1 /* 2 * Copyright (C) 2004 Texas Instruments, Inc. 3 * 4 * Some parts based tps65010.c: 5 * Copyright (C) 2004 Texas Instruments and 6 * Copyright (C) 2004-2005 David Brownell 7 * 8 * Some parts based on tlv320aic24.c: 9 * Copyright (C) by Kai Svahn <kai.svahn@nokia.com> 10 * 11 * Changes for interrupt handling and clean-up by 12 * Tony Lindgren <tony@atomide.com> and Imre Deak <imre.deak@nokia.com> 13 * Cleanup and generalized support for voltage setting by 14 * Juha Yrjola 15 * Added support for controlling VCORE and regulator sleep states, 16 * Amit Kucheria <amit.kucheria@nokia.com> 17 * Copyright (C) 2005, 2006 Nokia Corporation 18 * 19 * This program is free software; you can redistribute it and/or modify 20 * it under the terms of the GNU General Public License as published by 21 * the Free Software Foundation; either version 2 of the License, or 22 * (at your option) any later version. 23 * 24 * This program is distributed in the hope that it will be useful, 25 * but WITHOUT ANY WARRANTY; without even the implied warranty of 26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 27 * GNU General Public License for more details. 28 * 29 * You should have received a copy of the GNU General Public License 30 * along with this program; if not, write to the Free Software 31 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 32 */ 33 34 #include <linux/module.h> 35 #include <linux/i2c.h> 36 #include <linux/interrupt.h> 37 #include <linux/sched.h> 38 #include <linux/mutex.h> 39 #include <linux/workqueue.h> 40 #include <linux/delay.h> 41 #include <linux/rtc.h> 42 #include <linux/bcd.h> 43 44 #include <asm/mach/irq.h> 45 46 #include <mach/gpio.h> 47 #include <mach/menelaus.h> 48 49 #define DRIVER_NAME "menelaus" 50 51 #define MENELAUS_I2C_ADDRESS 0x72 52 53 #define MENELAUS_REV 0x01 54 #define MENELAUS_VCORE_CTRL1 0x02 55 #define MENELAUS_VCORE_CTRL2 0x03 56 #define MENELAUS_VCORE_CTRL3 0x04 57 #define MENELAUS_VCORE_CTRL4 0x05 58 #define MENELAUS_VCORE_CTRL5 0x06 59 #define MENELAUS_DCDC_CTRL1 0x07 60 #define MENELAUS_DCDC_CTRL2 0x08 61 #define MENELAUS_DCDC_CTRL3 0x09 62 #define MENELAUS_LDO_CTRL1 0x0A 63 #define MENELAUS_LDO_CTRL2 0x0B 64 #define MENELAUS_LDO_CTRL3 0x0C 65 #define MENELAUS_LDO_CTRL4 0x0D 66 #define MENELAUS_LDO_CTRL5 0x0E 67 #define MENELAUS_LDO_CTRL6 0x0F 68 #define MENELAUS_LDO_CTRL7 0x10 69 #define MENELAUS_LDO_CTRL8 0x11 70 #define MENELAUS_SLEEP_CTRL1 0x12 71 #define MENELAUS_SLEEP_CTRL2 0x13 72 #define MENELAUS_DEVICE_OFF 0x14 73 #define MENELAUS_OSC_CTRL 0x15 74 #define MENELAUS_DETECT_CTRL 0x16 75 #define MENELAUS_INT_MASK1 0x17 76 #define MENELAUS_INT_MASK2 0x18 77 #define MENELAUS_INT_STATUS1 0x19 78 #define MENELAUS_INT_STATUS2 0x1A 79 #define MENELAUS_INT_ACK1 0x1B 80 #define MENELAUS_INT_ACK2 0x1C 81 #define MENELAUS_GPIO_CTRL 0x1D 82 #define MENELAUS_GPIO_IN 0x1E 83 #define MENELAUS_GPIO_OUT 0x1F 84 #define MENELAUS_BBSMS 0x20 85 #define MENELAUS_RTC_CTRL 0x21 86 #define MENELAUS_RTC_UPDATE 0x22 87 #define MENELAUS_RTC_SEC 0x23 88 #define MENELAUS_RTC_MIN 0x24 89 #define MENELAUS_RTC_HR 0x25 90 #define MENELAUS_RTC_DAY 0x26 91 #define MENELAUS_RTC_MON 0x27 92 #define MENELAUS_RTC_YR 0x28 93 #define MENELAUS_RTC_WKDAY 0x29 94 #define MENELAUS_RTC_AL_SEC 0x2A 95 #define MENELAUS_RTC_AL_MIN 0x2B 96 #define MENELAUS_RTC_AL_HR 0x2C 97 #define MENELAUS_RTC_AL_DAY 0x2D 98 #define MENELAUS_RTC_AL_MON 0x2E 99 #define MENELAUS_RTC_AL_YR 0x2F 100 #define MENELAUS_RTC_COMP_MSB 0x30 101 #define MENELAUS_RTC_COMP_LSB 0x31 102 #define MENELAUS_S1_PULL_EN 0x32 103 #define MENELAUS_S1_PULL_DIR 0x33 104 #define MENELAUS_S2_PULL_EN 0x34 105 #define MENELAUS_S2_PULL_DIR 0x35 106 #define MENELAUS_MCT_CTRL1 0x36 107 #define MENELAUS_MCT_CTRL2 0x37 108 #define MENELAUS_MCT_CTRL3 0x38 109 #define MENELAUS_MCT_PIN_ST 0x39 110 #define MENELAUS_DEBOUNCE1 0x3A 111 112 #define IH_MENELAUS_IRQS 12 113 #define MENELAUS_MMC_S1CD_IRQ 0 /* MMC slot 1 card change */ 114 #define MENELAUS_MMC_S2CD_IRQ 1 /* MMC slot 2 card change */ 115 #define MENELAUS_MMC_S1D1_IRQ 2 /* MMC DAT1 low in slot 1 */ 116 #define MENELAUS_MMC_S2D1_IRQ 3 /* MMC DAT1 low in slot 2 */ 117 #define MENELAUS_LOWBAT_IRQ 4 /* Low battery */ 118 #define MENELAUS_HOTDIE_IRQ 5 /* Hot die detect */ 119 #define MENELAUS_UVLO_IRQ 6 /* UVLO detect */ 120 #define MENELAUS_TSHUT_IRQ 7 /* Thermal shutdown */ 121 #define MENELAUS_RTCTMR_IRQ 8 /* RTC timer */ 122 #define MENELAUS_RTCALM_IRQ 9 /* RTC alarm */ 123 #define MENELAUS_RTCERR_IRQ 10 /* RTC error */ 124 #define MENELAUS_PSHBTN_IRQ 11 /* Push button */ 125 #define MENELAUS_RESERVED12_IRQ 12 /* Reserved */ 126 #define MENELAUS_RESERVED13_IRQ 13 /* Reserved */ 127 #define MENELAUS_RESERVED14_IRQ 14 /* Reserved */ 128 #define MENELAUS_RESERVED15_IRQ 15 /* Reserved */ 129 130 static void menelaus_work(struct work_struct *_menelaus); 131 132 struct menelaus_chip { 133 struct mutex lock; 134 struct i2c_client *client; 135 struct work_struct work; 136 #ifdef CONFIG_RTC_DRV_TWL92330 137 struct rtc_device *rtc; 138 u8 rtc_control; 139 unsigned uie:1; 140 #endif 141 unsigned vcore_hw_mode:1; 142 u8 mask1, mask2; 143 void (*handlers[16])(struct menelaus_chip *); 144 void (*mmc_callback)(void *data, u8 mask); 145 void *mmc_callback_data; 146 }; 147 148 static struct menelaus_chip *the_menelaus; 149 150 static int menelaus_write_reg(int reg, u8 value) 151 { 152 int val = i2c_smbus_write_byte_data(the_menelaus->client, reg, value); 153 154 if (val < 0) { 155 pr_err(DRIVER_NAME ": write error"); 156 return val; 157 } 158 159 return 0; 160 } 161 162 static int menelaus_read_reg(int reg) 163 { 164 int val = i2c_smbus_read_byte_data(the_menelaus->client, reg); 165 166 if (val < 0) 167 pr_err(DRIVER_NAME ": read error"); 168 169 return val; 170 } 171 172 static int menelaus_enable_irq(int irq) 173 { 174 if (irq > 7) { 175 irq -= 8; 176 the_menelaus->mask2 &= ~(1 << irq); 177 return menelaus_write_reg(MENELAUS_INT_MASK2, 178 the_menelaus->mask2); 179 } else { 180 the_menelaus->mask1 &= ~(1 << irq); 181 return menelaus_write_reg(MENELAUS_INT_MASK1, 182 the_menelaus->mask1); 183 } 184 } 185 186 static int menelaus_disable_irq(int irq) 187 { 188 if (irq > 7) { 189 irq -= 8; 190 the_menelaus->mask2 |= (1 << irq); 191 return menelaus_write_reg(MENELAUS_INT_MASK2, 192 the_menelaus->mask2); 193 } else { 194 the_menelaus->mask1 |= (1 << irq); 195 return menelaus_write_reg(MENELAUS_INT_MASK1, 196 the_menelaus->mask1); 197 } 198 } 199 200 static int menelaus_ack_irq(int irq) 201 { 202 if (irq > 7) 203 return menelaus_write_reg(MENELAUS_INT_ACK2, 1 << (irq - 8)); 204 else 205 return menelaus_write_reg(MENELAUS_INT_ACK1, 1 << irq); 206 } 207 208 /* Adds a handler for an interrupt. Does not run in interrupt context */ 209 static int menelaus_add_irq_work(int irq, 210 void (*handler)(struct menelaus_chip *)) 211 { 212 int ret = 0; 213 214 mutex_lock(&the_menelaus->lock); 215 the_menelaus->handlers[irq] = handler; 216 ret = menelaus_enable_irq(irq); 217 mutex_unlock(&the_menelaus->lock); 218 219 return ret; 220 } 221 222 /* Removes handler for an interrupt */ 223 static int menelaus_remove_irq_work(int irq) 224 { 225 int ret = 0; 226 227 mutex_lock(&the_menelaus->lock); 228 ret = menelaus_disable_irq(irq); 229 the_menelaus->handlers[irq] = NULL; 230 mutex_unlock(&the_menelaus->lock); 231 232 return ret; 233 } 234 235 /* 236 * Gets scheduled when a card detect interrupt happens. Note that in some cases 237 * this line is wired to card cover switch rather than the card detect switch 238 * in each slot. In this case the cards are not seen by menelaus. 239 * FIXME: Add handling for D1 too 240 */ 241 static void menelaus_mmc_cd_work(struct menelaus_chip *menelaus_hw) 242 { 243 int reg; 244 unsigned char card_mask = 0; 245 246 reg = menelaus_read_reg(MENELAUS_MCT_PIN_ST); 247 if (reg < 0) 248 return; 249 250 if (!(reg & 0x1)) 251 card_mask |= (1 << 0); 252 253 if (!(reg & 0x2)) 254 card_mask |= (1 << 1); 255 256 if (menelaus_hw->mmc_callback) 257 menelaus_hw->mmc_callback(menelaus_hw->mmc_callback_data, 258 card_mask); 259 } 260 261 /* 262 * Toggles the MMC slots between open-drain and push-pull mode. 263 */ 264 int menelaus_set_mmc_opendrain(int slot, int enable) 265 { 266 int ret, val; 267 268 if (slot != 1 && slot != 2) 269 return -EINVAL; 270 mutex_lock(&the_menelaus->lock); 271 ret = menelaus_read_reg(MENELAUS_MCT_CTRL1); 272 if (ret < 0) { 273 mutex_unlock(&the_menelaus->lock); 274 return ret; 275 } 276 val = ret; 277 if (slot == 1) { 278 if (enable) 279 val |= 1 << 2; 280 else 281 val &= ~(1 << 2); 282 } else { 283 if (enable) 284 val |= 1 << 3; 285 else 286 val &= ~(1 << 3); 287 } 288 ret = menelaus_write_reg(MENELAUS_MCT_CTRL1, val); 289 mutex_unlock(&the_menelaus->lock); 290 291 return ret; 292 } 293 EXPORT_SYMBOL(menelaus_set_mmc_opendrain); 294 295 int menelaus_set_slot_sel(int enable) 296 { 297 int ret; 298 299 mutex_lock(&the_menelaus->lock); 300 ret = menelaus_read_reg(MENELAUS_GPIO_CTRL); 301 if (ret < 0) 302 goto out; 303 ret |= 0x02; 304 if (enable) 305 ret |= 1 << 5; 306 else 307 ret &= ~(1 << 5); 308 ret = menelaus_write_reg(MENELAUS_GPIO_CTRL, ret); 309 out: 310 mutex_unlock(&the_menelaus->lock); 311 return ret; 312 } 313 EXPORT_SYMBOL(menelaus_set_slot_sel); 314 315 int menelaus_set_mmc_slot(int slot, int enable, int power, int cd_en) 316 { 317 int ret, val; 318 319 if (slot != 1 && slot != 2) 320 return -EINVAL; 321 if (power >= 3) 322 return -EINVAL; 323 324 mutex_lock(&the_menelaus->lock); 325 326 ret = menelaus_read_reg(MENELAUS_MCT_CTRL2); 327 if (ret < 0) 328 goto out; 329 val = ret; 330 if (slot == 1) { 331 if (cd_en) 332 val |= (1 << 4) | (1 << 6); 333 else 334 val &= ~((1 << 4) | (1 << 6)); 335 } else { 336 if (cd_en) 337 val |= (1 << 5) | (1 << 7); 338 else 339 val &= ~((1 << 5) | (1 << 7)); 340 } 341 ret = menelaus_write_reg(MENELAUS_MCT_CTRL2, val); 342 if (ret < 0) 343 goto out; 344 345 ret = menelaus_read_reg(MENELAUS_MCT_CTRL3); 346 if (ret < 0) 347 goto out; 348 val = ret; 349 if (slot == 1) { 350 if (enable) 351 val |= 1 << 0; 352 else 353 val &= ~(1 << 0); 354 } else { 355 int b; 356 357 if (enable) 358 ret |= 1 << 1; 359 else 360 ret &= ~(1 << 1); 361 b = menelaus_read_reg(MENELAUS_MCT_CTRL2); 362 b &= ~0x03; 363 b |= power; 364 ret = menelaus_write_reg(MENELAUS_MCT_CTRL2, b); 365 if (ret < 0) 366 goto out; 367 } 368 /* Disable autonomous shutdown */ 369 val &= ~(0x03 << 2); 370 ret = menelaus_write_reg(MENELAUS_MCT_CTRL3, val); 371 out: 372 mutex_unlock(&the_menelaus->lock); 373 return ret; 374 } 375 EXPORT_SYMBOL(menelaus_set_mmc_slot); 376 377 int menelaus_register_mmc_callback(void (*callback)(void *data, u8 card_mask), 378 void *data) 379 { 380 int ret = 0; 381 382 the_menelaus->mmc_callback_data = data; 383 the_menelaus->mmc_callback = callback; 384 ret = menelaus_add_irq_work(MENELAUS_MMC_S1CD_IRQ, 385 menelaus_mmc_cd_work); 386 if (ret < 0) 387 return ret; 388 ret = menelaus_add_irq_work(MENELAUS_MMC_S2CD_IRQ, 389 menelaus_mmc_cd_work); 390 if (ret < 0) 391 return ret; 392 ret = menelaus_add_irq_work(MENELAUS_MMC_S1D1_IRQ, 393 menelaus_mmc_cd_work); 394 if (ret < 0) 395 return ret; 396 ret = menelaus_add_irq_work(MENELAUS_MMC_S2D1_IRQ, 397 menelaus_mmc_cd_work); 398 399 return ret; 400 } 401 EXPORT_SYMBOL(menelaus_register_mmc_callback); 402 403 void menelaus_unregister_mmc_callback(void) 404 { 405 menelaus_remove_irq_work(MENELAUS_MMC_S1CD_IRQ); 406 menelaus_remove_irq_work(MENELAUS_MMC_S2CD_IRQ); 407 menelaus_remove_irq_work(MENELAUS_MMC_S1D1_IRQ); 408 menelaus_remove_irq_work(MENELAUS_MMC_S2D1_IRQ); 409 410 the_menelaus->mmc_callback = NULL; 411 the_menelaus->mmc_callback_data = 0; 412 } 413 EXPORT_SYMBOL(menelaus_unregister_mmc_callback); 414 415 struct menelaus_vtg { 416 const char *name; 417 u8 vtg_reg; 418 u8 vtg_shift; 419 u8 vtg_bits; 420 u8 mode_reg; 421 }; 422 423 struct menelaus_vtg_value { 424 u16 vtg; 425 u16 val; 426 }; 427 428 static int menelaus_set_voltage(const struct menelaus_vtg *vtg, int mV, 429 int vtg_val, int mode) 430 { 431 int val, ret; 432 struct i2c_client *c = the_menelaus->client; 433 434 mutex_lock(&the_menelaus->lock); 435 if (vtg == 0) 436 goto set_voltage; 437 438 ret = menelaus_read_reg(vtg->vtg_reg); 439 if (ret < 0) 440 goto out; 441 val = ret & ~(((1 << vtg->vtg_bits) - 1) << vtg->vtg_shift); 442 val |= vtg_val << vtg->vtg_shift; 443 444 dev_dbg(&c->dev, "Setting voltage '%s'" 445 "to %d mV (reg 0x%02x, val 0x%02x)\n", 446 vtg->name, mV, vtg->vtg_reg, val); 447 448 ret = menelaus_write_reg(vtg->vtg_reg, val); 449 if (ret < 0) 450 goto out; 451 set_voltage: 452 ret = menelaus_write_reg(vtg->mode_reg, mode); 453 out: 454 mutex_unlock(&the_menelaus->lock); 455 if (ret == 0) { 456 /* Wait for voltage to stabilize */ 457 msleep(1); 458 } 459 return ret; 460 } 461 462 static int menelaus_get_vtg_value(int vtg, const struct