1 /* 2 * Copyright (C) 2004 Texas Instruments, Inc. 3 * 4 * Some parts based tps65010.c: 5 * Copyright (C) 2004 Texas Instruments and 6 * Copyright (C) 2004-2005 David Brownell 7 * 8 * Some parts based on tlv320aic24.c: 9 * Copyright (C) by Kai Svahn <kai.svahn@nokia.com> 10 * 11 * Changes for interrupt handling and clean-up by 12 * Tony Lindgren <tony@atomide.com> and Imre Deak <imre.deak@nokia.com> 13 * Cleanup and generalized support for voltage setting by 14 * Juha Yrjola 15 * Added support for controlling VCORE and regulator sleep states, 16 * Amit Kucheria <amit.kucheria@nokia.com> 17 * Copyright (C) 2005, 2006 Nokia Corporation 18 * 19 * This program is free software; you can redistribute it and/or modify 20 * it under the terms of the GNU General Public License as published by 21 * the Free Software Foundation; either version 2 of the License, or 22 * (at your option) any later version. 23 * 24 * This program is distributed in the hope that it will be useful, 25 * but WITHOUT ANY WARRANTY; without even the implied warranty of 26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 27 * GNU General Public License for more details. 28 * 29 * You should have received a copy of the GNU General Public License 30 * along with this program; if not, write to the Free Software 31 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 32 */ 33 34 #include <linux/module.h> 35 #include <linux/i2c.h> 36 #include <linux/interrupt.h> 37 #include <linux/sched.h> 38 #include <linux/mutex.h> 39 #include <linux/workqueue.h> 40 #include <linux/delay.h> 41 #include <linux/rtc.h> 42 #include <linux/bcd.h> 43 #include <linux/slab.h> 44 #include <linux/mfd/menelaus.h> 45 #include <linux/gpio.h> 46 47 #include <asm/mach/irq.h> 48 49 50 #define DRIVER_NAME "menelaus" 51 52 #define MENELAUS_I2C_ADDRESS 0x72 53 54 #define MENELAUS_REV 0x01 55 #define MENELAUS_VCORE_CTRL1 0x02 56 #define MENELAUS_VCORE_CTRL2 0x03 57 #define MENELAUS_VCORE_CTRL3 0x04 58 #define MENELAUS_VCORE_CTRL4 0x05 59 #define MENELAUS_VCORE_CTRL5 0x06 60 #define MENELAUS_DCDC_CTRL1 0x07 61 #define MENELAUS_DCDC_CTRL2 0x08 62 #define MENELAUS_DCDC_CTRL3 0x09 63 #define MENELAUS_LDO_CTRL1 0x0A 64 #define MENELAUS_LDO_CTRL2 0x0B 65 #define MENELAUS_LDO_CTRL3 0x0C 66 #define MENELAUS_LDO_CTRL4 0x0D 67 #define MENELAUS_LDO_CTRL5 0x0E 68 #define MENELAUS_LDO_CTRL6 0x0F 69 #define MENELAUS_LDO_CTRL7 0x10 70 #define MENELAUS_LDO_CTRL8 0x11 71 #define MENELAUS_SLEEP_CTRL1 0x12 72 #define MENELAUS_SLEEP_CTRL2 0x13 73 #define MENELAUS_DEVICE_OFF 0x14 74 #define MENELAUS_OSC_CTRL 0x15 75 #define MENELAUS_DETECT_CTRL 0x16 76 #define MENELAUS_INT_MASK1 0x17 77 #define MENELAUS_INT_MASK2 0x18 78 #define MENELAUS_INT_STATUS1 0x19 79 #define MENELAUS_INT_STATUS2 0x1A 80 #define MENELAUS_INT_ACK1 0x1B 81 #define MENELAUS_INT_ACK2 0x1C 82 #define MENELAUS_GPIO_CTRL 0x1D 83 #define MENELAUS_GPIO_IN 0x1E 84 #define MENELAUS_GPIO_OUT 0x1F 85 #define MENELAUS_BBSMS 0x20 86 #define MENELAUS_RTC_CTRL 0x21 87 #define MENELAUS_RTC_UPDATE 0x22 88 #define MENELAUS_RTC_SEC 0x23 89 #define MENELAUS_RTC_MIN 0x24 90 #define MENELAUS_RTC_HR 0x25 91 #define MENELAUS_RTC_DAY 0x26 92 #define MENELAUS_RTC_MON 0x27 93 #define MENELAUS_RTC_YR 0x28 94 #define MENELAUS_RTC_WKDAY 0x29 95 #define MENELAUS_RTC_AL_SEC 0x2A 96 #define MENELAUS_RTC_AL_MIN 0x2B 97 #define MENELAUS_RTC_AL_HR 0x2C 98 #define MENELAUS_RTC_AL_DAY 0x2D 99 #define MENELAUS_RTC_AL_MON 0x2E 100 #define MENELAUS_RTC_AL_YR 0x2F 101 #define MENELAUS_RTC_COMP_MSB 0x30 102 #define MENELAUS_RTC_COMP_LSB 0x31 103 #define MENELAUS_S1_PULL_EN 0x32 104 #define MENELAUS_S1_PULL_DIR 0x33 105 #define MENELAUS_S2_PULL_EN 0x34 106 #define MENELAUS_S2_PULL_DIR 0x35 107 #define MENELAUS_MCT_CTRL1 0x36 108 #define MENELAUS_MCT_CTRL2 0x37 109 #define MENELAUS_MCT_CTRL3 0x38 110 #define MENELAUS_MCT_PIN_ST 0x39 111 #define MENELAUS_DEBOUNCE1 0x3A 112 113 #define IH_MENELAUS_IRQS 12 114 #define MENELAUS_MMC_S1CD_IRQ 0 /* MMC slot 1 card change */ 115 #define MENELAUS_MMC_S2CD_IRQ 1 /* MMC slot 2 card change */ 116 #define MENELAUS_MMC_S1D1_IRQ 2 /* MMC DAT1 low in slot 1 */ 117 #define MENELAUS_MMC_S2D1_IRQ 3 /* MMC DAT1 low in slot 2 */ 118 #define MENELAUS_LOWBAT_IRQ 4 /* Low battery */ 119 #define MENELAUS_HOTDIE_IRQ 5 /* Hot die detect */ 120 #define MENELAUS_UVLO_IRQ 