xref: /openbmc/linux/drivers/mfd/db8500-prcmu.c (revision fb8d6c8d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * DB8500 PRCM Unit driver
4  *
5  * Copyright (C) STMicroelectronics 2009
6  * Copyright (C) ST-Ericsson SA 2010
7  *
8  * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
9  * Author: Sundar Iyer <sundar.iyer@stericsson.com>
10  * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
11  *
12  * U8500 PRCM Unit interface driver
13  */
14 #include <linux/init.h>
15 #include <linux/export.h>
16 #include <linux/kernel.h>
17 #include <linux/delay.h>
18 #include <linux/errno.h>
19 #include <linux/err.h>
20 #include <linux/spinlock.h>
21 #include <linux/io.h>
22 #include <linux/slab.h>
23 #include <linux/mutex.h>
24 #include <linux/completion.h>
25 #include <linux/irq.h>
26 #include <linux/jiffies.h>
27 #include <linux/bitops.h>
28 #include <linux/fs.h>
29 #include <linux/of.h>
30 #include <linux/of_irq.h>
31 #include <linux/platform_device.h>
32 #include <linux/uaccess.h>
33 #include <linux/mfd/core.h>
34 #include <linux/mfd/dbx500-prcmu.h>
35 #include <linux/mfd/abx500/ab8500.h>
36 #include <linux/regulator/db8500-prcmu.h>
37 #include <linux/regulator/machine.h>
38 #include <linux/platform_data/ux500_wdt.h>
39 #include "dbx500-prcmu-regs.h"
40 
41 /* Index of different voltages to be used when accessing AVSData */
42 #define PRCM_AVS_BASE		0x2FC
43 #define PRCM_AVS_VBB_RET	(PRCM_AVS_BASE + 0x0)
44 #define PRCM_AVS_VBB_MAX_OPP	(PRCM_AVS_BASE + 0x1)
45 #define PRCM_AVS_VBB_100_OPP	(PRCM_AVS_BASE + 0x2)
46 #define PRCM_AVS_VBB_50_OPP	(PRCM_AVS_BASE + 0x3)
47 #define PRCM_AVS_VARM_MAX_OPP	(PRCM_AVS_BASE + 0x4)
48 #define PRCM_AVS_VARM_100_OPP	(PRCM_AVS_BASE + 0x5)
49 #define PRCM_AVS_VARM_50_OPP	(PRCM_AVS_BASE + 0x6)
50 #define PRCM_AVS_VARM_RET	(PRCM_AVS_BASE + 0x7)
51 #define PRCM_AVS_VAPE_100_OPP	(PRCM_AVS_BASE + 0x8)
52 #define PRCM_AVS_VAPE_50_OPP	(PRCM_AVS_BASE + 0x9)
53 #define PRCM_AVS_VMOD_100_OPP	(PRCM_AVS_BASE + 0xA)
54 #define PRCM_AVS_VMOD_50_OPP	(PRCM_AVS_BASE + 0xB)
55 #define PRCM_AVS_VSAFE		(PRCM_AVS_BASE + 0xC)
56 
57 #define PRCM_AVS_VOLTAGE		0
58 #define PRCM_AVS_VOLTAGE_MASK		0x3f
59 #define PRCM_AVS_ISSLOWSTARTUP		6
60 #define PRCM_AVS_ISSLOWSTARTUP_MASK	(1 << PRCM_AVS_ISSLOWSTARTUP)
61 #define PRCM_AVS_ISMODEENABLE		7
62 #define PRCM_AVS_ISMODEENABLE_MASK	(1 << PRCM_AVS_ISMODEENABLE)
63 
64 #define PRCM_BOOT_STATUS	0xFFF
65 #define PRCM_ROMCODE_A2P	0xFFE
66 #define PRCM_ROMCODE_P2A	0xFFD
67 #define PRCM_XP70_CUR_PWR_STATE 0xFFC      /* 4 BYTES */
68 
69 #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
70 
71 #define _PRCM_MBOX_HEADER		0xFE8 /* 16 bytes */
72 #define PRCM_MBOX_HEADER_REQ_MB0	(_PRCM_MBOX_HEADER + 0x0)
73 #define PRCM_MBOX_HEADER_REQ_MB1	(_PRCM_MBOX_HEADER + 0x1)
74 #define PRCM_MBOX_HEADER_REQ_MB2	(_PRCM_MBOX_HEADER + 0x2)
75 #define PRCM_MBOX_HEADER_REQ_MB3	(_PRCM_MBOX_HEADER + 0x3)
76 #define PRCM_MBOX_HEADER_REQ_MB4	(_PRCM_MBOX_HEADER + 0x4)
77 #define PRCM_MBOX_HEADER_REQ_MB5	(_PRCM_MBOX_HEADER + 0x5)
78 #define PRCM_MBOX_HEADER_ACK_MB0	(_PRCM_MBOX_HEADER + 0x8)
79 
80 /* Req Mailboxes */
81 #define PRCM_REQ_MB0 0xFDC /* 12 bytes  */
82 #define PRCM_REQ_MB1 0xFD0 /* 12 bytes  */
83 #define PRCM_REQ_MB2 0xFC0 /* 16 bytes  */
84 #define PRCM_REQ_MB3 0xE4C /* 372 bytes  */
85 #define PRCM_REQ_MB4 0xE48 /* 4 bytes  */
86 #define PRCM_REQ_MB5 0xE44 /* 4 bytes  */
87 
88 /* Ack Mailboxes */
89 #define PRCM_ACK_MB0 0xE08 /* 52 bytes  */
90 #define PRCM_ACK_MB1 0xE04 /* 4 bytes */
91 #define PRCM_ACK_MB2 0xE00 /* 4 bytes */
92 #define PRCM_ACK_MB3 0xDFC /* 4 bytes */
93 #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
94 #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
95 
96 /* Mailbox 0 headers */
97 #define MB0H_POWER_STATE_TRANS		0
98 #define MB0H_CONFIG_WAKEUPS_EXE		1
99 #define MB0H_READ_WAKEUP_ACK		3
100 #define MB0H_CONFIG_WAKEUPS_SLEEP	4
101 
102 #define MB0H_WAKEUP_EXE 2
103 #define MB0H_WAKEUP_SLEEP 5
104 
105 /* Mailbox 0 REQs */
106 #define PRCM_REQ_MB0_AP_POWER_STATE	(PRCM_REQ_MB0 + 0x0)
107 #define PRCM_REQ_MB0_AP_PLL_STATE	(PRCM_REQ_MB0 + 0x1)
108 #define PRCM_REQ_MB0_ULP_CLOCK_STATE	(PRCM_REQ_MB0 + 0x2)
109 #define PRCM_REQ_MB0_DO_NOT_WFI		(PRCM_REQ_MB0 + 0x3)
110 #define PRCM_REQ_MB0_WAKEUP_8500	(PRCM_REQ_MB0 + 0x4)
111 #define PRCM_REQ_MB0_WAKEUP_4500	(PRCM_REQ_MB0 + 0x8)
112 
113 /* Mailbox 0 ACKs */
114 #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS	(PRCM_ACK_MB0 + 0x0)
115 #define PRCM_ACK_MB0_READ_POINTER	(PRCM_ACK_MB0 + 0x1)
116 #define PRCM_ACK_MB0_WAKEUP_0_8500	(PRCM_ACK_MB0 + 0x4)
117 #define PRCM_ACK_MB0_WAKEUP_0_4500	(PRCM_ACK_MB0 + 0x8)
118 #define PRCM_ACK_MB0_WAKEUP_1_8500	(PRCM_ACK_MB0 + 0x1C)
119 #define PRCM_ACK_MB0_WAKEUP_1_4500	(PRCM_ACK_MB0 + 0x20)
120 #define PRCM_ACK_MB0_EVENT_4500_NUMBERS	20
121 
122 /* Mailbox 1 headers */
123 #define MB1H_ARM_APE_OPP 0x0
124 #define MB1H_RESET_MODEM 0x2
125 #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
126 #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
127 #define MB1H_RELEASE_USB_WAKEUP 0x5
128 #define MB1H_PLL_ON_OFF 0x6
129 
130 /* Mailbox 1 Requests */
131 #define PRCM_REQ_MB1_ARM_OPP			(PRCM_REQ_MB1 + 0x0)
132 #define PRCM_REQ_MB1_APE_OPP			(PRCM_REQ_MB1 + 0x1)
133 #define PRCM_REQ_MB1_PLL_ON_OFF			(PRCM_REQ_MB1 + 0x4)
134 #define PLL_SOC0_OFF	0x1
135 #define PLL_SOC0_ON	0x2
136 #define PLL_SOC1_OFF	0x4
137 #define PLL_SOC1_ON	0x8
138 
139 /* Mailbox 1 ACKs */
140 #define PRCM_ACK_MB1_CURRENT_ARM_OPP	(PRCM_ACK_MB1 + 0x0)
141 #define PRCM_ACK_MB1_CURRENT_APE_OPP	(PRCM_ACK_MB1 + 0x1)
142 #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS	(PRCM_ACK_MB1 + 0x2)
143 #define PRCM_ACK_MB1_DVFS_STATUS	(PRCM_ACK_MB1 + 0x3)
144 
145 /* Mailbox 2 headers */
146 #define MB2H_DPS	0x0
147 #define MB2H_AUTO_PWR	0x1
148 
149 /* Mailbox 2 REQs */
150 #define PRCM_REQ_MB2_SVA_MMDSP		(PRCM_REQ_MB2 + 0x0)
151 #define PRCM_REQ_MB2_SVA_PIPE		(PRCM_REQ_MB2 + 0x1)
152 #define PRCM_REQ_MB2_SIA_MMDSP		(PRCM_REQ_MB2 + 0x2)
153 #define PRCM_REQ_MB2_SIA_PIPE		(PRCM_REQ_MB2 + 0x3)
154 #define PRCM_REQ_MB2_SGA		(PRCM_REQ_MB2 + 0x4)
155 #define PRCM_REQ_MB2_B2R2_MCDE		(PRCM_REQ_MB2 + 0x5)
156 #define PRCM_REQ_MB2_ESRAM12		(PRCM_REQ_MB2 + 0x6)
157 #define PRCM_REQ_MB2_ESRAM34		(PRCM_REQ_MB2 + 0x7)
158 #define PRCM_REQ_MB2_AUTO_PM_SLEEP	(PRCM_REQ_MB2 + 0x8)
159 #define PRCM_REQ_MB2_AUTO_PM_IDLE	(PRCM_REQ_MB2 + 0xC)
160 
161 /* Mailbox 2 ACKs */
162 #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
163 #define HWACC_PWR_ST_OK 0xFE
164 
165 /* Mailbox 3 headers */
166 #define MB3H_ANC	0x0
167 #define MB3H_SIDETONE	0x1
168 #define MB3H_SYSCLK	0xE
169 
170 /* Mailbox 3 Requests */
171 #define PRCM_REQ_MB3_ANC_FIR_COEFF	(PRCM_REQ_MB3 + 0x0)
172 #define PRCM_REQ_MB3_ANC_IIR_COEFF	(PRCM_REQ_MB3 + 0x20)
173 #define PRCM_REQ_MB3_ANC_SHIFTER	(PRCM_REQ_MB3 + 0x60)
174 #define PRCM_REQ_MB3_ANC_WARP		(PRCM_REQ_MB3 + 0x64)
175 #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN	(PRCM_REQ_MB3 + 0x68)
176 #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF	(PRCM_REQ_MB3 + 0x6C)
177 #define PRCM_REQ_MB3_SYSCLK_MGT		(PRCM_REQ_MB3 + 0x16C)
178 
179 /* Mailbox 4 headers */
180 #define MB4H_DDR_INIT	0x0
181 #define MB4H_MEM_ST	0x1
182 #define MB4H_HOTDOG	0x12
183 #define MB4H_HOTMON	0x13
184 #define MB4H_HOT_PERIOD	0x14
185 #define MB4H_A9WDOG_CONF 0x16
186 #define MB4H_A9WDOG_EN   0x17
187 #define MB4H_A9WDOG_DIS  0x18
188 #define MB4H_A9WDOG_LOAD 0x19
189 #define MB4H_A9WDOG_KICK 0x20
190 
191 /* Mailbox 4 Requests */
192 #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE	(PRCM_REQ_MB4 + 0x0)
193 #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE	(PRCM_REQ_MB4 + 0x1)
194 #define PRCM_REQ_MB4_ESRAM0_ST			(PRCM_REQ_MB4 + 0x3)
195 #define PRCM_REQ_MB4_HOTDOG_THRESHOLD		(PRCM_REQ_MB4 + 0x0)
196 #define PRCM_REQ_MB4_HOTMON_LOW			(PRCM_REQ_MB4 + 0x0)
197 #define PRCM_REQ_MB4_HOTMON_HIGH		(PRCM_REQ_MB4 + 0x1)
198 #define PRCM_REQ_MB4_HOTMON_CONFIG		(PRCM_REQ_MB4 + 0x2)
199 #define PRCM_REQ_MB4_HOT_PERIOD			(PRCM_REQ_MB4 + 0x0)
200 #define HOTMON_CONFIG_LOW			BIT(0)
201 #define HOTMON_CONFIG_HIGH			BIT(1)
202 #define PRCM_REQ_MB4_A9WDOG_0			(PRCM_REQ_MB4 + 0x0)
203 #define PRCM_REQ_MB4_A9WDOG_1			(PRCM_REQ_MB4 + 0x1)
204 #define PRCM_REQ_MB4_A9WDOG_2			(PRCM_REQ_MB4 + 0x2)
205 #define PRCM_REQ_MB4_A9WDOG_3			(PRCM_REQ_MB4 + 0x3)
206 #define A9WDOG_AUTO_OFF_EN			BIT(7)
207 #define A9WDOG_AUTO_OFF_DIS			0
208 #define A9WDOG_ID_MASK				0xf
209 
210 /* Mailbox 5 Requests */
211 #define PRCM_REQ_MB5_I2C_SLAVE_OP	(PRCM_REQ_MB5 + 0x0)
212 #define PRCM_REQ_MB5_I2C_HW_BITS	(PRCM_REQ_MB5 + 0x1)
213 #define PRCM_REQ_MB5_I2C_REG		(PRCM_REQ_MB5 + 0x2)
214 #define PRCM_REQ_MB5_I2C_VAL		(PRCM_REQ_MB5 + 0x3)
215 #define PRCMU_I2C_WRITE(slave) (((slave) << 1) | BIT(6))
216 #define PRCMU_I2C_READ(slave) (((slave) << 1) | BIT(0) | BIT(6))
217 #define PRCMU_I2C_STOP_EN		BIT(3)
218 
219 /* Mailbox 5 ACKs */
220 #define PRCM_ACK_MB5_I2C_STATUS	(PRCM_ACK_MB5 + 0x1)
221 #define PRCM_ACK_MB5_I2C_VAL	(PRCM_ACK_MB5 + 0x3)
222 #define I2C_WR_OK 0x1
223 #define I2C_RD_OK 0x2
224 
225 #define NUM_MB 8
226 #define MBOX_BIT BIT
227 #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
228 
229 /*
230  * Wakeups/IRQs
231  */
232 
233 #define WAKEUP_BIT_RTC BIT(0)
234 #define WAKEUP_BIT_RTT0 BIT(1)
235 #define WAKEUP_BIT_RTT1 BIT(2)
236 #define WAKEUP_BIT_HSI0 BIT(3)
237 #define WAKEUP_BIT_HSI1 BIT(4)
238 #define WAKEUP_BIT_CA_WAKE BIT(5)
239 #define WAKEUP_BIT_USB BIT(6)
240 #define WAKEUP_BIT_ABB BIT(7)
241 #define WAKEUP_BIT_ABB_FIFO BIT(8)
242 #define WAKEUP_BIT_SYSCLK_OK BIT(9)
243 #define WAKEUP_BIT_CA_SLEEP BIT(10)
244 #define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
245 #define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
246 #define WAKEUP_BIT_ANC_OK BIT(13)
247 #define WAKEUP_BIT_SW_ERROR BIT(14)
248 #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
249 #define WAKEUP_BIT_ARM BIT(17)
250 #define WAKEUP_BIT_HOTMON_LOW BIT(18)
251 #define WAKEUP_BIT_HOTMON_HIGH BIT(19)
252 #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
253 #define WAKEUP_BIT_GPIO0 BIT(23)
254 #define WAKEUP_BIT_GPIO1 BIT(24)
255 #define WAKEUP_BIT_GPIO2 BIT(25)
256 #define WAKEUP_BIT_GPIO3 BIT(26)
257 #define WAKEUP_BIT_GPIO4 BIT(27)
258 #define WAKEUP_BIT_GPIO5 BIT(28)
259 #define WAKEUP_BIT_GPIO6 BIT(29)
260 #define WAKEUP_BIT_GPIO7 BIT(30)
261 #define WAKEUP_BIT_GPIO8 BIT(31)
262 
263 static struct {
264 	bool valid;
265 	struct prcmu_fw_version version;
266 } fw_info;
267 
268 static struct irq_domain *db8500_irq_domain;
269 
270 /*
271  * This vector maps irq numbers to the bits in the bit field used in
272  * communication with the PRCMU firmware.