menelaus_vtg_value *tbl, 463 int n) 464 { 465 int i; 466 467 for (i = 0; i < n; i++, tbl++) 468 if (tbl->vtg == vtg) 469 return tbl->val; 470 return -EINVAL; 471 } 472 473 /* 474 * Vcore can be programmed in two ways: 475 * SW-controlled: Required voltage is programmed into VCORE_CTRL1 476 * HW-controlled: Required range (roof-floor) is programmed into VCORE_CTRL3 477 * and VCORE_CTRL4 478 * 479 * Call correct 'set' function accordingly 480 */ 481 482 static const struct menelaus_vtg_value vcore_values[] = { 483 { 1000, 0 }, 484 { 1025, 1 }, 485 { 1050, 2 }, 486 { 1075, 3 }, 487 { 1100, 4 }, 488 { 1125, 5 }, 489 { 1150, 6 }, 490 { 1175, 7 }, 491 { 1200, 8 }, 492 { 1225, 9 }, 493 { 1250, 10 }, 494 { 1275, 11 }, 495 { 1300, 12 }, 496 { 1325, 13 }, 497 { 1350, 14 }, 498 { 1375, 15 }, 499 { 1400, 16 }, 500 { 1425, 17 }, 501 { 1450, 18 }, 502 }; 503 504 int menelaus_set_vcore_sw(unsigned int mV) 505 { 506 int val, ret; 507 struct i2c_client *c = the_menelaus->client; 508 509 val = menelaus_get_vtg_value(mV, vcore_values, 510 ARRAY_SIZE(vcore_values)); 511 if (val < 0) 512 return -EINVAL; 513 514 dev_dbg(&c->dev, "Setting VCORE to %d mV (val 0x%02x)\n", mV, val); 515 516 /* Set SW mode and the voltage in one go. */ 517 mutex_lock(&the_menelaus->lock); 518 ret = menelaus_write_reg(MENELAUS_VCORE_CTRL1, val); 519 if (ret == 0) 520 the_menelaus->vcore_hw_mode = 0; 521 mutex_unlock(&the_menelaus->lock); 522 msleep(1); 523 524 return ret; 525 } 526 527 int menelaus_set_vcore_hw(unsigned int roof_mV, unsigned int floor_mV) 528 { 529 int fval, rval, val, ret; 530 struct i2c_client *c = the_menelaus->client; 531 532 rval = menelaus_get_vtg_value(roof_mV, vcore_values, 533 ARRAY_SIZE(vcore_values)); 534 if (rval < 0) 535 return -EINVAL; 536 fval = menelaus_get_vtg_value(floor_mV, vcore_values, 537 ARRAY_SIZE(vcore_values)); 538 if (fval < 0) 539 return -EINVAL; 540 541 dev_dbg(&c->dev, "Setting VCORE FLOOR to %d mV and ROOF to %d mV\n", 542 floor_mV, roof_mV); 543 544 mutex_lock(&the_menelaus->lock); 545 ret = menelaus_write_reg(MENELAUS_VCORE_CTRL3, fval); 546 if (ret < 0) 547 goto out; 548 ret = menelaus_write_reg(MENELAUS_VCORE_CTRL4, rval); 549 if (ret < 0) 550 goto out; 551 if (!the_menelaus->vcore_hw_mode) { 552 val = menelaus_read_reg(MENELAUS_VCORE_CTRL1); 553 /* HW mode, turn OFF byte comparator */ 554 val |= ((1 << 7) | (1 << 5)); 555 ret = menelaus_write_reg(MENELAUS_VCORE_CTRL1, val); 556 the_menelaus->vcore_hw_mode = 1; 557 } 558 msleep(1); 559 out: 560 mutex_unlock(&the_menelaus->lock); 561 return ret; 562 } 563 564 static const struct menelaus_vtg vmem_vtg = { 565 .name = "VMEM", 566 .vtg_reg = MENELAUS_LDO_CTRL1, 567 .vtg_shift = 0, 568 .vtg_bits = 2, 569 .mode_reg = MENELAUS_LDO_CTRL3, 570 }; 571 572 static const struct menelaus_vtg_value vmem_values[] = { 573 { 1500, 0 }, 574 { 1800, 1 }, 575 { 1900, 2 }, 576 { 2500, 3 }, 577 }; 578 579 int menelaus_set_vmem(unsigned int mV) 580 { 581 int val; 582 583 if (mV == 0) 584 return menelaus_set_voltage(&vmem_vtg, 0, 0, 0); 585 586 val = menelaus_get_vtg_value(mV, vmem_values, ARRAY_SIZE(vmem_values)); 587 if (val < 0) 588 return -EINVAL; 589 return menelaus_set_voltage(&vmem_vtg, mV, val, 0x02); 590 } 591 EXPORT_SYMBOL(menelaus_set_vmem); 592 593 static const struct menelaus_vtg vio_vtg = { 594 .name = "VIO", 595 .vtg_reg = MENELAUS_LDO_CTRL1, 596 .vtg_shift = 2, 597 .vtg_bits = 2, 598 .mode_reg = MENELAUS_LDO_CTRL4, 599 }; 600 601 static const struct menelaus_vtg_value vio_values[] = { 602 { 1500, 0 }, 603 { 1800, 1 }, 604 { 2500, 2 }, 605 { 2800, 3 }, 606 }; 607 608 int menelaus_set_vio(unsigned int mV) 609 { 610 int val; 611 612 if (mV == 0) 613 return menelaus_set_voltage(&vio_vtg, 0, 0, 0); 614 615 val = menelaus_get_vtg_value(mV, vio_values, ARRAY_SIZE(vio_values)); 616 if (val < 0) 617 return -EINVAL; 618 return menelaus_set_voltage(&vio_vtg, mV, val, 0x02); 619 } 620 EXPORT_SYMBOL(menelaus_set_vio); 621 622 static const struct menelaus_vtg_value vdcdc_values[] = { 623 { 1500, 0 }, 624 { 1800, 1 }, 625 { 2000, 2 }, 626 { 2200, 3 }, 627 { 2400, 4 }, 628 { 2800, 5 }, 629 { 3000, 6 }, 630 { 3300, 7 }, 631 }; 632 633 static const struct menelaus_vtg vdcdc2_vtg = { 634 .name = "VDCDC2", 635 .vtg_reg = MENELAUS_DCDC_CTRL1, 636 .vtg_shift = 0, 637 .vtg_bits = 