xref: /openbmc/linux/drivers/mfd/menelaus.c (revision b627b4ed)
1 /*
2  * Copyright (C) 2004 Texas Instruments, Inc.
3  *
4  * Some parts based tps65010.c:
5  * Copyright (C) 2004 Texas Instruments and
6  * Copyright (C) 2004-2005 David Brownell
7  *
8  * Some parts based on tlv320aic24.c:
9  * Copyright (C) by Kai Svahn <kai.svahn@nokia.com>
10  *
11  * Changes for interrupt handling and clean-up by
12  * Tony Lindgren <tony@atomide.com> and Imre Deak <imre.deak@nokia.com>
13  * Cleanup and generalized support for voltage setting by
14  * Juha Yrjola
15  * Added support for controlling VCORE and regulator sleep states,
16  * Amit Kucheria <amit.kucheria@nokia.com>
17  * Copyright (C) 2005, 2006 Nokia Corporation
18  *
19  * This program is free software; you can redistribute it and/or modify
20  * it under the terms of the GNU General Public License as published by
21  * the Free Software Foundation; either version 2 of the License, or
22  * (at your option) any later version.
23  *
24  * This program is distributed in the hope that it will be useful,
25  * but WITHOUT ANY WARRANTY; without even the implied warranty of
26  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
27  * GNU General Public License for more details.
28  *
29  * You should have received a copy of the GNU General Public License
30  * along with this program; if not, write to the Free Software
31  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
32  */
33 
34 #include <linux/module.h>
35 #include <linux/i2c.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/mutex.h>
39 #include <linux/workqueue.h>
40 #include <linux/delay.h>
41 #include <linux/rtc.h>
42 #include <linux/bcd.h>
43 
44 #include <asm/mach/irq.h>
45 
46 #include <mach/gpio.h>
47 #include <mach/menelaus.h>
48 
49 #define DRIVER_NAME			"menelaus"
50 
51 #define MENELAUS_I2C_ADDRESS		0x72
52 
53 #define MENELAUS_REV			0x01
54 #define MENELAUS_VCORE_CTRL1		0x02
55 #define MENELAUS_VCORE_CTRL2		0x03
56 #define MENELAUS_VCORE_CTRL3		0x04
57 #define MENELAUS_VCORE_CTRL4		0x05
58 #define MENELAUS_VCORE_CTRL5		0x06
59 #define MENELAUS_DCDC_CTRL1		0x07
60 #define MENELAUS_DCDC_CTRL2		0x08
61 #define MENELAUS_DCDC_CTRL3		0x09
62 #define MENELAUS_LDO_CTRL1		0x0A
63 #define MENELAUS_LDO_CTRL2		0x0B
64 #define MENELAUS_LDO_CTRL3		0x0C
65 #define MENELAUS_LDO_CTRL4		0x0D
66 #define MENELAUS_LDO_CTRL5		0x0E
67 #define MENELAUS_LDO_CTRL6		0x0F
68 #define MENELAUS_LDO_CTRL7		0x10
69 #define MENELAUS_LDO_CTRL8		0x11
70 #define MENELAUS_SLEEP_CTRL1		0x12
71 #define MENELAUS_SLEEP_CTRL2		0x13
72 #define MENELAUS_DEVICE_OFF		0x14
73 #define MENELAUS_OSC_CTRL		0x15
74 #define MENELAUS_DETECT_CTRL		0x16
75 #define MENELAUS_INT_MASK1		0x17
76 #define MENELAUS_INT_MASK2		0x18
77 #define MENELAUS_INT_STATUS1		0x19
78 #define MENELAUS_INT_STATUS2		0x1A
79 #define MENELAUS_INT_ACK1		0x1B
80 #define MENELAUS_INT_ACK2		0x1C
81 #define MENELAUS_GPIO_CTRL		0x1D
82 #define MENELAUS_GPIO_IN		0x1E
83 #define MENELAUS_GPIO_OUT		0x1F
84 #define MENELAUS_BBSMS			0x20
85 #define MENELAUS_RTC_CTRL		0x21
86 #define MENELAUS_RTC_UPDATE		0x22
87 #define MENELAUS_RTC_SEC		0x23
88 #define MENELAUS_RTC_MIN		0x24
89 #define MENELAUS_RTC_HR			0x25
90 #define MENELAUS_RTC_DAY		0x26
91 #define MENELAUS_RTC_MON		0x27
92 #define MENELAUS_RTC_YR			0x28
93 #define MENELAUS_RTC_WKDAY		0x29
94 #define MENELAUS_RTC_AL_SEC		0x2A
95 #define MENELAUS_RTC_AL_MIN		0x2B
96 #define MENELAUS_RTC_AL_HR		0x2C
97 #define MENELAUS_RTC_AL_DAY		0x2D
98 #define MENELAUS_RTC_AL_MON		0x2E
99 #define MENELAUS_RTC_AL_YR		0x2F
100 #define MENELAUS_RTC_COMP_MSB		0x30
101 #define MENELAUS_RTC_COMP_LSB		0x31
102 #define MENELAUS_S1_PULL_EN		0x32
103 #define MENELAUS_S1_PULL_DIR		0x33
104 #define MENELAUS_S2_PULL_EN		0x34
105 #define MENELAUS_S2_PULL_DIR		0x35
106 #define MENELAUS_MCT_CTRL1		0x36
107 #define MENELAUS_MCT_CTRL2		0x37
108 #define MENELAUS_MCT_CTRL3		0x38
109 #define MENELAUS_MCT_PIN_ST		0x39
110 #define MENELAUS_DEBOUNCE1		0x3A
111 
112 #define IH_MENELAUS_IRQS		12
113 #define MENELAUS_MMC_S1CD_IRQ		0	/* MMC slot 1 card change */
114 #define MENELAUS_MMC_S2CD_IRQ		1	/* MMC slot 2 card change */
115 #define MENELAUS_MMC_S1D1_IRQ		2	/* MMC DAT1 low in slot 1 */