273  *
274  * The reason for having this is to keep the irq numbers contiguous even though
275  * the bits in the bit field are not. (The bits also have a tendency to move
276  * around, to further complicate matters.)
277  */
278 #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name))
279 #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
280 
281 #define IRQ_PRCMU_RTC 0
282 #define IRQ_PRCMU_RTT0 1
283 #define IRQ_PRCMU_RTT1 2
284 #define IRQ_PRCMU_HSI0 3
285 #define IRQ_PRCMU_HSI1 4
286 #define IRQ_PRCMU_CA_WAKE 5
287 #define IRQ_PRCMU_USB 6
288 #define IRQ_PRCMU_ABB 7
289 #define IRQ_PRCMU_ABB_FIFO 8
290 #define IRQ_PRCMU_ARM 9
291 #define IRQ_PRCMU_MODEM_SW_RESET_REQ 10
292 #define IRQ_PRCMU_GPIO0 11
293 #define IRQ_PRCMU_GPIO1 12
294 #define IRQ_PRCMU_GPIO2 13
295 #define IRQ_PRCMU_GPIO3 14
296 #define IRQ_PRCMU_GPIO4 15
297 #define IRQ_PRCMU_GPIO5 16
298 #define IRQ_PRCMU_GPIO6 17
299 #define IRQ_PRCMU_GPIO7 18
300 #define IRQ_PRCMU_GPIO8 19
301 #define IRQ_PRCMU_CA_SLEEP 20
302 #define IRQ_PRCMU_HOTMON_LOW 21
303 #define IRQ_PRCMU_HOTMON_HIGH 22
304 #define NUM_PRCMU_WAKEUPS 23
305 
306 static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
307 	IRQ_ENTRY(RTC),
308 	IRQ_ENTRY(RTT0),
309 	IRQ_ENTRY(RTT1),
310 	IRQ_ENTRY(HSI0),
311 	IRQ_ENTRY(HSI1),
312 	IRQ_ENTRY(CA_WAKE),
313 	IRQ_ENTRY(USB),
314 	IRQ_ENTRY(ABB),
315 	IRQ_ENTRY(ABB_FIFO),
316 	IRQ_ENTRY(CA_SLEEP),
317 	IRQ_ENTRY(ARM),
318 	IRQ_ENTRY(HOTMON_LOW),
319 	IRQ_ENTRY(HOTMON_HIGH),
320 	IRQ_ENTRY(MODEM_SW_RESET_REQ),
321 	IRQ_ENTRY(GPIO0),
322 	IRQ_ENTRY(GPIO1),
323 	IRQ_ENTRY(GPIO2),
324 	IRQ_ENTRY(GPIO3),
325 	IRQ_ENTRY(GPIO4),
326 	IRQ_ENTRY(GPIO5),
327 	IRQ_ENTRY(GPIO6),
328 	IRQ_ENTRY(GPIO7),
329 	IRQ_ENTRY(GPIO8)
330 };
331 
332 #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
333 #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
334 static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
335 	WAKEUP_ENTRY(RTC),
336 	WAKEUP_ENTRY(RTT0),
337 	WAKEUP_ENTRY(RTT1),
338 	WAKEUP_ENTRY(HSI0),
339 	WAKEUP_ENTRY(HSI1),
340 	WAKEUP_ENTRY(USB),
341 	WAKEUP_ENTRY(ABB),
342 	WAKEUP_ENTRY(ABB_FIFO),
343 	WAKEUP_ENTRY(ARM)
344 };
345 
346 /*
347  * mb0_transfer - state needed for mailbox 0 communication.
348  * @lock:		The transaction lock.
349  * @dbb_events_lock:	A lock used to handle concurrent access to (parts of)
350  *			the request data.
351  * @mask_work:		Work structure used for (un)masking wakeup interrupts.
352  * @req:		Request data that need to persist between requests.
353  */
354 static struct {
355 	spinlock_t lock;
356 	spinlock_t dbb_irqs_lock;
357 	struct work_struct mask_work;
358 	struct mutex ac_wake_lock;
359 	struct completion ac_wake_work;
360 	struct {
361 		u32 dbb_irqs;
362 		u32 dbb_wakeups;
363 		u32 abb_events;
364 	} req;
365 } mb0_transfer;
366 
367 /*
368  * mb1_transfer - state needed for mailbox 1 communication.
369  * @lock:	The transaction lock.
370  * @work:	The transaction completion structure.
371  * @ape_opp:	The current APE OPP.
372  * @ack:	Reply ("acknowledge") data.
373  */
374 static struct {
375 	struct mutex lock;
376 	struct completion work;
377 	u8 ape_opp;
378 	struct {
379 		u8 header;
380 		u8 arm_opp;
381 		u8 ape_opp;
382 		u8 ape_voltage_status;
383 	} ack;
384 } mb1_transfer;
385 
386 /*
387  * mb2_transfer - state needed for mailbox 2 communication.
388  * @lock:            The transaction lock.
389  * @work:            The transaction completion structure.
390  * @auto_pm_lock:    The autonomous power management configuration lock.
391  * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
392  * @req:             Request data that need to persist between requests.
393  * @ack:             Reply ("acknowledge") data.
394  */
395 static struct {
396 	struct mutex lock;
397 	struct completion work;
398 	spinlock_t auto_pm_lock;
399 	bool auto_pm_enabled;
400 	struct {
401 		u8 status;
402 	} ack;
403 } mb2_transfer;
404 
405 /*
406  * mb3_transfer - state needed for mailbox 3 communication.
407  * @lock:		The request lock.
408  * @sysclk_lock:	A lock used to handle concurrent sysclk requests.
409  * @sysclk_work:	Work structure used for sysclk requests.
410  */
411 static struct {
412 	spinlock_t lock;
413 	struct mutex sysclk_lock;
414 	struct completion sysclk_work;
415 } mb3_transfer;
416 
417 /*
418  * mb4_transfer - state needed for mailbox 4 communication.
419  * @lock:	The transaction lock.
420  * @work:	The transaction completion structure.
421  */
422 static struct {
423 	struct mutex lock;
424 	struct completion work;
425 } mb4_transfer;
426 
427 /*
428  * mb5_transfer - state needed for mailbox 5 communication.
429  * @lock:	The transaction lock.
430  * @work:	The transaction completion structure.
431  * @ack:	Reply ("acknowledge") data.