3, 638 .mode_reg = MENELAUS_DCDC_CTRL2, 639 }; 640 641 static const struct menelaus_vtg vdcdc3_vtg = { 642 .name = "VDCDC3", 643 .vtg_reg = MENELAUS_DCDC_CTRL1, 644 .vtg_shift = 3, 645 .vtg_bits = 3, 646 .mode_reg = MENELAUS_DCDC_CTRL3, 647 }; 648 649 int menelaus_set_vdcdc(int dcdc, unsigned int mV) 650 { 651 const struct menelaus_vtg *vtg; 652 int val; 653 654 if (dcdc != 2 && dcdc != 3) 655 return -EINVAL; 656 if (dcdc == 2) 657 vtg = &vdcdc2_vtg; 658 else 659 vtg = &vdcdc3_vtg; 660 661 if (mV == 0) 662 return menelaus_set_voltage(vtg, 0, 0, 0); 663 664 val = menelaus_get_vtg_value(mV, vdcdc_values, 665 ARRAY_SIZE(vdcdc_values)); 666 if (val < 0) 667 return -EINVAL; 668 return menelaus_set_voltage(vtg, mV, val, 0x03); 669 } 670 671 static const struct menelaus_vtg_value vmmc_values[] = { 672 { 1850, 0 }, 673 { 2800, 1 }, 674 { 3000, 2 }, 675 { 3100, 3 }, 676 }; 677 678 static const struct menelaus_vtg vmmc_vtg = { 679 .name = "VMMC", 680 .vtg_reg = MENELAUS_LDO_CTRL1, 681 .vtg_shift = 6, 682 .vtg_bits = 2, 683 .mode_reg = MENELAUS_LDO_CTRL7, 684 }; 685 686 int menelaus_set_vmmc(unsigned int mV) 687 { 688 int val; 689 690 if (mV == 0) 691 return menelaus_set_voltage(&vmmc_vtg, 0, 0, 0); 692 693 val = menelaus_get_vtg_value(mV, vmmc_values, ARRAY_SIZE(vmmc_values)); 694 if (val < 0) 695 return -EINVAL; 696 return menelaus_set_voltage(&vmmc_vtg, mV, val, 0x02); 697 } 698 EXPORT_SYMBOL(menelaus_set_vmmc); 699 700 701 static const struct menelaus_vtg_value vaux_values[] = { 702 { 1500, 0 }, 703 { 1800, 1 }, 704 { 2500, 2 }, 705 { 2800, 3 }, 706 }; 707 708 static const struct menelaus_vtg vaux_vtg = { 709 .name = "VAUX", 710 .vtg_reg = MENELAUS_LDO_CTRL1, 711 .vtg_shift = 4, 712 .vtg_bits = 2, 713 .mode_reg = MENELAUS_LDO_CTRL6, 714 }; 715 716 int menelaus_set_vaux(unsigned int mV) 717 { 718 int val; 719 720 if (mV == 0) 721 return menelaus_set_voltage(&vaux_vtg, 0, 0, 0); 722 723 val = menelaus_get_vtg_value(mV, vaux_values, ARRAY_SIZE(vaux_values)); 724 if (val < 0) 725 return -EINVAL; 726 return menelaus_set_voltage(&vaux_vtg, mV, val, 0x02); 727 } 728 EXPORT_SYMBOL(menelaus_set_vaux); 729 730 int menelaus_get_slot_pin_states(void) 731 { 732 return menelaus_read_reg(MENELAUS_MCT_PIN_ST); 733 } 734 EXPORT_SYMBOL(menelaus_get_slot_pin_states); 735 736 int menelaus_set_regulator_sleep(int enable, u32 val) 737 { 738 int t, ret; 739 struct i2c_client *c = the_menelaus->client; 740 741 mutex_lock(&the_menelaus->lock); 742 ret = menelaus_write_reg(MENELAUS_SLEEP_CTRL2, val); 743 if (ret < 0) 744 goto out; 745 746 dev_dbg(&c->dev, "regulator sleep configuration: %02x\n", val); 747 748 ret = menelaus_read_reg(MENELAUS_GPIO_CTRL); 749 if (ret < 0) 750 goto out; 751 t = ((1 << 6) | 0x04); 752 if (enable) 753 ret |= t; 754 else 755 ret &= ~t; 756 ret = menelaus_write_reg(MENELAUS_GPIO_CTRL, ret); 757 out: 758 mutex_unlock(&the_menelaus->lock); 759 return ret; 760 } 761 762 /*-----------------------------------------------------------------------*/ 763 764 /* Handles Menelaus interrupts. Does not run in interrupt context */ 765 static void menelaus_work(struct work_struct *_menelaus) 766 { 767 struct menelaus_chip *menelaus = 768 container_of(_menelaus, struct menelaus_chip, work); 769 void (*handler)(struct menelaus_chip *menelaus); 770 771 while (1) { 772 unsigned isr; 773 774 isr = (menelaus_read_reg(MENELAUS_INT_STATUS2) 775 & ~menelaus->mask2) << 8; 776 isr |= menelaus_read_reg(MENELAUS_INT_STATUS1) 777 & ~menelaus->mask1; 778 if (!isr) 779 break; 780 781 while (isr) { 782 int irq = fls(isr) - 1; 783 isr &= ~(1 << irq); 784 785 mutex_lock(&menelaus->lock); 786 menelaus_disable_irq(irq); 787 menelaus_ack_irq(irq); 788 handler = menelaus->handlers[irq]; 789 if (handler) 790 handler(menelaus); 791 menelaus_enable_irq(irq); 792 mutex_unlock(&menelaus->lock); 793 } 794 } 795 enable_irq(menelaus->client->irq); 796 } 797 798 /* 799 * We cannot use I2C in interrupt context, so we just schedule work. 800 */ 801 static irqreturn_t menelaus_irq(int irq, void *_menelaus) 802 { 803 struct menelaus_chip *menelaus = _menelaus; 804 805 disable_irq_nosync(irq); 806 (void)schedule_work(&menelaus->work); 807 808 return IRQ_HANDLED; 809 } 810 811 /*-----------------------------------------------------------------------*/ 812 813 /* 814 * The RTC needs to be set once, then it runs on backup battery power. 