_I2C_ADDRESS;
940 	msg[1].flags = I2C_M_RD;
941 	msg[1].len = sizeof(regs);
942 	msg[1].buf = regs;
943 
944 	status = i2c_transfer(the_menelaus->client->adapter, msg, 2);
945 	if (status != 2) {
946 		dev_err(dev, "%s error %d\n", "read", status);
947 		return -EIO;
948 	}
949 
950 	menelaus_to_time(regs, t);
951 	t->tm_wday = bcd2bin(regs[6]);
952 
953 	return 0;
954 }
955 
956 static int menelaus_set_time(struct device *dev, struct rtc_time *t)
957 {
958 	int		status;
959 
960 	/* write date and time registers */
961 	status = time_to_menelaus(t, MENELAUS_RTC_SEC);
962 	if (status < 0)
963 		return status;
964 	status = menelaus_write_reg(MENELAUS_RTC_WKDAY, bin2bcd(t->tm_wday));
965 	if (status < 0) {
966 		dev_err(&the_menelaus->client->dev, "rtc write reg %02x "
967 				"err %d\n", MENELAUS_RTC_WKDAY, status);
968 		return status;
969 	}
970 
971 	/* now commit the write */
972 	status = menelaus_write_reg(MENELAUS_RTC_UPDATE, RTC_UPDATE_EVERY);
973 	if (status < 0)
974 		dev_err(&the_menelaus->client->dev, "rtc commit time, err %d\n",
975 				status);
976 
977 	return 0;
978 }
979 
980 static int menelaus_read_alarm(struct device *dev, struct rtc_wkalrm *w)
981 {
982 	struct i2c_msg	msg[2];
983 	char		regs[6];
984 	int		status;
985 
986 	/* block read alarm registers */
987 	regs[0] = MENELAUS_RTC_AL_SEC;
988 
989 	msg[0].addr = MENELAUS_I2C_ADDRESS;
990 	msg[0].flags = 0;
991 	msg[0].len = 1;
992 	msg[0].buf = regs;
993 
994 	msg[1].addr = MENELAUS_I2C_ADDRESS;
995 	msg[1].flags = I2C_M_RD;
996 	msg[1].len = sizeof(regs);
997 	msg[1].buf = regs;
998 
999 	status = i2c_transfer(the_menelaus->client->adapter, msg, 2);
1000 	if (status != 2) {
1001 		dev_err(dev, "%s error %d\n", "alarm read", status);
1002 		return -EIO;
1003 	}
1004 
1005 	menelaus_to_time(regs, &w->time);
1006 
1007 	w->enabled = !!(the_menelaus->rtc_control & RTC_CTRL_AL_EN);
1008 
1009 	/* NOTE we *could* check if actually pending... */
1010 	w->pending = 0;
1011 
1012 	return 0;
1013 }
1014 
1015 static int menelaus_set_alarm(struct device *dev, struct rtc_wkalrm *w)
1016 {
1017 	int		status;
1018 
1019 	if (the_menelaus->client->irq <= 0 && w->enabled)
1020 		return -ENODEV;
1021 
1022 	/* clear previous alarm enable */
1023 	if (the_menelaus->rtc_control & RTC_CTRL_AL_EN) {
1024 		the_menelaus->rtc_control &= ~RTC_CTRL_AL_EN;
1025 		status = menelaus_write_reg(MENELAUS_RTC_CTRL,
1026 				the_menelaus->rtc_control);
1027 		if (status < 0)
1028 			return status;
1029 	}
1030 
1031 	/* write alarm registers */
1032 	status = time_to_menelaus(&w->time, MENELAUS_RTC_AL_SEC);
1033 	if (status < 0)
1034 		return status;
1035 
1036 	/* enable alarm if requested */
1037 	if (w->enabled) {
1038 		the_menelaus->rtc_control |= RTC_CTRL_AL_EN;
1039 		status = menelaus_write_reg(MENELAUS_RTC_CTRL,
1040 				the_menelaus->rtc_control);
1041 	}
1042 
1043 	return status;
1044 }
1045 
1046 #ifdef CONFIG_RTC_INTF_DEV
1047 
1048 static void menelaus_rtc_update_work(struct menelaus_chip *m)
1049 {
1050 	/* report 1/sec update */
1051 	local_irq_disable();
1052 	rtc_update_irq(m->rtc, 1, RTC_IRQF | RTC_UF);
1053 	local_irq_enable();
1054 }
1055 
1056 static int menelaus_ioctl(struct device *dev, unsigned cmd, unsigned long arg)
1057 {
1058 	int	status;
1059 
1060 	if (the_menelaus->client->irq <= 0)
1061 		return -ENOIOCTLCMD;
1062 
1063 	switch (cmd) {
1064 	/* alarm IRQ */
1065 	case RTC_AIE_ON:
1066 		if (the_menelaus->rtc_control & RTC_CTRL_AL_EN)
1067 			return 0;
1068 		the_menelaus->rtc_control |= RTC_CTRL_AL_EN;
1069 		break;
1070 	case RTC_AIE_OFF:
1071 		if (!(the_menelaus->rtc_control & RTC_CTRL_AL_EN))
1072 			return 0;
1073 		the_menelaus->rtc_control &= ~RTC_CTRL_AL_EN;
1074 		break;
1075 	/* 1/second "update" IRQ */
1076 	case RTC_UIE_ON:
1077 		if (the_menelaus->uie)
1078 			return 0;
1079 		status = menelaus_remove_irq_work(MENELAUS_RTCTMR_IRQ);
1080 		status = menelaus_add_irq_work(MENELAUS_RTCTMR_IRQ,
1081 				menelaus_rtc_update_work);
1082 		if (status == 0)
1083 			the_menelaus->uie = 1;
1084 		return status;
1085 	case RTC_UIE_OFF:
1086 		if (!the_menelaus->uie)
1087 			return 0;
1088 		status = menelaus_remove_irq_work(MENELAUS_RTCTMR_IRQ);
1089 		if (status == 0)
1090 			the_menelaus->uie = 0;
1091 		return status;
1092 	default:
1093 		return -ENOIOCTLCMD;
1094 	}
1095 	return menelaus_write_reg(MENELAUS_RTC_CTRL, the_menelaus->rtc_control);
1096 }
1097 
1098 #else
1099 #define menelaus_ioctl	NULL
1100 #endif
1101 
1102 /* REVISIT no compensation register support ... */
1103 
1104 static const struct rtc_class_ops menelaus_rtc_ops = {
1105 	.ioctl			= menelaus_ioctl,
1106 	.read_time		= menelaus_read_time,
1107 	.set_time		= menelaus_set_time,
1108 	.read_alarm		= menelaus_read_alarm,
1109 	.set_alarm		= menelaus_set_alarm,
1110 };
1111 
1112 static void menelaus_rtc_alarm_work(struct menelaus_chip *m)
1113 {
1114 	/* report alarm */
1115 	local_irq_disable();
1116 	rtc_update_irq(m->rtc, 1, RTC_IRQF | RTC_AF);
1117 	local_irq_enable();
1118 
1119 	/* then disable it; alarms are oneshot */
1120 	the_menelaus->rtc_control &= ~RTC_CTRL_AL_EN;
1121 	menelaus_write_reg(MENELAUS_RTC_CTRL, the_menelaus->rtc_control);
1122 }
1123 
1124 static inline void menelaus_rtc_init(struct menelaus_chip *m)
1125 {
1126 	int	alarm = (m->client->irq > 0);
1127 
1128 	/* assume 32KDETEN pin is pulled high */
1129 	if (!(menelaus_read_reg(MENELAUS_OSC_CTRL) & 0x80)) {
1130 		dev_dbg(&m->client->dev, "no 32k oscillator\n");
1131 		return;
1132 	}
1133 
1134 	/* support RTC alarm; it can issue wakeups */
1135 	if (alarm) {
1136 		if (menelaus_add_irq_work(MENELAUS_RTCALM_IRQ,
1137 				menelaus_rtc_alarm_work) < 0) {
1138 			dev_err(&m->client->dev, "can't handle RTC alarm\n");
1139 			return;
1140 		}
1141 		device_init_wakeup(&m->client->dev, 1);
1142 	}
1143 
1144 	/* be sure RTC is enabled; allow 1/sec irqs; leave 12hr mode alone */
1145 	m->rtc_control = menelaus_read_reg(MENELAUS_RTC_CTRL);
1146 	if (!(m->rtc_control & RTC_CTRL_RTC_EN)
1147 			|| (m->rtc_control & RTC_CTRL_AL_EN)
1148 			|| (m->rtc_control & RTC_CTRL_EVERY_MASK)) {
1149 		if (!(m->rtc_control & RTC_CTRL_RTC_EN)) {
1150 			dev_warn(&m->client->dev, "rtc clock needs setting\n");
1151 			m->rtc_control |= RTC_CTRL_RTC_EN;
1152 		}
1153 		m->rtc_control &= ~RTC_CTRL_EVERY_MASK;
1154 		m->rtc_control &= ~RTC_CTRL_AL_EN;
1155 		menelaus_write_reg(MENELAUS_RTC_CTRL, m->rtc_control);
1156 	}
1157 
1158 	m->rtc = rtc_device_register(DRIVER_NAME,
1159 			&m->client->dev,
1160 			&menelaus_rtc_ops, THIS_MODULE);
1161 	if (IS_ERR(m->rtc)) {
1162 		if (alarm) {
1163 			menelaus_remove_irq_work(MENELAUS_RTCALM_IRQ);
1164 			device_init_wakeup(&m->client->dev, 0);
1165 		}
1166 		dev_err(&m->client->dev, "can't register RTC: %d\n",
1167 				(int) PTR_ERR(m->rtc));
1168 		the_menelaus->rtc = NULL;
1169 	}
1170 }
