xref: /openbmc/linux/drivers/mfd/db8500-prcmu.c (revision f7af616c632ee2ac3af0876fe33bf9e0232e665a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * DB8500 PRCM Unit driver
4  *
5  * Copyright (C) STMicroelectronics 2009
6  * Copyright (C) ST-Ericsson SA 2010
7  *
8  * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
9  * Author: Sundar Iyer <sundar.iyer@stericsson.com>
10  * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
11  *
12  * U8500 PRCM Unit interface driver
13  */
14 #include <linux/init.h>
15 #include <linux/export.h>
16 #include <linux/kernel.h>
17 #include <linux/delay.h>
18 #include <linux/errno.h>
19 #include <linux/err.h>
20 #include <linux/spinlock.h>
21 #include <linux/io.h>
22 #include <linux/slab.h>
23 #include <linux/mutex.h>
24 #include <linux/completion.h>
25 #include <linux/irq.h>
26 #include <linux/jiffies.h>
27 #include <linux/bitops.h>
28 #include <linux/fs.h>
29 #include <linux/of.h>
30 #include <linux/of_address.h>
31 #include <linux/of_irq.h>
32 #include <linux/platform_device.h>
33 #include <linux/uaccess.h>
34 #include <linux/mfd/core.h>
35 #include <linux/mfd/dbx500-prcmu.h>
36 #include <linux/mfd/abx500/ab8500.h>
37 #include <linux/regulator/db8500-prcmu.h>
38 #include <linux/regulator/machine.h>
39 #include <linux/platform_data/ux500_wdt.h>
40 #include "dbx500-prcmu-regs.h"
41 
42 /* Index of different voltages to be used when accessing AVSData */
43 #define PRCM_AVS_BASE		0x2FC
44 #define PRCM_AVS_VBB_RET	(PRCM_AVS_BASE + 0x0)
45 #define PRCM_AVS_VBB_MAX_OPP	(PRCM_AVS_BASE + 0x1)
46 #define PRCM_AVS_VBB_100_OPP	(PRCM_AVS_BASE + 0x2)
47 #define PRCM_AVS_VBB_50_OPP	(PRCM_AVS_BASE + 0x3)
48 #define PRCM_AVS_VARM_MAX_OPP	(PRCM_AVS_BASE + 0x4)
49 #define PRCM_AVS_VARM_100_OPP	(PRCM_AVS_BASE + 0x5)
50 #define PRCM_AVS_VARM_50_OPP	(PRCM_AVS_BASE + 0x6)
51 #define PRCM_AVS_VARM_RET	(PRCM_AVS_BASE + 0x7)
52 #define PRCM_AVS_VAPE_100_OPP	(PRCM_AVS_BASE + 0x8)
53 #define PRCM_AVS_VAPE_50_OPP	(PRCM_AVS_BASE + 0x9)
54 #define PRCM_AVS_VMOD_100_OPP	(PRCM_AVS_BASE + 0xA)
55 #define PRCM_AVS_VMOD_50_OPP	(PRCM_AVS_BASE + 0xB)
56 #define PRCM_AVS_VSAFE		(PRCM_AVS_BASE + 0xC)
57 
58 #define PRCM_AVS_VOLTAGE		0
59 #define PRCM_AVS_VOLTAGE_MASK		0x3f
60 #define PRCM_AVS_ISSLOWSTARTUP		6
61 #define PRCM_AVS_ISSLOWSTARTUP_MASK	(1 << PRCM_AVS_ISSLOWSTARTUP)
62 #define PRCM_AVS_ISMODEENABLE		7
63 #define PRCM_AVS_ISMODEENABLE_MASK	(1 << PRCM_AVS_ISMODEENABLE)
64 
65 #define PRCM_BOOT_STATUS	0xFFF
66 #define PRCM_ROMCODE_A2P	0xFFE
67 #define PRCM_ROMCODE_P2A	0xFFD
68 #define PRCM_XP70_CUR_PWR_STATE 0xFFC      /* 4 BYTES */
69 
70 #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
71 
72 #define _PRCM_MBOX_HEADER		0xFE8 /* 16 bytes */
73 #define PRCM_MBOX_HEADER_REQ_MB0	(_PRCM_MBOX_HEADER + 0x0)
74 #define PRCM_MBOX_HEADER_REQ_MB1	(_PRCM_MBOX_HEADER + 0x1)
75 #define PRCM_MBOX_HEADER_REQ_MB2	(_PRCM_MBOX_HEADER + 0x2)
76 #define PRCM_MBOX_HEADER_REQ_MB3	(_PRCM_MBOX_HEADER + 0x3)
77 #define PRCM_MBOX_HEADER_REQ_MB4	(_PRCM_MBOX_HEADER + 0x4)
78 #define PRCM_MBOX_HEADER_REQ_MB5	(_PRCM_MBOX_HEADER + 0x5)
79 #define PRCM_MBOX_HEADER_ACK_MB0	(_PRCM_MBOX_HEADER + 0x8)
80 
81 /* Req Mailboxes */
82 #define PRCM_REQ_MB0 0xFDC /* 12 bytes  */
83 #define PRCM_REQ_MB1 0xFD0 /* 12 bytes  */
84 #define PRCM_REQ_MB2 0xFC0 /* 16 bytes  */
85 #define PRCM_REQ_MB3 0xE4C /* 372 bytes  */
86 #define PRCM_REQ_MB4 0xE48 /* 4 bytes  */
87 #define PRCM_REQ_MB5 0xE44 /* 4 bytes  */
88 
89 /* Ack Mailboxes */
90 #define PRCM_ACK_MB0 0xE08 /* 52 bytes  */
91 #define PRCM_ACK_MB1 0xE04 /* 4 bytes */
92 #define PRCM_ACK_MB2 0xE00 /* 4 bytes */
93 #define PRCM_ACK_MB3 0xDFC /* 4 bytes */
94 #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
95 #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
96 
97 /* Mailbox 0 headers */
98 #define MB0H_POWER_STATE_TRANS		0
99 #define MB0H_CONFIG_WAKEUPS_EXE		1
100 #define MB0H_READ_WAKEUP_ACK		3
101 #define MB0H_CONFIG_WAKEUPS_SLEEP	4
102 
103 #define MB0H_WAKEUP_EXE 2
104 #define MB0H_WAKEUP_SLEEP 5
105 
106 /* Mailbox 0 REQs */
107 #define PRCM_REQ_MB0_AP_POWER_STATE	(PRCM_REQ_MB0 + 0x0)
108 #define PRCM_REQ_MB0_AP_PLL_STATE	(PRCM_REQ_MB0 + 0x1)
109 #define PRCM_REQ_MB0_ULP_CLOCK_STATE	(PRCM_REQ_MB0 + 0x2)
110 #define PRCM_REQ_MB0_DO_NOT_WFI		(PRCM_REQ_MB0 + 0x3)
111 #define PRCM_REQ_MB0_WAKEUP_8500	(PRCM_REQ_MB0 + 0x4)
112 #define PRCM_REQ_MB0_WAKEUP_4500	(PRCM_REQ_MB0 + 0x8)
113 
114 /* Mailbox 0 ACKs */
115 #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS	(PRCM_ACK_MB0 + 0x0)
116 #define PRCM_ACK_MB0_READ_POINTER	(PRCM_ACK_MB0 + 0x1)
117 #define PRCM_ACK_MB0_WAKEUP_0_8500	(PRCM_ACK_MB0 + 0x4)
118 #define PRCM_ACK_MB0_WAKEUP_0_4500	(PRCM_ACK_MB0 + 0x8)
119 #define PRCM_ACK_MB0_WAKEUP_1_8500	(PRCM_ACK_MB0 + 0x1C)
120 #define PRCM_ACK_MB0_WAKEUP_1_4500	(PRCM_ACK_MB0 + 0x20)
121 #define PRCM_ACK_MB0_EVENT_4500_NUMBERS	20
122 
123 /* Mailbox 1 headers */
124 #define MB1H_ARM_APE_OPP 0x0
125 #define MB1H_RESET_MODEM 0x2
126 #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
127 #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
128 #define MB1H_RELEASE_USB_WAKEUP 0x5
129 #define MB1H_PLL_ON_OFF 0x6
130 
131 /* Mailbox 1 Requests */
132 #define PRCM_REQ_MB1_ARM_OPP			(PRCM_REQ_MB1 + 0x0)
133 #define PRCM_REQ_MB1_APE_OPP			(PRCM_REQ_MB1 + 0x1)
134 #define PRCM_REQ_MB1_PLL_ON_OFF			(PRCM_REQ_MB1 + 0x4)
135 #define PLL_SOC0_OFF	0x1
136 #define PLL_SOC0_ON	0x2
137 #define PLL_SOC1_OFF	0x4
138 #define PLL_SOC1_ON	0x8
139 
140 /* Mailbox 1 ACKs */
141 #define PRCM_ACK_MB1_CURRENT_ARM_OPP	(PRCM_ACK_MB1 + 0x0)
142 #define PRCM_ACK_MB1_CURRENT_APE_OPP	(PRCM_ACK_MB1 + 0x1)
143 #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS	(PRCM_ACK_MB1 + 0x2)
144 #define PRCM_ACK_MB1_DVFS_STATUS	(PRCM_ACK_MB1 + 0x3)
145 
146 /* Mailbox 2 headers */
147 #define MB2H_DPS	0x0
148 #define MB2H_AUTO_PWR	0x1
149 
150 /* Mailbox 2 REQs */
151 #define PRCM_REQ_MB2_SVA_MMDSP		(PRCM_REQ_MB2 + 0x0)
152 #define PRCM_REQ_MB2_SVA_PIPE		(PRCM_REQ_MB2 + 0x1)
153 #define PRCM_REQ_MB2_SIA_MMDSP		(PRCM_REQ_MB2 + 0x2)
154 #define PRCM_REQ_MB2_SIA_PIPE		(PRCM_REQ_MB2 + 0x3)
155 #define PRCM_REQ_MB2_SGA		(PRCM_REQ_MB2 + 0x4)
156 #define PRCM_REQ_MB2_B2R2_MCDE		(PRCM_REQ_MB2 + 0x5)
157 #define PRCM_REQ_MB2_ESRAM12		(PRCM_REQ_MB2 + 0x6)
158 #define PRCM_REQ_MB2_ESRAM34		(PRCM_REQ_MB2 + 0x7)
159 #define PRCM_REQ_MB2_AUTO_PM_SLEEP	(PRCM_REQ_MB2 + 0x8)
160 #define PRCM_REQ_MB2_AUTO_PM_IDLE	(PRCM_REQ_MB2 + 0xC)
161 
162 /* Mailbox 2 ACKs */
163 #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
164 #define HWACC_PWR_ST_OK 0xFE
165 
166 /* Mailbox 3 headers */
167 #define MB3H_ANC	0x0
168 #define MB3H_SIDETONE	0x1
169 #define MB3H_SYSCLK	0xE
170 
171 /* Mailbox 3 Requests */
172 #define PRCM_REQ_MB3_ANC_FIR_COEFF	(PRCM_REQ_MB3 + 0x0)
173 #define PRCM_REQ_MB3_ANC_IIR_COEFF	(PRCM_REQ_MB3 + 0x20)
174 #define PRCM_REQ_MB3_ANC_SHIFTER	(PRCM_REQ_MB3 + 0x60)
175 #define PRCM_REQ_MB3_ANC_WARP		(PRCM_REQ_MB3 + 0x64)
176 #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN	(PRCM_REQ_MB3 + 0x68)
177 #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF	(PRCM_REQ_MB3 + 0x6C)
178 #define PRCM_REQ_MB3_SYSCLK_MGT		(PRCM_REQ_MB3 + 0x16C)
179 
180 /* Mailbox 4 headers */
181 #define MB4H_DDR_INIT	0x0
182 #define MB4H_MEM_ST	0x1
183 #define MB4H_HOTDOG	0x12
184 #define MB4H_HOTMON	0x13
185 #define MB4H_HOT_PERIOD	0x14
186 #define MB4H_A9WDOG_CONF 0x16
187 #define MB4H_A9WDOG_EN   0x17
188 #define MB4H_A9WDOG_DIS  0x18
189 #define MB4H_A9WDOG_LOAD 0x19
190 #define MB4H_A9WDOG_KICK 0x20
191 
192 /* Mailbox 4 Requests */
193 #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE	(PRCM_REQ_MB4 + 0x0)
194 #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE	(PRCM_REQ_MB4 + 0x1)
195 #define PRCM_REQ_MB4_ESRAM0_ST			(PRCM_REQ_MB4 + 0x3)
196 #define PRCM_REQ_MB4_HOTDOG_THRESHOLD		(PRCM_REQ_MB4 + 0x0)
197 #define PRCM_REQ_MB4_HOTMON_LOW			(PRCM_REQ_MB4 + 0x0)
198 #define PRCM_REQ_MB4_HOTMON_HIGH		(PRCM_REQ_MB4 + 0x1)
199 #define PRCM_REQ_MB4_HOTMON_CONFIG		(PRCM_REQ_MB4 + 0x2)
200 #define PRCM_REQ_MB4_HOT_PERIOD			(PRCM_REQ_MB4 + 0x0)
201 #define HOTMON_CONFIG_LOW			BIT(0)
202 #define HOTMON_CONFIG_HIGH			BIT(1)
203 #define PRCM_REQ_MB4_A9WDOG_0			(PRCM_REQ_MB4 + 0x0)
204 #define PRCM_REQ_MB4_A9WDOG_1			(PRCM_REQ_MB4 + 0x1)
205 #define PRCM_REQ_MB4_A9WDOG_2			(PRCM_REQ_MB4 + 0x2)
206 #define PRCM_REQ_MB4_A9WDOG_3			(PRCM_REQ_MB4 + 0x3)
207 #define A9WDOG_AUTO_OFF_EN			BIT(7)
208 #define A9WDOG_AUTO_OFF_DIS			0
209 #define A9WDOG_ID_MASK				0xf
210 
211 /* Mailbox 5 Requests */
212 #define PRCM_REQ_MB5_I2C_SLAVE_OP	(PRCM_REQ_MB5 + 0x0)
213 #define PRCM_REQ_MB5_I2C_HW_BITS	(PRCM_REQ_MB5 + 0x1)
214 #define PRCM_REQ_MB5_I2C_REG		(PRCM_REQ_MB5 + 0x2)
215 #define PRCM_REQ_MB5_I2C_VAL		(PRCM_REQ_MB5 + 0x3)
216 #define PRCMU_I2C_WRITE(slave) (((slave) << 1) | BIT(6))
217 #define PRCMU_I2C_READ(slave) (((slave) << 1) | BIT(0) | BIT(6))
218 #define PRCMU_I2C_STOP_EN		BIT(3)
219 
220 /* Mailbox 5 ACKs */
221 #define PRCM_ACK_MB5_I2C_STATUS	(PRCM_ACK_MB5 + 0x1)
222 #define PRCM_ACK_MB5_I2C_VAL	(PRCM_ACK_MB5 + 0x3)
223 #define I2C_WR_OK 0x1
224 #define I2C_RD_OK 0x2
225 
226 #define NUM_MB 8
227 #define MBOX_BIT BIT
228 #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
229 
230 /*
231  * Wakeups/IRQs
232  */
233 
234 #define WAKEUP_BIT_RTC BIT(0)
235 #define WAKEUP_BIT_RTT0 BIT(1)
236 #define WAKEUP_BIT_RTT1 BIT(2)
237 #define WAKEUP_BIT_HSI0 BIT(3)
238 #define WAKEUP_BIT_HSI1 BIT(4)
239 #define WAKEUP_BIT_CA_WAKE BIT(5)
240 #define WAKEUP_BIT_USB BIT(6)
241 #define WAKEUP_BIT_ABB BIT(7)
242 #define WAKEUP_BIT_ABB_FIFO BIT(8)
243 #define WAKEUP_BIT_SYSCLK_OK BIT(9)
244 #define WAKEUP_BIT_CA_SLEEP BIT(10)
245 #define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
246 #define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
247 #define WAKEUP_BIT_ANC_OK BIT(13)
248 #define WAKEUP_BIT_SW_ERROR BIT(14)
249 #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
250 #define WAKEUP_BIT_ARM BIT(17)
251 #define WAKEUP_BIT_HOTMON_LOW BIT(18)
252 #define WAKEUP_BIT_HOTMON_HIGH BIT(19)
253 #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
254 #define WAKEUP_BIT_GPIO0 BIT(23)
255 #define WAKEUP_BIT_GPIO1 BIT(24)
256 #define WAKEUP_BIT_GPIO2 BIT(25)
257 #define WAKEUP_BIT_GPIO3 BIT(26)
258 #define WAKEUP_BIT_GPIO4 BIT(27)
259 #define WAKEUP_BIT_GPIO5 BIT(28)
260 #define WAKEUP_BIT_GPIO6 BIT(29)
261 #define WAKEUP_BIT_GPIO7 BIT(30)
262 #define WAKEUP_BIT_GPIO8 BIT(31)
263 
264 static struct {
265 	bool valid;
266 	struct prcmu_fw_version version;
267 } fw_info;
268 
269 static struct irq_domain *db8500_irq_domain;
270 
271 /*
272  * This vector maps irq numbers to the bits in the bit field used in
273  * communication with the PRCMU firmware.
274  *
275  * The reason for having this is to keep the irq numbers contiguous even though
276  * the bits in the bit field are not. (The bits also have a tendency to move
277  * around, to further complicate matters.)
278  */
279 #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name))