815 * It supports alarms, including system wake alarms (from some modes); 816 * and 1/second IRQs if requested. 817 */ 818 #ifdef CONFIG_RTC_DRV_TWL92330 819 820 #define RTC_CTRL_RTC_EN (1 << 0) 821 #define RTC_CTRL_AL_EN (1 << 1) 822 #define RTC_CTRL_MODE12 (1 << 2) 823 #define RTC_CTRL_EVERY_MASK (3 << 3) 824 #define RTC_CTRL_EVERY_SEC (0 << 3) 825 #define RTC_CTRL_EVERY_MIN (1 << 3) 826 #define RTC_CTRL_EVERY_HR (2 << 3) 827 #define RTC_CTRL_EVERY_DAY (3 << 3) 828 829 #define RTC_UPDATE_EVERY 0x08 830 831 #define RTC_HR_PM (1 << 7) 832 833 static void menelaus_to_time(char *regs, struct rtc_time *t) 834 { 835 t->tm_sec = bcd2bin(regs[0]); 836 t->tm_min = bcd2bin(regs[1]); 837 if (the_menelaus->rtc_control & RTC_CTRL_MODE12) { 838 t->tm_hour = bcd2bin(regs[2] & 0x1f) - 1; 839 if (regs[2] & RTC_HR_PM) 840 t->tm_hour += 12; 841 } else 842 t->tm_hour = bcd2bin(regs[2] & 0x3f); 843 t->tm_mday = bcd2bin(regs[3]); 844 t->tm_mon = bcd2bin(regs[4]) - 1; 845 t->tm_year = bcd2bin(regs[5]) + 100; 846 } 847 848 static int time_to_menelaus(struct rtc_time *t, int regnum) 849 { 850 int hour, status; 851 852 status = menelaus_write_reg(regnum++, bin2bcd(t->tm_sec)); 853 if (status < 0) 854 goto fail; 855 856 status = menelaus_write_reg(regnum++, bin2bcd(t->tm_min)); 857 if (status < 0) 858 goto fail; 859 860 if (the_menelaus->rtc_control & RTC_CTRL_MODE12) { 861 hour = t->tm_hour + 1; 862 if (hour > 12) 863 hour = RTC_HR_PM | bin2bcd(hour - 12); 864 else 865 hour = bin2bcd(hour); 866 } else 867 hour = bin2bcd(t->tm_hour); 868 status = menelaus_write_reg(regnum++, hour); 869 if (status < 0) 870 goto fail; 871 872 status = menelaus_write_reg(regnum++, bin2bcd(t->tm_mday)); 873 if (status < 0) 874 goto fail; 875 876 status = menelaus_write_reg(regnum++, bin2bcd(t->tm_mon + 1)); 877 if (status < 0) 878 goto fail; 879 880 status = menelaus_write_reg(regnum++, bin2bcd(t->tm_year - 100)); 881 if (status < 0) 882 goto fail; 883 884 return 0; 885 fail: 886 dev_err(&the_menelaus->client->dev, "rtc write reg %02x, err %d\n", 887 --regnum, status); 888 return status; 889 } 890 891 static int menelaus_read_time(struct device *dev, struct rtc_time *t) 892 { 893 struct i2c_msg msg[2]; 894 char regs[7]; 895 int status; 896 897 /* block read date and time registers */ 898 regs[0] = MENELAUS_RTC_SEC; 899 900 msg[0].addr = MENELAUS_I2C_ADDRESS; 901 msg[0].flags = 0; 902 msg[0].len = 1; 903 msg[0].buf = regs; 904 905 msg[1].addr = MENELAUS_I2C_ADDRESS; 906 msg[1].flags = I2C_M_RD; 907 msg[1].len = sizeof(regs); 908 msg[1].buf = regs; 909 910 status = i2c_transfer(the_menelaus->client->adapter, msg, 2); 911 if (status != 2) { 912 dev_err(dev, "%s error %d\n", "read", status); 913 return -EIO; 914 } 915 916 menelaus_to_time(regs, t); 917 t->tm_wday = bcd2bin(regs[6]); 918 919 return 0; 920 } 921 922 static int menelaus_set_time(struct device *dev, struct rtc_time *t) 923 { 924 int status; 925 926 /* write date and time registers */ 927 status = time_to_menelaus(t, MENELAUS_RTC_SEC); 928 if (status < 0) 929 return status; 930 status = menelaus_write_reg(MENELAUS_RTC_WKDAY, bin2bcd(t->tm_wday)); 931 if (status < 0) { 932 dev_err(&the_menelaus->client->dev, "rtc write reg %02x " 933 "err %d\n", MENELAUS_RTC_WKDAY, status); 934 return status; 935 } 936 937 /* now commit the write */ 938 status = menelaus_write_reg(MENELAUS_RTC_UPDATE, RTC_UPDATE_EVERY); 939 if (status < 0) 940 dev_err(&the_menelaus->client->dev, "rtc commit time, err %d\n", 941 status); 942 943 return 0; 944 } 945 946 static int menelaus_read_alarm(struct device *dev, struct rtc_wkalrm *w) 947 { 948 struct i2c_msg msg[2]; 949 char regs[6]; 950 int status; 951 952 /* block read alarm registers */ 953 regs[0] = MENELAUS_RTC_AL_SEC; 954 955 msg[0].addr = MENELAUS_I2C_ADDRESS; 956 msg[0].flags = 0; 957 msg[0].len = 1; 958 msg[0].buf = regs; 959 960 msg[1].addr = MENELAUS_I2C_ADDRESS; 961 msg[1].flags = I2C_M_RD; 962 msg[1].len = sizeof(regs); 963 msg[1].buf = regs; 964 965 status = i2c_transfer(the_menelaus->client->adapter, msg, 2); 966 if (status != 2) { 967 dev_err(dev, "%s error %d\n", "alarm read", status); 968 return -EIO; 969 } 970 971 menelaus_to_time(regs, &w->time); 972 973 w->enabled = !!