116 #define MENELAUS_MMC_S2D1_IRQ		3	/* MMC DAT1 low in slot 2 */
117 #define MENELAUS_LOWBAT_IRQ		4	/* Low battery */
118 #define MENELAUS_HOTDIE_IRQ		5	/* Hot die detect */
119 #define MENELAUS_UVLO_IRQ		6	/* UVLO detect */
120 #define MENELAUS_TSHUT_IRQ		7	/* Thermal shutdown */
121 #define MENELAUS_RTCTMR_IRQ		8	/* RTC timer */
122 #define MENELAUS_RTCALM_IRQ		9	/* RTC alarm */
123 #define MENELAUS_RTCERR_IRQ		10	/* RTC error */
124 #define MENELAUS_PSHBTN_IRQ		11	/* Push button */
125 #define MENELAUS_RESERVED12_IRQ		12	/* Reserved */
126 #define MENELAUS_RESERVED13_IRQ		13	/* Reserved */
127 #define MENELAUS_RESERVED14_IRQ		14	/* Reserved */
128 #define MENELAUS_RESERVED15_IRQ		15	/* Reserved */
129 
130 static void menelaus_work(struct work_struct *_menelaus);
131 
132 struct menelaus_chip {
133 	struct mutex		lock;
134 	struct i2c_client	*client;
135 	struct work_struct	work;
136 #ifdef CONFIG_RTC_DRV_TWL92330
137 	struct rtc_device	*rtc;
138 	u8			rtc_control;
139 	unsigned		uie:1;
140 #endif
141 	unsigned		vcore_hw_mode:1;
142 	u8			mask1, mask2;
143 	void			(*handlers[16])(struct menelaus_chip *);
144 	void			(*mmc_callback)(void *data, u8 mask);
145 	void			*mmc_callback_data;
146 };
147 
148 static struct menelaus_chip *the_menelaus;
149 
150 static int menelaus_write_reg(int reg, u8 value)
151 {
152 	int val = i2c_smbus_write_byte_data(the_menelaus->client, reg, value);
153 
154 	if (val < 0) {
155 		pr_err(DRIVER_NAME ": write error");
156 		return val;
157 	}
158 
159 	return 0;
160 }
161 
162 static int menelaus_read_reg(int reg)
163 {
164 	int val = i2c_smbus_read_byte_data(the_menelaus->client, reg);
165 
166 	if (val < 0)
167 		pr_err(DRIVER_NAME ": read error");
168 
169 	return val;
170 }
171 
172 static int menelaus_enable_irq(int irq)
173 {
174 	if (irq > 7) {
175 		irq -= 8;
176 		the_menelaus->mask2 &= ~(1 << irq);
177 		return menelaus_write_reg(MENELAUS_INT_MASK2,
178 				the_menelaus->mask2);
179 	} else {
180 		the_menelaus->mask1 &= ~(1 << irq);
181 		return menelaus_write_reg(MENELAUS_INT_MASK1,
182 				the_menelaus->mask1);
183 	}
184 }
185 
186 static int menelaus_disable_irq(int irq)
187 {
188 	if (irq > 7) {
189 		irq -= 8;
190 		the_menelaus->mask2 |= (1 << irq);
191 		return menelaus_write_reg(MENELAUS_INT_MASK2,
192 				the_menelaus->mask2);
193 	} else {
194 		the_menelaus->mask1 |= (1 << irq);
195 		return menelaus_write_reg(MENELAUS_INT_MASK1,
196 				the_menelaus->mask1);
197 	}
198 }
199 
200 static int menelaus_ack_irq(int irq)
201 {
202 	if (irq > 7)
203 		return menelaus_write_reg(MENELAUS_INT_ACK2, 1 << (irq - 8));
204 	else
205 		return menelaus_write_reg(MENELAUS_INT_ACK1, 1 << irq);
206 }
207 
208 /* Adds a handler for an interrupt. Does not run in interrupt context */
209 static int menelaus_add_irq_work(int irq,
210 		void (*handler)(struct menelaus_chip *))
211 {
212 	int ret = 0;
213 
214 	mutex_lock(&the_menelaus->lock);
215 	the_menelaus->handlers[irq] = handler;
216 	ret = menelaus_enable_irq(irq);
217 	mutex_unlock(&the_menelaus->lock);
218 
219 	return ret;
220 }
221 
222 /* Removes handler for an interrupt */
223 static int menelaus_remove_irq_work(int irq)
224 {
225 	int ret = 0;
226 
227 	mutex_lock(&the_menelaus->lock);
228 	ret = menelaus_disable_irq(irq);
229 	the_menelaus->handlers[irq] = NULL;
230 	mutex_unlock(&the_menelaus->lock);
231 
232 	return ret;
233 }
234 
235 /*
236  * Gets scheduled when a card detect interrupt happens. Note that in some cases
237  * this line is wired to card cover switch rather than the card detect switch
238  * in each slot. In this case the cards are not seen by menelaus.
239  * FIXME: Add handling for D1 too
240  */
241 static void menelaus_mmc_cd_work(struct menelaus_chip *menelaus_hw)
242 {
243 	int reg;
244 	unsigned char card_mask = 0;
245 
246 	reg = menelaus_read_reg(MENELAUS_MCT_PIN_ST);
247 	if (reg < 0)
248 		return;
249 
250 	if (!(reg & 0x1))
251 		card_mask |= (1 << 0);
252 
253 	if (!(reg & 0x2))
254 		card_mask |= (1 << 1);
255 
256 	if (menelaus_hw->mmc_callback)
257 		menelaus_hw->mmc_callback(menelaus_hw->mmc_callback_data,
258 					  card_mask);
259 }
260 
261 /*
262  * Toggles the MMC slots between open-drain and push-pull mode.