432  */
433 static struct {
434 	struct mutex lock;
435 	struct completion work;
436 	struct {
437 		u8 status;
438 		u8 value;
439 	} ack;
440 } mb5_transfer;
441 
442 static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
443 
444 /* Spinlocks */
445 static DEFINE_SPINLOCK(prcmu_lock);
446 static DEFINE_SPINLOCK(clkout_lock);
447 
448 /* Global var to runtime determine TCDM base for v2 or v1 */
449 static __iomem void *tcdm_base;
450 static __iomem void *prcmu_base;
451 
452 struct clk_mgt {
453 	u32 offset;
454 	u32 pllsw;
455 	int branch;
456 	bool clk38div;
457 };
458 
459 enum {
460 	PLL_RAW,
461 	PLL_FIX,
462 	PLL_DIV
463 };
464 
465 static DEFINE_SPINLOCK(clk_mgt_lock);
466 
467 #define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
468 	{ (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
469 static struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
470 	CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
471 	CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
472 	CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
473 	CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
474 	CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
475 	CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
476 	CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
477 	CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
478 	CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
479 	CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
480 	CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
481 	CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
482 	CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
483 	CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
484 	CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
485 	CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
486 	CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
487 	CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
488 	CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
489 	CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
490 	CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
491 	CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
492 	CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
493 	CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
494 	CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
495 	CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
496 	CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
497 	CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
498 	CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
499 };
500 
501 struct dsiclk {
502 	u32 divsel_mask;
503 	u32 divsel_shift;
504 	u32 divsel;
505 };
506 
507 static struct dsiclk dsiclk[2] = {
508 	{
509 		.divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
510 		.divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
511 		.divsel = PRCM_DSI_PLLOUT_SEL_PHI,
512 	},
513 	{
514 		.divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
515 		.divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
516 		.divsel = PRCM_DSI_PLLOUT_SEL_PHI,
517 	}
518 };
519 
520 struct dsiescclk {
521 	u32 en;
522 	u32 div_mask;
523 	u32 div_shift;
524 };
525 
526 static struct dsiescclk dsiescclk[3] = {
527 	{
528 		.en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
529 		.div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
530 		.div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
531 	},
532 	{
533 		.en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
534 		.div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
535 		.div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
536 	},
537 	{
538 		.en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
539 		.div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
540 		.div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
541 	}
542 };
543 
544 
545 /*
546 * Used by MCDE to setup all necessary PRCMU registers
547 */
548 #define PRCMU_RESET_DSIPLL		0x00004000
549 #define PRCMU_UNCLAMP_DSIPLL		0x00400800
550 
551 #define PRCMU_CLK_PLL_DIV_SHIFT		0
552 #define PRCMU_CLK_PLL_SW_SHIFT		5
553 #define PRCMU_CLK_38			(1 << 9)
554 #define PRCMU_CLK_38_SRC		(1 << 10)
555 #define PRCMU_CLK_38_DIV		(1 << 11)
556 
557 /* PLLDIV=12, PLLSW=4 (PLLDDR) */
558 #define PRCMU_DSI_CLOCK_SETTING		0x0000008C
559 
560 /* DPI 50000000 Hz */
561 #define PRCMU_DPI_CLOCK_SETTING		((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
562 					  (16 << PRCMU_CLK_PLL_DIV_SHIFT))
563 #define PRCMU_DSI_LP_CLOCK_SETTING	0x00000E00
564 
565 /* D=101, N=1, R=4, SELDIV2=0 */
566 #define PRCMU_PLLDSI_FREQ_SETTING	0x00040165
567 
568 #define PRCMU_ENABLE_PLLDSI		0x00000001
569 #define PRCMU_DISABLE_PLLDSI		0x00000000
570 #define PRCMU_RELEASE_RESET_DSS		0x0000400C
571 #define PRCMU_DSI_PLLOUT_SEL_SETTING	0x00000202
572 /* ESC clk, div0=1, div1=1, div2=3 */
573 #define PRCMU_ENABLE_ESCAPE_CLOCK_DIV	0x07030101
574 #define PRCMU_DISABLE_ESCAPE_CLOCK_DIV	0x00030101
575 #define PRCMU_DSI_RESET_SW		0x00000007
576 
577 #define PRCMU_PLLDSI_LOCKP_LOCKED	0x3
578 
579 int db8500_prcmu_enable_dsipll(void)
580 {
581 	int i;
582 
583 	/* Clear DSIPLL_RESETN */
584 	writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR);
585 	/* Unclamp DSIPLL in/out */
586 	writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR);
587 
588 	/* Set DSI PLL FREQ */
589 	writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ);
590 	writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL);
591 	/* Enable Escape clocks */
592 	writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
593 
594 	/* Start DSI PLL */
595 	writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
596 	/* Reset DSI PLL */
597 	writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET);
598 	for (i = 0; i < 10; i++) {
599 		if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED)
600 					== PRCMU_PLLDSI_LOCKP_LOCKED)
601 			break;
602 		udelay(100);
603 	}
604 	/* Set DSIPLL_RESETN */
605 	writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET);
606 	return 0;
607 }
608 
609 int db8500_prcmu_disable_dsipll(void)
610 {
611 	/* Disable dsi pll */
612 	writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
613 	/* Disable  escapeclock */
614 	writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
615 	return 0;
616 }
617 
618 int db8500_prcmu_set_display_clocks(void)
619 {
620 	unsigned long flags;
621 
622 	spin_lock_irqsave(&clk_mgt_lock, flags);
623 
624 	/* Grab the HW semaphore. */
625 	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
626 		cpu_relax();
627 
628 	writel(PRCMU_DSI_CLOCK_SETTING, prcmu_base + PRCM_HDMICLK_MGT);
629 	writel(PRCMU_DSI_LP_CLOCK_SETTING, prcmu_base + PRCM_TVCLK_MGT);
630 	writel(PRCMU_DPI_CLOCK_SETTING, prcmu_base + PRCM_LCDCLK_MGT);
631 
632 	/* Release the HW semaphore. */
633 	writel(0, PRCM_SEM);
634 
635 	spin_unlock_irqrestore(&clk_mgt_lock, flags);
636 
637 	return 0;
638 }
639 
640 u32 db8500_prcmu_read(unsigned int reg)
641 {
642 	return readl(prcmu_base + reg);
643 }
644 
645 void db8500_prcmu_write(unsigned int reg, u32 value)
646 {
647 	unsigned long flags;
648 
649 	spin_lock_irqsave(&prcmu_lock, flags);
650 	writel(value, (prcmu_base + reg));
651 	spin_unlock_irqrestore(&prcmu_lock, flags);
652 }
653 
654 void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
655 {
656 	u32 val;
657 	unsigned long flags;
658 
659 	spin_lock_irqsave(&prcmu_lock, flags);
660 	val = readl(prcmu_base + reg);
661 	val = ((val & ~mask) | (value & mask));
662 	writel(val, (prcmu_base + reg));
663 	spin_unlock_irqrestore(&prcmu_lock, flags);
664 }
665 
666 struct prcmu_fw_version *prcmu_get_fw_version(void)
667 {
668 	return fw_info.valid ? &fw_info.version : NULL;
669 }
670 
671 bool prcmu_has_arm_maxopp(void)
672 {
673 	return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
674 		PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
675 }
676 
677 /**
678  * prcmu_set_rc_a2p - This function is used to run few power state sequences
679  * @val: Value to be set, i.e. transition requested
680  * Returns: 0 on success, -EINVAL on invalid argument
681  *
682  * This function is used to run the following power state sequences -
683  * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
684  */
685 int prcmu_set_rc_a2p(enum romcode_write val)
686 {
687 	if (val < RDY_2_DS || val > RDY_2_XP70_RST)
688 		return -EINVAL;
689 	writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
690 	return 0;
691 }
692 
693 /**
694  * prcmu_get_rc_p2a - This function is used to get power state sequences
695  * Returns: the power transition that has last happened
696  *
697  * This function can return the following transitions-
698  * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
699  */
700 enum romcode_read prcmu_get_rc_p2a(void)
701 {
702 	return readb(tcdm_base + PRCM_ROMCODE_P2A);
703 }
704 
705 /**
706  * prcmu_get_current_mode - Return the current XP70 power mode
707  * Returns: Returns the current AP(ARM) power mode: init,
708  * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
709  */
710 enum ap_pwrst prcmu_get_xp70_current_state(void)
711 {
712 	return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
713 }
714 
715 /**
716  * prcmu_config_clkout - Configure one of the programmable clock outputs.
717  * @clkout:	The CLKOUT number (0 or 1).
718  * @source:	The clock to be used (one of the PRCMU_CLKSRC_*).
719  * @div:	The divider to be applied.
720  *
721  * Configures one of the programmable clock outputs (CLKOUTs).
722  * @div should be in the range [1,63] to request a configuration, or 0 to
723  * inform that the configuration is no longer requested.
724  */
725 int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
726 {
727 	static int requests[2];
728 	int r = 0;
729 	unsigned long flags;
730 	u32 val;
731 	u32 bits;
732 	u32 mask;
733 	u32 div_mask;
734 
735 	BUG_ON(clkout > 1);
736 	BUG_ON(div > 63);
737 	BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
738 
739 	if (!div && !requests[clkout])
740 		return -EINVAL;
741 
742 	if (clkout == 0) {
743 		div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
744 		mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
745 		bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
746 			(div << PRCM_CLKOCR_CLKODIV0_SHIFT));
747 	} else {
748 		div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
749 		mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
750 			PRCM_CLKOCR_CLK1TYPE);
751 		bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
752 			(div << PRCM_CLKOCR_CLKODIV1_SHIFT));
753 	}
754 	bits &= mask;
755 
756 	spin_lock_irqsave(&clkout_lock, flags);
757 
758 	val = readl(PRCM_CLKOCR);
759 	if (val & div_mask) {
760 		if (div) {
761 			if ((val & mask) != bits) {
762 				r = -EBUSY;
763 				goto unlock_and_return;
764 			}
765 		} else {
766 			if ((val & mask & ~div_mask) != bits) {
767 				r = -EINVAL;
768 				goto unlock_and_return;
769 			}
770 		}
771 	}
772 	writel((bits | (val & ~mask)), PRCM_CLKOCR);
773 	requests[clkout] += (div ? 1 : -1);
774 
775 unlock_and_return:
776 	spin_unlock_irqrestore(&clkout_lock, flags);
777 
778 	return r;
779 }
780 
781 int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
782 {
783 	unsigned long flags;
784 
785 	BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
786 
787 	spin_lock_irqsave(&mb0_transfer.lock, flags);
788 
789 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
790 		cpu_relax();
791 
792 	writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
793 	writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
794 	writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
795 	writeb((keep_ulp_clk ? 1 : 0),
796 		(tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
797 	writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
798 	writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
799 
800 	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
801 
802 	return 0;
803 }
804 
805 u8 db8500_prcmu_get_power_state_result(void)
806 {
807 	return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
808 }
809 
810 /* This function should only be called while mb0_transfer.lock is held. */
811 static void config_wakeups(void)
812 {
813 	const u8 header[2] = {
814 		MB0H_CONFIG_WAKEUPS_EXE,
815 		MB0H_CONFIG_WAKEUPS_SLEEP
816 	};
817 	static u32 last_dbb_events;
818 	static u32 last_abb_events;
819 	u32 dbb_events;
820 	u32 abb_events;
821 	unsigned int i;
822 
823 	dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
824 	dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
825 
826 	abb_events = mb0_transfer.req.abb_events;
827 
828 	if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
829 		return;
830 
831 	for (i = 0; i < 2; i++) {
832 		while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
833 			cpu_relax();
834 		writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
835 		writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
836 		writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
837 		writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
838 	}
839 	last_dbb_events = dbb_events;
840 	last_abb_events = abb_events;
841 }
842 
843 void db8500_prcmu_enable_wakeups(u32 wakeups)
844 {
845 	unsigned long flags;
846 	u32 bits;
847 	int i;
848 
849 	BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
850 
851 	for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
852 		if (wakeups & BIT(i))
853 			bits |= prcmu_wakeup_bit[i];
854 	}
855 
856 	spin_lock_irqsave(&mb0_transfer.lock, flags);
857 
858 	mb0_transfer.req.dbb_wakeups = bits;
859 	config_wakeups();
860 
861 	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
862 }
863 
864 void db8500_prcmu_config_abb_event_readout(u32 abb_events)
865 {
866 	unsigned long flags;
867 
868 	spin_lock_irqsave(&mb0_transfer.lock, flags);
869 
870 	mb0_transfer.req.abb_events = abb_events;
871 	config_wakeups();
872 
873 	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
874 }
875 
876 void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
877 {
878 	if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
879 		*buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
880 	else
881 		*buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
882 }
883 
884 /**
885  * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
886  * @opp: The new ARM operating point to which transition is to be made
887  * Returns: 0 on success, non-zero on failure
888  *
889  * This function sets the the operating point of the ARM.
890  */
891 int db8500_prcmu_set_arm_opp(u8 opp)
892 {
893 	int r;
894 
895 	if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
896 		return -EINVAL;
897 
898 	r = 0;
899 
900 	mutex_lock(&mb1_transfer.lock);
901 
902 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
903 		cpu_relax();
904 
905 	writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
906 	writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
907 	writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
908 
909 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
910 	wait_for_completion(&mb1_transfer.work);
911 
912 	if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
913 		(mb1_transfer.ack.arm_opp != opp))
914 		r = -EIO;
915 
916 	mutex_unlock(&mb1_transfer.lock);
917 
918 	return r;
919 }
920 
921 /**
922  * db8500_prcmu_get_arm_opp - get the current ARM OPP
923  *
924  * Returns: the current ARM OPP
925  */
926 int db8500_prcmu_get_arm_opp(void)
927 {
928 	return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
929 }
930 
931 /**
932  * db8500_prcmu_get_ddr_opp - get the current DDR OPP
933  *
934  * Returns: the current DDR OPP
935  */
936 int db8500_prcmu_get_ddr_opp(void)
937 {
938 	return readb(PRCM_DDR_SUBSYS_APE_MINBW);
939 }
940 
941 /* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
942 static void request_even_slower_clocks(bool enable)
943 {
944 	u32 clock_reg[] = {
945 		PRCM_ACLK_MGT,
946 		PRCM_DMACLK_MGT
947 	};
948 	unsigned long flags;
949 	unsigned int i;
950 
951 	spin_lock_irqsave(&clk_mgt_lock, flags);
952 
953 	/* Grab the HW semaphore. */
954 	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
955 		cpu_relax();
956 
957 	for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
958 		u32 val;
959 		u32 div;
960 
961 		val = readl(prcmu_base + clock_reg[i]);
962 		div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
963 		if (enable) {
964 			if ((div <= 1) || (div > 15)) {
965 				pr_err("prcmu: Bad clock divider %d in %s\n",
966 					div, __func__);
967 				goto unlock_and_return;
968 			}
969 			div <<= 1;
970 		} else {
971 			if (div <= 2)
972 				goto unlock_and_return;
973 			div >>= 1;
974 		}
975 		val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
976 			(div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
977 		writel(val, prcmu_base + clock_reg[i]);
978 	}
979 
980 unlock_and_return:
981 	/* Release the HW semaphore. */
982 	writel(0, PRCM_SEM);
983 
984 	spin_unlock_irqrestore(&clk_mgt_lock, flags);
985 }
986 
987 /**
988  * db8500_set_ape_opp - set the appropriate APE OPP
989  * @opp: The new APE operating point to which transition is to be made
990  * Returns: 0 on success, non-zero on failure
991  *
992  * This function sets the operating point of the APE.
993  */
994 int db8500_prcmu_set_ape_opp(u8 opp)
995 {
996 	int r = 0;
997 
998 	if (opp == mb1_transfer.ape_opp)
999 		return 0;
1000 
1001 	mutex_lock(&mb1_transfer.lock);
1002 
1003 	if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
1004 		request_even_slower_clocks(false);
1005 
1006 	if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
1007 		goto skip_message;
1008 
1009 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1010 		cpu_relax();
1011 
1012 	writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1013 	writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
1014 	writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
1015 		(tcdm_base + PRCM_REQ_MB1_APE_OPP));
1016 
1017 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1018 	wait_for_completion(&mb1_transfer.work);
1019 
1020 	if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
1021 		(mb1_transfer.ack.ape_opp != opp))
1022 		r = -EIO;
1023 
1024 skip_message:
1025 	if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
1026 		(r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
1027 		request_even_slower_clocks(true);
1028 	if (!r)
1029 		mb1_transfer.ape_opp = opp;
1030 
1031 	mutex_unlock(&mb1_transfer.lock);
1032 
1033 	return r;
1034 }
1035 
1036 /**
1037  * db8500_prcmu_get_ape_opp - get the current APE OPP
1038  *
1039  * Returns: the current APE OPP
1040  */
1041 int db8500_prcmu_get_ape_opp(void)
1042 {
1043 	return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
1044 }
1045 
1046 /**
1047  * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
1048  * @enable: true to request the higher voltage, false to drop a request.