6 /* UVLO detect */ 121 #define MENELAUS_TSHUT_IRQ 7 /* Thermal shutdown */ 122 #define MENELAUS_RTCTMR_IRQ 8 /* RTC timer */ 123 #define MENELAUS_RTCALM_IRQ 9 /* RTC alarm */ 124 #define MENELAUS_RTCERR_IRQ 10 /* RTC error */ 125 #define MENELAUS_PSHBTN_IRQ 11 /* Push button */ 126 #define MENELAUS_RESERVED12_IRQ 12 /* Reserved */ 127 #define MENELAUS_RESERVED13_IRQ 13 /* Reserved */ 128 #define MENELAUS_RESERVED14_IRQ 14 /* Reserved */ 129 #define MENELAUS_RESERVED15_IRQ 15 /* Reserved */ 130 131 /* VCORE_CTRL1 register */ 132 #define VCORE_CTRL1_BYP_COMP (1 << 5) 133 #define VCORE_CTRL1_HW_NSW (1 << 7) 134 135 /* GPIO_CTRL register */ 136 #define GPIO_CTRL_SLOTSELEN (1 << 5) 137 #define GPIO_CTRL_SLPCTLEN (1 << 6) 138 #define GPIO1_DIR_INPUT (1 << 0) 139 #define GPIO2_DIR_INPUT (1 << 1) 140 #define GPIO3_DIR_INPUT (1 << 2) 141 142 /* MCT_CTRL1 register */ 143 #define MCT_CTRL1_S1_CMD_OD (1 << 2) 144 #define MCT_CTRL1_S2_CMD_OD (1 << 3) 145 146 /* MCT_CTRL2 register */ 147 #define MCT_CTRL2_VS2_SEL_D0 (1 << 0) 148 #define MCT_CTRL2_VS2_SEL_D1 (1 << 1) 149 #define MCT_CTRL2_S1CD_BUFEN (1 << 4) 150 #define MCT_CTRL2_S2CD_BUFEN (1 << 5) 151 #define MCT_CTRL2_S1CD_DBEN (1 << 6) 152 #define MCT_CTRL2_S2CD_BEN (1 << 7) 153 154 /* MCT_CTRL3 register */ 155 #define MCT_CTRL3_SLOT1_EN (1 << 0) 156 #define MCT_CTRL3_SLOT2_EN (1 << 1) 157 #define MCT_CTRL3_S1_AUTO_EN (1 << 2) 158 #define MCT_CTRL3_S2_AUTO_EN (1 << 3) 159 160 /* MCT_PIN_ST register */ 161 #define MCT_PIN_ST_S1_CD_ST (1 << 0) 162 #define MCT_PIN_ST_S2_CD_ST (1 << 1) 163 164 static void menelaus_work(struct work_struct *_menelaus); 165 166 struct menelaus_chip { 167 struct mutex lock; 168 struct i2c_client *client; 169 struct work_struct work; 170 #ifdef CONFIG_RTC_DRV_TWL92330 171 struct rtc_device *rtc; 172 u8 rtc_control; 173 unsigned uie:1; 174 #endif 175 unsigned vcore_hw_mode:1; 176 u8 mask1, mask2; 177 void (*handlers[16])(struct menelaus_chip *); 178 void (*mmc_callback)(void *data, u8 mask); 179 void *mmc_callback_data; 180 }; 181 182 static struct menelaus_chip *the_menelaus; 183 184 static int menelaus_write_reg(int reg, u8 value) 185 { 186 int val = i2c_smbus_write_byte_data(the_menelaus->client, reg, value); 187 188 if (val < 0) { 189 pr_err(DRIVER_NAME ": write error"); 190 return val; 191 } 192 193 return 0; 194 } 195 196 static int menelaus_read_reg(int reg) 197 { 198 int val = i2c_smbus_read_byte_data(the_menelaus->client, reg); 199 200 if (val < 0) 201 pr_err(DRIVER_NAME ": read error"); 202 203 return val; 204 } 205 206 static int menelaus_enable_irq(int irq) 207 { 208 if (irq > 7) { 209 irq -= 8; 210 the_menelaus->mask2 &= ~(1 << irq); 211 return menelaus_write_reg(MENELAUS_INT_MASK2, 212 the_menelaus->mask2); 213 } else { 214 the_menelaus->mask1 &= ~(1 << irq); 215 return menelaus_write_reg(MENELAUS_INT_MASK1, 216 the_menelaus->mask1); 217 } 218 } 219 220 static int menelaus_disable_irq(int irq) 221 { 222 if (irq > 7) { 223 irq -= 8; 224 the_menelaus->mask2 |= (1 << irq); 225 return menelaus_write_reg(MENELAUS_INT_MASK2, 226 the_menelaus->mask2); 227 } else { 228 the_menelaus->mask1 |= (1 << irq); 229 return menelaus_write_reg(MENELAUS_INT_MASK1, 230 the_menelaus->mask1); 231 } 232 } 233 234 static int menelaus_ack_irq(int irq) 235 { 236 if (irq > 7) 237 return menelaus_write_reg(MENELAUS_INT_ACK2, 1 << (irq - 8)); 238 else 239 return menelaus_write_reg(MENELAUS_INT_ACK1, 1 << irq); 240 } 241 242 /* Adds a handler for an interrupt. Does not run in interrupt context */ 243 static int menelaus_add_irq_work(int irq, 244 void (*handler)(struct menelaus_chip *)) 245 { 246 int ret = 0; 247 248 mutex_lock(&the_menelaus->lock); 249 the_menelaus->handlers[irq] = handler; 250 ret = menelaus_enable_irq(irq); 251 mutex_unlock(&the_menelaus->lock); 252 253 return ret; 254 } 255 256 /* Removes handler for an interrupt */ 257 static int menelaus_remove_irq_work(int irq) 258 { 259 int ret = 0; 260 261 mutex_lock(&the_menelaus->lock); 262 ret = menelaus_disable_irq(irq); 263 the_menelaus->handlers[irq] = NULL; 264 mutex_unlock(&the_menelaus->lock); 265 266 return ret; 267 } 268 269 /* 270 * Gets scheduled when a card detect interrupt happens. Note that in some cases 271 * this line is wired to card cover switch rather than the card detect switch 272 * in each slot. In this case the cards are not seen by menelaus. 