263  */
264 int menelaus_set_mmc_opendrain(int slot, int enable)
265 {
266 	int ret, val;
267 
268 	if (slot != 1 && slot != 2)
269 		return -EINVAL;
270 	mutex_lock(&the_menelaus->lock);
271 	ret = menelaus_read_reg(MENELAUS_MCT_CTRL1);
272 	if (ret < 0) {
273 		mutex_unlock(&the_menelaus->lock);
274 		return ret;
275 	}
276 	val = ret;
277 	if (slot == 1) {
278 		if (enable)
279 			val |= 1 << 2;
280 		else
281 			val &= ~(1 << 2);
282 	} else {
283 		if (enable)
284 			val |= 1 << 3;
285 		else
286 			val &= ~(1 << 3);
287 	}
288 	ret = menelaus_write_reg(MENELAUS_MCT_CTRL1, val);
289 	mutex_unlock(&the_menelaus->lock);
290 
291 	return ret;
292 }
293 EXPORT_SYMBOL(menelaus_set_mmc_opendrain);
294 
295 int menelaus_set_slot_sel(int enable)
296 {
297 	int ret;
298 
299 	mutex_lock(&the_menelaus->lock);
300 	ret = menelaus_read_reg(MENELAUS_GPIO_CTRL);
301 	if (ret < 0)
302 		goto out;
303 	ret |= 0x02;
304 	if (enable)
305 		ret |= 1 << 5;
306 	else
307 		ret &= ~(1 << 5);
308 	ret = menelaus_write_reg(MENELAUS_GPIO_CTRL, ret);
309 out:
310 	mutex_unlock(&the_menelaus->lock);
311 	return ret;
312 }
313 EXPORT_SYMBOL(menelaus_set_slot_sel);
314 
315 int menelaus_set_mmc_slot(int slot, int enable, int power, int cd_en)
316 {
317 	int ret, val;
318 
319 	if (slot != 1 && slot != 2)
320 		return -EINVAL;
321 	if (power >= 3)
322 		return -EINVAL;
323 
324 	mutex_lock(&the_menelaus->lock);
325 
326 	ret = menelaus_read_reg(MENELAUS_MCT_CTRL2);
327 	if (ret < 0)
328 		goto out;
329 	val = ret;
330 	if (slot == 1) {
331 		if (cd_en)
332 			val |= (1 << 4) | (1 << 6);
333 		else
334 			val &= ~((1 << 4) | (1 << 6));
335 	} else {
336 		if (cd_en)
337 			val |= (1 << 5) | (1 << 7);
338 		else
339 			val &= ~((1 << 5) | (1 << 7));
340 	}
341 	ret = menelaus_write_reg(MENELAUS_MCT_CTRL2, val);
342 	if (ret < 0)
343 		goto out;
344 
345 	ret = menelaus_read_reg(MENELAUS_MCT_CTRL3);
346 	if (ret < 0)
347 		goto out;
348 	val = ret;
349 	if (slot == 1) {
350 		if (enable)
351 			val |= 1 << 0;
352 		else
353 			val &= ~(1 << 0);
354 	} else {
355 		int b;
356 
357 		if (enable)
358 			ret |= 1 << 1;
359 		else
360 			ret &= ~(1 << 1);
361 		b = menelaus_read_reg(MENELAUS_MCT_CTRL2);
362 		b &= ~0x03;
363 		b |= power;
364 		ret = menelaus_write_reg(MENELAUS_MCT_CTRL2, b);
365 		if (ret < 0)
366 			goto out;
367 	}
368 	/* Disable autonomous shutdown */
369 	val &= ~(0x03 << 2);
370 	ret = menelaus_write_reg(MENELAUS_MCT_CTRL3, val);
371 out:
372 	mutex_unlock(&the_menelaus->lock);
373 	return ret;
374 }
375 EXPORT_SYMBOL(menelaus_set_mmc_slot);
376 
377 int menelaus_register_mmc_callback(void (*callback)(void *data, u8 card_mask),
378 				   void *data)
379 {
380 	int ret = 0;
381 
382 	the_menelaus->mmc_callback_data = data;
383 	the_menelaus->mmc_callback = callback;
384 	ret = menelaus_add_irq_work(MENELAUS_MMC_S1CD_IRQ,
385 				    menelaus_mmc_cd_work);
386 	if (ret < 0)
387 		return ret;
388 	ret = menelaus_add_irq_work(MENELAUS_MMC_S2CD_IRQ,
389 				    menelaus_mmc_cd_work);
390 	if (ret < 0)
391 		return ret;
392 	ret = menelaus_add_irq_work(MENELAUS_MMC_S1D1_IRQ,
393 				    menelaus_mmc_cd_work);
394 	if (ret < 0)
395 		return ret;
396 	ret = menelaus_add_irq_work(MENELAUS_MMC_S2D1_IRQ,
397 				    menelaus_mmc_cd_work);
398 
399 	return ret;
400 }
401 EXPORT_SYMBOL(menelaus_register_mmc_callback);
402 
403 void menelaus_unregister_mmc_callback(void)
404 {
405 	menelaus_remove_irq_work(MENELAUS_MMC_S1CD_IRQ);
406 	menelaus_remove_irq_work(MENELAUS_MMC_S2CD_IRQ);
407 	menelaus_remove_irq_work(MENELAUS_MMC_S1D1_IRQ);
408 	menelaus_remove_irq_work(MENELAUS_MMC_S2D1_IRQ);
409 
410 	the_menelaus->mmc_callback = NULL;
411 	the_menelaus->mmc_callback_data = 0;
412 }
413 EXPORT_SYMBOL(menelaus_unregister_mmc_callback);
414 
415 struct menelaus_vtg {
416 	const char *name;
417 	u8 vtg_reg;
418 	u8 vtg_shift;
419 	u8 vtg_bits;
420 	u8 mode_reg;
421 };
422 
423 struct menelaus_vtg_value {
424 	u16 vtg;
425 	u16 val;
426 };
427 
428 static int menelaus_set_voltage(const struct menelaus_vtg *vtg, int mV,
429 				int vtg_val, int mode)
430 {
431 	int val, ret;
432 	struct i2c_client *c = the_menelaus->client;
433 
434 	mutex_lock(&the_menelaus->lock);
435 	if (vtg == 0)
436 		goto set_voltage;
437 
438 	ret = menelaus_read_reg(vtg->vtg_reg);
439 	if (ret < 0)
440 		goto out;
441 	val = ret & ~(((1 << vtg->vtg_bits) - 1) << vtg->vtg_shift);
442 	val |= vtg_val << vtg->vtg_shift;
443 
444 	dev_dbg(&c->dev, "Setting voltage '%s'"
445 			 "to %d mV (reg 0x%02x, val 0x%02x)\n",
446 			vtg->name, mV, vtg->vtg_reg, val);
447 
448 	ret = menelaus_write_reg(vtg->vtg_reg, val);
449 	if (ret < 0)
450 		goto out;