1049  *
1050  * Calls to this function to enable and disable requests must be balanced.
1051  */
1052 int db8500_prcmu_request_ape_opp_100_voltage(bool enable)
1053 {
1054 	int r = 0;
1055 	u8 header;
1056 	static unsigned int requests;
1057 
1058 	mutex_lock(&mb1_transfer.lock);
1059 
1060 	if (enable) {
1061 		if (0 != requests++)
1062 			goto unlock_and_return;
1063 		header = MB1H_REQUEST_APE_OPP_100_VOLT;
1064 	} else {
1065 		if (requests == 0) {
1066 			r = -EIO;
1067 			goto unlock_and_return;
1068 		} else if (1 != requests--) {
1069 			goto unlock_and_return;
1070 		}
1071 		header = MB1H_RELEASE_APE_OPP_100_VOLT;
1072 	}
1073 
1074 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1075 		cpu_relax();
1076 
1077 	writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1078 
1079 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1080 	wait_for_completion(&mb1_transfer.work);
1081 
1082 	if ((mb1_transfer.ack.header != header) ||
1083 		((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1084 		r = -EIO;
1085 
1086 unlock_and_return:
1087 	mutex_unlock(&mb1_transfer.lock);
1088 
1089 	return r;
1090 }
1091 
1092 /**
1093  * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
1094  *
1095  * This function releases the power state requirements of a USB wakeup.
1096  */
1097 int prcmu_release_usb_wakeup_state(void)
1098 {
1099 	int r = 0;
1100 
1101 	mutex_lock(&mb1_transfer.lock);
1102 
1103 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1104 		cpu_relax();
1105 
1106 	writeb(MB1H_RELEASE_USB_WAKEUP,
1107 		(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1108 
1109 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1110 	wait_for_completion(&mb1_transfer.work);
1111 
1112 	if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
1113 		((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1114 		r = -EIO;
1115 
1116 	mutex_unlock(&mb1_transfer.lock);
1117 
1118 	return r;
1119 }
1120 
1121 static int request_pll(u8 clock, bool enable)
1122 {
1123 	int r = 0;
1124 
1125 	if (clock == PRCMU_PLLSOC0)
1126 		clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
1127 	else if (clock == PRCMU_PLLSOC1)
1128 		clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
1129 	else
1130 		return -EINVAL;
1131 
1132 	mutex_lock(&mb1_transfer.lock);
1133 
1134 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1135 		cpu_relax();
1136 
1137 	writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1138 	writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
1139 
1140 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1141 	wait_for_completion(&mb1_transfer.work);
1142 
1143 	if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
1144 		r = -EIO;
1145 
1146 	mutex_unlock(&mb1_transfer.lock);
1147 
1148 	return r;
1149 }
1150 
1151 /**
1152  * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
1153  * @epod_id: The EPOD to set
1154  * @epod_state: The new EPOD state
1155  *
1156  * This function sets the state of a EPOD (power domain). It may not be called
1157  * from interrupt context.
1158  */
1159 int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
1160 {
1161 	int r = 0;
1162 	bool ram_retention = false;
1163 	int i;
1164 
1165 	/* check argument */
1166 	BUG_ON(epod_id >= NUM_EPOD_ID);
1167 
1168 	/* set flag if retention is possible */
1169 	switch (epod_id) {
1170 	case EPOD_ID_SVAMMDSP:
1171 	case EPOD_ID_SIAMMDSP:
1172 	case EPOD_ID_ESRAM12:
1173 	case EPOD_ID_ESRAM34:
1174 		ram_retention = true;
1175 		break;
1176 	}
1177 
1178 	/* check argument */
1179 	BUG_ON(epod_state > EPOD_STATE_ON);
1180 	BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
1181 
1182 	/* get lock */
1183 	mutex_lock(&mb2_transfer.lock);
1184 
1185 	/* wait for mailbox */
1186 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
1187 		cpu_relax();
1188 
1189 	/* fill in mailbox */
1190 	for (i = 0; i < NUM_EPOD_ID; i++)
1191 		writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
1192 	writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
1193 
1194 	writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
1195 
1196 	writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
1197 
1198 	/*
1199 	 * The current firmware version does not handle errors correctly,
1200 	 * and we cannot recover if there is an error.
1201 	 * This is expected to change when the firmware is updated.
1202 	 */
1203 	if (!wait_for_completion_timeout(&mb2_transfer.work,
1204 			msecs_to_jiffies(20000))) {
1205 		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1206 			__func__);
1207 		r = -EIO;
1208 		goto unlock_and_return;
1209 	}
1210 
1211 	if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
1212 		r = -EIO;
1213 
1214 unlock_and_return:
1215 	mutex_unlock(&mb2_transfer.lock);
1216 	return r;
1217 }
1218 
1219 /**
1220  * prcmu_configure_auto_pm - Configure autonomous power management.
1221  * @sleep: Configuration for ApSleep.
1222  * @idle:  Configuration for ApIdle.
1223  */
1224 void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
1225 	struct prcmu_auto_pm_config *idle)
1226 {
1227 	u32 sleep_cfg;
1228 	u32 idle_cfg;
1229 	unsigned long flags;
1230 
1231 	BUG_ON((sleep == NULL) || (idle == NULL));
1232 
1233 	sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
1234 	sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
1235 	sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
1236 	sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
1237 	sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
1238 	sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
1239 
1240 	idle_cfg = (idle->sva_auto_pm_enable & 0xF);
1241 	idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
1242 	idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
1243 	idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
1244 	idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
1245 	idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
1246 
1247 	spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
1248 
1249 	/*
1250 	 * The autonomous power management configuration is done through
1251 	 * fields in mailbox 2, but these fields are only used as shared
1252 	 * variables - i.e. there is no need to send a message.
1253 	 */
1254 	writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
1255 	writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
1256 
1257 	mb2_transfer.auto_pm_enabled =
1258 		((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1259 		 (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1260 		 (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1261 		 (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
1262 
1263 	spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
1264 }
1265 EXPORT_SYMBOL(prcmu_configure_auto_pm);
1266 
1267 bool prcmu_is_auto_pm_enabled(void)
1268 {
1269 	return mb2_transfer.auto_pm_enabled;
1270 }
1271 
1272 static int request_sysclk(bool enable)
1273 {
1274 	int r;
1275 	unsigned long flags;
1276 
1277 	r = 0;
1278 
1279 	mutex_lock(&mb3_transfer.sysclk_lock);
1280 
1281 	spin_lock_irqsave(&mb3_transfer.lock, flags);
1282 
1283 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
1284 		cpu_relax();
1285 
1286 	writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
1287 
1288 	writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
1289 	writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
1290 
1291 	spin_unlock_irqrestore(&mb3_transfer.lock, flags);
1292 
1293 	/*
1294 	 * The firmware only sends an ACK if we want to enable the
1295 	 * SysClk, and it succeeds.
1296 	 */
1297 	if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
1298 			msecs_to_jiffies(20000))) {
1299 		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1300 			__func__);
1301 		r = -EIO;
1302 	}
1303 
1304 	mutex_unlock(&mb3_transfer.sysclk_lock);
1305 
1306 	return r;
1307 }
1308 
1309 static int request_timclk(bool enable)
1310 {
1311 	u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
1312 
1313 	if (!enable)
1314 		val |= PRCM_TCR_STOP_TIMERS;
1315 	writel(val, PRCM_TCR);
1316 
1317 	return 0;
1318 }
1319 
1320 static int request_clock(u8 clock, bool enable)
1321 {
1322 	u32 val;
1323 	unsigned long flags;
1324 
1325 	spin_lock_irqsave(&clk_mgt_lock, flags);
1326 
1327 	/* Grab the HW semaphore. */
1328 	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1329 		cpu_relax();
1330 
1331 	val = readl(prcmu_base + clk_mgt[clock].offset);
1332 	if (enable) {
1333 		val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
1334 	} else {
1335 		clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1336 		val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
1337 	}
1338 	writel(val, prcmu_base + clk_mgt[clock].offset);
1339 
1340 	/* Release the HW semaphore. */
1341 	writel(0, PRCM_SEM);
1342 
1343 	spin_unlock_irqrestore(&clk_mgt_lock, flags);
1344 
1345 	return 0;
1346 }
1347 
1348 static int request_sga_clock(u8 clock, bool enable)
1349 {
1350 	u32 val;
1351 	int ret;
1352 
1353 	if (enable) {
1354 		val = readl(PRCM_CGATING_BYPASS);
1355 		writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1356 	}
1357 
1358 	ret = request_clock(clock, enable);
1359 
1360 	if (!ret && !enable) {
1361 		val = readl(PRCM_CGATING_BYPASS);
1362 		writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1363 	}
1364 
1365 	return ret;
1366 }
1367 
1368 static inline bool plldsi_locked(void)
1369 {
1370 	return (readl(PRCM_PLLDSI_LOCKP) &
1371 		(PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1372 		 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
1373 		(PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1374 		 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
1375 }
1376 
1377 static int request_plldsi(bool enable)
1378 {
1379 	int r = 0;
1380 	u32 val;
1381 
1382 	writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1383 		PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
1384 		PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
1385 
1386 	val = readl(PRCM_PLLDSI_ENABLE);
1387 	if (enable)
1388 		val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1389 	else
1390 		val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1391 	writel(val, PRCM_PLLDSI_ENABLE);
1392 
1393 	if (enable) {
1394 		unsigned int i;
1395 		bool locked = plldsi_locked();
1396 
1397 		for (i = 10; !locked && (i > 0); --i) {
1398 			udelay(100);
1399 			locked = plldsi_locked();
1400 		}
1401 		if (locked) {
1402 			writel(PRCM_APE_RESETN_DSIPLL_RESETN,
1403 				PRCM_APE_RESETN_SET);
1404 		} else {
1405 			writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1406 				PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
1407 				PRCM_MMIP_LS_CLAMP_SET);
1408 			val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1409 			writel(val, PRCM_PLLDSI_ENABLE);
1410 			r = -EAGAIN;
1411 		}
1412 	} else {
1413 		writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
1414 	}
1415 	return r;
1416 }
1417 
1418 static int request_dsiclk(u8 n, bool enable)
1419 {
1420 	u32 val;
1421 
1422 	val = readl(PRCM_DSI_PLLOUT_SEL);
1423 	val &= ~dsiclk[n].divsel_mask;
1424 	val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
1425 		dsiclk[n].divsel_shift);
1426 	writel(val, PRCM_DSI_PLLOUT_SEL);
1427 	return 0;
1428 }
1429 
1430 static int request_dsiescclk(u8 n, bool enable)
1431 {
1432 	u32 val;
1433 
1434 	val = readl(PRCM_DSITVCLK_DIV);
1435 	enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
1436 	writel(val, PRCM_DSITVCLK_DIV);
1437 	return 0;
1438 }
1439 
1440 /**
1441  * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
1442  * @clock:      The clock for which the request is made.
1443  * @enable:     Whether the clock should be enabled (true) or disabled (false).
1444  *
1445  * This function should only be used by the clock implementation.
1446  * Do not use it from any other place!