273 * FIXME: Add handling for D1 too 274 */ 275 static void menelaus_mmc_cd_work(struct menelaus_chip *menelaus_hw) 276 { 277 int reg; 278 unsigned char card_mask = 0; 279 280 reg = menelaus_read_reg(MENELAUS_MCT_PIN_ST); 281 if (reg < 0) 282 return; 283 284 if (!(reg & 0x1)) 285 card_mask |= MCT_PIN_ST_S1_CD_ST; 286 287 if (!(reg & 0x2)) 288 card_mask |= MCT_PIN_ST_S2_CD_ST; 289 290 if (menelaus_hw->mmc_callback) 291 menelaus_hw->mmc_callback(menelaus_hw->mmc_callback_data, 292 card_mask); 293 } 294 295 /* 296 * Toggles the MMC slots between open-drain and push-pull mode. 297 */ 298 int menelaus_set_mmc_opendrain(int slot, int enable) 299 { 300 int ret, val; 301 302 if (slot != 1 && slot != 2) 303 return -EINVAL; 304 mutex_lock(&the_menelaus->lock); 305 ret = menelaus_read_reg(MENELAUS_MCT_CTRL1); 306 if (ret < 0) { 307 mutex_unlock(&the_menelaus->lock); 308 return ret; 309 } 310 val = ret; 311 if (slot == 1) { 312 if (enable) 313 val |= MCT_CTRL1_S1_CMD_OD; 314 else 315 val &= ~MCT_CTRL1_S1_CMD_OD; 316 } else { 317 if (enable) 318 val |= MCT_CTRL1_S2_CMD_OD; 319 else 320 val &= ~MCT_CTRL1_S2_CMD_OD; 321 } 322 ret = menelaus_write_reg(MENELAUS_MCT_CTRL1, val); 323 mutex_unlock(&the_menelaus->lock); 324 325 return ret; 326 } 327 EXPORT_SYMBOL(menelaus_set_mmc_opendrain); 328 329 int menelaus_set_slot_sel(int enable) 330 { 331 int ret; 332 333 mutex_lock(&the_menelaus->lock); 334 ret = menelaus_read_reg(MENELAUS_GPIO_CTRL); 335 if (ret < 0) 336 goto out; 337 ret |= GPIO2_DIR_INPUT; 338 if (enable) 339 ret |= GPIO_CTRL_SLOTSELEN; 340 else 341 ret &= ~GPIO_CTRL_SLOTSELEN; 342 ret = menelaus_write_reg(MENELAUS_GPIO_CTRL, ret); 343 out: 344 mutex_unlock(&the_menelaus->lock); 345 return ret; 346 } 347 EXPORT_SYMBOL(menelaus_set_slot_sel); 348 349 int menelaus_set_mmc_slot(int slot, int enable, int power, int cd_en) 350 { 351 int ret, val; 352 353 if (slot != 1 && slot != 2) 354 return -EINVAL; 355 if (power >= 3) 356 return -EINVAL; 357 358 mutex_lock(&the_menelaus->lock); 359 360 ret = menelaus_read_reg(MENELAUS_MCT_CTRL2); 361 if (ret < 0) 362 goto out; 363 val = ret; 364 if (slot == 1) { 365 if (cd_en) 366 val |= MCT_CTRL2_S1CD_BUFEN | MCT_CTRL2_S1CD_DBEN; 367 else 368 val &= ~(MCT_CTRL2_S1CD_BUFEN | MCT_CTRL2_S1CD_DBEN); 369 } else { 370 if (cd_en) 371 val |= MCT_CTRL2_S2CD_BUFEN | MCT_CTRL2_S2CD_BEN; 372 else 373 val &= ~(MCT_CTRL2_S2CD_BUFEN | MCT_CTRL2_S2CD_BEN); 374 } 375 ret = menelaus_write_reg(MENELAUS_MCT_CTRL2, val); 376 if (ret < 0) 377 goto out; 378 379 ret = menelaus_read_reg(MENELAUS_MCT_CTRL3); 380 if (ret < 0) 381 goto out; 382 val = ret; 383 if (slot == 1) { 384 if (enable) 385 val |= MCT_CTRL3_SLOT1_EN; 386 else 387 val &= ~MCT_CTRL3_SLOT1_EN; 388 } else { 389 int b; 390 391 if (enable) 392 val |= MCT_CTRL3_SLOT2_EN; 393 else 394 val &= ~MCT_CTRL3_SLOT2_EN; 395 b = menelaus_read_reg(MENELAUS_MCT_CTRL2); 396 b &= ~(MCT_CTRL2_VS2_SEL_D0 | MCT_CTRL2_VS2_SEL_D1); 397 b |= power; 398 ret = menelaus_write_reg(MENELAUS_MCT_CTRL2, b); 399 if (ret < 0) 400 goto out; 401 } 402 /* Disable autonomous shutdown */ 403 val &= ~(MCT_CTRL3_S1_AUTO_EN | MCT_CTRL3_S2_AUTO_EN); 404 ret = menelaus_write_reg(MENELAUS_MCT_CTRL3, val); 405 out: 406 mutex_unlock(&the_menelaus->lock); 407 return ret; 408 } 409 EXPORT_SYMBOL(menelaus_set_mmc_slot); 410 411 int menelaus_register_mmc_callback(void (*callback)(void *data, u8 card_mask), 412 void *data) 413 { 414 int ret = 0; 415 416 the_menelaus->mmc_callback_data = data; 417 the_menelaus->mmc_callback = callback; 418 ret = menelaus_add_irq_work(MENELAUS_MMC_S1CD_IRQ, 419 menelaus_mmc_cd_work); 420 if (ret < 0) 421 return ret; 422 ret = menelaus_add_irq_work(MENELAUS_MMC_S2CD_IRQ, 423 menelaus_mmc_cd_work); 424 if (ret < 0) 425 return ret; 426 ret = menelaus_add_irq_work(MENELAUS_MMC_S1D1_IRQ, 427 menelaus_mmc_cd_work); 428 if (ret < 0) 429 return ret; 430 ret = menelaus_add_irq_work(MENELAUS_MMC_S2D1_IRQ, 431 menelaus_mmc_cd_work); 432 433 return ret; 434 } 435 EXPORT_SYMBOL(menelaus_register_mmc_callback); 436 437 void menelaus_unregister_mmc_callback(void) 438 { 439 menelaus_remove_irq_work(MENELAUS_MMC_S1CD_IRQ); 440 menelaus_remove_irq_work(MENELAUS_MMC_S2CD_IRQ); 441 menelaus_remove_irq_work(MENELAUS_MMC_S1D1_IRQ); 442 menelaus_remove_irq_work(MENELAUS_MMC_S2D1_IRQ); 