451 set_voltage:
452 	ret = menelaus_write_reg(vtg->mode_reg, mode);
453 out:
454 	mutex_unlock(&the_menelaus->lock);
455 	if (ret == 0) {
456 		/* Wait for voltage to stabilize */
457 		msleep(1);
458 	}
459 	return ret;
460 }
461 
462 static int menelaus_get_vtg_value(int vtg, const struct menelaus_vtg_value *tbl,
463 				  int n)
464 {
465 	int i;
466 
467 	for (i = 0; i < n; i++, tbl++)
468 		if (tbl->vtg == vtg)
469 			return tbl->val;
470 	return -EINVAL;
471 }
472 
473 /*
474  * Vcore can be programmed in two ways:
475  * SW-controlled: Required voltage is programmed into VCORE_CTRL1
476  * HW-controlled: Required range (roof-floor) is programmed into VCORE_CTRL3
477  * and VCORE_CTRL4
478  *
479  * Call correct 'set' function accordingly
480  */
481 
482 static const struct menelaus_vtg_value vcore_values[] = {
483 	{ 1000, 0 },
484 	{ 1025, 1 },
485 	{ 1050, 2 },
486 	{ 1075, 3 },
487 	{ 1100, 4 },
488 	{ 1125, 5 },
489 	{ 1150, 6 },
490 	{ 1175, 7 },
491 	{ 1200, 8 },
492 	{ 1225, 9 },
493 	{ 1250, 10 },
494 	{ 1275, 11 },
495 	{ 1300, 12 },
496 	{ 1325, 13 },
497 	{ 1350, 14 },
498 	{ 1375, 15 },
499 	{ 1400, 16 },
500 	{ 1425, 17 },
501 	{ 1450, 18 },
502 };
503 
504 int menelaus_set_vcore_sw(unsigned int mV)
505 {
506 	int val, ret;
507 	struct i2c_client *c = the_menelaus->client;
508 
509 	val = menelaus_get_vtg_value(mV, vcore_values,
510 				     ARRAY_SIZE(vcore_values));
511 	if (val < 0)
512 		return -EINVAL;
513 
514 	dev_dbg(&c->dev, "Setting VCORE to %d mV (val 0x%02x)\n", mV, val);
515 
516 	/* Set SW mode and the voltage in one go. */
517 	mutex_lock(&the_menelaus->lock);
518 	ret = menelaus_write_reg(MENELAUS_VCORE_CTRL1, val);
519 	if (ret == 0)
520 		the_menelaus->vcore_hw_mode = 0;
521 	mutex_unlock(&the_menelaus->lock);
522 	msleep(1);
523 
524 	return ret;
525 }
526 
527 int menelaus_set_vcore_hw(unsigned int roof_mV, unsigned int floor_mV)
528 {
529 	int fval, rval, val, ret;
530 	struct i2c_client *c = the_menelaus->client;
531 
532 	rval = menelaus_get_vtg_value(roof_mV, vcore_values,
533 				      ARRAY_SIZE(vcore_values));
534 	if (rval < 0)
535 		return -EINVAL;
536 	fval = menelaus_get_vtg_value(floor_mV, vcore_values,
537 				      ARRAY_SIZE(vcore_values));
538 	if (fval < 0)
539 		return -EINVAL;
540 
541 	dev_dbg(&c->dev, "Setting VCORE FLOOR to %d mV and ROOF to %d mV\n",
542 	       floor_mV, roof_mV);
543 
544 	mutex_lock(&the_menelaus->lock);
545 	ret = menelaus_write_reg(MENELAUS_VCORE_CTRL3, fval);
546 	if (ret < 0)
547 		goto out;
548 	ret = menelaus_write_reg(MENELAUS_VCORE_CTRL4, rval);
549 	if (ret < 0)
550 		goto out;
551 	if (!the_menelaus->vcore_hw_mode) {
552 		val = menelaus_read_reg(MENELAUS_VCORE_CTRL1);
553 		/* HW mode, turn OFF byte comparator */
554 		val |= ((1 << 7) | (1 << 5));
555 		ret = menelaus_write_reg(MENELAUS_VCORE_CTRL1, val);
556 		the_menelaus->vcore_hw_mode = 1;
557 	}
558 	msleep(1);
559 out:
560 	mutex_unlock(&the_menelaus->lock);
561 	return ret;
562 }
563 
564 static const struct menelaus_vtg vmem_vtg = {
565 	.name = "VMEM",
566 	.vtg_reg = MENELAUS_LDO_CTRL1,
567 	.vtg_shift = 0,
568 	.vtg_bits = 2,
569 	.mode_reg = MENELAUS_LDO_CTRL3,
570 };
571 
572 static const struct menelaus_vtg_value vmem_values[] = {
573 	{ 1500, 0 },
574 	{ 1800, 1 },
575 	{ 1900, 2 },
576 	{ 2500, 3 },
577 };
578 
579 int menelaus_set_vmem(unsigned int mV)
580 {
581 	int val;
582 
583 	if (mV == 0)
584 		return menelaus_set_voltage(&vmem_vtg, 0, 0, 0);
585 
586 	val = menelaus_get_vtg_value(mV, vmem_values, ARRAY_SIZE(vmem_values));
587 	if (val < 0)
588 		return -EINVAL;
589 	return menelaus_set_voltage(&vmem_vtg, mV, val, 0x02);
590 }
591 EXPORT_SYMBOL(menelaus_set_vmem);
592 
593 static const struct menelaus_vtg vio_vtg = {
594 	.name = "VIO",
595 	.vtg_reg = MENELAUS_LDO_CTRL1,
596 	.vtg_shift = 2,
597 	.vtg_bits = 2,
598 	.mode_reg = MENELAUS_LDO_CTRL4,
599 };
600 
601 static const struct menelaus_vtg_value vio_values[] = {
602 	{ 1500, 0 },
603 	{ 1800, 1 },
604 	{ 2500, 2 },
605 	{ 2800, 3 },
606 };
607 
608 int menelaus_set_vio(unsigned int mV)
609 {
610 	int val;
611 
612 	if (mV == 0)
613 		return menelaus_set_voltage(&vio_vtg, 0, 0, 0);
614 
615 	val = menelaus_get_vtg_value(mV, vio_values, ARRAY_SIZE(vio_values));
616 	if (val < 0)
617 		return -EINVAL;
618 	return menelaus_set_voltage(&vio_vtg, mV, val, 0x02);
619 }
620 EXPORT_SYMBOL(menelaus_set_vio);
621 
622 static const struct menelaus_vtg_value vdcdc_values[] = {
623 	{ 1500, 0 },
624 	{ 1800, 1 },
625 	{ 2000, 2 },
626 	{ 2200, 3 },
627 	{ 2400, 4 },
628 	{ 2800, 5 },
629 	{ 3000, 6 },
630 	{ 3300, 7 },
631 };
632 
633 static const struct menelaus_vtg vdcdc2_vtg = {