280 #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
281 
282 #define IRQ_PRCMU_RTC 0
283 #define IRQ_PRCMU_RTT0 1
284 #define IRQ_PRCMU_RTT1 2
285 #define IRQ_PRCMU_HSI0 3
286 #define IRQ_PRCMU_HSI1 4
287 #define IRQ_PRCMU_CA_WAKE 5
288 #define IRQ_PRCMU_USB 6
289 #define IRQ_PRCMU_ABB 7
290 #define IRQ_PRCMU_ABB_FIFO 8
291 #define IRQ_PRCMU_ARM 9
292 #define IRQ_PRCMU_MODEM_SW_RESET_REQ 10
293 #define IRQ_PRCMU_GPIO0 11
294 #define IRQ_PRCMU_GPIO1 12
295 #define IRQ_PRCMU_GPIO2 13
296 #define IRQ_PRCMU_GPIO3 14
297 #define IRQ_PRCMU_GPIO4 15
298 #define IRQ_PRCMU_GPIO5 16
299 #define IRQ_PRCMU_GPIO6 17
300 #define IRQ_PRCMU_GPIO7 18
301 #define IRQ_PRCMU_GPIO8 19
302 #define IRQ_PRCMU_CA_SLEEP 20
303 #define IRQ_PRCMU_HOTMON_LOW 21
304 #define IRQ_PRCMU_HOTMON_HIGH 22
305 #define NUM_PRCMU_WAKEUPS 23
306 
307 static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
308 	IRQ_ENTRY(RTC),
309 	IRQ_ENTRY(RTT0),
310 	IRQ_ENTRY(RTT1),
311 	IRQ_ENTRY(HSI0),
312 	IRQ_ENTRY(HSI1),
313 	IRQ_ENTRY(CA_WAKE),
314 	IRQ_ENTRY(USB),
315 	IRQ_ENTRY(ABB),
316 	IRQ_ENTRY(ABB_FIFO),
317 	IRQ_ENTRY(CA_SLEEP),
318 	IRQ_ENTRY(ARM),
319 	IRQ_ENTRY(HOTMON_LOW),
320 	IRQ_ENTRY(HOTMON_HIGH),
321 	IRQ_ENTRY(MODEM_SW_RESET_REQ),
322 	IRQ_ENTRY(GPIO0),
323 	IRQ_ENTRY(GPIO1),
324 	IRQ_ENTRY(GPIO2),
325 	IRQ_ENTRY(GPIO3),
326 	IRQ_ENTRY(GPIO4),
327 	IRQ_ENTRY(GPIO5),
328 	IRQ_ENTRY(GPIO6),
329 	IRQ_ENTRY(GPIO7),
330 	IRQ_ENTRY(GPIO8)
331 };
332 
333 #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
334 #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
335 static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
336 	WAKEUP_ENTRY(RTC),
337 	WAKEUP_ENTRY(RTT0),
338 	WAKEUP_ENTRY(RTT1),
339 	WAKEUP_ENTRY(HSI0),
340 	WAKEUP_ENTRY(HSI1),
341 	WAKEUP_ENTRY(USB),
342 	WAKEUP_ENTRY(ABB),
343 	WAKEUP_ENTRY(ABB_FIFO),
344 	WAKEUP_ENTRY(ARM)
345 };
346 
347 /*
348  * mb0_transfer - state needed for mailbox 0 communication.
349  * @lock:		The transaction lock.
350  * @dbb_events_lock:	A lock used to handle concurrent access to (parts of)
351  *			the request data.
352  * @mask_work:		Work structure used for (un)masking wakeup interrupts.
353  * @req:		Request data that need to persist between requests.
354  */
355 static struct {
356 	spinlock_t lock;
357 	spinlock_t dbb_irqs_lock;
358 	struct work_struct mask_work;
359 	struct mutex ac_wake_lock;
360 	struct completion ac_wake_work;
361 	struct {
362 		u32 dbb_irqs;
363 		u32 dbb_wakeups;
364 		u32 abb_events;
365 	} req;
366 } mb0_transfer;
367 
368 /*
369  * mb1_transfer - state needed for mailbox 1 communication.
370  * @lock:	The transaction lock.
371  * @work:	The transaction completion structure.
372  * @ape_opp:	The current APE OPP.
373  * @ack:	Reply ("acknowledge") data.
374  */
375 static struct {
376 	struct mutex lock;
377 	struct completion work;
378 	u8 ape_opp;
379 	struct {
380 		u8 header;
381 		u8 arm_opp;
382 		u8 ape_opp;
383 		u8 ape_voltage_status;
384 	} ack;
385 } mb1_transfer;
386 
387 /*
388  * mb2_transfer - state needed for mailbox 2 communication.
389  * @lock:            The transaction lock.
390  * @work:            The transaction completion structure.
391  * @auto_pm_lock:    The autonomous power management configuration lock.
392  * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
393  * @req:             Request data that need to persist between requests.
394  * @ack:             Reply ("acknowledge") data.
395  */
396 static struct {
397 	struct mutex lock;
398 	struct completion work;
399 	spinlock_t auto_pm_lock;
400 	bool auto_pm_enabled;
401 	struct {
402 		u8 status;
403 	} ack;
404 } mb2_transfer;
405 
406 /*
407  * mb3_transfer - state needed for mailbox 3 communication.
408  * @lock:		The request lock.
409  * @sysclk_lock:	A lock used to handle concurrent sysclk requests.
410  * @sysclk_work:	Work structure used for sysclk requests.
411  */
412 static struct {
413 	spinlock_t lock;
414 	struct mutex sysclk_lock;
415 	struct completion sysclk_work;
416 } mb3_transfer;
417 
418 /*
419  * mb4_transfer - state needed for mailbox 4 communication.
420  * @lock:	The transaction lock.
421  * @work:	The transaction completion structure.
422  */
423 static struct {
424 	struct mutex lock;
425 	struct completion work;
426 } mb4_transfer;
427 
428 /*
429  * mb5_transfer - state needed for mailbox 5 communication.
430  * @lock:	The transaction lock.
431  * @work:	The transaction completion structure.
432  * @ack:	Reply ("acknowledge") data.
433  */
434 static struct {
435 	struct mutex lock;
436 	struct completion work;
437 	struct {
438 		u8 status;
439 		u8 value;
440 	} ack;
441 } mb5_transfer;
442 
443 static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
444 
445 /* Spinlocks */
446 static DEFINE_SPINLOCK(prcmu_lock);
447 static DEFINE_SPINLOCK(clkout_lock);
448 
449 /* Global var to runtime determine TCDM base for v2 or v1 */
450 static __iomem void *tcdm_base;
451 static __iomem void *prcmu_base;
452 
453 struct clk_mgt {
454 	u32 offset;
455 	u32 pllsw;
456 	int branch;
457 	bool clk38div;
458 };
459 
460 enum {
461 	PLL_RAW,
462 	PLL_FIX,
463 	PLL_DIV
464 };
465 
466 static DEFINE_SPINLOCK(clk_mgt_lock);
467 
468 #define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
469 	{ (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
470 static struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
471 	CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
472 	CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
473 	CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
474 	CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
475 	CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
476 	CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
477 	CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
478 	CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
479 	CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
480 	CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
481 	CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
482 	CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
483 	CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
484 	CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
485 	CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
486 	CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
487 	CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
488 	CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
489 	CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
490 	CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
491 	CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
492 	CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
493 	CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
494 	CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
495 	CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
496 	CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
497 	CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
498 	CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
499 	CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
500 };
501 
502 struct dsiclk {
503 	u32 divsel_mask;
504 	u32 divsel_shift;
505 	u32 divsel;
506 };
507 
508 static struct dsiclk dsiclk[2] = {
509 	{
510 		.divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
511 		.divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
512 		.divsel = PRCM_DSI_PLLOUT_SEL_PHI,
513 	},
514 	{
515 		.divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
516 		.divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
517 		.divsel = PRCM_DSI_PLLOUT_SEL_PHI,
518 	}
519 };
520 
521 struct dsiescclk {
522 	u32 en;
523 	u32 div_mask;
524 	u32 div_shift;
525 };
526 
527 static struct dsiescclk dsiescclk[3] = {
528 	{
529 		.en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
530 		.div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
531 		.div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
532 	},
533 	{
534 		.en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
535 		.div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
536 		.div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
537 	},
538 	{
539 		.en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
540 		.div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
541 		.div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
542 	}
543 };
544 
545 u32 db8500_prcmu_read(unsigned int reg)
546 {
547 	return readl(prcmu_base + reg);
548 }
549 
550 void db8500_prcmu_write(unsigned int reg, u32 value)
551 {
552 	unsigned long flags;
553 
554 	spin_lock_irqsave(&prcmu_lock, flags);
555 	writel(value, (prcmu_base + reg));
556 	spin_unlock_irqrestore(&prcmu_lock, flags);
557 }
558 
559 void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
560 {
561 	u32 val;
562 	unsigned long flags;
563 
564 	spin_lock_irqsave(&prcmu_lock, flags);
565 	val = readl(prcmu_base + reg);
566 	val = ((val & ~mask) | (value & mask));
567 	writel(val, (prcmu_base + reg));
568 	spin_unlock_irqrestore(&prcmu_lock, flags);
569 }
570 
571 struct prcmu_fw_version *prcmu_get_fw_version(void)
572 {
573 	return fw_info.valid ? &fw_info.version : NULL;
574 }
575 
576 static bool prcmu_is_ulppll_disabled(void)
577 {
578 	struct prcmu_fw_version *ver;
579 
580 	ver = prcmu_get_fw_version();
581 	return ver && ver->project == PRCMU_FW_PROJECT_U8420_SYSCLK;
582 }
583 
584 bool prcmu_has_arm_maxopp(void)
585 {
586 	return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
587 		PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
588 }
589 
590 /**
591  * prcmu_set_rc_a2p - This function is used to run few power state sequences
592  * @val: Value to be set, i.e. transition requested
593  * Returns: 0 on success, -EINVAL on invalid argument
594  *
595  * This function is used to run the following power state sequences -
596  * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
597  */
598 int prcmu_set_rc_a2p(enum romcode_write val)
599 {
600 	if (val < RDY_2_DS || val > RDY_2_XP70_RST)
601 		return -EINVAL;
602 	writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
603 	return 0;
604 }
605 
606 /**
607  * prcmu_get_rc_p2a - This function is used to get power state sequences
608  * Returns: the power transition that has last happened
609  *
610  * This function can return the following transitions-
611  * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
612  */
613 enum romcode_read prcmu_get_rc_p2a(void)
614 {
615 	return readb(tcdm_base + PRCM_ROMCODE_P2A);
616 }
617 
618 /**
619  * prcmu_get_current_mode - Return the current XP70 power mode
620  * Returns: Returns the current AP(ARM) power mode: init,
621  * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
622  */
623 enum ap_pwrst prcmu_get_xp70_current_state(void)
624 {
625 	return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
626 }
627 
628 /**
629  * prcmu_config_clkout - Configure one of the programmable clock outputs.