443 444 the_menelaus->mmc_callback = NULL; 445 the_menelaus->mmc_callback_data = NULL; 446 } 447 EXPORT_SYMBOL(menelaus_unregister_mmc_callback); 448 449 struct menelaus_vtg { 450 const char *name; 451 u8 vtg_reg; 452 u8 vtg_shift; 453 u8 vtg_bits; 454 u8 mode_reg; 455 }; 456 457 struct menelaus_vtg_value { 458 u16 vtg; 459 u16 val; 460 }; 461 462 static int menelaus_set_voltage(const struct menelaus_vtg *vtg, int mV, 463 int vtg_val, int mode) 464 { 465 int val, ret; 466 struct i2c_client *c = the_menelaus->client; 467 468 mutex_lock(&the_menelaus->lock); 469 470 ret = menelaus_read_reg(vtg->vtg_reg); 471 if (ret < 0) 472 goto out; 473 val = ret & ~(((1 << vtg->vtg_bits) - 1) << vtg->vtg_shift); 474 val |= vtg_val << vtg->vtg_shift; 475 476 dev_dbg(&c->dev, "Setting voltage '%s'" 477 "to %d mV (reg 0x%02x, val 0x%02x)\n", 478 vtg->name, mV, vtg->vtg_reg, val); 479 480 ret = menelaus_write_reg(vtg->vtg_reg, val); 481 if (ret < 0) 482 goto out; 483 ret = menelaus_write_reg(vtg->mode_reg, mode); 484 out: 485 mutex_unlock(&the_menelaus->lock); 486 if (ret == 0) { 487 /* Wait for voltage to stabilize */ 488 msleep(1); 489 } 490 return ret; 491 } 492 493 static int menelaus_get_vtg_value(int vtg, const struct menelaus_vtg_value *tbl, 494 int n) 495 { 496 int i; 497 498 for (i = 0; i < n; i++, tbl++) 499 if (tbl->vtg == vtg) 500 return tbl->val; 501 return -EINVAL; 502 } 503 504 /* 505 * Vcore can be programmed in two ways: 506 * SW-controlled: Required voltage is programmed into VCORE_CTRL1 507 * HW-controlled: Required range (roof-floor) is programmed into VCORE_CTRL3 508 * and VCORE_CTRL4 509 * 510 * Call correct 'set' function accordingly 511 */ 512 513 static const struct menelaus_vtg_value vcore_values[] = { 514 { 1000, 0 }, 515 { 1025, 1 }, 516 { 1050, 2 }, 517 { 1075, 3 }, 518 { 1100, 4 }, 519 { 1125, 5 }, 520 { 1150, 6 }, 521 { 1175, 7 }, 522 { 1200, 8 }, 523 { 1225, 9 }, 524 { 1250, 10 }, 525 { 1275, 11 }, 526 { 1300, 12 }, 527 { 1325, 13 }, 528 { 1350, 14 }, 529 { 1375, 15 }, 530 { 1400, 16 }, 531 { 1425, 17 }, 532 { 1450, 18 }, 533 }; 534 535 int menelaus_set_vcore_hw(unsigned int roof_mV, unsigned int floor_mV) 536 { 537 int fval, rval, val, ret; 538 struct i2c_client *c = the_menelaus->client; 539 540 rval = menelaus_get_vtg_value(roof_mV, vcore_values, 541 ARRAY_SIZE(vcore_values)); 542 if (rval < 0) 543 return -EINVAL; 544 fval = menelaus_get_vtg_value(floor_mV, vcore_values, 545 ARRAY_SIZE(vcore_values)); 546 if (fval < 0) 547 return -EINVAL; 548 549 dev_dbg(&c->dev, "Setting VCORE FLOOR to %d mV and ROOF to %d mV\n", 550 floor_mV, roof_mV); 551 552 mutex_lock(&the_menelaus->lock); 553 ret = menelaus_write_reg(MENELAUS_VCORE_CTRL3, fval); 554 if (ret < 0) 555 goto out; 556 ret = menelaus_write_reg(MENELAUS_VCORE_CTRL4, rval); 557 if (ret < 0) 558 goto out; 559 if (!the_menelaus->vcore_hw_mode) { 560 val = menelaus_read_reg(MENELAUS_VCORE_CTRL1); 561 /* HW mode, turn OFF byte comparator */ 562 val |= (VCORE_CTRL1_HW_NSW | VCORE_CTRL1_BYP_COMP); 563 ret = menelaus_write_reg(MENELAUS_VCORE_CTRL1, val); 564 the_menelaus->vcore_hw_mode = 1; 565 } 566 msleep(1); 567 out: 568 mutex_unlock(&the_menelaus->lock); 569 return ret; 570 } 571 572 static const struct menelaus_vtg vmem_vtg = { 573 .name = "VMEM", 574 .vtg_reg = MENELAUS_LDO_CTRL1, 575 .vtg_shift = 0, 576 .vtg_bits = 2, 577 .mode_reg = MENELAUS_LDO_CTRL3, 578 }; 579 580 static const struct menelaus_vtg_value vmem_values[] = { 581 { 1500, 0 }, 582 { 1800, 1 }, 583 { 1900, 2 }, 584 { 2500, 3 }, 585 }; 586 587 int menelaus_set_vmem(unsigned int mV) 588 { 589 int val; 590 591 if (mV == 0) 592 return menelaus_set_voltage(&vmem_vtg, 0, 0, 0); 593 594 val = menelaus_get_vtg_value(mV, vmem_values, ARRAY_SIZE(vmem_values)); 595 if (val < 0) 596 return -EINVAL; 597 return menelaus_set_voltage(&vmem_vtg, mV, val, 0x02); 598 } 599 EXPORT_SYMBOL(menelaus_set_vmem); 600 601 static const struct menelaus_vtg vio_vtg = { 602 .name = "VIO", 603 .vtg_reg = MENELAUS_LDO_CTRL1, 604 .vtg_shift = 2, 605 .vtg_bits = 2, 606 .mode_reg = MENELAUS_LDO_CTRL4, 607 }; 608 609 static const struct menelaus_vtg_value vio_values[] = { 610 { 1500, 0 }, 611 { 1800, 1 }, 612 { 2500, 2 }, 613 { 2800, 3 }, 614 }; 615 616 int menelaus_set_vio(unsigned int mV) 617 { 618 int val; 619 620 