634 	.name = "VDCDC2",
635 	.vtg_reg = MENELAUS_DCDC_CTRL1,
636 	.vtg_shift = 0,
637 	.vtg_bits = 3,
638 	.mode_reg = MENELAUS_DCDC_CTRL2,
639 };
640 
641 static const struct menelaus_vtg vdcdc3_vtg = {
642 	.name = "VDCDC3",
643 	.vtg_reg = MENELAUS_DCDC_CTRL1,
644 	.vtg_shift = 3,
645 	.vtg_bits = 3,
646 	.mode_reg = MENELAUS_DCDC_CTRL3,
647 };
648 
649 int menelaus_set_vdcdc(int dcdc, unsigned int mV)
650 {
651 	const struct menelaus_vtg *vtg;
652 	int val;
653 
654 	if (dcdc != 2 && dcdc != 3)
655 		return -EINVAL;
656 	if (dcdc == 2)
657 		vtg = &vdcdc2_vtg;
658 	else
659 		vtg = &vdcdc3_vtg;
660 
661 	if (mV == 0)
662 		return menelaus_set_voltage(vtg, 0, 0, 0);
663 
664 	val = menelaus_get_vtg_value(mV, vdcdc_values,
665 				     ARRAY_SIZE(vdcdc_values));
666 	if (val < 0)
667 		return -EINVAL;
668 	return menelaus_set_voltage(vtg, mV, val, 0x03);
669 }
670 
671 static const struct menelaus_vtg_value vmmc_values[] = {
672 	{ 1850, 0 },
673 	{ 2800, 1 },
674 	{ 3000, 2 },
675 	{ 3100, 3 },
676 };
677 
678 static const struct menelaus_vtg vmmc_vtg = {
679 	.name = "VMMC",
680 	.vtg_reg = MENELAUS_LDO_CTRL1,
681 	.vtg_shift = 6,
682 	.vtg_bits = 2,
683 	.mode_reg = MENELAUS_LDO_CTRL7,
684 };
685 
686 int menelaus_set_vmmc(unsigned int mV)
687 {
688 	int val;
689 
690 	if (mV == 0)
691 		return menelaus_set_voltage(&vmmc_vtg, 0, 0, 0);
692 
693 	val = menelaus_get_vtg_value(mV, vmmc_values, ARRAY_SIZE(vmmc_values));
694 	if (val < 0)
695 		return -EINVAL;
696 	return menelaus_set_voltage(&vmmc_vtg, mV, val, 0x02);
697 }
698 EXPORT_SYMBOL(menelaus_set_vmmc);
699 
700 
701 static const struct menelaus_vtg_value vaux_values[] = {
702 	{ 1500, 0 },
703 	{ 1800, 1 },
704 	{ 2500, 2 },
705 	{ 2800, 3 },
706 };
707 
708 static const struct menelaus_vtg vaux_vtg = {
709 	.name = "VAUX",
710 	.vtg_reg = MENELAUS_LDO_CTRL1,
711 	.vtg_shift = 4,
712 	.vtg_bits = 2,
713 	.mode_reg = MENELAUS_LDO_CTRL6,
714 };
715 
716 int menelaus_set_vaux(unsigned int mV)
717 {
718 	int val;
719 
720 	if (mV == 0)
721 		return menelaus_set_voltage(&vaux_vtg, 0, 0, 0);
722 
723 	val = menelaus_get_vtg_value(mV, vaux_values, ARRAY_SIZE(vaux_values));
724 	if (val < 0)
725 		return -EINVAL;
726 	return menelaus_set_voltage(&vaux_vtg, mV, val, 0x02);
727 }
728 EXPORT_SYMBOL(menelaus_set_vaux);
729 
730 int menelaus_get_slot_pin_states(void)
731 {
732 	return menelaus_read_reg(MENELAUS_MCT_PIN_ST);
733 }
734 EXPORT_SYMBOL(menelaus_get_slot_pin_states);
735 
736 int menelaus_set_regulator_sleep(int enable, u32 val)
737 {
738 	int t, ret;
739 	struct i2c_client *c = the_menelaus->client;
740 
741 	mutex_lock(&the_menelaus->lock);
742 	ret = menelaus_write_reg(MENELAUS_SLEEP_CTRL2, val);
743 	if (ret < 0)
744 		goto out;
745 
746 	dev_dbg(&c->dev, "regulator sleep configuration: %02x\n", val);
747 
748 	ret = menelaus_read_reg(MENELAUS_GPIO_CTRL);
749 	if (ret < 0)
750 		goto out;
751 	t = ((1 << 6) | 0x04);
752 	if (enable)
753 		ret |= t;
754 	else
755 		ret &= ~t;
756 	ret = menelaus_write_reg(MENELAUS_GPIO_CTRL, ret);
757 out:
758 	mutex_unlock(&the_menelaus->lock);
759 	return ret;
760 }
761 
762 /*-----------------------------------------------------------------------*/
763 
764 /* Handles Menelaus interrupts. Does not run in interrupt context */
765 static void menelaus_work(struct work_struct *_menelaus)
766 {
767 	struct menelaus_chip *menelaus =
768 			container_of(_menelaus, struct menelaus_chip, work);
769 	void (*handler)(struct menelaus_chip *menelaus);
770 
771 	while (1) {
772 		unsigned isr;
773 
774 		isr = (menelaus_read_reg(MENELAUS_INT_STATUS2)
775 				& ~menelaus->mask2) << 8;
776 		isr |= menelaus_read_reg(MENELAUS_INT_STATUS1)
777 				& ~menelaus->mask1;
778 		if (!isr)
779 			break;
780 
781 		while (isr) {
782 			int irq = fls(isr) - 1;
783 			isr &= ~(1 << irq);
784 
785 			mutex_lock(&menelaus->lock);
786 			menelaus_disable_irq(irq);
787 			menelaus_ack_irq(irq);
788 			handler = menelaus->handlers[irq];
789 			if (handler)
790 				handler(menelaus);
791 			menelaus_enable_irq(irq);
792 			mutex_unlock(&menelaus->lock);
793 		}
794 	}
795 	enable_irq(menelaus->client->irq);
796 }
797 
798 /*
799  * We cannot use I2C in interrupt context, so we just schedule work.
800  */
801 static irqreturn_t menelaus_irq(int irq, void *_menelaus)
802 {
803 	struct menelaus_chip *menelaus = _menelaus;
804 
805 	disable_irq_nosync(irq);
806 	(void)schedule_work(&menelaus->work);
807 
808 	return IRQ_HANDLED;
809 }
810 
811 /*-----------------------------------------------------------------------*/
812 
813 /*
814  * The RTC needs to be set once, then it runs on backup battery power.