1447  */
1448 int db8500_prcmu_request_clock(u8 clock, bool enable)
1449 {
1450 	if (clock == PRCMU_SGACLK)
1451 		return request_sga_clock(clock, enable);
1452 	else if (clock < PRCMU_NUM_REG_CLOCKS)
1453 		return request_clock(clock, enable);
1454 	else if (clock == PRCMU_TIMCLK)
1455 		return request_timclk(enable);
1456 	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1457 		return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
1458 	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1459 		return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
1460 	else if (clock == PRCMU_PLLDSI)
1461 		return request_plldsi(enable);
1462 	else if (clock == PRCMU_SYSCLK)
1463 		return request_sysclk(enable);
1464 	else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
1465 		return request_pll(clock, enable);
1466 	else
1467 		return -EINVAL;
1468 }
1469 
1470 static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
1471 	int branch)
1472 {
1473 	u64 rate;
1474 	u32 val;
1475 	u32 d;
1476 	u32 div = 1;
1477 
1478 	val = readl(reg);
1479 
1480 	rate = src_rate;
1481 	rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
1482 
1483 	d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
1484 	if (d > 1)
1485 		div *= d;
1486 
1487 	d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
1488 	if (d > 1)
1489 		div *= d;
1490 
1491 	if (val & PRCM_PLL_FREQ_SELDIV2)
1492 		div *= 2;
1493 
1494 	if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
1495 		(val & PRCM_PLL_FREQ_DIV2EN) &&
1496 		((reg == PRCM_PLLSOC0_FREQ) ||
1497 		 (reg == PRCM_PLLARM_FREQ) ||
1498 		 (reg == PRCM_PLLDDR_FREQ))))
1499 		div *= 2;
1500 
1501 	(void)do_div(rate, div);
1502 
1503 	return (unsigned long)rate;
1504 }
1505 
1506 #define ROOT_CLOCK_RATE 38400000
1507 
1508 static unsigned long clock_rate(u8 clock)
1509 {
1510 	u32 val;
1511 	u32 pllsw;
1512 	unsigned long rate = ROOT_CLOCK_RATE;
1513 
1514 	val = readl(prcmu_base + clk_mgt[clock].offset);
1515 
1516 	if (val & PRCM_CLK_MGT_CLK38) {
1517 		if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
1518 			rate /= 2;
1519 		return rate;
1520 	}
1521 
1522 	val |= clk_mgt[clock].pllsw;
1523 	pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1524 
1525 	if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1526 		rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
1527 	else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1528 		rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
1529 	else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
1530 		rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
1531 	else
1532 		return 0;
1533 
1534 	if ((clock == PRCMU_SGACLK) &&
1535 		(val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
1536 		u64 r = (rate * 10);
1537 
1538 		(void)do_div(r, 25);
1539 		return (unsigned long)r;
1540 	}
1541 	val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1542 	if (val)
1543 		return rate / val;
1544 	else
1545 		return 0;
1546 }
1547 
1548 static unsigned long armss_rate(void)
1549 {
1550 	u32 r;
1551 	unsigned long rate;
1552 
1553 	r = readl(PRCM_ARM_CHGCLKREQ);
1554 
1555 	if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) {
1556 		/* External ARMCLKFIX clock */
1557 
1558 		rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX);
1559 
1560 		/* Check PRCM_ARM_CHGCLKREQ divider */
1561 		if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL))
1562 			rate /= 2;
1563 
1564 		/* Check PRCM_ARMCLKFIX_MGT divider */
1565 		r = readl(PRCM_ARMCLKFIX_MGT);
1566 		r &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1567 		rate /= r;
1568 
1569 	} else {/* ARM PLL */
1570 		rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV);
1571 	}
1572 
1573 	return rate;
1574 }
1575 
1576 static unsigned long dsiclk_rate(u8 n)
1577 {
1578 	u32 divsel;
1579 	u32 div = 1;
1580 
1581 	divsel = readl(PRCM_DSI_PLLOUT_SEL);
1582 	divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
1583 
1584 	if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
1585 		divsel = dsiclk[n].divsel;
1586 	else
1587 		dsiclk[n].divsel = divsel;
1588 
1589 	switch (divsel) {
1590 	case PRCM_DSI_PLLOUT_SEL_PHI_4:
1591 		div *= 2;
1592 		/* Fall through */
1593 	case PRCM_DSI_PLLOUT_SEL_PHI_2:
1594 		div *= 2;
1595 		/* Fall through */
1596 	case PRCM_DSI_PLLOUT_SEL_PHI:
1597 		return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1598 			PLL_RAW) / div;
1599 	default:
1600 		return 0;
1601 	}
1602 }
1603 
1604 static unsigned long dsiescclk_rate(u8 n)
1605 {
1606 	u32 div;
1607 
1608 	div = readl(PRCM_DSITVCLK_DIV);
1609 	div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
1610 	return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
1611 }
1612 
1613 unsigned long prcmu_clock_rate(u8 clock)
1614 {
1615 	if (clock < PRCMU_NUM_REG_CLOCKS)
1616 		return clock_rate(clock);
1617 	else if (clock == PRCMU_TIMCLK)
1618 		return ROOT_CLOCK_RATE / 16;
1619 	else if (clock == PRCMU_SYSCLK)
1620 		return ROOT_CLOCK_RATE;
1621 	else if (clock == PRCMU_PLLSOC0)
1622 		return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1623 	else if (clock == PRCMU_PLLSOC1)
1624 		return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1625 	else if (clock == PRCMU_ARMSS)
1626 		return armss_rate();
1627 	else if (clock == PRCMU_PLLDDR)
1628 		return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1629 	else if (clock == PRCMU_PLLDSI)
1630 		return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1631 			PLL_RAW);
1632 	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1633 		return dsiclk_rate(clock - PRCMU_DSI0CLK);
1634 	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1635 		return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
1636 	else
1637 		return 0;
1638 }
1639 
1640 static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
1641 {
1642 	if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
1643 		return ROOT_CLOCK_RATE;
1644 	clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
1645 	if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1646 		return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
1647 	else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1648 		return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
1649 	else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
1650 		return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
1651 	else
1652 		return 0;
1653 }
1654 
1655 static u32 clock_divider(unsigned long src_rate, unsigned long rate)
1656 {
1657 	u32 div;
1658 
1659 	div = (src_rate / rate);
1660 	if (div == 0)
1661 		return 1;
1662 	if (rate < (src_rate / div))
1663 		div++;
1664 	return div;
1665 }
1666 
1667 static long round_clock_rate(u8 clock, unsigned long rate)
1668 {
1669 	u32 val;
1670 	u32 div;
1671 	unsigned long src_rate;
1672 	long rounded_rate;
1673 
1674 	val = readl(prcmu_base + clk_mgt[clock].offset);
1675 	src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1676 		clk_mgt[clock].branch);
1677 	div = clock_divider(src_rate, rate);
1678 	if (val & PRCM_CLK_MGT_CLK38) {
1679 		if (clk_mgt[clock].clk38div) {
1680 			if (div > 2)
1681 				div = 2;
1682 		} else {
1683 			div = 1;
1684 		}
1685 	} else if ((clock == PRCMU_SGACLK) && (div == 3)) {
1686 		u64 r = (src_rate * 10);
1687 
1688 		(void)do_div(r, 25);
1689 		if (r <= rate)
1690 			return (unsigned long)r;
1691 	}
1692 	rounded_rate = (src_rate / min(div, (u32)31));
1693 
1694 	return rounded_rate;
1695 }
1696 
1697 static const unsigned long db8500_armss_freqs[] = {
1698 	200000000,
1699 	400000000,
1700 	800000000,
1701 	998400000
1702 };
1703 
1704 /* The DB8520 has slightly higher ARMSS max frequency */
1705 static const unsigned long db8520_armss_freqs[] = {
1706 	200000000,
1707 	400000000,
1708 	800000000,
1709 	1152000000
1710 };
1711 
1712 
1713 
1714 static long round_armss_rate(unsigned long rate)
1715 {
1716 	unsigned long freq = 0;
1717 	const unsigned long *freqs;
1718 	int nfreqs;
1719 	int i;
1720 
1721 	if (fw_info.version.project == PRCMU_FW_PROJECT_U8520) {
1722 		freqs = db8520_armss_freqs;
1723 		nfreqs = ARRAY_SIZE(db8520_armss_freqs);
1724 	} else {
1725 		freqs = db8500_armss_freqs;
1726 		nfreqs = ARRAY_SIZE(db8500_armss_freqs);
1727 	}
1728 
1729 	/* Find the corresponding arm opp from the cpufreq table. */
1730 	for (i = 0; i < nfreqs; i++) {
1731 		freq = freqs[i];
1732 		if (rate <= freq)
1733 			break;
1734 	}
1735 
1736 	/* Return the last valid value, even if a match was not found. */
1737 	return freq;
1738 }
1739 
1740 #define MIN_PLL_VCO_RATE 600000000ULL
1741 #define MAX_PLL_VCO_RATE 1680640000ULL
1742 
1743 static long round_plldsi_rate(unsigned long rate)
1744 {
1745 	long rounded_rate = 0;
1746 	unsigned long src_rate;
1747 	unsigned long rem;
1748 	u32 r;
1749 
1750 	src_rate = clock_rate(PRCMU_HDMICLK);
1751 	rem = rate;
1752 
1753 	for (r = 7; (rem > 0) && (r > 0); r--) {
1754 		u64 d;
1755 
1756 		d = (r * rate);
1757 		(void)do_div(d, src_rate);
1758 		if (d < 6)
1759 			d = 6;
1760 		else if (d > 255)
1761 			d = 255;
1762 		d *= src_rate;
1763 		if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
1764 			((r * MAX_PLL_VCO_RATE) < (2 * d)))
1765 			continue;
1766 		(void)do_div(d, r);
1767 		if (rate < d) {
1768 			if (rounded_rate == 0)
1769 				rounded_rate = (long)d;
1770 			break;
1771 		}
1772 		if ((rate - d) < rem) {
1773 			rem = (rate - d);
1774 			rounded_rate = (long)d;
1775 		}
1776 	}
1777 	return rounded_rate;
1778 }
1779 
1780 static long round_dsiclk_rate(unsigned long rate)
1781 {
1782 	u32 div;
1783 	unsigned long src_rate;
1784 	long rounded_rate;
1785 
1786 	src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1787 		PLL_RAW);
1788 	div = clock_divider(src_rate, rate);
1789 	rounded_rate = (src_rate / ((div > 2) ? 4 : div));
1790 
1791 	return rounded_rate;
1792 }
1793 
1794 static long round_dsiescclk_rate(unsigned long rate)
1795 {
1796 	u32 div;
1797 	unsigned long src_rate;
1798 	long rounded_rate;
1799 
1800 	src_rate = clock_rate(PRCMU_TVCLK);
1801 	div = clock_divider(src_rate, rate);
1802 	rounded_rate = (src_rate / min(div, (u32)255));
1803 
1804 	return rounded_rate;
1805 }
1806 
1807 long prcmu_round_clock_rate(u8 clock, unsigned long rate)
1808 {
1809 	if (clock < PRCMU_NUM_REG_CLOCKS)
1810 		return round_clock_rate(clock, rate);
1811 	else if (clock == PRCMU_ARMSS)
1812 		return round_armss_rate(rate);
1813 	else if (clock == PRCMU_PLLDSI)
1814 		return round_plldsi_rate(rate);
1815 	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1816 		return round_dsiclk_rate(rate);
1817 	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1818 		return round_dsiescclk_rate(rate);
1819 	else
1820 		return (long)prcmu_clock_rate(clock);
1821 }
1822 
1823 static void set_clock_rate(u8 clock, unsigned long rate)
1824 {
1825 	u32 val;
1826 	u32 div;
1827 	unsigned long src_rate;
1828 	unsigned long flags;
1829 
1830 	spin_lock_irqsave(&clk_mgt_lock, flags);
1831 
1832 	/* Grab the HW semaphore. */
1833 	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1834 		cpu_relax();
1835 
1836 	val = readl(prcmu_base + clk_mgt[clock].offset);
1837 	src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1838 		clk_mgt[clock].branch);
1839 	div = clock_divider(src_rate, rate);
1840 	if (val & PRCM_CLK_MGT_CLK38) {
1841 		if (clk_mgt[clock].clk38div) {
1842 			if (div > 1)
1843 				val |= PRCM_CLK_MGT_CLK38DIV;
1844 			else
1845 				val &= ~PRCM_CLK_MGT_CLK38DIV;
1846 		}
1847 	} else if (clock == PRCMU_SGACLK) {
1848 		val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
1849 			PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
1850 		if (div == 3) {
1851 			u64 r = (src_rate * 10);
1852 
1853 			(void)do_div(r, 25);
1854 			if (r <= rate) {
1855 				val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
1856 				div = 0;
1857 			}
1858 		}
1859 		val |= min(div, (u32)31);
1860 	} else {
1861 		val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
1862 		val |= min(div, (u32)31);
1863 	}
1864 	writel(val, prcmu_base + clk_mgt[clock].offset);
1865 
1866 	/* Release the HW semaphore. */
1867 	writel(0, PRCM_SEM);
1868 
1869 	spin_unlock_irqrestore(&clk_mgt_lock, flags);
1870 }
1871 
1872 static int set_armss_rate(unsigned long rate)
1873 {
1874 	unsigned long freq;
1875 	u8 opps[] = { ARM_EXTCLK, ARM_50_OPP, ARM_100_OPP, ARM_MAX_OPP };
1876 	const unsigned long *freqs;
1877 	int nfreqs;
1878 	int i;
1879 
1880 	if (fw_info.version.project == PRCMU_FW_PROJECT_U8520) {
1881 		freqs = db8520_armss_freqs;
1882 		nfreqs = ARRAY_SIZE(db8520_armss_freqs);
1883 	} else {
1884 		freqs = db8500_armss_freqs;
1885 		nfreqs = ARRAY_SIZE(db8500_armss_freqs);
1886 	}
1887 
1888 	/* Find the corresponding arm opp from the cpufreq table. */
1889 	for (i = 0; i < nfreqs; i++) {
1890 		freq = freqs[i];
1891 		if (rate == freq)
1892 			break;
1893 	}
1894 
1895 	if (rate != freq)
1896 		return -EINVAL;
1897 
1898 	/* Set the new arm opp. */
1899 	pr_debug("SET ARM OPP 0x%02x\n", opps[i]);
1900 	return db8500_prcmu_set_arm_opp(opps[i]);
1901 }
1902 
1903 static int set_plldsi_rate(unsigned long rate)
1904 {
1905 	unsigned long src_rate;
1906 	unsigned long rem;
1907 	u32 pll_freq = 0;
1908 	u32 r;
1909 
1910 	src_rate = clock_rate(PRCMU_HDMICLK);
1911 	rem = rate;
1912 
1913 	for (r = 7; (rem > 0) && (r > 0); r--) {
1914 		u64 d;
1915 		u64 hwrate;
1916 
1917 		d = (r * rate);
1918 		(void)do_div(d, src_rate);
1919 		if (d < 6)
1920 			d = 6;
1921 		else if (d > 255)
1922 			d = 255;
1923 		hwrate = (d * src_rate);