if (mV == 0) 621 return menelaus_set_voltage(&vio_vtg, 0, 0, 0); 622 623 val = menelaus_get_vtg_value(mV, vio_values, ARRAY_SIZE(vio_values)); 624 if (val < 0) 625 return -EINVAL; 626 return menelaus_set_voltage(&vio_vtg, mV, val, 0x02); 627 } 628 EXPORT_SYMBOL(menelaus_set_vio); 629 630 static const struct menelaus_vtg_value vdcdc_values[] = { 631 { 1500, 0 }, 632 { 1800, 1 }, 633 { 2000, 2 }, 634 { 2200, 3 }, 635 { 2400, 4 }, 636 { 2800, 5 }, 637 { 3000, 6 }, 638 { 3300, 7 }, 639 }; 640 641 static const struct menelaus_vtg vdcdc2_vtg = { 642 .name = "VDCDC2", 643 .vtg_reg = MENELAUS_DCDC_CTRL1, 644 .vtg_shift = 0, 645 .vtg_bits = 3, 646 .mode_reg = MENELAUS_DCDC_CTRL2, 647 }; 648 649 static const struct menelaus_vtg vdcdc3_vtg = { 650 .name = "VDCDC3", 651 .vtg_reg = MENELAUS_DCDC_CTRL1, 652 .vtg_shift = 3, 653 .vtg_bits = 3, 654 .mode_reg = MENELAUS_DCDC_CTRL3, 655 }; 656 657 int menelaus_set_vdcdc(int dcdc, unsigned int mV) 658 { 659 const struct menelaus_vtg *vtg; 660 int val; 661 662 if (dcdc != 2 && dcdc != 3) 663 return -EINVAL; 664 if (dcdc == 2) 665 vtg = &vdcdc2_vtg; 666 else 667 vtg = &vdcdc3_vtg; 668 669 if (mV == 0) 670 return menelaus_set_voltage(vtg, 0, 0, 0); 671 672 val = menelaus_get_vtg_value(mV, vdcdc_values, 673 ARRAY_SIZE(vdcdc_values)); 674 if (val < 0) 675 return -EINVAL; 676 return menelaus_set_voltage(vtg, mV, val, 0x03); 677 } 678 679 static const struct menelaus_vtg_value vmmc_values[] = { 680 { 1850, 0 }, 681 { 2800, 1 }, 682 { 3000, 2 }, 683 { 3100, 3 }, 684 }; 685 686 static const struct menelaus_vtg vmmc_vtg = { 687 .name = "VMMC", 688 .vtg_reg = MENELAUS_LDO_CTRL1, 689 .vtg_shift = 6, 690 .vtg_bits = 2, 691 .mode_reg = MENELAUS_LDO_CTRL7, 692 }; 693 694 int menelaus_set_vmmc(unsigned int mV) 695 { 696 int val; 697 698 if (mV == 0) 699 return menelaus_set_voltage(&vmmc_vtg, 0, 0, 0); 700 701 val = menelaus_get_vtg_value(mV, vmmc_values, ARRAY_SIZE(vmmc_values)); 702 if (val < 0) 703 return -EINVAL; 704 return menelaus_set_voltage(&vmmc_vtg, mV, val, 0x02); 705 } 706 EXPORT_SYMBOL(menelaus_set_vmmc); 707 708 709 static const struct menelaus_vtg_value vaux_values[] = { 710 { 1500, 0 }, 711 { 1800, 1 }, 712 { 2500, 2 }, 713 { 2800, 3 }, 714 }; 715 716 static const struct menelaus_vtg vaux_vtg = { 717 .name = "VAUX", 718 .vtg_reg = MENELAUS_LDO_CTRL1, 719 .vtg_shift = 4, 720 .vtg_bits = 2, 721 .mode_reg = MENELAUS_LDO_CTRL6, 722 }; 723 724 int menelaus_set_vaux(unsigned int mV) 725 { 726 int val; 727 728 if (mV == 0) 729 return menelaus_set_voltage(&vaux_vtg, 0, 0, 0); 730 731 val = menelaus_get_vtg_value(mV, vaux_values, ARRAY_SIZE(vaux_values)); 732 if (val < 0) 733 return -EINVAL; 734 return menelaus_set_voltage(&vaux_vtg, mV, val, 0x02); 735 } 736 EXPORT_SYMBOL(menelaus_set_vaux); 737 738 int menelaus_get_slot_pin_states(void) 739 { 740 return menelaus_read_reg(MENELAUS_MCT_PIN_ST); 741 } 742 EXPORT_SYMBOL(menelaus_get_slot_pin_states); 743 744 int menelaus_set_regulator_sleep(int enable, u32 val) 745 { 746 int t, ret; 747 struct i2c_client *c = the_menelaus->client; 748 749 mutex_lock(&the_menelaus->lock); 750 ret = menelaus_write_reg(MENELAUS_SLEEP_CTRL2, val); 751 if (ret < 0) 752 goto out; 753 754 dev_dbg(&c->dev, "regulator sleep configuration: %02x\n", val); 755 756 ret = menelaus_read_reg(MENELAUS_GPIO_CTRL); 757 if (ret < 0) 758 goto out; 759 t = (GPIO_CTRL_SLPCTLEN | GPIO3_DIR_INPUT); 760 if (enable) 761 ret |= t; 762 else 763 ret &= ~t; 764 ret = menelaus_write_reg(MENELAUS_GPIO_CTRL, ret); 765 out: 766 mutex_unlock(&the_menelaus->lock); 767 return ret; 768 } 769 770 /*-----------------------------------------------------------------------*/ 771 772 /* Handles Menelaus interrupts. Does not run in interrupt context */ 773 static void menelaus_work(struct work_struct *_menelaus) 774 { 775 struct menelaus_chip *menelaus = 776 container_of(_menelaus, struct menelaus_chip, work); 777 void (*handler)(struct menelaus_chip *menelaus); 778 779 while (1) { 780 unsigned isr; 781 782 isr = (menelaus_read_reg(MENELAUS_INT_STATUS2) 783 & ~menelaus->mask2) << 8; 784 isr |= menelaus_read_reg(MENELAUS_INT_STATUS1) 785 & ~menelaus->mask1; 786 if (!isr) 787 break; 788 789 while (isr) { 790 int irq = fls(isr) - 1; 791 isr &= ~(1 << irq); 792 793 mutex_lock(&menelaus->lock); 794 menelaus_disable_irq(irq); 795 