630  * @clkout:	The CLKOUT number (0 or 1).
631  * @source:	The clock to be used (one of the PRCMU_CLKSRC_*).
632  * @div:	The divider to be applied.
633  *
634  * Configures one of the programmable clock outputs (CLKOUTs).
635  * @div should be in the range [1,63] to request a configuration, or 0 to
636  * inform that the configuration is no longer requested.
637  */
638 int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
639 {
640 	static int requests[2];
641 	int r = 0;
642 	unsigned long flags;
643 	u32 val;
644 	u32 bits;
645 	u32 mask;
646 	u32 div_mask;
647 
648 	BUG_ON(clkout > 1);
649 	BUG_ON(div > 63);
650 	BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
651 
652 	if (!div && !requests[clkout])
653 		return -EINVAL;
654 
655 	if (clkout == 0) {
656 		div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
657 		mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
658 		bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
659 			(div << PRCM_CLKOCR_CLKODIV0_SHIFT));
660 	} else {
661 		div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
662 		mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
663 			PRCM_CLKOCR_CLK1TYPE);
664 		bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
665 			(div << PRCM_CLKOCR_CLKODIV1_SHIFT));
666 	}
667 	bits &= mask;
668 
669 	spin_lock_irqsave(&clkout_lock, flags);
670 
671 	val = readl(PRCM_CLKOCR);
672 	if (val & div_mask) {
673 		if (div) {
674 			if ((val & mask) != bits) {
675 				r = -EBUSY;
676 				goto unlock_and_return;
677 			}
678 		} else {
679 			if ((val & mask & ~div_mask) != bits) {
680 				r = -EINVAL;
681 				goto unlock_and_return;
682 			}
683 		}
684 	}
685 	writel((bits | (val & ~mask)), PRCM_CLKOCR);
686 	requests[clkout] += (div ? 1 : -1);
687 
688 unlock_and_return:
689 	spin_unlock_irqrestore(&clkout_lock, flags);
690 
691 	return r;
692 }
693 
694 int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
695 {
696 	unsigned long flags;
697 
698 	BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
699 
700 	spin_lock_irqsave(&mb0_transfer.lock, flags);
701 
702 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
703 		cpu_relax();
704 
705 	writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
706 	writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
707 	writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
708 	writeb((keep_ulp_clk ? 1 : 0),
709 		(tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
710 	writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
711 	writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
712 
713 	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
714 
715 	return 0;
716 }
717 
718 u8 db8500_prcmu_get_power_state_result(void)
719 {
720 	return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
721 }
722 
723 /* This function should only be called while mb0_transfer.lock is held. */
724 static void config_wakeups(void)
725 {
726 	const u8 header[2] = {
727 		MB0H_CONFIG_WAKEUPS_EXE,
728 		MB0H_CONFIG_WAKEUPS_SLEEP
729 	};
730 	static u32 last_dbb_events;
731 	static u32 last_abb_events;
732 	u32 dbb_events;
733 	u32 abb_events;
734 	unsigned int i;
735 
736 	dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
737 	dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
738 
739 	abb_events = mb0_transfer.req.abb_events;
740 
741 	if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
742 		return;
743 
744 	for (i = 0; i < 2; i++) {
745 		while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
746 			cpu_relax();
747 		writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
748 		writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
749 		writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
750 		writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
751 	}
752 	last_dbb_events = dbb_events;
753 	last_abb_events = abb_events;
754 }
755 
756 void db8500_prcmu_enable_wakeups(u32 wakeups)
757 {
758 	unsigned long flags;
759 	u32 bits;
760 	int i;
761 
762 	BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
763 
764 	for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
765 		if (wakeups & BIT(i))
766 			bits |= prcmu_wakeup_bit[i];
767 	}
768 
769 	spin_lock_irqsave(&mb0_transfer.lock, flags);
770 
771 	mb0_transfer.req.dbb_wakeups = bits;
772 	config_wakeups();
773 
774 	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
775 }
776 
777 void db8500_prcmu_config_abb_event_readout(u32 abb_events)
778 {
779 	unsigned long flags;
780 
781 	spin_lock_irqsave(&mb0_transfer.lock, flags);
782 
783 	mb0_transfer.req.abb_events = abb_events;
784 	config_wakeups();
785 
786 	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
787 }
788 
789 void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
790 {
791 	if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
792 		*buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
793 	else
794 		*buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
795 }
796 
797 /**
798  * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
799  * @opp: The new ARM operating point to which transition is to be made
800  * Returns: 0 on success, non-zero on failure
801  *
802  * This function sets the the operating point of the ARM.
803  */
804 int db8500_prcmu_set_arm_opp(u8 opp)
805 {
806 	int r;
807 
808 	if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
809 		return -EINVAL;
810 
811 	r = 0;
812 
813 	mutex_lock(&mb1_transfer.lock);
814 
815 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
816 		cpu_relax();
817 
818 	writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
819 	writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
820 	writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
821 
822 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
823 	wait_for_completion(&mb1_transfer.work);
824 
825 	if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
826 		(mb1_transfer.ack.arm_opp != opp))
827 		r = -EIO;
828 
829 	mutex_unlock(&mb1_transfer.lock);
830 
831 	return r;
832 }
833 
834 /**
835  * db8500_prcmu_get_arm_opp - get the current ARM OPP
836  *
837  * Returns: the current ARM OPP
838  */
839 int db8500_prcmu_get_arm_opp(void)
840 {
841 	return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
842 }
843 
844 /**
845  * db8500_prcmu_get_ddr_opp - get the current DDR OPP
846  *
847  * Returns: the current DDR OPP
848  */
849 int db8500_prcmu_get_ddr_opp(void)
850 {
851 	return readb(PRCM_DDR_SUBSYS_APE_MINBW);
852 }
853 
854 /* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
855 static void request_even_slower_clocks(bool enable)
856 {
857 	u32 clock_reg[] = {
858 		PRCM_ACLK_MGT,
859 		PRCM_DMACLK_MGT
860 	};
861 	unsigned long flags;
862 	unsigned int i;
863 
864 	spin_lock_irqsave(&clk_mgt_lock, flags);
865 
866 	/* Grab the HW semaphore. */
867 	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
868 		cpu_relax();
869 
870 	for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
871 		u32 val;
872 		u32 div;
873 
874 		val = readl(prcmu_base + clock_reg[i]);
875 		div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
876 		if (enable) {
877 			if ((div <= 1) || (div > 15)) {
878 				pr_err("prcmu: Bad clock divider %d in %s\n",
879 					div, __func__);
880 				goto unlock_and_return;
881 			}
882 			div <<= 1;
883 		} else {
884 			if (div <= 2)
885 				goto unlock_and_return;
886 			div >>= 1;
887 		}
888 		val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
889 			(div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
890 		writel(val, prcmu_base + clock_reg[i]);
891 	}
892 
893 unlock_and_return:
894 	/* Release the HW semaphore. */
895 	writel(0, PRCM_SEM);
896 
897 	spin_unlock_irqrestore(&clk_mgt_lock, flags);
898 }
899 
900 /**
901  * db8500_set_ape_opp - set the appropriate APE OPP
902  * @opp: The new APE operating point to which transition is to be made
903  * Returns: 0 on success, non-zero on failure
904  *
905  * This function sets the operating point of the APE.
906  */
907 int db8500_prcmu_set_ape_opp(u8 opp)
908 {
909 	int r = 0;
910 
911 	if (opp == mb1_transfer.ape_opp)
912 		return 0;
913 
914 	mutex_lock(&mb1_transfer.lock);
915 
916 	if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
917 		request_even_slower_clocks(false);
918 
919 	if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
920 		goto skip_message;
921 
922 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
923 		cpu_relax();
924 
925 	writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
926 	writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
927 	writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
928 		(tcdm_base + PRCM_REQ_MB1_APE_OPP));
929 
930 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
931 	wait_for_completion(&mb1_transfer.work);
932 
933 	if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
934 		(mb1_transfer.ack.ape_opp != opp))
935 		r = -EIO;
936 
937 skip_message:
938 	if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
939 		(r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
940 		request_even_slower_clocks(true);
941 	if (!r)
942 		mb1_transfer.ape_opp = opp;
943 
944 	mutex_unlock(&mb1_transfer.lock);
945 
946 	return r;
947 }
948 
949 /**
950  * db8500_prcmu_get_ape_opp - get the current APE OPP
951  *
952  * Returns: the current APE OPP
953  */
954 int db8500_prcmu_get_ape_opp(void)
955 {
956 	return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
957 }
958 
959 /**
960  * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
961  * @enable: true to request the higher voltage, false to drop a request.
962  *
963  * Calls to this function to enable and disable requests must be balanced.
964  */
965 int db8500_prcmu_request_ape_opp_100_voltage(bool enable)
966 {
967 	int r = 0;
968 	u8 header;
969 	static unsigned int requests;
970 
971 	mutex_lock(&mb1_transfer.lock);
972 
973 	if (enable) {
974 		if (0 != requests++)
975 			goto unlock_and_return;
976 		header = MB1H_REQUEST_APE_OPP_100_VOLT;
977 	} else {
978 		if (requests == 0) {
979 			r = -EIO;
980 			goto unlock_and_return;
981 		} else if (1 != requests--) {
982 			goto unlock_and_return;
983 		}
984 		header = MB1H_RELEASE_APE_OPP_100_VOLT;
985 	}
986 
987 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
988 		cpu_relax();
989 
990 	writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
991 
992 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
993 	wait_for_completion(&mb1_transfer.work);
994 
995 	if ((mb1_transfer.ack.header != header) ||
996 		((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
997 		r = -EIO;
998 
999 unlock_and_return:
1000 	mutex_unlock(&mb1_transfer.lock);
1001 
1002 	return r;
1003 }
1004 
1005 /**
1006  * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
1007  *
1008  * This function releases the power state requirements of a USB wakeup.
1009  */
1010 int prcmu_release_usb_wakeup_state(void)
1011 {
1012 	int r = 0;
1013 
1014 	mutex_lock(&mb1_transfer.lock);
1015 
1016 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1017 		cpu_relax();
1018 
1019 	writeb(MB1H_RELEASE_USB_WAKEUP,
1020 		(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1021 
1022 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1023 	wait_for_completion(&mb1_transfer.work);
1024 
1025 	if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
1026 		((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1027 		r = -EIO;
1028 
1029 	mutex_unlock(&mb1_transfer.lock);
1030 
1031 	return r;
1032 }
1033 
1034 static int request_pll(u8 clock, bool enable)
1035 {
1036 	int r = 0;
1037 
1038 	if (clock == PRCMU_PLLSOC0)
1039 		clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
1040 	else if (clock == PRCMU_PLLSOC1)
1041 		clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
1042 	else
1043 		return -EINVAL;
1044 
1045 	mutex_lock(&mb1_transfer.lock);
1046 
1047 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1048 		cpu_relax();
1049 
1050 	writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1051 	writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
1052 
1053 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1054 	wait_for_completion(&mb1_transfer.work);
1055 
1056 	if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
1057 		r = -EIO;
1058 
1059 	mutex_unlock(&mb1_transfer.lock);
1060 
1061 	return r;
1062 }
1063 
1064 /**
1065  * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
1066  * @epod_id: The EPOD to set
1067  * @epod_state: The new EPOD state
1068  *
1069  * This function sets the state of a EPOD (power domain). It may not be called
1070  * from interrupt context.