1924 		if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
1925 			((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
1926 			continue;
1927 		(void)do_div(hwrate, r);
1928 		if (rate < hwrate) {
1929 			if (pll_freq == 0)
1930 				pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1931 					(r << PRCM_PLL_FREQ_R_SHIFT));
1932 			break;
1933 		}
1934 		if ((rate - hwrate) < rem) {
1935 			rem = (rate - hwrate);
1936 			pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1937 				(r << PRCM_PLL_FREQ_R_SHIFT));
1938 		}
1939 	}
1940 	if (pll_freq == 0)
1941 		return -EINVAL;
1942 
1943 	pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
1944 	writel(pll_freq, PRCM_PLLDSI_FREQ);
1945 
1946 	return 0;
1947 }
1948 
1949 static void set_dsiclk_rate(u8 n, unsigned long rate)
1950 {
1951 	u32 val;
1952 	u32 div;
1953 
1954 	div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
1955 			clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
1956 
1957 	dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
1958 			   (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
1959 			   /* else */	PRCM_DSI_PLLOUT_SEL_PHI_4;
1960 
1961 	val = readl(PRCM_DSI_PLLOUT_SEL);
1962 	val &= ~dsiclk[n].divsel_mask;
1963 	val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
1964 	writel(val, PRCM_DSI_PLLOUT_SEL);
1965 }
1966 
1967 static void set_dsiescclk_rate(u8 n, unsigned long rate)
1968 {
1969 	u32 val;
1970 	u32 div;
1971 
1972 	div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
1973 	val = readl(PRCM_DSITVCLK_DIV);
1974 	val &= ~dsiescclk[n].div_mask;
1975 	val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
1976 	writel(val, PRCM_DSITVCLK_DIV);
1977 }
1978 
1979 int prcmu_set_clock_rate(u8 clock, unsigned long rate)
1980 {
1981 	if (clock < PRCMU_NUM_REG_CLOCKS)
1982 		set_clock_rate(clock, rate);
1983 	else if (clock == PRCMU_ARMSS)
1984 		return set_armss_rate(rate);
1985 	else if (clock == PRCMU_PLLDSI)
1986 		return set_plldsi_rate(rate);
1987 	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1988 		set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
1989 	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1990 		set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
1991 	return 0;
1992 }
1993 
1994 int db8500_prcmu_config_esram0_deep_sleep(u8 state)
1995 {
1996 	if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
1997 	    (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
1998 		return -EINVAL;
1999 
2000 	mutex_lock(&mb4_transfer.lock);
2001 
2002 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2003 		cpu_relax();
2004 
2005 	writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2006 	writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
2007 	       (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
2008 	writeb(DDR_PWR_STATE_ON,
2009 	       (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
2010 	writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
2011 
2012 	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2013 	wait_for_completion(&mb4_transfer.work);
2014 
2015 	mutex_unlock(&mb4_transfer.lock);
2016 
2017 	return 0;
2018 }
2019 
2020 int db8500_prcmu_config_hotdog(u8 threshold)
2021 {
2022 	mutex_lock(&mb4_transfer.lock);
2023 
2024 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2025 		cpu_relax();
2026 
2027 	writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
2028 	writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2029 
2030 	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2031 	wait_for_completion(&mb4_transfer.work);
2032 
2033 	mutex_unlock(&mb4_transfer.lock);
2034 
2035 	return 0;
2036 }
2037 
2038 int db8500_prcmu_config_hotmon(u8 low, u8 high)
2039 {
2040 	mutex_lock(&mb4_transfer.lock);
2041 
2042 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2043 		cpu_relax();
2044 
2045 	writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
2046 	writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
2047 	writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
2048 		(tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
2049 	writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2050 
2051 	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2052 	wait_for_completion(&mb4_transfer.work);
2053 
2054 	mutex_unlock(&mb4_transfer.lock);
2055 
2056 	return 0;
2057 }
2058 EXPORT_SYMBOL_GPL(db8500_prcmu_config_hotmon);
2059 
2060 static int config_hot_period(u16 val)
2061 {
2062 	mutex_lock(&mb4_transfer.lock);
2063 
2064 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2065 		cpu_relax();
2066 
2067 	writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
2068 	writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2069 
2070 	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2071 	wait_for_completion(&mb4_transfer.work);
2072 
2073 	mutex_unlock(&mb4_transfer.lock);
2074 
2075 	return 0;
2076 }
2077 
2078 int db8500_prcmu_start_temp_sense(u16 cycles32k)
2079 {
2080 	if (cycles32k == 0xFFFF)
2081 		return -EINVAL;
2082 
2083 	return config_hot_period(cycles32k);
2084 }
2085 EXPORT_SYMBOL_GPL(db8500_prcmu_start_temp_sense);
2086 
2087 int db8500_prcmu_stop_temp_sense(void)
2088 {
2089 	return config_hot_period(0xFFFF);
2090 }
2091 EXPORT_SYMBOL_GPL(db8500_prcmu_stop_temp_sense);
2092 
2093 static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
2094 {
2095 
2096 	mutex_lock(&mb4_transfer.lock);
2097 
2098 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2099 		cpu_relax();
2100 
2101 	writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
2102 	writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
2103 	writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
2104 	writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
2105 
2106 	writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2107 
2108 	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2109 	wait_for_completion(&mb4_transfer.work);
2110 
2111 	mutex_unlock(&mb4_transfer.lock);
2112 
2113 	return 0;
2114 
2115 }
2116 
2117 int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
2118 {
2119 	BUG_ON(num == 0 || num > 0xf);
2120 	return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
2121 			    sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
2122 			    A9WDOG_AUTO_OFF_DIS);
2123 }
2124 EXPORT_SYMBOL(db8500_prcmu_config_a9wdog);
2125 
2126 int db8500_prcmu_enable_a9wdog(u8 id)
2127 {
2128 	return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
2129 }
2130 EXPORT_SYMBOL(db8500_prcmu_enable_a9wdog);
2131 
2132 int db8500_prcmu_disable_a9wdog(u8 id)
2133 {
2134 	return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
2135 }
2136 EXPORT_SYMBOL(db8500_prcmu_disable_a9wdog);
2137 
2138 int db8500_prcmu_kick_a9wdog(u8 id)
2139 {
2140 	return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
2141 }
2142 EXPORT_SYMBOL(db8500_prcmu_kick_a9wdog);
2143 
2144 /*
2145  * timeout is 28 bit, in ms.
2146  */
2147 int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
2148 {
2149 	return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
2150 			    (id & A9WDOG_ID_MASK) |
2151 			    /*
2152 			     * Put the lowest 28 bits of timeout at
2153 			     * offset 4. Four first bits are used for id.
2154 			     */
2155 			    (u8)((timeout << 4) & 0xf0),
2156 			    (u8)((timeout >> 4) & 0xff),
2157 			    (u8)((timeout >> 12) & 0xff),
2158 			    (u8)((timeout >> 20) & 0xff));
2159 }
2160 EXPORT_SYMBOL(db8500_prcmu_load_a9wdog);
2161 
2162 /**
2163  * prcmu_abb_read() - Read register value(s) from the ABB.
2164  * @slave:	The I2C slave address.
2165  * @reg:	The (start) register address.
2166  * @value:	The read out value(s).
2167  * @size:	The number of registers to read.
2168  *
2169  * Reads register value(s) from the ABB.
2170  * @size has to be 1 for the current firmware version.
2171  */
2172 int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
2173 {
2174 	int r;
2175 
2176 	if (size != 1)
2177 		return -EINVAL;
2178 
2179 	mutex_lock(&mb5_transfer.lock);
2180 
2181 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2182 		cpu_relax();
2183 
2184 	writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2185 	writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2186 	writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2187 	writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2188 	writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2189 
2190 	writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2191 
2192 	if (!wait_for_completion_timeout(&mb5_transfer.work,
2193 				msecs_to_jiffies(20000))) {
2194 		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2195 			__func__);
2196 		r = -EIO;
2197 	} else {
2198 		r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
2199 	}
2200 
2201 	if (!r)
2202 		*value = mb5_transfer.ack.value;
2203 
2204 	mutex_unlock(&mb5_transfer.lock);
2205 
2206 	return r;
2207 }
2208 
2209 /**
2210  * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
2211  * @slave:	The I2C slave address.
2212  * @reg:	The (start) register address.
2213  * @value:	The value(s) to write.
2214  * @mask:	The mask(s) to use.
2215  * @size:	The number of registers to write.
2216  *
2217  * Writes masked register value(s) to the ABB.
2218  * For each @value, only the bits set to 1 in the corresponding @mask
2219  * will be written. The other bits are not changed.
2220  * @size has to be 1 for the current firmware version.
2221  */
2222 int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
2223 {
2224 	int r;
2225 
2226 	if (size != 1)
2227 		return -EINVAL;
2228 
2229 	mutex_lock(&mb5_transfer.lock);
2230 
2231 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2232 		cpu_relax();
2233 
2234 	writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2235 	writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2236 	writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2237 	writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2238 	writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2239 
2240 	writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2241 
2242 	if (!wait_for_completion_timeout(&mb5_transfer.work,
2243 				msecs_to_jiffies(20000))) {
2244 		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2245 			__func__);
2246 		r = -EIO;
2247 	} else {
2248 		r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
2249 	}
2250 
2251 	mutex_unlock(&mb5_transfer.lock);
2252 
2253 	return r;
2254 }
2255 
2256 /**
2257  * prcmu_abb_write() - Write register value(s) to the ABB.
2258  * @slave:	The I2C slave address.
2259  * @reg:	The (start) register address.
2260  * @value:	The value(s) to write.
2261  * @size:	The number of registers to write.
2262  *
2263  * Writes register value(s) to the ABB.
2264  * @size has to be 1 for the current firmware version.
2265  */
2266 int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
2267 {
2268 	u8 mask = ~0;
2269 
2270 	return prcmu_abb_write_masked(slave, reg, value, &mask, size);
2271 }
2272 
2273 /**
2274  * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
2275  */
2276 int prcmu_ac_wake_req(void)
2277 {
2278 	u32 val;
2279 	int ret = 0;
2280 
2281 	mutex_lock(&mb0_transfer.ac_wake_lock);
2282 
2283 	val = readl(PRCM_HOSTACCESS_REQ);
2284 	if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
2285 		goto unlock_and_return;
2286 
2287 	atomic_set(&ac_wake_req_state, 1);
2288 
2289 	/*
2290 	 * Force Modem Wake-up before hostaccess_req ping-pong.
2291 	 * It prevents Modem to enter in Sleep while acking the hostaccess
2292 	 * request. The 31us delay has been calculated by HWI.
2293 	 */
2294 	val |= PRCM_HOSTACCESS_REQ_WAKE_REQ;
2295 	writel(val, PRCM_HOSTACCESS_REQ);
2296 
2297 	udelay(31);
2298 
2299 	val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ;
2300 	writel(val, PRCM_HOSTACCESS_REQ);
2301 
2302 	if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2303 			msecs_to_jiffies(5000))) {
2304 		pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2305 			__func__);
2306 		ret = -EFAULT;
2307 	}
2308 
2309 unlock_and_return:
2310 	mutex_unlock(&mb0_transfer.ac_wake_lock);
2311 	return ret;
2312 }
2313 
2314 /**
2315  * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
2316  */
2317 void prcmu_ac_sleep_req(void)
2318 {
2319 	u32 val;
2320 
2321 	mutex_lock(&mb0_transfer.ac_wake_lock);
2322 
2323 	val = readl(PRCM_HOSTACCESS_REQ);
2324 	if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
2325 		goto unlock_and_return;
2326 
2327 	writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
2328 		PRCM_HOSTACCESS_REQ);
2329 
2330 	if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2331 			msecs_to_jiffies(5000))) {
2332 		pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2333 			__func__);
2334 	}
2335 
2336 	atomic_set(&ac_wake_req_state, 0);
2337 
2338 unlock_and_return:
2339 	mutex_unlock(&mb0_transfer.ac_wake_lock);
2340 }
2341 
2342 bool db8500_prcmu_is_ac_wake_requested(void)
2343 {
2344 	return (atomic_read(&ac_wake_req_state) != 0);
2345 }
2346 
2347 /**
2348  * db8500_prcmu_system_reset - System reset
2349  *
2350  * Saves the reset reason code and then sets the APE_SOFTRST register which
2351  * fires interrupt to fw
2352  */
2353 void db8500_prcmu_system_reset(u16 reset_code)
2354 {
2355 	writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
2356 	writel(1, PRCM_APE_SOFTRST);
2357 }
2358 
2359 /**
2360  * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
2361  *
2362  * Retrieves the reset reason code stored by prcmu_system_reset() before
2363  * last restart.