menelaus_ack_irq(irq); 796 handler = menelaus->handlers[irq]; 797 if (handler) 798 handler(menelaus); 799 menelaus_enable_irq(irq); 800 mutex_unlock(&menelaus->lock); 801 } 802 } 803 enable_irq(menelaus->client->irq); 804 } 805 806 /* 807 * We cannot use I2C in interrupt context, so we just schedule work. 808 */ 809 static irqreturn_t menelaus_irq(int irq, void *_menelaus) 810 { 811 struct menelaus_chip *menelaus = _menelaus; 812 813 disable_irq_nosync(irq); 814 (void)schedule_work(&menelaus->work); 815 816 return IRQ_HANDLED; 817 } 818 819 /*-----------------------------------------------------------------------*/ 820 821 /* 822 * The RTC needs to be set once, then it runs on backup battery power. 823 * It supports alarms, including system wake alarms (from some modes); 824 * and 1/second IRQs if requested. 825 */ 826 #ifdef CONFIG_RTC_DRV_TWL92330 827 828 #define RTC_CTRL_RTC_EN (1 << 0) 829 #define RTC_CTRL_AL_EN (1 << 1) 830 #define RTC_CTRL_MODE12 (1 << 2) 831 #define RTC_CTRL_EVERY_MASK (3 << 3) 832 #define RTC_CTRL_EVERY_SEC (0 << 3) 833 #define RTC_CTRL_EVERY_MIN (1 << 3) 834 #define RTC_CTRL_EVERY_HR (2 << 3) 835 #define RTC_CTRL_EVERY_DAY (3 << 3) 836 837 #define RTC_UPDATE_EVERY 0x08 838 839 #define RTC_HR_PM (1 << 7) 840 841 static void menelaus_to_time(char *regs, struct rtc_time *t) 842 { 843 t->tm_sec = bcd2bin(regs[0]); 844 t->tm_min = bcd2bin(regs[1]); 845 if (the_menelaus->rtc_control & RTC_CTRL_MODE12) { 846 t->tm_hour = bcd2bin(regs[2] & 0x1f) - 1; 847 if (regs[2] & RTC_HR_PM) 848 t->tm_hour += 12; 849 } else 850 t->tm_hour = bcd2bin(regs[2] & 0x3f); 851 t->tm_mday = bcd2bin(regs[3]); 852 t->tm_mon = bcd2bin(regs[4]) - 1; 853 t->tm_year = bcd2bin(regs[5]) + 100; 854 } 855 856 static int time_to_menelaus(struct rtc_time *t, int regnum) 857 { 858 int hour, status; 859 860 status = menelaus_write_reg(regnum++, bin2bcd(t->tm_sec)); 861 if (status < 0) 862 goto fail; 863 864 status = menelaus_write_reg(regnum++, bin2bcd(t->tm_min)); 865 if (status < 0) 866 goto fail; 867 868 if (the_menelaus->rtc_control & RTC_CTRL_MODE12) { 869 hour = t->tm_hour + 1; 870 if (hour > 12) 871 hour = RTC_HR_PM | bin2bcd(hour - 12); 872 else 873 hour = bin2bcd(hour); 874 } else 875 hour = bin2bcd(t->tm_hour); 876 status = menelaus_write_reg(regnum++, hour); 877 if (status < 0) 878 goto fail; 879 880 status = menelaus_write_reg(regnum++, bin2bcd(t->tm_mday)); 881 if (status < 0) 882 goto fail; 883 884 status = menelaus_write_reg(regnum++, bin2bcd(t->tm_mon + 1)); 885 if (status < 0) 886 goto fail; 887 888 status = menelaus_write_reg(regnum++, bin2bcd(t->tm_year - 100)); 889 if (status < 0) 890 goto fail; 891 892 return 0; 893 fail: 894 dev_err(&the_menelaus->client->dev, "rtc write reg %02x, err %d\n", 895 --regnum, status); 896 return status; 897 } 898 899 static int menelaus_read_time(struct device *dev, struct rtc_time *t) 900 { 901 struct i2c_msg msg[2]; 902 char regs[7]; 903 int status; 904 905 /* block read date and time registers */ 906 regs[0] = MENELAUS_RTC_SEC; 907 908 msg[0].addr = MENELAUS_I2C_ADDRESS; 909 msg[0].flags = 0; 910 msg[0].len = 1; 911 msg[0].buf = regs; 912 913 msg[1].addr = MENELAUS_I2C_ADDRESS; 914 msg[1].flags = I2C_M_RD; 915 msg[1].len = sizeof(regs); 916 msg[1].buf = regs; 917 918 status = i2c_transfer(the_menelaus->client->adapter, msg, 2); 919 if (status != 2) { 920 dev_err(dev, "%s error %d\n", "read", status); 921 return -EIO; 922 } 923 924 menelaus_to_time(regs, t); 925 t->tm_wday = bcd2bin(regs[6]); 926 927 return 0; 928 } 929 930 static int menelaus_set_time(struct device *dev, struct rtc_time *t) 931 { 932 int status; 933 934 /* write date and time registers */ 935 status = time_to_menelaus(t, MENELAUS_RTC_SEC); 936 if (status < 0) 937 return status; 938 status = menelaus_write_reg(MENELAUS_RTC_WKDAY, bin2bcd(t->tm_wday)); 939 if (status < 0) { 940 dev_err(&the_menelaus->client->dev, "rtc write reg %02x " 941 "err %d\n", MENELAUS_RTC_WKDAY, status); 942 return status; 943 } 944 945 /* now commit the write */ 946 status = menelaus_write_reg(MENELAUS_RTC_UPDATE, RTC_UPDATE_EVERY); 947 if (status < 0) 948 dev_err(&the_menelaus->client->dev, "rtc commit time, err %d\n", 949 status); 950 951 return 0; 952 } 953 954 static int menelaus_read_alarm(struct device *dev, struct rtc_wkalrm *w) 955 { 956 struct i2c_msg msg[2]; 957 char regs[6]; 958 int status; 959 960 /* block read alarm registers */ 961 regs[0] = MENELAUS_RTC_AL_SEC; 962 963 msg[0].addr = MENELAUS_I2C_ADDRESS; 964 msg[0].flags = 0; 965 msg[0].len = 1; 966 msg[0].buf = regs; 967 968 msg[1].addr = MENELAUS_I2C_ADDRESS; 969 msg[1].flags = I2C_M_RD; 970 msg[1].len = sizeof(regs); 971 msg[1].buf = regs; 972 973 status = i2c_transfer(the_menelaus->client->adapter, msg, 2); 974 if (status != 2) { 975 dev_err(dev, "%s error %d\n", "alarm read", status); 976 return -EIO; 977 } 978 979 menelaus_to_time(regs, &w->time); 980 981 w->enabled = !!