815  * It supports alarms, including system wake alarms (from some modes);
816  * and 1/second IRQs if requested.
817  */
818 #ifdef CONFIG_RTC_DRV_TWL92330
819 
820 #define RTC_CTRL_RTC_EN		(1 << 0)
821 #define RTC_CTRL_AL_EN		(1 << 1)
822 #define RTC_CTRL_MODE12		(1 << 2)
823 #define RTC_CTRL_EVERY_MASK	(3 << 3)
824 #define RTC_CTRL_EVERY_SEC	(0 << 3)
825 #define RTC_CTRL_EVERY_MIN	(1 << 3)
826 #define RTC_CTRL_EVERY_HR	(2 << 3)
827 #define RTC_CTRL_EVERY_DAY	(3 << 3)
828 
829 #define RTC_UPDATE_EVERY	0x08
830 
831 #define RTC_HR_PM		(1 << 7)
832 
833 static void menelaus_to_time(char *regs, struct rtc_time *t)
834 {
835 	t->tm_sec = bcd2bin(regs[0]);
836 	t->tm_min = bcd2bin(regs[1]);
837 	if (the_menelaus->rtc_control & RTC_CTRL_MODE12) {
838 		t->tm_hour = bcd2bin(regs[2] & 0x1f) - 1;
839 		if (regs[2] & RTC_HR_PM)
840 			t->tm_hour += 12;
841 	} else
842 		t->tm_hour = bcd2bin(regs[2] & 0x3f);
843 	t->tm_mday = bcd2bin(regs[3]);
844 	t->tm_mon = bcd2bin(regs[4]) - 1;
845 	t->tm_year = bcd2bin(regs[5]) + 100;
846 }
847 
848 static int time_to_menelaus(struct rtc_time *t, int regnum)
849 {
850 	int	hour, status;
851 
852 	status = menelaus_write_reg(regnum++, bin2bcd(t->tm_sec));
853 	if (status < 0)
854 		goto fail;
855 
856 	status = menelaus_write_reg(regnum++, bin2bcd(t->tm_min));
857 	if (status < 0)
858 		goto fail;
859 
860 	if (the_menelaus->rtc_control & RTC_CTRL_MODE12) {
861 		hour = t->tm_hour + 1;
862 		if (hour > 12)
863 			hour = RTC_HR_PM | bin2bcd(hour - 12);
864 		else
865 			hour = bin2bcd(hour);
866 	} else
867 		hour = bin2bcd(t->tm_hour);
868 	status = menelaus_write_reg(regnum++, hour);
869 	if (status < 0)
870 		goto fail;
871 
872 	status = menelaus_write_reg(regnum++, bin2bcd(t->tm_mday));
873 	if (status < 0)
874 		goto fail;
875 
876 	status = menelaus_write_reg(regnum++, bin2bcd(t->tm_mon + 1));
877 	if (status < 0)
878 		goto fail;
879 
880 	status = menelaus_write_reg(regnum++, bin2bcd(t->tm_year - 100));
881 	if (status < 0)
882 		goto fail;
883 
884 	return 0;
885 fail:
886 	dev_err(&the_menelaus->client->dev, "rtc write reg %02x, err %d\n",
887 			--regnum, status);
888 	return status;
889 }
890 
891 static int menelaus_read_time(struct device *dev, struct rtc_time *t)
892 {
893 	struct i2c_msg	msg[2];
894 	char		regs[7];
895 	int		status;
896 
897 	/* block read date and time registers */
898 	regs[0] = MENELAUS_RTC_SEC;
899 
900 	msg[0].addr = MENELAUS_I2C_ADDRESS;
901 	msg[0].flags = 0;
902 	msg[0].len = 1;
903 	msg[0].buf = regs;
904 
905 	msg[1].addr = MENELAUS_I2C_ADDRESS;
906 	msg[1].flags = I2C_M_RD;
907 	msg[1].len = sizeof(regs);
908 	msg[1].buf = regs;
909 
910 	status = i2c_transfer(the_menelaus->client->adapter, msg, 2);
911 	if (status != 2) {
912 		dev_err(dev, "%s error %d\n", "read", status);
913 		return -EIO;
914 	}
915 
916 	menelaus_to_time(regs, t);
917 	t->tm_wday = bcd2bin(regs[6]);
918 
919 	return 0;
920 }
921 
922 static int menelaus_set_time(struct device *dev, struct rtc_time *t)
923 {
924 	int		status;
925 
926 	/* write date and time registers */
927 	status = time_to_menelaus(t, MENELAUS_RTC_SEC);
928 	if (status < 0)
929 		return status;
930 	status = menelaus_write_reg(MENELAUS_RTC_WKDAY, bin2bcd(t->tm_wday));
931 	if (status < 0) {
932 		dev_err(&the_menelaus->client->dev, "rtc write reg %02x "
933 				"err %d\n", MENELAUS_RTC_WKDAY, status);
934 		return status;
935 	}
936 
937 	/* now commit the write */
938 	status = menelaus_write_reg(MENELAUS_RTC_UPDATE, RTC_UPDATE_EVERY);
939 	if (status < 0)
940 		dev_err(&the_menelaus->client->dev, "rtc commit time, err %d\n",
941 				status);
942 
943 	return 0;
944 }
945 
946 static int menelaus_read_alarm(struct device *dev, struct rtc_wkalrm *w)
947 {
948 	struct i2c_msg	msg[2];
949 	char		regs[6];
950 	int		status;
951 
952 	/* block read alarm registers */
953 	regs[0] = MENELAUS_RTC_AL_SEC;
954 
955 	msg[0].addr = MENELAUS_I2C_ADDRESS;
956 	msg[0].flags = 0;
957 	msg[0].len = 1;
958 	msg[0].buf = regs;
959 
960 	msg[1].addr = MENELAUS_I2C_ADDRESS;
961 	msg[1].flags = I2C_M_RD;
962 	msg[1].len = sizeof(regs);
963 	msg[1].buf = regs;
964 
965 	status = i2c_transfer(the_menelaus->client->adapter, msg, 2);
966 	if (status != 2) {
967 		dev_err(dev, "%s error %d\n", "alarm read", status);
968 		return -EIO;
969 	}
970 
971 	menelaus_to_time(regs, &w->time);
972 
973 	w->enabled = !!(the_menelaus->rtc_control & RTC_CTRL_AL_EN);
974 