1071  */
1072 int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
1073 {
1074 	int r = 0;
1075 	bool ram_retention = false;
1076 	int i;
1077 
1078 	/* check argument */
1079 	BUG_ON(epod_id >= NUM_EPOD_ID);
1080 
1081 	/* set flag if retention is possible */
1082 	switch (epod_id) {
1083 	case EPOD_ID_SVAMMDSP:
1084 	case EPOD_ID_SIAMMDSP:
1085 	case EPOD_ID_ESRAM12:
1086 	case EPOD_ID_ESRAM34:
1087 		ram_retention = true;
1088 		break;
1089 	}
1090 
1091 	/* check argument */
1092 	BUG_ON(epod_state > EPOD_STATE_ON);
1093 	BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
1094 
1095 	/* get lock */
1096 	mutex_lock(&mb2_transfer.lock);
1097 
1098 	/* wait for mailbox */
1099 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
1100 		cpu_relax();
1101 
1102 	/* fill in mailbox */
1103 	for (i = 0; i < NUM_EPOD_ID; i++)
1104 		writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
1105 	writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
1106 
1107 	writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
1108 
1109 	writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
1110 
1111 	/*
1112 	 * The current firmware version does not handle errors correctly,
1113 	 * and we cannot recover if there is an error.
1114 	 * This is expected to change when the firmware is updated.
1115 	 */
1116 	if (!wait_for_completion_timeout(&mb2_transfer.work,
1117 			msecs_to_jiffies(20000))) {
1118 		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1119 			__func__);
1120 		r = -EIO;
1121 		goto unlock_and_return;
1122 	}
1123 
1124 	if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
1125 		r = -EIO;
1126 
1127 unlock_and_return:
1128 	mutex_unlock(&mb2_transfer.lock);
1129 	return r;
1130 }
1131 
1132 /**
1133  * prcmu_configure_auto_pm - Configure autonomous power management.
1134  * @sleep: Configuration for ApSleep.
1135  * @idle:  Configuration for ApIdle.
1136  */
1137 void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
1138 	struct prcmu_auto_pm_config *idle)
1139 {
1140 	u32 sleep_cfg;
1141 	u32 idle_cfg;
1142 	unsigned long flags;
1143 
1144 	BUG_ON((sleep == NULL) || (idle == NULL));
1145 
1146 	sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
1147 	sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
1148 	sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
1149 	sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
1150 	sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
1151 	sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
1152 
1153 	idle_cfg = (idle->sva_auto_pm_enable & 0xF);
1154 	idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
1155 	idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
1156 	idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
1157 	idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
1158 	idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
1159 
1160 	spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
1161 
1162 	/*
1163 	 * The autonomous power management configuration is done through
1164 	 * fields in mailbox 2, but these fields are only used as shared
1165 	 * variables - i.e. there is no need to send a message.
1166 	 */
1167 	writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
1168 	writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
1169 
1170 	mb2_transfer.auto_pm_enabled =
1171 		((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1172 		 (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1173 		 (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1174 		 (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
1175 
1176 	spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
1177 }
1178 EXPORT_SYMBOL(prcmu_configure_auto_pm);
1179 
1180 bool prcmu_is_auto_pm_enabled(void)
1181 {
1182 	return mb2_transfer.auto_pm_enabled;
1183 }
1184 
1185 static int request_sysclk(bool enable)
1186 {
1187 	int r;
1188 	unsigned long flags;
1189 
1190 	r = 0;
1191 
1192 	mutex_lock(&mb3_transfer.sysclk_lock);
1193 
1194 	spin_lock_irqsave(&mb3_transfer.lock, flags);
1195 
1196 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
1197 		cpu_relax();
1198 
1199 	writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
1200 
1201 	writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
1202 	writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
1203 
1204 	spin_unlock_irqrestore(&mb3_transfer.lock, flags);
1205 
1206 	/*
1207 	 * The firmware only sends an ACK if we want to enable the
1208 	 * SysClk, and it succeeds.
1209 	 */
1210 	if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
1211 			msecs_to_jiffies(20000))) {
1212 		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1213 			__func__);
1214 		r = -EIO;
1215 	}
1216 
1217 	mutex_unlock(&mb3_transfer.sysclk_lock);
1218 
1219 	return r;
1220 }
1221 
1222 static int request_timclk(bool enable)
1223 {
1224 	u32 val;
1225 
1226 	/*
1227 	 * On the U8420_CLKSEL firmware, the ULP (Ultra Low Power)
1228 	 * PLL is disabled so we cannot use doze mode, this will
1229 	 * stop the clock on this firmware.
1230 	 */
1231 	if (prcmu_is_ulppll_disabled())
1232 		val = 0;
1233 	else
1234 		val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
1235 
1236 	if (!enable)
1237 		val |= PRCM_TCR_STOP_TIMERS |
1238 			PRCM_TCR_DOZE_MODE |
1239 			PRCM_TCR_TENSEL_MASK;
1240 
1241 	writel(val, PRCM_TCR);
1242 
1243 	return 0;
1244 }
1245 
1246 static int request_clock(u8 clock, bool enable)
1247 {
1248 	u32 val;
1249 	unsigned long flags;
1250 
1251 	spin_lock_irqsave(&clk_mgt_lock, flags);
1252 
1253 	/* Grab the HW semaphore. */
1254 	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1255 		cpu_relax();
1256 
1257 	val = readl(prcmu_base + clk_mgt[clock].offset);
1258 	if (enable) {
1259 		val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
1260 	} else {
1261 		clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1262 		val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
1263 	}
1264 	writel(val, prcmu_base + clk_mgt[clock].offset);
1265 
1266 	/* Release the HW semaphore. */
1267 	writel(0, PRCM_SEM);
1268 
1269 	spin_unlock_irqrestore(&clk_mgt_lock, flags);
1270 
1271 	return 0;
1272 }
1273 
1274 static int request_sga_clock(u8 clock, bool enable)
1275 {
1276 	u32 val;
1277 	int ret;
1278 
1279 	if (enable) {
1280 		val = readl(PRCM_CGATING_BYPASS);
1281 		writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1282 	}
1283 
1284 	ret = request_clock(clock, enable);
1285 
1286 	if (!ret && !enable) {
1287 		val = readl(PRCM_CGATING_BYPASS);
1288 		writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1289 	}
1290 
1291 	return ret;
1292 }
1293 
1294 static inline bool plldsi_locked(void)
1295 {
1296 	return (readl(PRCM_PLLDSI_LOCKP) &
1297 		(PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1298 		 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
1299 		(PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1300 		 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
1301 }
1302 
1303 static int request_plldsi(bool enable)
1304 {
1305 	int r = 0;
1306 	u32 val;
1307 
1308 	writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1309 		PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
1310 		PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
1311 
1312 	val = readl(PRCM_PLLDSI_ENABLE);
1313 	if (enable)
1314 		val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1315 	else
1316 		val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1317 	writel(val, PRCM_PLLDSI_ENABLE);
1318 
1319 	if (enable) {
1320 		unsigned int i;
1321 		bool locked = plldsi_locked();
1322 
1323 		for (i = 10; !locked && (i > 0); --i) {
1324 			udelay(100);
1325 			locked = plldsi_locked();
1326 		}
1327 		if (locked) {
1328 			writel(PRCM_APE_RESETN_DSIPLL_RESETN,
1329 				PRCM_APE_RESETN_SET);
1330 		} else {
1331 			writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1332 				PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
1333 				PRCM_MMIP_LS_CLAMP_SET);
1334 			val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1335 			writel(val, PRCM_PLLDSI_ENABLE);
1336 			r = -EAGAIN;
1337 		}
1338 	} else {
1339 		writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
1340 	}
1341 	return r;
1342 }
1343 
1344 static int request_dsiclk(u8 n, bool enable)
1345 {
1346 	u32 val;
1347 
1348 	val = readl(PRCM_DSI_PLLOUT_SEL);
1349 	val &= ~dsiclk[n].divsel_mask;
1350 	val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
1351 		dsiclk[n].divsel_shift);
1352 	writel(val, PRCM_DSI_PLLOUT_SEL);
1353 	return 0;
1354 }
1355 
1356 static int request_dsiescclk(u8 n, bool enable)
1357 {
1358 	u32 val;
1359 
1360 	val = readl(PRCM_DSITVCLK_DIV);
1361 	enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
1362 	writel(val, PRCM_DSITVCLK_DIV);
1363 	return 0;
1364 }
1365 
1366 /**
1367  * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
1368  * @clock:      The clock for which the request is made.
1369  * @enable:     Whether the clock should be enabled (true) or disabled (false).
1370  *
1371  * This function should only be used by the clock implementation.
1372  * Do not use it from any other place!
1373  */
1374 int db8500_prcmu_request_clock(u8 clock, bool enable)
1375 {
1376 	if (clock == PRCMU_SGACLK)
1377 		return request_sga_clock(clock, enable);
1378 	else if (clock < PRCMU_NUM_REG_CLOCKS)
1379 		return request_clock(clock, enable);
1380 	else if (clock == PRCMU_TIMCLK)
1381 		return request_timclk(enable);
1382 	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1383 		return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
1384 	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1385 		return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
1386 	else if (clock == PRCMU_PLLDSI)
1387 		return request_plldsi(enable);
1388 	else if (clock == PRCMU_SYSCLK)
1389 		return request_sysclk(enable);
1390 	else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
1391 		return request_pll(clock, enable);
1392 	else
1393 		return -EINVAL;
1394 }
1395 
1396 static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
1397 	int branch)
1398 {
1399 	u64 rate;
1400 	u32 val;
1401 	u32 d;
1402 	u32 div = 1;
1403 
1404 	val = readl(reg);
1405 
1406 	rate = src_rate;
1407 	rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
1408 
1409 	d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
1410 	if (d > 1)
1411 		div *= d;
1412 
1413 	d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
1414 	if (d > 1)
1415 		div *= d;
1416 
1417 	if (val & PRCM_PLL_FREQ_SELDIV2)
1418 		div *= 2;
1419 
1420 	if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
1421 		(val & PRCM_PLL_FREQ_DIV2EN) &&
1422 		((reg == PRCM_PLLSOC0_FREQ) ||
1423 		 (reg == PRCM_PLLARM_FREQ) ||
1424 		 (reg == PRCM_PLLDDR_FREQ))))
1425 		div *= 2;
1426 
1427 	(void)do_div(rate, div);
1428 
1429 	return (unsigned long)rate;
1430 }
1431 
1432 #define ROOT_CLOCK_RATE 38400000
1433 
1434 static unsigned long clock_rate(u8 clock)
1435 {
1436 	u32 val;
1437 	u32 pllsw;
1438 	unsigned long rate = ROOT_CLOCK_RATE;
1439 
1440 	val = readl(prcmu_base + clk_mgt[clock].offset);
1441 
1442 	if (val & PRCM_CLK_MGT_CLK38) {
1443 		if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
1444 			rate /= 2;
1445 		return rate;
1446 	}
1447 
1448 	val |= clk_mgt[clock].pllsw;
1449 	pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1450 
1451 	if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1452 		rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
1453 	else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1454 		rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
1455 	else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
1456 		rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
1457 	else
1458 		return 0;
1459 
1460 	if ((clock == PRCMU_SGACLK) &&
1461 		(val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
1462 		u64 r = (rate * 10);
1463 
1464 		(void)do_div(r, 25);
1465 		return (unsigned long)r;
1466 	}
1467 	val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1468 	if (val)
1469 		return rate / val;
1470 	else
1471 		return 0;
1472 }
1473 
1474 static unsigned long armss_rate(void)
1475 {
1476 	u32 r;
1477 	unsigned long rate;
1478 
1479 	r = readl(PRCM_ARM_CHGCLKREQ);
1480 
1481 	if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) {
1482 		/* External ARMCLKFIX clock */
1483 
1484 		rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX);
1485 
1486 		/* Check PRCM_ARM_CHGCLKREQ divider */
1487 		if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL))
1488 			rate /= 2;
1489 
1490 		/* Check PRCM_ARMCLKFIX_MGT divider */
1491 		r = readl(PRCM_ARMCLKFIX_MGT);
1492 		r &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1493 		rate /= r;
1494 
1495 	} else {/* ARM PLL */
1496 		rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV);
1497 	}
1498 
1499 	return rate;
1500 }
1501 
1502 static unsigned long dsiclk_rate(u8 n)
1503 {
1504 	u32 divsel;
1505 	u32 div = 1;
1506 
1507 	divsel = readl(PRCM_DSI_PLLOUT_SEL);
1508 	divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
1509 
1510 	if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
1511 		divsel = dsiclk[n].divsel;
1512 	else
1513 		dsiclk[n].divsel = divsel;
1514 
1515 	switch (divsel) {
1516 	case PRCM_DSI_PLLOUT_SEL_PHI_4:
1517 		div *= 2;
1518 		fallthrough;
1519 	case PRCM_DSI_PLLOUT_SEL_PHI_2:
1520 		div *= 2;
1521 		fallthrough;
1522 	case PRCM_DSI_PLLOUT_SEL_PHI:
1523 		return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1524 			PLL_RAW) / div;
1525 	default:
1526 		return 0;
1527 	}
1528 }
1529 
1530 static unsigned long dsiescclk_rate(u8 n)
1531 {
1532 	u32 div;
1533 
1534 	div = readl(PRCM_DSITVCLK_DIV);
1535 	div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
1536 	return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
1537 }
1538 
1539 unsigned long prcmu_clock_rate(u8 clock)
1540 {
1541 	if (clock < PRCMU_NUM_REG_CLOCKS)
1542 		return clock_rate(clock);
1543 	else if (clock == PRCMU_TIMCLK)
1544 		return prcmu_is_ulppll_disabled() ?