(the_menelaus->rtc_control & RTC_CTRL_AL_EN); 974 975 /* NOTE we *could* check if actually pending... */ 976 w->pending = 0; 977 978 return 0; 979 } 980 981 static int menelaus_set_alarm(struct device *dev, struct rtc_wkalrm *w) 982 { 983 int status; 984 985 if (the_menelaus->client->irq <= 0 && w->enabled) 986 return -ENODEV; 987 988 /* clear previous alarm enable */ 989 if (the_menelaus->rtc_control & RTC_CTRL_AL_EN) { 990 the_menelaus->rtc_control &= ~RTC_CTRL_AL_EN; 991 status = menelaus_write_reg(MENELAUS_RTC_CTRL, 992 the_menelaus->rtc_control); 993 if (status < 0) 994 return status; 995 } 996 997 /* write alarm registers */ 998 status = time_to_menelaus(&w->time, MENELAUS_RTC_AL_SEC); 999 if (status < 0) 1000 return status; 1001 1002 /* enable alarm if requested */ 1003 if (w->enabled) { 1004 the_menelaus->rtc_control |= RTC_CTRL_AL_EN; 1005 status = menelaus_write_reg(MENELAUS_RTC_CTRL, 1006 the_menelaus->rtc_control); 1007 } 1008 1009 return status; 1010 } 1011 1012 #ifdef CONFIG_RTC_INTF_DEV 1013 1014 static void menelaus_rtc_update_work(struct menelaus_chip *m) 1015 { 1016 /* report 1/sec update */ 1017 local_irq_disable(); 1018 rtc_update_irq(m->rtc, 1, RTC_IRQF | RTC_UF); 1019 local_irq_enable(); 1020 } 1021 1022 static int menelaus_ioctl(struct device *dev, unsigned cmd, unsigned long arg) 1023 { 1024 int status; 1025 1026 if (the_menelaus->client->irq <= 0) 1027 return -ENOIOCTLCMD; 1028 1029 switch (cmd) { 1030 /* alarm IRQ */ 1031 case RTC_AIE_ON: 1032 if (the_menelaus->rtc_control & RTC_CTRL_AL_EN) 1033 return 0; 1034 the_menelaus->rtc_control |= RTC_CTRL_AL_EN; 1035 break; 1036 case RTC_AIE_OFF: 1037 if (!(the_menelaus->rtc_control & RTC_CTRL_AL_EN)) 1038 return 0; 1039 the_menelaus->rtc_control &= ~RTC_CTRL_AL_EN; 1040 break; 1041 /* 1/second "update" IRQ */ 1042 case RTC_UIE_ON: 1043 if (the_menelaus->uie) 1044 return 0; 1045 status = menelaus_remove_irq_work(MENELAUS_RTCTMR_IRQ); 1046 status = menelaus_add_irq_work(MENELAUS_RTCTMR_IRQ, 1047 menelaus_rtc_update_work); 1048 if (status == 0) 1049 the_menelaus->uie = 1; 1050 return status; 1051 case RTC_UIE_OFF: 1052 if (!the_menelaus->uie) 1053 return 0; 1054 status = menelaus_remove_irq_work(MENELAUS_RTCTMR_IRQ); 1055 if (status == 0) 1056 the_menelaus->uie = 0; 1057 return status; 1058 default: 1059 return -ENOIOCTLCMD; 1060 } 1061 return menelaus_write_reg(MENELAUS_RTC_CTRL, the_menelaus->rtc_control); 1062 } 1063 1064 #else 1065 #define menelaus_ioctl NULL 1066 #endif 1067 1068 /* REVISIT no compensation register support ... */ 1069 1070 static const struct rtc_class_ops menelaus_rtc_ops = { 1071 .ioctl = menelaus_ioctl, 1072 .read_time = menelaus_read_time, 1073 .set_time = menelaus_set_time, 1074 .read_alarm = menelaus_read_alarm, 1075 .set_alarm = menelaus_set_alarm, 1076 }; 1077 1078 static void menelaus_rtc_alarm_work(struct menelaus_chip *m) 1079 { 1080 /* report alarm */ 1081 local_irq_disable(); 1082 rtc_update_irq(m->rtc, 1, RTC_IRQF | RTC_AF); 1083 local_irq_enable(); 1084 1085 /* then disable it; alarms are oneshot */ 1086 the_menelaus->rtc_control &= ~RTC_CTRL_AL_EN; 1087 menelaus_write_reg(MENELAUS_RTC_CTRL, the_menelaus->rtc_control); 1088 } 1089 1090 static inline void menelaus_rtc_init(struct menelaus_chip *m) 1091 { 1092 int alarm = (m->client->irq > 0); 1093 1094 /* assume 32KDETEN pin is pulled high */ 1095 if (!(menelaus_read_reg(MENELAUS_OSC_CTRL) & 0x80)) { 1096 dev_dbg(&m->client->dev, "no 32k oscillator\n"); 1097 return; 1098 } 1099 1100 /* support RTC alarm; it can issue wakeups */ 1101 if (alarm) { 1102 if (menelaus_add_irq_work(MENELAUS_RTCALM_IRQ, 1103 menelaus_rtc_alarm_work) < 0) { 1104 dev_err(&m->client->dev, "can't handle RTC alarm\n"); 1105 return; 1106 } 1107 device_init_wakeup(&m->client->dev, 1); 1108 } 1109 1110 /* be sure RTC is enabled; allow 1/sec irqs; leave 12hr mode alone */ 1111 m->rtc_control = menelaus_read_reg(MENELAUS_RTC_CTRL); 1112 if (!(m->rtc_control & RTC_CTRL_RTC_EN) 1113 || (m->rtc_control & RTC_CTRL_AL_EN) 1114 || (m->rtc_control & RTC_CTRL_EVERY_MASK)) { 1115 if (!