2364  */
2365 u16 db8500_prcmu_get_reset_code(void)
2366 {
2367 	return readw(tcdm_base + PRCM_SW_RST_REASON);
2368 }
2369 
2370 /**
2371  * db8500_prcmu_reset_modem - ask the PRCMU to reset modem
2372  */
2373 void db8500_prcmu_modem_reset(void)
2374 {
2375 	mutex_lock(&mb1_transfer.lock);
2376 
2377 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
2378 		cpu_relax();
2379 
2380 	writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
2381 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
2382 	wait_for_completion(&mb1_transfer.work);
2383 
2384 	/*
2385 	 * No need to check return from PRCMU as modem should go in reset state
2386 	 * This state is already managed by upper layer
2387 	 */
2388 
2389 	mutex_unlock(&mb1_transfer.lock);
2390 }
2391 
2392 static void ack_dbb_wakeup(void)
2393 {
2394 	unsigned long flags;
2395 
2396 	spin_lock_irqsave(&mb0_transfer.lock, flags);
2397 
2398 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
2399 		cpu_relax();
2400 
2401 	writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
2402 	writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
2403 
2404 	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2405 }
2406 
2407 static inline void print_unknown_header_warning(u8 n, u8 header)
2408 {
2409 	pr_warn("prcmu: Unknown message header (%d) in mailbox %d\n",
2410 		header, n);
2411 }
2412 
2413 static bool read_mailbox_0(void)
2414 {
2415 	bool r;
2416 	u32 ev;
2417 	unsigned int n;
2418 	u8 header;
2419 
2420 	header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
2421 	switch (header) {
2422 	case MB0H_WAKEUP_EXE:
2423 	case MB0H_WAKEUP_SLEEP:
2424 		if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
2425 			ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
2426 		else
2427 			ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
2428 
2429 		if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
2430 			complete(&mb0_transfer.ac_wake_work);
2431 		if (ev & WAKEUP_BIT_SYSCLK_OK)
2432 			complete(&mb3_transfer.sysclk_work);
2433 
2434 		ev &= mb0_transfer.req.dbb_irqs;
2435 
2436 		for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
2437 			if (ev & prcmu_irq_bit[n])
2438 				generic_handle_irq(irq_find_mapping(db8500_irq_domain, n));
2439 		}
2440 		r = true;
2441 		break;
2442 	default:
2443 		print_unknown_header_warning(0, header);
2444 		r = false;
2445 		break;
2446 	}
2447 	writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
2448 	return r;
2449 }
2450 
2451 static bool read_mailbox_1(void)
2452 {
2453 	mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
2454 	mb1_transfer.ack.arm_opp = readb(tcdm_base +
2455 		PRCM_ACK_MB1_CURRENT_ARM_OPP);
2456 	mb1_transfer.ack.ape_opp = readb(tcdm_base +
2457 		PRCM_ACK_MB1_CURRENT_APE_OPP);
2458 	mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
2459 		PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
2460 	writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
2461 	complete(&mb1_transfer.work);
2462 	return false;
2463 }
2464 
2465 static bool read_mailbox_2(void)
2466 {
2467 	mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
2468 	writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
2469 	complete(&mb2_transfer.work);
2470 	return false;
2471 }
2472 
2473 static bool read_mailbox_3(void)
2474 {
2475 	writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
2476 	return false;
2477 }
2478 
2479 static bool read_mailbox_4(void)
2480 {
2481 	u8 header;
2482 	bool do_complete = true;
2483 
2484 	header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
2485 	switch (header) {
2486 	case MB4H_MEM_ST:
2487 	case MB4H_HOTDOG:
2488 	case MB4H_HOTMON:
2489 	case MB4H_HOT_PERIOD:
2490 	case MB4H_A9WDOG_CONF:
2491 	case MB4H_A9WDOG_EN:
2492 	case MB4H_A9WDOG_DIS:
2493 	case MB4H_A9WDOG_LOAD:
2494 	case MB4H_A9WDOG_KICK:
2495 		break;
2496 	default:
2497 		print_unknown_header_warning(4, header);
2498 		do_complete = false;
2499 		break;
2500 	}
2501 
2502 	writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
2503 
2504 	if (do_complete)
2505 		complete(&mb4_transfer.work);
2506 
2507 	return false;
2508 }
2509 
2510 static bool read_mailbox_5(void)
2511 {
2512 	mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
2513 	mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
2514 	writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
2515 	complete(&mb5_transfer.work);
2516 	return false;
2517 }
2518 
2519 static bool read_mailbox_6(void)
2520 {
2521 	writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
2522 	return false;
2523 }
2524 
2525 static bool read_mailbox_7(void)
2526 {
2527 	writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
2528 	return false;
2529 }
2530 
2531 static bool (* const read_mailbox[NUM_MB])(void) = {
2532 	read_mailbox_0,
2533 	read_mailbox_1,
2534 	read_mailbox_2,
2535 	read_mailbox_3,
2536 	read_mailbox_4,
2537 	read_mailbox_5,
2538 	read_mailbox_6,
2539 	read_mailbox_7
2540 };
2541 
2542 static irqreturn_t prcmu_irq_handler(int irq, void *data)
2543 {
2544 	u32 bits;
2545 	u8 n;
2546 	irqreturn_t r;
2547 
2548 	bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
2549 	if (unlikely(!bits))
2550 		return IRQ_NONE;
2551 
2552 	r = IRQ_HANDLED;
2553 	for (n = 0; bits; n++) {
2554 		if (bits & MBOX_BIT(n)) {
2555 			bits -= MBOX_BIT(n);
2556 			if (read_mailbox[n]())
2557 				r = IRQ_WAKE_THREAD;
2558 		}
2559 	}
2560 	return r;
2561 }
2562 
2563 static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
2564 {
2565 	ack_dbb_wakeup();
2566 	return IRQ_HANDLED;
2567 }
2568 
2569 static void prcmu_mask_work(struct work_struct *work)
2570 {
2571 	unsigned long flags;
2572 
2573 	spin_lock_irqsave(&mb0_transfer.lock, flags);
2574 
2575 	config_wakeups();
2576 
2577 	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2578 }
2579 
2580 static void prcmu_irq_mask(struct irq_data *d)
2581 {
2582 	unsigned long flags;
2583 
2584 	spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2585 
2586 	mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq];
2587 
2588 	spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2589 
2590 	if (d->irq != IRQ_PRCMU_CA_SLEEP)
2591 		schedule_work(&mb0_transfer.mask_work);
2592 }
2593 
2594 static void prcmu_irq_unmask(struct irq_data *d)
2595 {
2596 	unsigned long flags;
2597 
2598 	spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2599 
2600 	mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq];
2601 
2602 	spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2603 
2604 	if (d->irq != IRQ_PRCMU_CA_SLEEP)
2605 		schedule_work(&mb0_transfer.mask_work);
2606 }
2607 
2608 static void noop(struct irq_data *d)
2609 {
2610 }
2611 
2612 static struct irq_chip prcmu_irq_chip = {
2613 	.name		= "prcmu",
2614 	.irq_disable	= prcmu_irq_mask,
2615 	.irq_ack	= noop,
2616 	.irq_mask	= prcmu_irq_mask,
2617 	.irq_unmask	= prcmu_irq_unmask,
2618 };
2619 
2620 static char *fw_project_name(u32 project)
2621 {
2622 	switch (project) {
2623 	case PRCMU_FW_PROJECT_U8500:
2624 		return "U8500";
2625 	case PRCMU_FW_PROJECT_U8400:
2626 		return "U8400";
2627 	case PRCMU_FW_PROJECT_U9500:
2628 		return "U9500";
2629 	case PRCMU_FW_PROJECT_U8500_MBB:
2630 		return "U8500 MBB";
2631 	case PRCMU_FW_PROJECT_U8500_C1:
2632 		return "U8500 C1";
2633 	case PRCMU_FW_PROJECT_U8500_C2:
2634 		return "U8500 C2";
2635 	case PRCMU_FW_PROJECT_U8500_C3:
2636 		return "U8500 C3";
2637 	case PRCMU_FW_PROJECT_U8500_C4:
2638 		return "U8500 C4";
2639 	case PRCMU_FW_PROJECT_U9500_MBL:
2640 		return "U9500 MBL";
2641 	case PRCMU_FW_PROJECT_U8500_MBL:
2642 		return "U8500 MBL";
2643 	case PRCMU_FW_PROJECT_U8500_MBL2:
2644 		return "U8500 MBL2";
2645 	case PRCMU_FW_PROJECT_U8520:
2646 		return "U8520 MBL";
2647 	case PRCMU_FW_PROJECT_U8420:
2648 		return "U8420";
2649 	case PRCMU_FW_PROJECT_U9540:
2650 		return "U9540";
2651 	case PRCMU_FW_PROJECT_A9420:
2652 		return "A9420";
2653 	case PRCMU_FW_PROJECT_L8540:
2654 		return "L8540";
2655 	case PRCMU_FW_PROJECT_L8580:
2656 		return "L8580";
2657 	default:
2658 		return "Unknown";
2659 	}
2660 }
2661 
2662 static int db8500_irq_map(struct irq_domain *d, unsigned int virq,
2663 				irq_hw_number_t hwirq)
2664 {
2665 	irq_set_chip_and_handler(virq, &prcmu_irq_chip,
2666 				handle_simple_irq);
2667 
2668 	return 0;
2669 }
2670 
2671 static const struct irq_domain_ops db8500_irq_ops = {
2672 	.map    = db8500_irq_map,
2673 	.xlate  = irq_domain_xlate_twocell,
2674 };
2675 
2676 static int db8500_irq_init(struct device_node *np)
2677 {
2678 	int i;
2679 
2680 	db8500_irq_domain = irq_domain_add_simple(
2681 		np, NUM_PRCMU_WAKEUPS, 0,
2682 		&db8500_irq_ops, NULL);
2683 
2684 	if (!db8500_irq_domain) {
2685 		pr_err("Failed to create irqdomain\n");
2686 		return -ENOSYS;
2687 	}
2688 
2689 	/* All wakeups will be used, so create mappings for all */
2690 	for (i = 0; i < NUM_PRCMU_WAKEUPS; i++)
2691 		irq_create_mapping(db8500_irq_domain, i);
2692 
2693 	return 0;
2694 }
2695 
2696 static void dbx500_fw_version_init(struct platform_device *pdev,
2697 			    u32 version_offset)
2698 {
2699 	struct resource *res;
2700 	void __iomem *tcpm_base;
2701 	u32 version;
2702 
2703 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
2704 					   "prcmu-tcpm");
2705 	if (!res) {
2706 		dev_err(&pdev->dev,
2707 			"Error: no prcmu tcpm memory region provided\n");
2708 		return;
2709 	}
2710 	tcpm_base = ioremap(res->start, resource_size(res));
2711 	if (!tcpm_base) {
2712 		dev_err(&pdev->dev, "no prcmu tcpm mem region provided\n");
2713 		return;
2714 	}
2715 
2716 	version = readl(tcpm_base + version_offset);
2717 	fw_info.version.project = (version & 0xFF);
2718 	fw_info.version.api_version = (version >> 8) & 0xFF;
2719 	fw_info.version.func_version = (version >> 16) & 0xFF;
2720 	fw_info.version.errata = (version >> 24) & 0xFF;
2721 	strncpy(fw_info.version.project_name,
2722 		fw_project_name(fw_info.version.project),
2723 		PRCMU_FW_PROJECT_NAME_LEN);
2724 	fw_info.valid = true;
2725 	pr_info("PRCMU firmware: %s(%d), version %d.%d.%d\n",
2726 		fw_info.version.project_name,
2727 		fw_info.version.project,
2728 		fw_info.version.api_version,
2729 		fw_info.version.func_version,
2730 		fw_info.version.errata);
2731 	iounmap(tcpm_base);
2732 }
2733 
2734 void __init db8500_prcmu_early_init(u32 phy_base, u32 size)
2735 {
2736 	/*
2737 	 * This is a temporary remap to bring up the clocks. It is
2738 	 * subsequently replaces with a real remap. After the merge of
2739 	 * the mailbox subsystem all of this early code goes away, and the
2740 	 * clock driver can probe independently. An early initcall will
2741 	 * still be needed, but it can be diverted into drivers/clk/ux500.