1545 			32768 : ROOT_CLOCK_RATE / 16;
1546 	else if (clock == PRCMU_SYSCLK)
1547 		return ROOT_CLOCK_RATE;
1548 	else if (clock == PRCMU_PLLSOC0)
1549 		return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1550 	else if (clock == PRCMU_PLLSOC1)
1551 		return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1552 	else if (clock == PRCMU_ARMSS)
1553 		return armss_rate();
1554 	else if (clock == PRCMU_PLLDDR)
1555 		return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1556 	else if (clock == PRCMU_PLLDSI)
1557 		return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1558 			PLL_RAW);
1559 	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1560 		return dsiclk_rate(clock - PRCMU_DSI0CLK);
1561 	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1562 		return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
1563 	else
1564 		return 0;
1565 }
1566 
1567 static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
1568 {
1569 	if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
1570 		return ROOT_CLOCK_RATE;
1571 	clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
1572 	if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1573 		return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
1574 	else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1575 		return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
1576 	else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
1577 		return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
1578 	else
1579 		return 0;
1580 }
1581 
1582 static u32 clock_divider(unsigned long src_rate, unsigned long rate)
1583 {
1584 	u32 div;
1585 
1586 	div = (src_rate / rate);
1587 	if (div == 0)
1588 		return 1;
1589 	if (rate < (src_rate / div))
1590 		div++;
1591 	return div;
1592 }
1593 
1594 static long round_clock_rate(u8 clock, unsigned long rate)
1595 {
1596 	u32 val;
1597 	u32 div;
1598 	unsigned long src_rate;
1599 	long rounded_rate;
1600 
1601 	val = readl(prcmu_base + clk_mgt[clock].offset);
1602 	src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1603 		clk_mgt[clock].branch);
1604 	div = clock_divider(src_rate, rate);
1605 	if (val & PRCM_CLK_MGT_CLK38) {
1606 		if (clk_mgt[clock].clk38div) {
1607 			if (div > 2)
1608 				div = 2;
1609 		} else {
1610 			div = 1;
1611 		}
1612 	} else if ((clock == PRCMU_SGACLK) && (div == 3)) {
1613 		u64 r = (src_rate * 10);
1614 
1615 		(void)do_div(r, 25);
1616 		if (r <= rate)
1617 			return (unsigned long)r;
1618 	}
1619 	rounded_rate = (src_rate / min(div, (u32)31));
1620 
1621 	return rounded_rate;
1622 }
1623 
1624 static const unsigned long db8500_armss_freqs[] = {
1625 	200000000,
1626 	400000000,
1627 	800000000,
1628 	998400000
1629 };
1630 
1631 /* The DB8520 has slightly higher ARMSS max frequency */
1632 static const unsigned long db8520_armss_freqs[] = {
1633 	200000000,
1634 	400000000,
1635 	800000000,
1636 	1152000000
1637 };
1638 
1639 
1640 
1641 static long round_armss_rate(unsigned long rate)
1642 {
1643 	unsigned long freq = 0;
1644 	const unsigned long *freqs;
1645 	int nfreqs;
1646 	int i;
1647 
1648 	if (fw_info.version.project == PRCMU_FW_PROJECT_U8520) {
1649 		freqs = db8520_armss_freqs;
1650 		nfreqs = ARRAY_SIZE(db8520_armss_freqs);
1651 	} else {
1652 		freqs = db8500_armss_freqs;
1653 		nfreqs = ARRAY_SIZE(db8500_armss_freqs);
1654 	}
1655 
1656 	/* Find the corresponding arm opp from the cpufreq table. */
1657 	for (i = 0; i < nfreqs; i++) {
1658 		freq = freqs[i];
1659 		if (rate <= freq)
1660 			break;
1661 	}
1662 
1663 	/* Return the last valid value, even if a match was not found. */
1664 	return freq;
1665 }
1666 
1667 #define MIN_PLL_VCO_RATE 600000000ULL
1668 #define MAX_PLL_VCO_RATE 1680640000ULL
1669 
1670 static long round_plldsi_rate(unsigned long rate)
1671 {
1672 	long rounded_rate = 0;
1673 	unsigned long src_rate;
1674 	unsigned long rem;
1675 	u32 r;
1676 
1677 	src_rate = clock_rate(PRCMU_HDMICLK);
1678 	rem = rate;
1679 
1680 	for (r = 7; (rem > 0) && (r > 0); r--) {
1681 		u64 d;
1682 
1683 		d = (r * rate);
1684 		(void)do_div(d, src_rate);
1685 		if (d < 6)
1686 			d = 6;
1687 		else if (d > 255)
1688 			d = 255;
1689 		d *= src_rate;
1690 		if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
1691 			((r * MAX_PLL_VCO_RATE) < (2 * d)))
1692 			continue;
1693 		(void)do_div(d, r);
1694 		if (rate < d) {
1695 			if (rounded_rate == 0)
1696 				rounded_rate = (long)d;
1697 			break;
1698 		}
1699 		if ((rate - d) < rem) {
1700 			rem = (rate - d);
1701 			rounded_rate = (long)d;
1702 		}
1703 	}
1704 	return rounded_rate;
1705 }
1706 
1707 static long round_dsiclk_rate(unsigned long rate)
1708 {
1709 	u32 div;
1710 	unsigned long src_rate;
1711 	long rounded_rate;
1712 
1713 	src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1714 		PLL_RAW);
1715 	div = clock_divider(src_rate, rate);
1716 	rounded_rate = (src_rate / ((div > 2) ? 4 : div));
1717 
1718 	return rounded_rate;
1719 }
1720 
1721 static long round_dsiescclk_rate(unsigned long rate)
1722 {
1723 	u32 div;
1724 	unsigned long src_rate;
1725 	long rounded_rate;
1726 
1727 	src_rate = clock_rate(PRCMU_TVCLK);
1728 	div = clock_divider(src_rate, rate);
1729 	rounded_rate = (src_rate / min(div, (u32)255));
1730 
1731 	return rounded_rate;
1732 }
1733 
1734 long prcmu_round_clock_rate(u8 clock, unsigned long rate)
1735 {
1736 	if (clock < PRCMU_NUM_REG_CLOCKS)
1737 		return round_clock_rate(clock, rate);
1738 	else if (clock == PRCMU_ARMSS)
1739 		return round_armss_rate(rate);
1740 	else if (clock == PRCMU_PLLDSI)
1741 		return round_plldsi_rate(rate);
1742 	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1743 		return round_dsiclk_rate(rate);
1744 	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1745 		return round_dsiescclk_rate(rate);
1746 	else
1747 		return (long)prcmu_clock_rate(clock);
1748 }
1749 
1750 static void set_clock_rate(u8 clock, unsigned long rate)
1751 {
1752 	u32 val;
1753 	u32 div;
1754 	unsigned long src_rate;
1755 	unsigned long flags;
1756 
1757 	spin_lock_irqsave(&clk_mgt_lock, flags);
1758 
1759 	/* Grab the HW semaphore. */
1760 	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1761 		cpu_relax();
1762 
1763 	val = readl(prcmu_base + clk_mgt[clock].offset);
1764 	src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1765 		clk_mgt[clock].branch);
1766 	div = clock_divider(src_rate, rate);
1767 	if (val & PRCM_CLK_MGT_CLK38) {
1768 		if (clk_mgt[clock].clk38div) {
1769 			if (div > 1)
1770 				val |= PRCM_CLK_MGT_CLK38DIV;
1771 			else
1772 				val &= ~PRCM_CLK_MGT_CLK38DIV;
1773 		}
1774 	} else if (clock == PRCMU_SGACLK) {
1775 		val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
1776 			PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
1777 		if (div == 3) {
1778 			u64 r = (src_rate * 10);
1779 
1780 			(void)do_div(r, 25);
1781 			if (r <= rate) {
1782 				val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
1783 				div = 0;
1784 			}
1785 		}
1786 		val |= min(div, (u32)31);
1787 	} else {
1788 		val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
1789 		val |= min(div, (u32)31);
1790 	}
1791 	writel(val, prcmu_base + clk_mgt[clock].offset);
1792 
1793 	/* Release the HW semaphore. */
1794 	writel(0, PRCM_SEM);
1795 
1796 	spin_unlock_irqrestore(&clk_mgt_lock, flags);
1797 }
1798 
1799 static int set_armss_rate(unsigned long rate)
1800 {
1801 	unsigned long freq;
1802 	u8 opps[] = { ARM_EXTCLK, ARM_50_OPP, ARM_100_OPP, ARM_MAX_OPP };
1803 	const unsigned long *freqs;
1804 	int nfreqs;
1805 	int i;
1806 
1807 	if (fw_info.version.project == PRCMU_FW_PROJECT_U8520) {
1808 		freqs = db8520_armss_freqs;
1809 		nfreqs = ARRAY_SIZE(db8520_armss_freqs);
1810 	} else {
1811 		freqs = db8500_armss_freqs;
1812 		nfreqs = ARRAY_SIZE(db8500_armss_freqs);
1813 	}
1814 
1815 	/* Find the corresponding arm opp from the cpufreq table. */
1816 	for (i = 0; i < nfreqs; i++) {
1817 		freq = freqs[i];
1818 		if (rate == freq)
1819 			break;
1820 	}
1821 
1822 	if (rate != freq)
1823 		return -EINVAL;
1824 
1825 	/* Set the new arm opp. */
1826 	pr_debug("SET ARM OPP 0x%02x\n", opps[i]);
1827 	return db8500_prcmu_set_arm_opp(opps[i]);
1828 }
1829 
1830 static int set_plldsi_rate(unsigned long rate)
1831 {
1832 	unsigned long src_rate;
1833 	unsigned long rem;
1834 	u32 pll_freq = 0;
1835 	u32 r;
1836 
1837 	src_rate = clock_rate(PRCMU_HDMICLK);
1838 	rem = rate;
1839 
1840 	for (r = 7; (rem > 0) && (r > 0); r--) {
1841 		u64 d;
1842 		u64 hwrate;
1843 
1844 		d = (r * rate);
1845 		(void)do_div(d, src_rate);
1846 		if (d < 6)
1847 			d = 6;
1848 		else if (d > 255)
1849 			d = 255;
1850 		hwrate = (d * src_rate);
1851 		if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
1852 			((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
1853 			continue;
1854 		(void)do_div(hwrate, r);
1855 		if (rate < hwrate) {
1856 			if (pll_freq == 0)
1857 				pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1858 					(r << PRCM_PLL_FREQ_R_SHIFT));
1859 			break;
1860 		}
1861 		if ((rate - hwrate) < rem) {
1862 			rem = (rate - hwrate);
1863 			pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1864 				(r << PRCM_PLL_FREQ_R_SHIFT));
1865 		}
1866 	}
1867 	if (pll_freq == 0)
1868 		return -EINVAL;
1869 
1870 	pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
1871 	writel(pll_freq, PRCM_PLLDSI_FREQ);
1872 
1873 	return 0;
1874 }
1875 
1876 static void set_dsiclk_rate(u8 n, unsigned long rate)
1877 {
1878 	u32 val;
1879 	u32 div;
1880 
1881 	div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
1882 			clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
1883 
1884 	dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
1885 			   (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
1886 			   /* else */	PRCM_DSI_PLLOUT_SEL_PHI_4;
1887 
1888 	val = readl(PRCM_DSI_PLLOUT_SEL);
1889 	val &= ~dsiclk[n].divsel_mask;
1890 	val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
1891 	writel(val, PRCM_DSI_PLLOUT_SEL);
1892 }
1893 
1894 static void set_dsiescclk_rate(u8 n, unsigned long rate)
1895 {
1896 	u32 val;
1897 	u32 div;
1898 
1899 	div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
1900 	val = readl(PRCM_DSITVCLK_DIV);
1901 	val &= ~dsiescclk[n].div_mask;
1902 	val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
1903 	writel(val, PRCM_DSITVCLK_DIV);
1904 }
1905 
1906 int prcmu_set_clock_rate(u8 clock, unsigned long rate)
1907 {
1908 	if (clock < PRCMU_NUM_REG_CLOCKS)
1909 		set_clock_rate(clock, rate);
1910 	else if (clock == PRCMU_ARMSS)
1911 		return set_armss_rate(rate);
1912 	else if (clock == PRCMU_PLLDSI)
1913 		return set_plldsi_rate(rate);
1914 	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1915 		set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
1916 	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1917 		set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
1918 	return 0;
1919 }
1920 
1921 int db8500_prcmu_config_esram0_deep_sleep(u8 state)
1922 {
1923 	if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
1924 	    (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
1925 		return -EINVAL;
1926 