975 	/* NOTE we *could* check if actually pending... */
976 	w->pending = 0;
977 
978 	return 0;
979 }
980 
981 static int menelaus_set_alarm(struct device *dev, struct rtc_wkalrm *w)
982 {
983 	int		status;
984 
985 	if (the_menelaus->client->irq <= 0 && w->enabled)
986 		return -ENODEV;
987 
988 	/* clear previous alarm enable */
989 	if (the_menelaus->rtc_control & RTC_CTRL_AL_EN) {
990 		the_menelaus->rtc_control &= ~RTC_CTRL_AL_EN;
991 		status = menelaus_write_reg(MENELAUS_RTC_CTRL,
992 				the_menelaus->rtc_control);
993 		if (status < 0)
994 			return status;
995 	}
996 
997 	/* write alarm registers */
998 	status = time_to_menelaus(&w->time, MENELAUS_RTC_AL_SEC);
999 	if (status < 0)
1000 		return status;
1001 
1002 	/* enable alarm if requested */
1003 	if (w->enabled) {
1004 		the_menelaus->rtc_control |= RTC_CTRL_AL_EN;
1005 		status = menelaus_write_reg(MENELAUS_RTC_CTRL,
1006 				the_menelaus->rtc_control);
1007 	}
1008 
1009 	return status;
1010 }
1011 
1012 #ifdef CONFIG_RTC_INTF_DEV
1013 
1014 static void menelaus_rtc_update_work(struct menelaus_chip *m)
1015 {
1016 	/* report 1/sec update */
1017 	local_irq_disable();
1018 	rtc_update_irq(m->rtc, 1, RTC_IRQF | RTC_UF);
1019 	local_irq_enable();
1020 }
1021 
1022 static int menelaus_ioctl(struct device *dev, unsigned cmd, unsigned long arg)
1023 {
1024 	int	status;
1025 
1026 	if (the_menelaus->client->irq <= 0)
1027 		return -ENOIOCTLCMD;
1028 
1029 	switch (cmd) {
1030 	/* alarm IRQ */
1031 	case RTC_AIE_ON:
1032 		if (the_menelaus->rtc_control & RTC_CTRL_AL_EN)
1033 			return 0;
1034 		the_menelaus->rtc_control |= RTC_CTRL_AL_EN;
1035 		break;
1036 	case RTC_AIE_OFF:
1037 		if (!(the_menelaus->rtc_control & RTC_CTRL_AL_EN))
1038 			return 0;
1039 		the_menelaus->rtc_control &= ~RTC_CTRL_AL_EN;
1040 		break;
1041 	/* 1/second "update" IRQ */
1042 	case RTC_UIE_ON:
1043 		if (the_menelaus->uie)
1044 			return 0;
1045 		status = menelaus_remove_irq_work(MENELAUS_RTCTMR_IRQ);
1046 		status = menelaus_add_irq_work(MENELAUS_RTCTMR_IRQ,
1047 				menelaus_rtc_update_work);
1048 		if (status == 0)
1049 			the_menelaus->uie = 1;
1050 		return status;
1051 	case RTC_UIE_OFF:
1052 		if (!the_menelaus->uie)
1053 			return 0;
1054 		status = menelaus_remove_irq_work(MENELAUS_RTCTMR_IRQ);
1055 		if (status == 0)
1056 			the_menelaus->uie = 0;
1057 		return status;
1058 	default:
1059 		return -ENOIOCTLCMD;
1060 	}
1061 	return menelaus_write_reg(MENELAUS_RTC_CTRL, the_menelaus->rtc_control);
1062 }
1063 
1064 #else
1065 #define menelaus_ioctl	NULL
1066 #endif
1067 
1068 /* REVISIT no compensation register support ... */
1069 
1070 static const struct rtc_class_ops menelaus_rtc_ops = {
1071 	.ioctl			= menelaus_ioctl,
1072 	.read_time		= menelaus_read_time,
1073 	.set_time		= menelaus_set_time,
1074 	.read_alarm		= menelaus_read_alarm,
1075 	.set_alarm		= menelaus_set_alarm,
1076 };
1077 
1078 static void menelaus_rtc_alarm_work(struct menelaus_chip *m)
1079 {
1080 	/* report alarm */
1081 	local_irq_disable();
1082 	rtc_update_irq(m->rtc, 1, RTC_IRQF | RTC_AF);
1083 	local_irq_enable();
1084 
1085 	/* then disable it; alarms are oneshot */
1086 	the_menelaus->rtc_control &= ~RTC_CTRL_AL_EN;
1087 	menelaus_write_reg(MENELAUS_RTC_CTRL, the_menelaus->rtc_control);
1088 }
1089 
1090 static inline void menelaus_rtc_init(struct menelaus_chip *m)
1091 {
1092 	int	alarm = (m->client->irq > 0);
1093 
1094 	/* assume 32KDETEN pin is pulled high */
1095 	if (!(menelaus_read_reg(MENELAUS_OSC_CTRL) & 0x80)) {
1096 		dev_dbg(&m->client->dev, "no 32k oscillator\n");
1097 		return;
1098 	}
1099 
1100 	/* support RTC alarm; it can issue wakeups */
1101 	if (alarm) {
1102 		if (menelaus_add_irq_work(MENELAUS_RTCALM_IRQ,
1103 				menelaus_rtc_alarm_work) < 0) {
1104 			dev_err(&m->client->dev, "can't handle RTC alarm\n");
1105 			return;
1106 		}
1107 		device_init_wakeup(&m->client->dev, 1);
1108 	}
1109 
1110 	/* be sure RTC is enabled; allow 1/sec irqs; leave 12hr mode alone */
1111 	m->rtc_control = menelaus_read_reg(MENELAUS_RTC_CTRL);
1112 	if (!(m->rtc_control & RTC_CTRL_RTC_EN)
1113 			|| (m->rtc_control & RTC_CTRL_AL_EN)
1114 			|| (m->rtc_control & RTC_CTRL_EVERY_MASK)) {
1115 		if (!(m->rtc_control & RTC_CTRL_RTC_EN)) {
1116 			dev_warn(&m->client->dev, "rtc clock needs setting\n");
1117 			m->rtc_control |= RTC_CTRL_RTC_EN;
1118 		}
1119 		m->rtc_control &= ~RTC_CTRL_EVERY_MASK;
1120 		m->rtc_control &= ~RTC_CTRL_AL_EN;