(the_menelaus->rtc_control & RTC_CTRL_AL_EN); 982 983 /* NOTE we *could* check if actually pending... */ 984 w->pending = 0; 985 986 return 0; 987 } 988 989 static int menelaus_set_alarm(struct device *dev, struct rtc_wkalrm *w) 990 { 991 int status; 992 993 if (the_menelaus->client->irq <= 0 && w->enabled) 994 return -ENODEV; 995 996 /* clear previous alarm enable */ 997 if (the_menelaus->rtc_control & RTC_CTRL_AL_EN) { 998 the_menelaus->rtc_control &= ~RTC_CTRL_AL_EN; 999 status = menelaus_write_reg(MENELAUS_RTC_CTRL, 1000 the_menelaus->rtc_control); 1001 if (status < 0) 1002 return status; 1003 } 1004 1005 /* write alarm registers */ 1006 status = time_to_menelaus(&w->time, MENELAUS_RTC_AL_SEC); 1007 if (status < 0) 1008 return status; 1009 1010 /* enable alarm if requested */ 1011 if (w->enabled) { 1012 the_menelaus->rtc_control |= RTC_CTRL_AL_EN; 1013 status = menelaus_write_reg(MENELAUS_RTC_CTRL, 1014 the_menelaus->rtc_control); 1015 } 1016 1017 return status; 1018 } 1019 1020 #ifdef CONFIG_RTC_INTF_DEV 1021 1022 static void menelaus_rtc_update_work(struct menelaus_chip *m) 1023 { 1024 /* report 1/sec update */ 1025 rtc_update_irq(m->rtc, 1, RTC_IRQF | RTC_UF); 1026 } 1027 1028 static int menelaus_ioctl(struct device *dev, unsigned cmd, unsigned long arg) 1029 { 1030 int status; 1031 1032 if (the_menelaus->client->irq <= 0) 1033 return -ENOIOCTLCMD; 1034 1035 switch (cmd) { 1036 /* alarm IRQ */ 1037 case RTC_AIE_ON: 1038 if (the_menelaus->rtc_control & RTC_CTRL_AL_EN) 1039 return 0; 1040 the_menelaus->rtc_control |= RTC_CTRL_AL_EN; 1041 break; 1042 case RTC_AIE_OFF: 1043 if (!(the_menelaus->rtc_control & RTC_CTRL_AL_EN)) 1044 return 0; 1045 the_menelaus->rtc_control &= ~RTC_CTRL_AL_EN; 1046 break; 1047 /* 1/second "update" IRQ */ 1048 case RTC_UIE_ON: 1049 if (the_menelaus->uie) 1050 return 0; 1051 status = menelaus_remove_irq_work(MENELAUS_RTCTMR_IRQ); 1052 status = menelaus_add_irq_work(MENELAUS_RTCTMR_IRQ, 1053 menelaus_rtc_update_work); 1054 if (status == 0) 1055 the_menelaus->uie = 1; 1056 return status; 1057 case RTC_UIE_OFF: 1058 if (!the_menelaus->uie) 1059 return 0; 1060 status = menelaus_remove_irq_work(MENELAUS_RTCTMR_IRQ); 1061 if (status == 0) 1062 the_menelaus->uie = 0; 1063 return status; 1064 default: 1065 return -ENOIOCTLCMD; 1066 } 1067 return menelaus_write_reg(MENELAUS_RTC_CTRL, the_menelaus->rtc_control); 1068 } 1069 1070 #else 1071 #define menelaus_ioctl NULL 1072 #endif 1073 1074 /* REVISIT no compensation register support ... */ 1075 1076 static const struct rtc_class_ops menelaus_rtc_ops = { 1077 .ioctl = menelaus_ioctl, 1078 .read_time = menelaus_read_time, 1079 .set_time = menelaus_set_time, 1080 .read_alarm = menelaus_read_alarm, 1081 .set_alarm = menelaus_set_alarm, 1082 }; 1083 1084 static void menelaus_rtc_alarm_work(struct menelaus_chip *m) 1085 { 1086 /* report alarm */ 1087 rtc_update_irq(m->rtc, 1, RTC_IRQF | RTC_AF); 1088 1089 /* then disable it; alarms are oneshot */ 1090 the_menelaus->rtc_control &= ~RTC_CTRL_AL_EN; 1091 menelaus_write_reg(MENELAUS_RTC_CTRL, the_menelaus->rtc_control); 1092 } 1093 1094 static inline void menelaus_rtc_init(struct menelaus_chip *m) 1095 { 1096 int alarm = (m->client->irq > 0); 1097 int err; 1098 1099 /* assume 32KDETEN pin is pulled high */ 1100 if (!(menelaus_read_reg(MENELAUS_OSC_CTRL) & 0x80)) { 1101 dev_dbg(&m->client->dev, "no 32k oscillator\n"); 1102 return; 1103 } 1104 1105 m->rtc = devm_rtc_allocate_device(&m->client->dev); 1106 if (IS_ERR(m->rtc)) 1107 return; 1108 1109 m->rtc->ops = &menelaus_rtc_ops; 1110 1111 /* support RTC alarm; it can issue wakeups */ 1112 if (alarm) { 1113 if (menelaus_add_irq_work(MENELAUS_RTCALM_IRQ, 1114 menelaus_rtc_alarm_work) < 0) { 1115 dev_err(&m->client->dev, "can't handle RTC alarm\n"); 1116 return; 1117 } 1118 device_init_wakeup(&m->client->dev, 1); 1119 } 1120 1121 /* be sure RTC is enabled; allow 1/sec irqs; leave 12hr mode alone */ 1122 m->rtc_control = menelaus_read_reg(MENELAUS_RTC_CTRL); 1123 if (!