1927 	mutex_lock(&mb4_transfer.lock);
1928 
1929 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1930 		cpu_relax();
1931 
1932 	writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1933 	writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
1934 	       (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
1935 	writeb(DDR_PWR_STATE_ON,
1936 	       (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
1937 	writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
1938 
1939 	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1940 	wait_for_completion(&mb4_transfer.work);
1941 
1942 	mutex_unlock(&mb4_transfer.lock);
1943 
1944 	return 0;
1945 }
1946 
1947 int db8500_prcmu_config_hotdog(u8 threshold)
1948 {
1949 	mutex_lock(&mb4_transfer.lock);
1950 
1951 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1952 		cpu_relax();
1953 
1954 	writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
1955 	writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1956 
1957 	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1958 	wait_for_completion(&mb4_transfer.work);
1959 
1960 	mutex_unlock(&mb4_transfer.lock);
1961 
1962 	return 0;
1963 }
1964 
1965 int db8500_prcmu_config_hotmon(u8 low, u8 high)
1966 {
1967 	mutex_lock(&mb4_transfer.lock);
1968 
1969 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1970 		cpu_relax();
1971 
1972 	writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
1973 	writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
1974 	writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
1975 		(tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
1976 	writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1977 
1978 	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1979 	wait_for_completion(&mb4_transfer.work);
1980 
1981 	mutex_unlock(&mb4_transfer.lock);
1982 
1983 	return 0;
1984 }
1985 EXPORT_SYMBOL_GPL(db8500_prcmu_config_hotmon);
1986 
1987 static int config_hot_period(u16 val)
1988 {
1989 	mutex_lock(&mb4_transfer.lock);
1990 
1991 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1992 		cpu_relax();
1993 
1994 	writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
1995 	writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1996 
1997 	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1998 	wait_for_completion(&mb4_transfer.work);
1999 
2000 	mutex_unlock(&mb4_transfer.lock);
2001 
2002 	return 0;
2003 }
2004 
2005 int db8500_prcmu_start_temp_sense(u16 cycles32k)
2006 {
2007 	if (cycles32k == 0xFFFF)
2008 		return -EINVAL;
2009 
2010 	return config_hot_period(cycles32k);
2011 }
2012 EXPORT_SYMBOL_GPL(db8500_prcmu_start_temp_sense);
2013 
2014 int db8500_prcmu_stop_temp_sense(void)
2015 {
2016 	return config_hot_period(0xFFFF);
2017 }
2018 EXPORT_SYMBOL_GPL(db8500_prcmu_stop_temp_sense);
2019 
2020 static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
2021 {
2022 
2023 	mutex_lock(&mb4_transfer.lock);
2024 
2025 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2026 		cpu_relax();
2027 
2028 	writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
2029 	writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
2030 	writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
2031 	writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
2032 
2033 	writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2034 
2035 	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2036 	wait_for_completion(&mb4_transfer.work);
2037 
2038 	mutex_unlock(&mb4_transfer.lock);
2039 
2040 	return 0;
2041 
2042 }
2043 
2044 int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
2045 {
2046 	BUG_ON(num == 0 || num > 0xf);
2047 	return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
2048 			    sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
2049 			    A9WDOG_AUTO_OFF_DIS);
2050 }
2051 EXPORT_SYMBOL(db8500_prcmu_config_a9wdog);
2052 
2053 int db8500_prcmu_enable_a9wdog(u8 id)
2054 {
2055 	return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
2056 }
2057 EXPORT_SYMBOL(db8500_prcmu_enable_a9wdog);
2058 
2059 int db8500_prcmu_disable_a9wdog(u8 id)
2060 {
2061 	return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
2062 }
2063 EXPORT_SYMBOL(db8500_prcmu_disable_a9wdog);
2064 
2065 int db8500_prcmu_kick_a9wdog(u8 id)
2066 {
2067 	return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
2068 }
2069 EXPORT_SYMBOL(db8500_prcmu_kick_a9wdog);
2070 
2071 /*
2072  * timeout is 28 bit, in ms.
2073  */
2074 int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
2075 {
2076 	return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
2077 			    (id & A9WDOG_ID_MASK) |
2078 			    /*
2079 			     * Put the lowest 28 bits of timeout at
2080 			     * offset 4. Four first bits are used for id.
2081 			     */
2082 			    (u8)((timeout << 4) & 0xf0),
2083 			    (u8)((timeout >> 4) & 0xff),
2084 			    (u8)((timeout >> 12) & 0xff),
2085 			    (u8)((timeout >> 20) & 0xff));
2086 }
2087 EXPORT_SYMBOL(db8500_prcmu_load_a9wdog);
2088 
2089 /**
2090  * prcmu_abb_read() - Read register value(s) from the ABB.
2091  * @slave:	The I2C slave address.
2092  * @reg:	The (start) register address.
2093  * @value:	The read out value(s).
2094  * @size:	The number of registers to read.
2095  *
2096  * Reads register value(s) from the ABB.
2097  * @size has to be 1 for the current firmware version.
2098  */
2099 int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
2100 {
2101 	int r;
2102 
2103 	if (size != 1)
2104 		return -EINVAL;
2105 
2106 	mutex_lock(&mb5_transfer.lock);
2107 
2108 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2109 		cpu_relax();
2110 
2111 	writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2112 	writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2113 	writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2114 	writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2115 	writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2116 
2117 	writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2118 
2119 	if (!wait_for_completion_timeout(&mb5_transfer.work,
2120 				msecs_to_jiffies(20000))) {
2121 		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2122 			__func__);
2123 		r = -EIO;
2124 	} else {
2125 		r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
2126 	}
2127 
2128 	if (!r)
2129 		*value = mb5_transfer.ack.value;
2130 
2131 	mutex_unlock(&mb5_transfer.lock);
2132 
2133 	return r;
2134 }
2135 
2136 /**
2137  * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
2138  * @slave:	The I2C slave address.
2139  * @reg:	The (start) register address.
2140  * @value:	The value(s) to write.
2141  * @mask:	The mask(s) to use.
2142  * @size:	The number of registers to write.
2143  *
2144  * Writes masked register value(s) to the ABB.
2145  * For each @value, only the bits set to 1 in the corresponding @mask
2146  * will be written. The other bits are not changed.
2147  * @size has to be 1 for the current firmware version.
2148  */
2149 int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
2150 {
2151 	int r;
2152 
2153 	if (size != 1)
2154 		return -EINVAL;
2155 
2156 	mutex_lock(&mb5_transfer.lock);
2157 
2158 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2159 		cpu_relax();
2160 
2161 	writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2162 	writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2163 	writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2164 	writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2165 	writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2166 
2167 	writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2168 
2169 	if (!wait_for_completion_timeout(&mb5_transfer.work,
2170 				msecs_to_jiffies(20000))) {
2171 		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2172 			__func__);
2173 		r = -EIO;
2174 	} else {
2175 		r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
2176 	}
2177 
2178 	mutex_unlock(&mb5_transfer.lock);
2179 
2180 	return r;
2181 }
2182 
2183 /**
2184  * prcmu_abb_write() - Write register value(s) to the ABB.
2185  * @slave:	The I2C slave address.
2186  * @reg:	The (start) register address.
2187  * @value:	The value(s) to write.
2188  * @size:	The number of registers to write.
2189  *
2190  * Writes register value(s) to the ABB.
2191  * @size has to be 1 for the current firmware version.
2192  */
2193 int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
2194 {
2195 	u8 mask = ~0;
2196 
2197 	return prcmu_abb_write_masked(slave, reg, value, &mask, size);
2198 }
2199 
2200 /**
2201  * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
2202  */
2203 int prcmu_ac_wake_req(void)
2204 {
2205 	u32 val;
2206 	int ret = 0;
2207 
2208 	mutex_lock(&mb0_transfer.ac_wake_lock);
2209 
2210 	val = readl(PRCM_HOSTACCESS_REQ);
2211 	if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
2212 		goto unlock_and_return;
2213 
2214 	atomic_set(&ac_wake_req_state, 1);
2215 
2216 	/*
2217 	 * Force Modem Wake-up before hostaccess_req ping-pong.
2218 	 * It prevents Modem to enter in Sleep while acking the hostaccess
2219 	 * request. The 31us delay has been calculated by HWI.
2220 	 */
2221 	val |= PRCM_HOSTACCESS_REQ_WAKE_REQ;
2222 	writel(val, PRCM_HOSTACCESS_REQ);
2223 
2224 	udelay(31);
2225 
2226 	val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ;
2227 	writel(val, PRCM_HOSTACCESS_REQ);
2228 
2229 	if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2230 			msecs_to_jiffies(5000))) {
2231 		pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2232 			__func__);
2233 		ret = -EFAULT;
2234 	}
2235 
2236 unlock_and_return:
2237 	mutex_unlock(&mb0_transfer.ac_wake_lock);
2238 	return ret;
2239 }
2240 
2241 /**
2242  * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
2243  */
2244 void prcmu_ac_sleep_req(void)
2245 {
2246 	u32 val;
2247 
2248 	mutex_lock(&mb0_transfer.ac_wake_lock);
2249 
2250 	val = readl(PRCM_HOSTACCESS_REQ);
2251 	if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
2252 		goto unlock_and_return;
2253 
2254 	writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
2255 		PRCM_HOSTACCESS_REQ);
2256 
2257 	if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2258 			msecs_to_jiffies(5000))) {
2259 		pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2260 			__func__);
2261 	}
2262 
2263 	atomic_set(&ac_wake_req_state, 0);
2264 
2265 unlock_and_return:
2266 	mutex_unlock(&mb0_transfer.ac_wake_lock);
2267 }
2268 
2269 bool db8500_prcmu_is_ac_wake_requested(void)
2270 {
2271 	return (atomic_read(&ac_wake_req_state) != 0);
2272 }
2273 
2274 /**
2275  * db8500_prcmu_system_reset - System reset
2276  *
2277  * Saves the reset reason code and then sets the APE_SOFTRST register which
2278  * fires interrupt to fw
2279  *
2280  * @reset_code: The reason for system reset
2281  */
2282 void db8500_prcmu_system_reset(u16 reset_code)
2283 {
2284 	writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
2285 	writel(1, PRCM_APE_SOFTRST);
2286 }
2287 
2288 /**
2289  * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
2290  *
2291  * Retrieves the reset reason code stored by prcmu_system_reset() before
2292  * last restart.