1171 
1172 #else
1173 
1174 static inline void menelaus_rtc_init(struct menelaus_chip *m)
1175 {
1176 	/* nothing */
1177 }
1178 
1179 #endif
1180 
1181 /*-----------------------------------------------------------------------*/
1182 
1183 static struct i2c_driver menelaus_i2c_driver;
1184 
1185 static int menelaus_probe(struct i2c_client *client,
1186 			  const struct i2c_device_id *id)
1187 {
1188 	struct menelaus_chip	*menelaus;
1189 	int			rev = 0, val;
1190 	int			err = 0;
1191 	struct menelaus_platform_data *menelaus_pdata =
1192 					dev_get_platdata(&client->dev);
1193 
1194 	if (the_menelaus) {
1195 		dev_dbg(&client->dev, "only one %s for now\n",
1196 				DRIVER_NAME);
1197 		return -ENODEV;
1198 	}
1199 
1200 	menelaus = devm_kzalloc(&client->dev, sizeof(*menelaus), GFP_KERNEL);
1201 	if (!menelaus)
1202 		return -ENOMEM;
1203 
1204 	i2c_set_clientdata(client, menelaus);
1205 
1206 	the_menelaus = menelaus;
1207 	menelaus->client = client;
1208 
1209 	/* If a true probe check the device */
1210 	rev = menelaus_read_reg(MENELAUS_REV);
1211 	if (rev < 0) {
1212 		pr_err(DRIVER_NAME ": device not found");
1213 		return -ENODEV;
1214 	}
1215 
1216 	/* Ack and disable all Menelaus interrupts */
1217 	menelaus_write_reg(MENELAUS_INT_ACK1, 0xff);
1218 	menelaus_write_reg(MENELAUS_INT_ACK2, 0xff);
1219 	menelaus_write_reg(MENELAUS_INT_MASK1, 0xff);
1220 	menelaus_write_reg(MENELAUS_INT_MASK2, 0xff);
1221 	menelaus->mask1 = 0xff;
1222 	menelaus->mask2 = 0xff;
1223 
1224 	/* Set output buffer strengths */
1225 	menelaus_write_reg(MENELAUS_MCT_CTRL1, 0x73);
1226 
1227 	if (client->irq > 0) {
1228 		err = request_irq(client->irq, menelaus_irq, 0,
1229 				  DRIVER_NAME, menelaus);
1230 		if (err) {
1231 			dev_dbg(&client->dev,  "can't get IRQ %d, err %d\n",
1232 					client->irq, err);
1233 			return err;
1234 		}
1235 	}
1236 
1237 	mutex_init(&menelaus->lock);
1238 	INIT_WORK(&menelaus->work, menelaus_work);
1239 
1240 	pr_info("Menelaus rev %d.%d\n", rev >> 4, rev & 0x0f);
1241 
1242 	val = menelaus_read_reg(MENELAUS_VCORE_CTRL1);
1243 	if (val < 0)
1244 		goto fail;
1245 	if (val & (1 << 7))
1246 		menelaus->vcore_hw_mode = 1;
1247 	else
1248 		menelaus->vcore_hw_mode = 0;
1249 
1250 	if (menelaus_pdata != NULL && menelaus_pdata->late_init != NULL) {
1251 		err = menelaus_pdata->late_init(&client->dev);
1252 		if (err < 0)
1253 			goto fail;
1254 	}
1255 
1256 	menelaus_rtc_init(menelaus);
1257 
1258 	return 0;
1259 fail:
1260 	free_irq(client->irq, menelaus);
1261 	flush_work(&menelaus->work);
1262 	return err;
1263 }
1264 
1265 static int __exit menelaus_remove(struct i2c_client *client)
1266 {
1267 	struct menelaus_chip	*menelaus = i2c_get_clientdata(client);
1268 
1269 	free_irq(client->irq, menelaus);
1270 	flush_work(&menelaus->work);
1271 	the_menelaus = NULL;
1272 	return 0;
1273 }
1274 
1275 static const struct i2c_device_id menelaus_id[] = {
1276 	{ "menelaus", 0 },
1277 	{ }
1278 };
1279 MODULE_DEVICE_TABLE(i2c, menelaus_id);
1280 
1281 static struct i2c_driver menelaus_i2c_driver = {
1282 	.driver = {
1283 		.name		= DRIVER_NAME,
1284 	},
1285 	.probe		= menelaus_probe,
1286 	.remove		= __exit_p(menelaus_remove),
1287 	.id_table	= menelaus_id,
1288 };
1289 
1290 module_i2c_driver(menelaus_i2c_driver);
1291 
1292 MODULE_AUTHOR("Texas Instruments, Inc. (and others)");
1293 MODULE_DESCRIPTION("I2C interface for Menelaus.");
1294 MODULE_LICENSE("GPL");
1295