(m->rtc_control & RTC_CTRL_RTC_EN) 1124 || (m->rtc_control & RTC_CTRL_AL_EN) 1125 || (m->rtc_control & RTC_CTRL_EVERY_MASK)) { 1126 if (!(m->rtc_control & RTC_CTRL_RTC_EN)) { 1127 dev_warn(&m->client->dev, "rtc clock needs setting\n"); 1128 m->rtc_control |= RTC_CTRL_RTC_EN; 1129 } 1130 m->rtc_control &= ~RTC_CTRL_EVERY_MASK; 1131 m->rtc_control &= ~RTC_CTRL_AL_EN; 1132 menelaus_write_reg(MENELAUS_RTC_CTRL, m->rtc_control); 1133 } 1134 1135 err = rtc_register_device(m->rtc); 1136 if (err) { 1137 if (alarm) { 1138 menelaus_remove_irq_work(MENELAUS_RTCALM_IRQ); 1139 device_init_wakeup(&m->client->dev, 0); 1140 } 1141 dev_err(&m->client->dev, "can't register RTC: %d\n", 1142 (int) PTR_ERR(m->rtc)); 1143 the_menelaus->rtc = NULL; 1144 } 1145 } 1146 1147 #else 1148 1149 static inline void menelaus_rtc_init(struct menelaus_chip *m) 1150 { 1151 /* nothing */ 1152 } 1153 1154 #endif 1155 1156 /*-----------------------------------------------------------------------*/ 1157 1158 static struct i2c_driver menelaus_i2c_driver; 1159 1160 static int menelaus_probe(struct i2c_client *client, 1161 const struct i2c_device_id *id) 1162 { 1163 struct menelaus_chip *menelaus; 1164 int rev = 0; 1165 int err = 0; 1166 struct menelaus_platform_data *menelaus_pdata = 1167 dev_get_platdata(&client->dev); 1168 1169 if (the_menelaus) { 1170 dev_dbg(&client->dev, "only one %s for now\n", 1171 DRIVER_NAME); 1172 return -ENODEV; 1173 } 1174 1175 menelaus = devm_kzalloc(&client->dev, sizeof(*menelaus), GFP_KERNEL); 1176 if (!menelaus) 1177 return -ENOMEM; 1178 1179 i2c_set_clientdata(client, menelaus); 1180 1181 the_menelaus = menelaus; 1182 menelaus->client = client; 1183 1184 /* If a true probe check the device */ 1185 rev = menelaus_read_reg(MENELAUS_REV); 1186 if (rev < 0) { 1187 pr_err(DRIVER_NAME ": device not found"); 1188 return -ENODEV; 1189 } 1190 1191 /* Ack and disable all Menelaus interrupts */ 1192 menelaus_write_reg(MENELAUS_INT_ACK1, 0xff); 1193 menelaus_write_reg(MENELAUS_INT_ACK2, 0xff); 1194 menelaus_write_reg(MENELAUS_INT_MASK1, 0xff); 1195 menelaus_write_reg(MENELAUS_INT_MASK2, 0xff); 1196 menelaus->mask1 = 0xff; 1197 menelaus->mask2 = 0xff; 1198 1199 /* Set output buffer strengths */ 1200 menelaus_write_reg(MENELAUS_MCT_CTRL1, 0x73); 1201 1202 if (client->irq > 0) { 1203 err = request_irq(client->irq, menelaus_irq, 0, 1204 DRIVER_NAME, menelaus); 1205 if (err) { 1206 dev_dbg(&client->dev, "can't get IRQ %d, err %d\n", 1207 client->irq, err); 1208 return err; 1209 } 1210 } 1211 1212 mutex_init(&menelaus->lock); 1213 INIT_WORK(&menelaus->work, menelaus_work); 1214 1215 pr_info("Menelaus rev %d.%d\n", rev >> 4, rev & 0x0f); 1216 1217 err = menelaus_read_reg(MENELAUS_VCORE_CTRL1); 1218 if (err < 0) 1219 goto fail; 1220 if (err & VCORE_CTRL1_HW_NSW) 1221 menelaus->vcore_hw_mode = 1; 1222 else 1223 menelaus->vcore_hw_mode = 0; 1224 1225 if (menelaus_pdata != NULL && menelaus_pdata->late_init != NULL) { 1226 err = menelaus_pdata->late_init(&client->dev); 1227 if (err < 0) 1228 goto fail; 1229 } 1230 1231 menelaus_rtc_init(menelaus); 1232 1233 return 0; 1234 fail: 1235 free_irq(client->irq, menelaus); 1236 flush_work(&menelaus->work); 1237 return err; 1238 } 1239 1240 static int menelaus_remove(struct i2c_client *client) 1241 { 1242 struct menelaus_chip *menelaus = i2c_get_clientdata(client); 1243 1244 free_irq(client->irq, menelaus); 1245 flush_work(&menelaus->work); 1246 the_menelaus = NULL; 1247 return 0; 1248 } 1249 1250 static const struct i2c_device_id menelaus_id[] = { 1251 { "menelaus", 0 }, 1252 { } 1253 }; 1254 MODULE_DEVICE_TABLE(i2c, menelaus_id); 1255 1256 static struct i2c_driver menelaus_i2c_driver = { 1257 .driver = { 1258 .name = DRIVER_NAME, 1259 }, 1260 .probe = menelaus_probe, 1261 .remove = menelaus_remove, 1262 .id_table = menelaus_id, 1263 }; 1264 1265 module_i2c_driver(menelaus_i2c_driver); 1266 1267 MODULE_AUTHOR("Texas Instruments, Inc. (and others)"); 1268 MODULE_DESCRIPTION("I2C interface for Menelaus."); 1269 MODULE_LICENSE("GPL"); 1270