(m->rtc_control & RTC_CTRL_RTC_EN)) { 1116 dev_warn(&m->client->dev, "rtc clock needs setting\n"); 1117 m->rtc_control |= RTC_CTRL_RTC_EN; 1118 } 1119 m->rtc_control &= ~RTC_CTRL_EVERY_MASK; 1120 m->rtc_control &= ~RTC_CTRL_AL_EN; 1121 menelaus_write_reg(MENELAUS_RTC_CTRL, m->rtc_control); 1122 } 1123 1124 m->rtc = rtc_device_register(DRIVER_NAME, 1125 &m->client->dev, 1126 &menelaus_rtc_ops, THIS_MODULE); 1127 if (IS_ERR(m->rtc)) { 1128 if (alarm) { 1129 menelaus_remove_irq_work(MENELAUS_RTCALM_IRQ); 1130 device_init_wakeup(&m->client->dev, 0); 1131 } 1132 dev_err(&m->client->dev, "can't register RTC: %d\n", 1133 (int) PTR_ERR(m->rtc)); 1134 the_menelaus->rtc = NULL; 1135 } 1136 } 1137 1138 #else 1139 1140 static inline void menelaus_rtc_init(struct menelaus_chip *m) 1141 { 1142 /* nothing */ 1143 } 1144 1145 #endif 1146 1147 /*-----------------------------------------------------------------------*/ 1148 1149 static struct i2c_driver menelaus_i2c_driver; 1150 1151 static int menelaus_probe(struct i2c_client *client, 1152 const struct i2c_device_id *id) 1153 { 1154 struct menelaus_chip *menelaus; 1155 int rev = 0, val; 1156 int err = 0; 1157 struct menelaus_platform_data *menelaus_pdata = 1158 client->dev.platform_data; 1159 1160 if (the_menelaus) { 1161 dev_dbg(&client->dev, "only one %s for now\n", 1162 DRIVER_NAME); 1163 return -ENODEV; 1164 } 1165 1166 menelaus = kzalloc(sizeof *menelaus, GFP_KERNEL); 1167 if (!menelaus) 1168 return -ENOMEM; 1169 1170 i2c_set_clientdata(client, menelaus); 1171 1172 the_menelaus = menelaus; 1173 menelaus->client = client; 1174 1175 /* If a true probe check the device */ 1176 rev = menelaus_read_reg(MENELAUS_REV); 1177 if (rev < 0) { 1178 pr_err(DRIVER_NAME ": device not found"); 1179 err = -ENODEV; 1180 goto fail1; 1181 } 1182 1183 /* Ack and disable all Menelaus interrupts */ 1184 menelaus_write_reg(MENELAUS_INT_ACK1, 0xff); 1185 menelaus_write_reg(MENELAUS_INT_ACK2, 0xff); 1186 menelaus_write_reg(MENELAUS_INT_MASK1, 0xff); 1187 menelaus_write_reg(MENELAUS_INT_MASK2, 0xff); 1188 menelaus->mask1 = 0xff; 1189 menelaus->mask2 = 0xff; 1190 1191 /* Set output buffer strengths */ 1192 menelaus_write_reg(MENELAUS_MCT_CTRL1, 0x73); 1193 1194 if (client->irq > 0) { 1195 err = request_irq(client->irq, menelaus_irq, IRQF_DISABLED, 1196 DRIVER_NAME, menelaus); 1197 if (err) { 1198 dev_dbg(&client->dev, "can't get IRQ %d, err %d\n", 1199 client->irq, err); 1200 goto fail1; 1201 } 1202 } 1203 1204 mutex_init(&menelaus->lock); 1205 INIT_WORK(&menelaus->work, menelaus_work); 1206 1207 pr_info("Menelaus rev %d.%d\n", rev >> 4, rev & 0x0f); 1208 1209 val = menelaus_read_reg(MENELAUS_VCORE_CTRL1); 1210 if (val < 0) 1211 goto fail2; 1212 if (val & (1 << 7)) 1213 menelaus->vcore_hw_mode = 1; 1214 else 1215 menelaus->vcore_hw_mode = 0; 1216 1217 if (menelaus_pdata != NULL && menelaus_pdata->late_init != NULL) { 1218 err = menelaus_pdata->late_init(&client->dev); 1219 if (err < 0) 1220 goto fail2; 1221 } 1222 1223 menelaus_rtc_init(menelaus); 1224 1225 return 0; 1226 fail2: 1227 free_irq(client->irq, menelaus); 1228 flush_scheduled_work(); 1229 fail1: 1230 kfree(menelaus); 1231 return err; 1232 } 1233 1234 static int __exit menelaus_remove(struct i2c_client *client) 1235 { 1236 struct menelaus_chip *menelaus = i2c_get_clientdata(client); 1237 1238 free_irq(client->irq, menelaus); 1239 kfree(menelaus); 1240 i2c_set_clientdata(client, NULL); 1241 the_menelaus = NULL; 1242 return 0; 1243 } 1244 1245 static const struct i2c_device_id menelaus_id[] = { 1246 { "menelaus", 0 }, 1247 { } 1248 }; 1249 MODULE_DEVICE_TABLE(i2c, menelaus_id); 1250 1251 static struct i2c_driver menelaus_i2c_driver = { 1252 .driver = { 1253 .name = DRIVER_NAME, 1254 }, 1255 .probe = menelaus_probe, 1256 .remove = __exit_p(menelaus_remove), 1257 .id_table = menelaus_id, 1258 }; 1259 1260 static int __init menelaus_init(void) 1261 { 1262 int res; 1263 1264 res = i2c_add_driver(&menelaus_i2c_driver); 1265 if (res < 0) { 1266 pr_err(DRIVER_NAME ": driver registration failed\n"); 1267 return res; 1268 } 1269 1270 return 0; 1271 } 1272 1273 static void __exit menelaus_exit(void) 1274 { 1275 i2c_del_driver(&menelaus_i2c_driver); 1276 1277 /* FIXME: Shutdown menelaus parts that can be shut down */ 1278 } 1279 1280 MODULE_AUTHOR("Texas Instruments, Inc. (and others)"); 1281 MODULE_DESCRIPTION("I2C interface for Menelaus."); 1282 MODULE_LICENSE("GPL"); 1283 1284 module_init(menelaus_init); 1285 module_exit(menelaus_exit); 1286