2742 	 */
2743 	prcmu_base = ioremap(phy_base, size);
2744 	if (!prcmu_base)
2745 		pr_err("%s: ioremap() of prcmu registers failed!\n", __func__);
2746 
2747 	spin_lock_init(&mb0_transfer.lock);
2748 	spin_lock_init(&mb0_transfer.dbb_irqs_lock);
2749 	mutex_init(&mb0_transfer.ac_wake_lock);
2750 	init_completion(&mb0_transfer.ac_wake_work);
2751 	mutex_init(&mb1_transfer.lock);
2752 	init_completion(&mb1_transfer.work);
2753 	mb1_transfer.ape_opp = APE_NO_CHANGE;
2754 	mutex_init(&mb2_transfer.lock);
2755 	init_completion(&mb2_transfer.work);
2756 	spin_lock_init(&mb2_transfer.auto_pm_lock);
2757 	spin_lock_init(&mb3_transfer.lock);
2758 	mutex_init(&mb3_transfer.sysclk_lock);
2759 	init_completion(&mb3_transfer.sysclk_work);
2760 	mutex_init(&mb4_transfer.lock);
2761 	init_completion(&mb4_transfer.work);
2762 	mutex_init(&mb5_transfer.lock);
2763 	init_completion(&mb5_transfer.work);
2764 
2765 	INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
2766 }
2767 
2768 static void init_prcm_registers(void)
2769 {
2770 	u32 val;
2771 
2772 	val = readl(PRCM_A9PL_FORCE_CLKEN);
2773 	val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
2774 		PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
2775 	writel(val, (PRCM_A9PL_FORCE_CLKEN));
2776 }
2777 
2778 /*
2779  * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
2780  */
2781 static struct regulator_consumer_supply db8500_vape_consumers[] = {
2782 	REGULATOR_SUPPLY("v-ape", NULL),
2783 	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2784 	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2785 	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2786 	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
2787 	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
2788 	/* "v-mmc" changed to "vcore" in the mainline kernel */
2789 	REGULATOR_SUPPLY("vcore", "sdi0"),
2790 	REGULATOR_SUPPLY("vcore", "sdi1"),
2791 	REGULATOR_SUPPLY("vcore", "sdi2"),
2792 	REGULATOR_SUPPLY("vcore", "sdi3"),
2793 	REGULATOR_SUPPLY("vcore", "sdi4"),
2794 	REGULATOR_SUPPLY("v-dma", "dma40.0"),
2795 	REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2796 	/* "v-uart" changed to "vcore" in the mainline kernel */
2797 	REGULATOR_SUPPLY("vcore", "uart0"),
2798 	REGULATOR_SUPPLY("vcore", "uart1"),
2799 	REGULATOR_SUPPLY("vcore", "uart2"),
2800 	REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
2801 	REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
2802 	REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
2803 };
2804 
2805 static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
2806 	REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2807 	/* AV8100 regulator */
2808 	REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2809 };
2810 
2811 static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
2812 	REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
2813 	REGULATOR_SUPPLY("vsupply", "mcde"),
2814 };
2815 
2816 /* SVA MMDSP regulator switch */
2817 static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
2818 	REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2819 };
2820 
2821 /* SVA pipe regulator switch */
2822 static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
2823 	REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2824 };
2825 
2826 /* SIA MMDSP regulator switch */
2827 static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
2828 	REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2829 };
2830 
2831 /* SIA pipe regulator switch */
2832 static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
2833 	REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2834 };
2835 
2836 static struct regulator_consumer_supply db8500_sga_consumers[] = {
2837 	REGULATOR_SUPPLY("v-mali", NULL),
2838 };
2839 
2840 /* ESRAM1 and 2 regulator switch */
2841 static struct regulator_consumer_supply db8500_esram12_consumers[] = {
2842 	REGULATOR_SUPPLY("esram12", "cm_control"),
2843 };
2844 
2845 /* ESRAM3 and 4 regulator switch */
2846 static struct regulator_consumer_supply db8500_esram34_consumers[] = {
2847 	REGULATOR_SUPPLY("v-esram34", "mcde"),
2848 	REGULATOR_SUPPLY("esram34", "cm_control"),
2849 	REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
2850 };
2851 
2852 static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
2853 	[DB8500_REGULATOR_VAPE] = {
2854 		.constraints = {
2855 			.name = "db8500-vape",
2856 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2857 			.always_on = true,
2858 		},
2859 		.consumer_supplies = db8500_vape_consumers,
2860 		.num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
2861 	},
2862 	[DB8500_REGULATOR_VARM] = {
2863 		.constraints = {
2864 			.name = "db8500-varm",
2865 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2866 		},
2867 	},
2868 	[DB8500_REGULATOR_VMODEM] = {
2869 		.constraints = {
2870 			.name = "db8500-vmodem",
2871 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2872 		},
2873 	},
2874 	[DB8500_REGULATOR_VPLL] = {
2875 		.constraints = {
2876 			.name = "db8500-vpll",
2877 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2878 		},
2879 	},
2880 	[DB8500_REGULATOR_VSMPS1] = {
2881 		.constraints = {
2882 			.name = "db8500-vsmps1",
2883 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2884 		},
2885 	},
2886 	[DB8500_REGULATOR_VSMPS2] = {
2887 		.constraints = {
2888 			.name = "db8500-vsmps2",
2889 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2890 		},
2891 		.consumer_supplies = db8500_vsmps2_consumers,
2892 		.num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
2893 	},
2894 	[DB8500_REGULATOR_VSMPS3] = {
2895 		.constraints = {
2896 			.name = "db8500-vsmps3",
2897 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2898 		},
2899 	},
2900 	[DB8500_REGULATOR_VRF1] = {
2901 		.constraints = {
2902 			.name = "db8500-vrf1",
2903 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2904 		},
2905 	},
2906 	[DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
2907 		/* dependency to u8500-vape is handled outside regulator framework */
2908 		.constraints = {
2909 			.name = "db8500-sva-mmdsp",
2910 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2911 		},
2912 		.consumer_supplies = db8500_svammdsp_consumers,
2913 		.num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
2914 	},
2915 	[DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
2916 		.constraints = {
2917 			/* "ret" means "retention" */
2918 			.name = "db8500-sva-mmdsp-ret",
2919 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2920 		},
2921 	},
2922 	[DB8500_REGULATOR_SWITCH_SVAPIPE] = {
2923 		/* dependency to u8500-vape is handled outside regulator framework */
2924 		.constraints = {
2925 			.name = "db8500-sva-pipe",
2926 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2927 		},
2928 		.consumer_supplies = db8500_svapipe_consumers,
2929 		.num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
2930 	},
2931 	[DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
2932 		/* dependency to u8500-vape is handled outside regulator framework */
2933 		.constraints = {
2934 			.name = "db8500-sia-mmdsp",
2935 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2936 		},
2937 		.consumer_supplies = db8500_siammdsp_consumers,
2938 		.num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
2939 	},
2940 	[DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
2941 		.constraints = {
2942 			.name = "db8500-sia-mmdsp-ret",
2943 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2944 		},
2945 	},
2946 	[DB8500_REGULATOR_SWITCH_SIAPIPE] = {
2947 		/* dependency to u8500-vape is handled outside regulator framework */
2948 		.constraints = {
2949 			.name = "db8500-sia-pipe",
2950 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2951 		},
2952 		.consumer_supplies = db8500_siapipe_consumers,
2953 		.num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
2954 	},
2955 	[DB8500_REGULATOR_SWITCH_SGA] = {
2956 		.supply_regulator = "db8500-vape",
2957 		.constraints = {
2958 			.name = "db8500-sga",
2959 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2960 		},
2961 		.consumer_supplies = db8500_sga_consumers,
2962 		.num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
2963 
2964 	},
2965 	[DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
2966 		.supply_regulator = "db8500-vape",
2967 		.constraints = {
2968 			.name = "db8500-b2r2-mcde",
2969 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2970 		},
2971 		.consumer_supplies = db8500_b2r2_mcde_consumers,
2972 		.num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
2973 	},
2974 	[DB8500_REGULATOR_SWITCH_ESRAM12] = {
2975 		/*
2976 		 * esram12 is set in retention and supplied by Vsafe when Vape is off,
2977 		 * no need to hold Vape
2978 		 */
2979 		.constraints = {
2980 			.name = "db8500-esram12",
2981 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2982 		},
2983 		.consumer_supplies = db8500_esram12_consumers,
2984 		.num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
2985 	},
2986 	[DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
2987 		.constraints = {
2988 			.name = "db8500-esram12-ret",
2989 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2990 		},
2991 	},
2992 	[DB8500_REGULATOR_SWITCH_ESRAM34] = {
2993 		/*
2994 		 * esram34 is set in retention and supplied by Vsafe when Vape is off,
2995 		 * no need to hold Vape
2996 		 */
2997 		.constraints = {
2998 			.name = "db8500-esram34",
2999 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
3000 		},
3001 		.consumer_supplies = db8500_esram34_consumers,
3002 		.num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
3003 	},
3004 	[DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
3005 		.constraints = {
3006 			.name = "db8500-esram34-ret",
3007 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
3008 		},
3009 	},
3010 };
3011 
3012 static struct ux500_wdt_data db8500_wdt_pdata = {
3013 	.timeout = 600, /* 10 minutes */
3014 	.has_28_bits_resolution = true,
3015 };
3016 
3017 static const struct mfd_cell common_prcmu_devs[] = {
3018 	{
3019 		.name = "ux500_wdt",
3020 		.platform_data = &db8500_wdt_pdata,
3021 		.pdata_size = sizeof(db8500_wdt_pdata),
3022 		.id = -1,
3023 	},
3024 };
3025 
3026 static const struct mfd_cell db8500_prcmu_devs[] = {
3027 	{
3028 		.name = "db8500-prcmu-regulators",
3029 		.of_compatible = "stericsson,db8500-prcmu-regulator",
3030 		.platform_data = &db8500_regulators,
3031 		.pdata_size = sizeof(db8500_regulators),
3032 	},
3033 	{
3034 		.name = "cpuidle-dbx500",
3035 		.of_compatible = "stericsson,cpuidle-dbx500",
3036 	},
3037 	{
3038 		.name = "db8500-thermal",
3039 		.of_compatible = "stericsson,db8500-thermal",
3040 	},
3041 };
3042 
3043 static int db8500_prcmu_register_ab8500(struct device *parent)
3044 {
3045 	struct device_node *np;
3046 	struct resource ab8500_resource;
3047 	const struct mfd_cell ab8500_cell = {
3048 		.name = "ab8500-core",
3049 		.of_compatible = "stericsson,ab8500",
3050 		.id = AB8500_VERSION_AB8500,
3051 		.resources = &ab8500_resource,
3052 		.num_resources = 1,
3053 	};
3054 
3055 	if (!parent->of_node)
3056 		return -ENODEV;
3057 
3058 	/* Look up the device node, sneak the IRQ out of it */
3059 	for_each_child_of_node(parent->of_node, np) {
3060 		if (of_device_is_compatible(np, ab8500_cell.of_compatible))
3061 			break;
3062 	}
3063 	if (!np) {
3064 		dev_info(parent, "could not find AB8500 node in the device tree\n");
3065 		return -ENODEV;
3066 	}
3067 	of_irq_to_resource_table(np, &ab8500_resource, 1);
3068 
3069 	return mfd_add_devices(parent, 0, &ab8500_cell, 1, NULL, 0, NULL);
3070 }
3071 
3072 /**
3073  * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
3074  *
3075  */
3076 static int db8500_prcmu_probe(struct platform_device *pdev)
3077 {
3078 	struct device_node *np = pdev->dev.of_node;
3079 	int irq = 0, err = 0;
3080 	struct resource *res;
3081 
3082 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu");
3083 	if (!res) {
3084 		dev_err(&pdev->dev, "no prcmu memory region provided\n");
3085 		return -EINVAL;
3086 	}
3087 	prcmu_base = devm_ioremap(&pdev->dev, res->start, resource_size(res));
3088 	if (!prcmu_base) {
3089 		dev_err(&pdev->dev,
3090 			"failed to ioremap prcmu register memory\n");
3091 		return -ENOMEM;
3092 	}
3093 	init_prcm_registers();
3094 	dbx500_fw_version_init(pdev, DB8500_PRCMU_FW_VERSION_OFFSET);
3095 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu-tcdm");
3096 	if (!res) {
3097 		dev_err(&pdev->dev, "no prcmu tcdm region provided\n");
3098 		return -EINVAL;
3099 	}
3100 	tcdm_base = devm_ioremap(&pdev->dev, res->start,
3101 			resource_size(res));
3102 	if (!tcdm_base) {
3103 		dev_err(&pdev->dev,
3104 			"failed to ioremap prcmu-tcdm register memory\n");
3105 		return -ENOMEM;
3106 	}
3107 
3108 	/* Clean up the mailbox interrupts after pre-kernel code. */
3109 	writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
3110 
3111 	irq = platform_get_irq(pdev, 0);
3112 	if (irq <= 0)
3113 		return irq;
3114 
3115 	err = request_threaded_irq(irq, prcmu_irq_handler,
3116 	        prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
3117 	if (err < 0) {
3118 		pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
3119 		return err;
3120 	}
3121 
3122 	db8500_irq_init(np);
3123 
3124 	prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
3125 
3126 	err = mfd_add_devices(&pdev->dev, 0, common_prcmu_devs,
3127 			      ARRAY_SIZE(common_prcmu_devs), NULL, 0, db8500_irq_domain);
3128 	if (err) {
3129 		pr_err("prcmu: Failed to add subdevices\n");
3130 		return err;
3131 	}
3132 
3133 	/* TODO: Remove restriction when clk definitions are available. */
3134 	if (!of_machine_is_compatible("st-ericsson,u8540")) {
3135 		err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
3136 				      ARRAY_SIZE(db8500_prcmu_devs), NULL, 0,
3137 				      db8500_irq_domain);
3138 		if (err) {
3139 			mfd_remove_devices(&pdev->dev);
3140 			pr_err("prcmu: Failed to add subdevices\n");
3141 			return err;
3142 		}
3143 	}
3144 
3145 	err = db8500_prcmu_register_ab8500(&pdev->dev);
3146 	if (err) {
3147 		mfd_remove_devices(&pdev->dev);
3148 		pr_err("prcmu: Failed to add ab8500 subdevice\n");
3149 		return err;
3150 	}
3151 
3152 	pr_info("DB8500 PRCMU initialized\n");
3153 	return err;
3154 }
3155 static const struct of_device_id db8500_prcmu_match[] = {
3156 	{ .compatible = "stericsson,db8500-prcmu"},
3157 	{ },
3158 };
3159 
3160 static struct platform_driver db8500_prcmu_driver = {
3161 	.driver = {
3162 		.name = "db8500-prcmu",
3163 		.of_match_table = db8500_prcmu_match,
3164 	},
3165 	.probe = db8500_prcmu_probe,
3166 };
3167 
3168 static int __init db8500_prcmu_init(void)
3169 {
3170 	return platform_driver_register(&db8500_prcmu_driver);
3171 }
3172 core_initcall(db8500_prcmu_init);
3173