1121 		menelaus_write_reg(MENELAUS_RTC_CTRL, m->rtc_control);
1122 	}
1123 
1124 	m->rtc = rtc_device_register(DRIVER_NAME,
1125 			&m->client->dev,
1126 			&menelaus_rtc_ops, THIS_MODULE);
1127 	if (IS_ERR(m->rtc)) {
1128 		if (alarm) {
1129 			menelaus_remove_irq_work(MENELAUS_RTCALM_IRQ);
1130 			device_init_wakeup(&m->client->dev, 0);
1131 		}
1132 		dev_err(&m->client->dev, "can't register RTC: %d\n",
1133 				(int) PTR_ERR(m->rtc));
1134 		the_menelaus->rtc = NULL;
1135 	}
1136 }
1137 
1138 #else
1139 
1140 static inline void menelaus_rtc_init(struct menelaus_chip *m)
1141 {
1142 	/* nothing */
1143 }
1144 
1145 #endif
1146 
1147 /*-----------------------------------------------------------------------*/
1148 
1149 static struct i2c_driver menelaus_i2c_driver;
1150 
1151 static int menelaus_probe(struct i2c_client *client,
1152 			  const struct i2c_device_id *id)
1153 {
1154 	struct menelaus_chip	*menelaus;
1155 	int			rev = 0, val;
1156 	int			err = 0;
1157 	struct menelaus_platform_data *menelaus_pdata =
1158 					client->dev.platform_data;
1159 
1160 	if (the_menelaus) {
1161 		dev_dbg(&client->dev, "only one %s for now\n",
1162 				DRIVER_NAME);
1163 		return -ENODEV;
1164 	}
1165 
1166 	menelaus = kzalloc(sizeof *menelaus, GFP_KERNEL);
1167 	if (!menelaus)
1168 		return -ENOMEM;
1169 
1170 	i2c_set_clientdata(client, menelaus);
1171 
1172 	the_menelaus = menelaus;
1173 	menelaus->client = client;
1174 
1175 	/* If a true probe check the device */
1176 	rev = menelaus_read_reg(MENELAUS_REV);
1177 	if (rev < 0) {
1178 		pr_err(DRIVER_NAME ": device not found");
1179 		err = -ENODEV;
1180 		goto fail1;
1181 	}
1182 
1183 	/* Ack and disable all Menelaus interrupts */
1184 	menelaus_write_reg(MENELAUS_INT_ACK1, 0xff);
1185 	menelaus_write_reg(MENELAUS_INT_ACK2, 0xff);
1186 	menelaus_write_reg(MENELAUS_INT_MASK1, 0xff);
1187 	menelaus_write_reg(MENELAUS_INT_MASK2, 0xff);
1188 	menelaus->mask1 = 0xff;
1189 	menelaus->mask2 = 0xff;
1190 
1191 	/* Set output buffer strengths */
1192 	menelaus_write_reg(MENELAUS_MCT_CTRL1, 0x73);
1193 
1194 	if (client->irq > 0) {
1195 		err = request_irq(client->irq, menelaus_irq, IRQF_DISABLED,
1196 				  DRIVER_NAME, menelaus);
1197 		if (err) {
1198 			dev_dbg(&client->dev,  "can't get IRQ %d, err %d\n",
1199 					client->irq, err);
1200 			goto fail1;
1201 		}
1202 	}
1203 
1204 	mutex_init(&menelaus->lock);
1205 	INIT_WORK(&menelaus->work, menelaus_work);
1206 
1207 	pr_info("Menelaus rev %d.%d\n", rev >> 4, rev & 0x0f);
1208 
1209 	val = menelaus_read_reg(MENELAUS_VCORE_CTRL1);
1210 	if (val < 0)
1211 		goto fail2;
1212 	if (val & (1 << 7))
1213 		menelaus->vcore_hw_mode = 1;
1214 	else
1215 		menelaus->vcore_hw_mode = 0;
1216 
1217 	if (menelaus_pdata != NULL && menelaus_pdata->late_init != NULL) {
1218 		err = menelaus_pdata->late_init(&client->dev);
1219 		if (err < 0)
1220 			goto fail2;
1221 	}
1222 
1223 	menelaus_rtc_init(menelaus);
1224 
1225 	return 0;
1226 fail2:
1227 	free_irq(client->irq, menelaus);
1228 	flush_scheduled_work();
1229 fail1:
1230 	kfree(menelaus);
1231 	return err;
1232 }
1233 
1234 static int __exit menelaus_remove(struct i2c_client *client)
1235 {
1236 	struct menelaus_chip	*menelaus = i2c_get_clientdata(client);
1237 
1238 	free_irq(client->irq, menelaus);
1239 	kfree(menelaus);
1240 	i2c_set_clientdata(client, NULL);
1241 	the_menelaus = NULL;
1242 	return 0;
1243 }
1244 
1245 static const struct i2c_device_id menelaus_id[] = {
1246 	{ "menelaus", 0 },
1247 	{ }
1248 };
1249 MODULE_DEVICE_TABLE(i2c, menelaus_id);
1250 
1251 static struct i2c_driver menelaus_i2c_driver = {
1252 	.driver = {
1253 		.name		= DRIVER_NAME,
1254 	},
1255 	.probe		= menelaus_probe,
1256 	.remove		= __exit_p(menelaus_remove),
1257 	.id_table	= menelaus_id,
1258 };
1259 
1260 static int __init menelaus_init(void)
1261 {
1262 	int res;
1263 
1264 	res = i2c_add_driver(&menelaus_i2c_driver);
1265 	if (res < 0) {
1266 		pr_err(DRIVER_NAME ": driver registration failed\n");
1267 		return res;
1268 	}
1269 
1270 	return 0;
1271 }
1272 
1273 static void __exit menelaus_exit(void)
1274 {
1275 	i2c_del_driver(&menelaus_i2c_driver);
1276 
1277 	/* FIXME: Shutdown menelaus parts that can be shut down */
1278 }
1279 
1280 MODULE_AUTHOR("Texas Instruments, Inc. (and others)");
1281 MODULE_DESCRIPTION("I2C interface for Menelaus.");
1282 MODULE_LICENSE("GPL");
1283 
1284 module_init(menelaus_init);
1285 module_exit(menelaus_exit);
1286