2293  */
2294 u16 db8500_prcmu_get_reset_code(void)
2295 {
2296 	return readw(tcdm_base + PRCM_SW_RST_REASON);
2297 }
2298 
2299 /**
2300  * db8500_prcmu_reset_modem - ask the PRCMU to reset modem
2301  */
2302 void db8500_prcmu_modem_reset(void)
2303 {
2304 	mutex_lock(&mb1_transfer.lock);
2305 
2306 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
2307 		cpu_relax();
2308 
2309 	writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
2310 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
2311 	wait_for_completion(&mb1_transfer.work);
2312 
2313 	/*
2314 	 * No need to check return from PRCMU as modem should go in reset state
2315 	 * This state is already managed by upper layer
2316 	 */
2317 
2318 	mutex_unlock(&mb1_transfer.lock);
2319 }
2320 
2321 static void ack_dbb_wakeup(void)
2322 {
2323 	unsigned long flags;
2324 
2325 	spin_lock_irqsave(&mb0_transfer.lock, flags);
2326 
2327 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
2328 		cpu_relax();
2329 
2330 	writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
2331 	writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
2332 
2333 	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2334 }
2335 
2336 static inline void print_unknown_header_warning(u8 n, u8 header)
2337 {
2338 	pr_warn("prcmu: Unknown message header (%d) in mailbox %d\n",
2339 		header, n);
2340 }
2341 
2342 static bool read_mailbox_0(void)
2343 {
2344 	bool r;
2345 	u32 ev;
2346 	unsigned int n;
2347 	u8 header;
2348 
2349 	header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
2350 	switch (header) {
2351 	case MB0H_WAKEUP_EXE:
2352 	case MB0H_WAKEUP_SLEEP:
2353 		if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
2354 			ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
2355 		else
2356 			ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
2357 
2358 		if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
2359 			complete(&mb0_transfer.ac_wake_work);
2360 		if (ev & WAKEUP_BIT_SYSCLK_OK)
2361 			complete(&mb3_transfer.sysclk_work);
2362 
2363 		ev &= mb0_transfer.req.dbb_irqs;
2364 
2365 		for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
2366 			if (ev & prcmu_irq_bit[n])
2367 				generic_handle_irq(irq_find_mapping(db8500_irq_domain, n));
2368 		}
2369 		r = true;
2370 		break;
2371 	default:
2372 		print_unknown_header_warning(0, header);
2373 		r = false;
2374 		break;
2375 	}
2376 	writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
2377 	return r;
2378 }
2379 
2380 static bool read_mailbox_1(void)
2381 {
2382 	mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
2383 	mb1_transfer.ack.arm_opp = readb(tcdm_base +
2384 		PRCM_ACK_MB1_CURRENT_ARM_OPP);
2385 	mb1_transfer.ack.ape_opp = readb(tcdm_base +
2386 		PRCM_ACK_MB1_CURRENT_APE_OPP);
2387 	mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
2388 		PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
2389 	writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
2390 	complete(&mb1_transfer.work);
2391 	return false;
2392 }
2393 
2394 static bool read_mailbox_2(void)
2395 {
2396 	mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
2397 	writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
2398 	complete(&mb2_transfer.work);
2399 	return false;
2400 }
2401 
2402 static bool read_mailbox_3(void)
2403 {
2404 	writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
2405 	return false;
2406 }
2407 
2408 static bool read_mailbox_4(void)
2409 {
2410 	u8 header;
2411 	bool do_complete = true;
2412 
2413 	header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
2414 	switch (header) {
2415 	case MB4H_MEM_ST:
2416 	case MB4H_HOTDOG:
2417 	case MB4H_HOTMON:
2418 	case MB4H_HOT_PERIOD:
2419 	case MB4H_A9WDOG_CONF:
2420 	case MB4H_A9WDOG_EN:
2421 	case MB4H_A9WDOG_DIS:
2422 	case MB4H_A9WDOG_LOAD:
2423 	case MB4H_A9WDOG_KICK:
2424 		break;
2425 	default:
2426 		print_unknown_header_warning(4, header);
2427 		do_complete = false;
2428 		break;
2429 	}
2430 
2431 	writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
2432 
2433 	if (do_complete)
2434 		complete(&mb4_transfer.work);
2435 
2436 	return false;
2437 }
2438 
2439 static bool read_mailbox_5(void)
2440 {
2441 	mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
2442 	mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
2443 	writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
2444 	complete(&mb5_transfer.work);
2445 	return false;
2446 }
2447 
2448 static bool read_mailbox_6(void)
2449 {
2450 	writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
2451 	return false;
2452 }
2453 
2454 static bool read_mailbox_7(void)
2455 {
2456 	writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
2457 	return false;
2458 }
2459 
2460 static bool (* const read_mailbox[NUM_MB])(void) = {
2461 	read_mailbox_0,
2462 	read_mailbox_1,
2463 	read_mailbox_2,
2464 	read_mailbox_3,
2465 	read_mailbox_4,
2466 	read_mailbox_5,
2467 	read_mailbox_6,
2468 	read_mailbox_7
2469 };
2470 
2471 static irqreturn_t prcmu_irq_handler(int irq, void *data)
2472 {
2473 	u32 bits;
2474 	u8 n;
2475 	irqreturn_t r;
2476 
2477 	bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
2478 	if (unlikely(!bits))
2479 		return IRQ_NONE;
2480 
2481 	r = IRQ_HANDLED;
2482 	for (n = 0; bits; n++) {
2483 		if (bits & MBOX_BIT(n)) {
2484 			bits -= MBOX_BIT(n);
2485 			if (read_mailbox[n]())
2486 				r = IRQ_WAKE_THREAD;
2487 		}
2488 	}
2489 	return r;
2490 }
2491 
2492 static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
2493 {
2494 	ack_dbb_wakeup();
2495 	return IRQ_HANDLED;
2496 }
2497 
2498 static void prcmu_mask_work(struct work_struct *work)
2499 {
2500 	unsigned long flags;
2501 
2502 	spin_lock_irqsave(&mb0_transfer.lock, flags);
2503 
2504 	config_wakeups();
2505 
2506 	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2507 }
2508 
2509 static void prcmu_irq_mask(struct irq_data *d)
2510 {
2511 	unsigned long flags;
2512 
2513 	spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2514 
2515 	mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq];
2516 
2517 	spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2518 
2519 	if (d->irq != IRQ_PRCMU_CA_SLEEP)
2520 		schedule_work(&mb0_transfer.mask_work);
2521 }
2522 
2523 static void prcmu_irq_unmask(struct irq_data *d)
2524 {
2525 	unsigned long flags;
2526 
2527 	spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2528 
2529 	mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq];
2530 
2531 	spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2532 
2533 	if (d->irq != IRQ_PRCMU_CA_SLEEP)
2534 		schedule_work(&mb0_transfer.mask_work);
2535 }
2536 
2537 static void noop(struct irq_data *d)
2538 {
2539 }
2540 
2541 static struct irq_chip prcmu_irq_chip = {
2542 	.name		= "prcmu",
2543 	.irq_disable	= prcmu_irq_mask,
2544 	.irq_ack	= noop,
2545 	.irq_mask	= prcmu_irq_mask,
2546 	.irq_unmask	= prcmu_irq_unmask,
2547 };
2548 
2549 static char *fw_project_name(u32 project)
2550 {
2551 	switch (project) {
2552 	case PRCMU_FW_PROJECT_U8500:
2553 		return "U8500";
2554 	case PRCMU_FW_PROJECT_U8400:
2555 		return "U8400";
2556 	case PRCMU_FW_PROJECT_U9500:
2557 		return "U9500";
2558 	case PRCMU_FW_PROJECT_U8500_MBB:
2559 		return "U8500 MBB";
2560 	case PRCMU_FW_PROJECT_U8500_C1:
2561 		return "U8500 C1";
2562 	case PRCMU_FW_PROJECT_U8500_C2:
2563 		return "U8500 C2";
2564 	case PRCMU_FW_PROJECT_U8500_C3:
2565 		return "U8500 C3";
2566 	case PRCMU_FW_PROJECT_U8500_C4:
2567 		return "U8500 C4";
2568 	case PRCMU_FW_PROJECT_U9500_MBL:
2569 		return "U9500 MBL";
2570 	case PRCMU_FW_PROJECT_U8500_MBL:
2571 		return "U8500 MBL";
2572 	case PRCMU_FW_PROJECT_U8500_MBL2:
2573 		return "U8500 MBL2";
2574 	case PRCMU_FW_PROJECT_U8520:
2575 		return "U8520 MBL";
2576 	case PRCMU_FW_PROJECT_U8420:
2577 		return "U8420";
2578 	case PRCMU_FW_PROJECT_U8420_SYSCLK:
2579 		return "U8420-sysclk";
2580 	case PRCMU_FW_PROJECT_U9540:
2581 		return "U9540";
2582 	case PRCMU_FW_PROJECT_A9420:
2583 		return "A9420";
2584 	case PRCMU_FW_PROJECT_L8540:
2585 		return "L8540";
2586 	case PRCMU_FW_PROJECT_L8580:
2587 		return "L8580";
2588 	default:
2589 		return "Unknown";
2590 	}
2591 }
2592 
2593 static int db8500_irq_map(struct irq_domain *d, unsigned int virq,
2594 				irq_hw_number_t hwirq)
2595 {
2596 	irq_set_chip_and_handler(virq, &prcmu_irq_chip,
2597 				handle_simple_irq);
2598 
2599 	return 0;
2600 }
2601 
2602 static const struct irq_domain_ops db8500_irq_ops = {
2603 	.map    = db8500_irq_map,
2604 	.xlate  = irq_domain_xlate_twocell,
2605 };
2606 
2607 static int db8500_irq_init(struct device_node *np)
2608 {
2609 	int i;
2610 
2611 	db8500_irq_domain = irq_domain_add_simple(
2612 		np, NUM_PRCMU_WAKEUPS, 0,
2613 		&db8500_irq_ops, NULL);
2614 
2615 	if (!db8500_irq_domain) {
2616 		pr_err("Failed to create irqdomain\n");
2617 		return -ENOSYS;
2618 	}
2619 
2620 	/* All wakeups will be used, so create mappings for all */
2621 	for (i = 0; i < NUM_PRCMU_WAKEUPS; i++)
2622 		irq_create_mapping(db8500_irq_domain, i);
2623 
2624 	return 0;
2625 }
2626 
2627 static void dbx500_fw_version_init(struct device_node *np)
2628 {
2629 	void __iomem *tcpm_base;
2630 	u32 version;
2631 
2632 	tcpm_base = of_iomap(np, 1);
2633 	if (!tcpm_base) {
2634 		pr_err("no prcmu tcpm mem region provided\n");
2635 		return;
2636 	}
2637 
2638 	version = readl(tcpm_base + DB8500_PRCMU_FW_VERSION_OFFSET);
2639 	fw_info.version.project = (version & 0xFF);
2640 	fw_info.version.api_version = (version >> 8) & 0xFF;
2641 	fw_info.version.func_version = (version >> 16) & 0xFF;
2642 	fw_info.version.errata = (version >> 24) & 0xFF;
2643 	strncpy(fw_info.version.project_name,
2644 		fw_project_name(fw_info.version.project),
2645 		PRCMU_FW_PROJECT_NAME_LEN);
2646 	fw_info.valid = true;
2647 	pr_info("PRCMU firmware: %s(%d), version %d.%d.%d\n",
2648 		fw_info.version.project_name,
2649 		fw_info.version.project,
2650 		fw_info.version.api_version,
2651 		fw_info.version.func_version,
2652 		fw_info.version.errata);
2653 	iounmap(tcpm_base);
2654 }
2655 
2656 void __init db8500_prcmu_early_init(void)
2657 {
2658 	/*
2659 	 * This is a temporary remap to bring up the clocks. It is
2660 	 * subsequently replaces with a real remap. After the merge of
2661 	 * the mailbox subsystem all of this early code goes away, and the
2662 	 * clock driver can probe independently. An early initcall will
2663 	 * still be needed, but it can be diverted into drivers/clk/ux500.
2664 	 */
2665 	struct device_node *np;
2666 
2667 	np = of_find_compatible_node(NULL, NULL, "stericsson,db8500-prcmu");
2668 	prcmu_base = of_iomap(np, 0);
2669 	if (!prcmu_base) {
2670 		of_node_put(np);
2671 		pr_err("%s: ioremap() of prcmu registers failed!\n", __func__);
2672 		return;
2673 	}
2674 	dbx500_fw_version_init(np);
2675 	of_node_put(np);
2676 
2677 	spin_lock_init(&mb0_transfer.lock);
2678 	spin_lock_init(&mb0_transfer.dbb_irqs_lock);
2679 	mutex_init(&mb0_transfer.ac_wake_lock);
2680 	init_completion(&mb0_transfer.ac_wake_work);
2681 	mutex_init(&mb1_transfer.lock);
2682 	init_completion(&mb1_transfer.work);
2683 	mb1_transfer.ape_opp = APE_NO_CHANGE;
2684 	mutex_init(&mb2_transfer.lock);
2685 	init_completion(&mb2_transfer.work);
2686 	spin_lock_init(&mb2_transfer.auto_pm_lock);
2687 	spin_lock_init(&mb3_transfer.lock);
2688 	mutex_init(&mb3_transfer.sysclk_lock);
2689 	init_completion(&mb3_transfer.sysclk_work);
2690 	mutex_init(&mb4_transfer.lock);
2691 	init_completion(&mb4_transfer.work);
2692 	mutex_init(&mb5_transfer.lock);
2693 	init_completion(&mb5_transfer.work);
2694 
2695 	INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
2696 }
2697 
2698 static void init_prcm_registers(void)
2699 {
2700 	u32 val;
2701 
2702 	val = readl(PRCM_A9PL_FORCE_CLKEN);
2703 	val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
2704 		PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
2705 	writel(val, (PRCM_A9PL_FORCE_CLKEN));
2706 }
2707 
2708 /*
2709  * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
2710  */
2711 static struct regulator_consumer_supply db8500_vape_consumers[] = {
2712 	REGULATOR_SUPPLY("v-ape", NULL),
2713 	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2714 	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2715 	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2716 	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
2717 	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
2718 	/* "v-mmc" changed to "vcore" in the mainline kernel */
2719 	REGULATOR_SUPPLY("vcore", "sdi0"),
2720 	REGULATOR_SUPPLY("vcore", "sdi1"),
2721 	REGULATOR_SUPPLY("vcore", "sdi2"),
2722 	REGULATOR_SUPPLY("vcore", "sdi3"),
2723 	REGULATOR_SUPPLY("vcore", "sdi4"),
2724 	REGULATOR_SUPPLY("v-dma", "dma40.0"),
2725 	REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2726 	/* "v-uart" changed to "vcore" in the mainline kernel */
2727 	REGULATOR_SUPPLY("vcore", "uart0"),
2728 	REGULATOR_SUPPLY("vcore", "uart1"),
2729 	REGULATOR_SUPPLY("vcore", "uart2"),
2730 	REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
2731 	REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
2732 	REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
2733 };
2734 
2735 static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
2736 	REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2737 	/* AV8100 regulator */
2738 	REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2739 };
2740 
2741 static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
2742 	REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
2743 	REGULATOR_SUPPLY("vsupply", "mcde"),
2744 };
2745 
2746 /* SVA MMDSP regulator switch */
2747 static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
2748 	REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2749 };
2750 
2751 /* SVA pipe regulator switch */
2752 static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
2753 	REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2754 };
2755 
2756 /* SIA MMDSP regulator switch */
2757 static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
2758 	REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2759 };
2760 
2761 /* SIA pipe regulator switch */
2762 static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
2763 	REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2764 };
2765 
2766 static struct regulator_consumer_supply db8500_sga_consumers[] = {
2767 	REGULATOR_SUPPLY("v-mali", NULL),
2768 };
2769 
2770 /* ESRAM1 and 2 regulator switch */
2771 static struct regulator_consumer_supply db8500_esram12_consumers[] = {
2772 	REGULATOR_SUPPLY("esram12", "cm_control"),
2773 };
2774 
2775 /* ESRAM3 and 4 regulator switch */
2776 static struct regulator_consumer_supply db8500_esram34_consumers[] = {
2777 	REGULATOR_SUPPLY("v-esram34", "mcde"),
2778 	REGULATOR_SUPPLY("esram34", "cm_control"),
2779 	REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
2780 };
2781 
2782 static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
2783 	[DB8500_REGULATOR_VAPE] = {
2784 		.constraints = {
2785 			.name = "db8500-vape",
2786 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2787 			.always_on = true,
2788 		},
2789 		.consumer_supplies = db8500_vape_consumers,
2790 		.num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
2791 	},
2792 	[DB8500_REGULATOR_VARM] = {
2793 		.constraints = {
2794 			.name = "db8500-varm",
2795 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2796 		},
2797 	},
2798 	[DB8500_REGULATOR_VMODEM] = {
2799 		.constraints = {
2800 			.name = "db8500-vmodem",
2801 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2802 		},
2803 	},
2804 	[DB8500_REGULATOR_VPLL] = {
2805 		.constraints = {
2806 			.name = "db8500-vpll",
2807 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2808 		},
2809 	},
2810 	[DB8500_REGULATOR_VSMPS1] = {
2811 		.constraints = {
2812 			.name = "db8500-vsmps1",
2813 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2814 		},
2815 	},
2816 	[DB8500_REGULATOR_VSMPS2] = {
2817 		.constraints = {
2818 			.name = "db8500-vsmps2",
2819 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2820 		},
2821 		.consumer_supplies = db8500_vsmps2_consumers,
2822 		.num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
2823 	},
2824 	[DB8500_REGULATOR_VSMPS3] = {
2825 		.constraints = {
2826 			.name = "db8500-vsmps3",
2827 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2828 		},
2829 	},
2830 	[DB8500_REGULATOR_VRF1] = {
2831 		.constraints = {
2832 			.name = "db8500-vrf1",
2833 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2834 		},
2835 	},
2836 	[DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
2837 		/* dependency to u8500-vape is handled outside regulator framework */
2838 		.constraints = {
2839 			.name = "db8500-sva-mmdsp",
2840 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2841 		},
2842 		.consumer_supplies = db8500_svammdsp_consumers,
2843 		.num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
2844 	},
2845 	[DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
2846 		.constraints = {
2847 			/* "ret" means "retention" */
2848 			.name = "db8500-sva-mmdsp-ret",
2849 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2850 		},
2851 	},
2852 	[DB8500_REGULATOR_SWITCH_SVAPIPE] = {
2853 		/* dependency to u8500-vape is handled outside regulator framework */
2854 		.constraints = {
2855 			.name = "db8500-sva-pipe",
2856 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2857 		},
2858 		.consumer_supplies = db8500_svapipe_consumers,
2859 		.num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
2860 	},
2861 	[DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
2862 		/* dependency to u8500-vape is handled outside regulator framework */
2863 		.constraints = {
2864 			.name = "db8500-sia-mmdsp",
2865 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2866 		},
2867 		.consumer_supplies = db8500_siammdsp_consumers,
2868 		.num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
2869 	},
2870 	[DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
2871 		.constraints = {
2872 			.name = "db8500-sia-mmdsp-ret",
2873 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2874 		},
2875 	},
2876 	[DB8500_REGULATOR_SWITCH_SIAPIPE] = {
2877 		/* dependency to u8500-vape is handled outside regulator framework */
2878 		.constraints = {
2879 			.name = "db8500-sia-pipe",
2880 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2881 		},
2882 		.consumer_supplies = db8500_siapipe_consumers,
2883 		.num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
2884 	},
2885 	[DB8500_REGULATOR_SWITCH_SGA] = {
2886 		.supply_regulator = "db8500-vape",
2887 		.constraints = {
2888 			.name = "db8500-sga",
2889 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2890 		},
2891 		.consumer_supplies = db8500_sga_consumers,
2892 		.num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
2893 
2894 	},
2895 	[DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
2896 		.supply_regulator = "db8500-vape",
2897 		.constraints = {
2898 			.name = "db8500-b2r2-mcde",
2899 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2900 		},
2901 		.consumer_supplies = db8500_b2r2_mcde_consumers,
2902 		.num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
2903 	},
2904 	[DB8500_REGULATOR_SWITCH_ESRAM12] = {
2905 		/*
2906 		 * esram12 is set in retention and supplied by Vsafe when Vape is off,
2907 		 * no need to hold Vape
2908 		 */
2909 		.constraints = {
2910 			.name = "db8500-esram12",
2911 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2912 		},
2913 		.consumer_supplies = db8500_esram12_consumers,
2914 		.num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
2915 	},
2916 	[DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
2917 		.constraints = {
2918 			.name = "db8500-esram12-ret",
2919 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2920 		},
2921 	},
2922 	[DB8500_REGULATOR_SWITCH_ESRAM34] = {
2923 		/*
2924 		 * esram34 is set in retention and supplied by Vsafe when Vape is off,
2925 		 * no need to hold Vape
2926 		 */
2927 		.constraints = {
2928 			.name = "db8500-esram34",
2929 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2930 		},
2931 		.consumer_supplies = db8500_esram34_consumers,
2932 		.num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
2933 	},
2934 	[DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
2935 		.constraints = {
2936 			.name = "db8500-esram34-ret",
2937 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2938 		},
2939 	},
2940 };
2941 
2942 static struct ux500_wdt_data db8500_wdt_pdata = {
2943 	.timeout = 600, /* 10 minutes */
2944 	.has_28_bits_resolution = true,
2945 };
2946 
2947 static const struct mfd_cell common_prcmu_devs[] = {
2948 	{
2949 		.name = "ux500_wdt",
2950 		.platform_data = &db8500_wdt_pdata,
2951 		.pdata_size = sizeof(db8500_wdt_pdata),
2952 		.id = -1,
2953 	},
2954 };
2955 
2956 static const struct mfd_cell db8500_prcmu_devs[] = {
2957 	MFD_CELL_OF("db8500-prcmu-regulators", NULL,
2958 		    &db8500_regulators, sizeof(db8500_regulators), 0,
2959 		    "stericsson,db8500-prcmu-regulator"),
2960 	MFD_CELL_OF("cpuidle-dbx500",
2961 		    NULL, NULL, 0, 0, "stericsson,cpuidle-dbx500"),
2962 	MFD_CELL_OF("db8500-thermal",
2963 		    NULL, NULL, 0, 0, "stericsson,db8500-thermal"),
2964 };
2965 
2966 static int db8500_prcmu_register_ab8500(struct device *parent)
2967 {
2968 	struct device_node *np;
2969 	struct resource ab850x_resource;
2970 	const struct mfd_cell ab8500_cell = {
2971 		.name = "ab8500-core",
2972 		.of_compatible = "stericsson,ab8500",
2973 		.id = AB8500_VERSION_AB8500,
2974 		.resources = &ab850x_resource,
2975 		.num_resources = 1,
2976 	};
2977 	const struct mfd_cell ab8505_cell = {
2978 		.name = "ab8505-core",
2979 		.of_compatible = "stericsson,ab8505",
2980 		.id = AB8500_VERSION_AB8505,
2981 		.resources = &ab850x_resource,
2982 		.num_resources = 1,
2983 	};
2984 	const struct mfd_cell *ab850x_cell;
2985 
2986 	if (!parent->of_node)
2987 		return -ENODEV;
2988 
2989 	/* Look up the device node, sneak the IRQ out of it */
2990 	for_each_child_of_node(parent->of_node, np) {
2991 		if (of_device_is_compatible(np, ab8500_cell.of_compatible)) {
2992 			ab850x_cell = &ab8500_cell;
2993 			break;
2994 		}
2995 		if (of_device_is_compatible(np, ab8505_cell.of_compatible)) {
2996 			ab850x_cell = &ab8505_cell;
2997 			break;
2998 		}
2999 	}
3000 	if (!np) {
3001 		dev_info(parent, "could not find AB850X node in the device tree\n");
3002 		return -ENODEV;
3003 	}
3004 	of_irq_to_resource_table(np, &ab850x_resource, 1);
3005 
3006 	return mfd_add_devices(parent, 0, ab850x_cell, 1, NULL, 0, NULL);
3007 }
3008 
3009 static int db8500_prcmu_probe(struct platform_device *pdev)
3010 {
3011 	struct device_node *np = pdev->dev.of_node;
3012 	int irq = 0, err = 0;
3013 	struct resource *res;
3014 
3015 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu");
3016 	if (!res) {
3017 		dev_err(&pdev->dev, "no prcmu memory region provided\n");
3018 		return -EINVAL;
3019 	}
3020 	prcmu_base = devm_ioremap(&pdev->dev, res->start, resource_size(res));
3021 	if (!prcmu_base) {
3022 		dev_err(&pdev->dev,
3023 			"failed to ioremap prcmu register memory\n");
3024 		return -ENOMEM;
3025 	}
3026 	init_prcm_registers();
3027 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu-tcdm");
3028 	if (!res) {
3029 		dev_err(&pdev->dev, "no prcmu tcdm region provided\n");
3030 		return -EINVAL;
3031 	}
3032 	tcdm_base = devm_ioremap(&pdev->dev, res->start,
3033 			resource_size(res));
3034 	if (!tcdm_base) {
3035 		dev_err(&pdev->dev,
3036 			"failed to ioremap prcmu-tcdm register memory\n");
3037 		return -ENOMEM;
3038 	}
3039 
3040 	/* Clean up the mailbox interrupts after pre-kernel code. */
3041 	writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
3042 
3043 	irq = platform_get_irq(pdev, 0);
3044 	if (irq <= 0)
3045 		return irq;
3046 
3047 	err = request_threaded_irq(irq, prcmu_irq_handler,
3048 	        prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
3049 	if (err < 0) {
3050 		pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
3051 		return err;
3052 	}
3053 
3054 	db8500_irq_init(np);
3055 
3056 	prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
3057 
3058 	err = mfd_add_devices(&pdev->dev, 0, common_prcmu_devs,
3059 			      ARRAY_SIZE(common_prcmu_devs), NULL, 0, db8500_irq_domain);
3060 	if (err) {
3061 		pr_err("prcmu: Failed to add subdevices\n");
3062 		return err;
3063 	}
3064 
3065 	/* TODO: Remove restriction when clk definitions are available. */
3066 	if (!of_machine_is_compatible("st-ericsson,u8540")) {
3067 		err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
3068 				      ARRAY_SIZE(db8500_prcmu_devs), NULL, 0,
3069 				      db8500_irq_domain);
3070 		if (err) {
3071 			mfd_remove_devices(&pdev->dev);
3072 			pr_err("prcmu: Failed to add subdevices\n");
3073 			return err;
3074 		}
3075 	}
3076 
3077 	err = db8500_prcmu_register_ab8500(&pdev->dev);
3078 	if (err) {
3079 		mfd_remove_devices(&pdev->dev);
3080 		pr_err("prcmu: Failed to add ab8500 subdevice\n");
3081 		return err;
3082 	}
3083 
3084 	pr_info("DB8500 PRCMU initialized\n");
3085 	return err;
3086 }
3087 static const struct of_device_id db8500_prcmu_match[] = {
3088 	{ .compatible = "stericsson,db8500-prcmu"},
3089 	{ },
3090 };
3091 
3092 static struct platform_driver db8500_prcmu_driver = {
3093 	.driver = {
3094 		.name = "db8500-prcmu",
3095 		.of_match_table = db8500_prcmu_match,
3096 	},
3097 	.probe = db8500_prcmu_probe,
3098 };
3099 
3100 static int __init db8500_prcmu_init(void)
3101 {
3102 	return platform_driver_register(&db8500_prcmu_driver);
3103 }
3104 core_initcall(db8500_prcmu_init);
3105