1 /* 2 * Copyright (C) STMicroelectronics 2009 3 * Copyright (C) ST-Ericsson SA 2010 4 * 5 * License Terms: GNU General Public License v2 6 * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com> 7 * Author: Sundar Iyer <sundar.iyer@stericsson.com> 8 * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com> 9 * 10 * U8500 PRCM Unit interface driver 11 * 12 */ 13 #include <linux/module.h> 14 #include <linux/kernel.h> 15 #include <linux/delay.h> 16 #include <linux/errno.h> 17 #include <linux/err.h> 18 #include <linux/spinlock.h> 19 #include <linux/io.h> 20 #include <linux/slab.h> 21 #include <linux/mutex.h> 22 #include <linux/completion.h> 23 #include <linux/irq.h> 24 #include <linux/jiffies.h> 25 #include <linux/bitops.h> 26 #include <linux/fs.h> 27 #include <linux/of.h> 28 #include <linux/of_irq.h> 29 #include <linux/platform_device.h> 30 #include <linux/uaccess.h> 31 #include <linux/mfd/core.h> 32 #include <linux/mfd/dbx500-prcmu.h> 33 #include <linux/mfd/abx500/ab8500.h> 34 #include <linux/regulator/db8500-prcmu.h> 35 #include <linux/regulator/machine.h> 36 #include <linux/cpufreq.h> 37 #include <linux/platform_data/ux500_wdt.h> 38 #include <linux/platform_data/db8500_thermal.h> 39 #include "dbx500-prcmu-regs.h" 40 41 /* Index of different voltages to be used when accessing AVSData */ 42 #define PRCM_AVS_BASE 0x2FC 43 #define PRCM_AVS_VBB_RET (PRCM_AVS_BASE + 0x0) 44 #define PRCM_AVS_VBB_MAX_OPP (PRCM_AVS_BASE + 0x1) 45 #define PRCM_AVS_VBB_100_OPP (PRCM_AVS_BASE + 0x2) 46 #define PRCM_AVS_VBB_50_OPP (PRCM_AVS_BASE + 0x3) 47 #define PRCM_AVS_VARM_MAX_OPP (PRCM_AVS_BASE + 0x4) 48 #define PRCM_AVS_VARM_100_OPP (PRCM_AVS_BASE + 0x5) 49 #define PRCM_AVS_VARM_50_OPP (PRCM_AVS_BASE + 0x6) 50 #define PRCM_AVS_VARM_RET (PRCM_AVS_BASE + 0x7) 51 #define PRCM_AVS_VAPE_100_OPP (PRCM_AVS_BASE + 0x8) 52 #define PRCM_AVS_VAPE_50_OPP (PRCM_AVS_BASE + 0x9) 53 #define PRCM_AVS_VMOD_100_OPP (PRCM_AVS_BASE + 0xA) 54 #define PRCM_AVS_VMOD_50_OPP (PRCM_AVS_BASE + 0xB) 55 #define PRCM_AVS_VSAFE (PRCM_AVS_BASE + 0xC) 56 57 #define PRCM_AVS_VOLTAGE 0 58 #define PRCM_AVS_VOLTAGE_MASK 0x3f 59 #define PRCM_AVS_ISSLOWSTARTUP 6 60 #define PRCM_AVS_ISSLOWSTARTUP_MASK (1 << PRCM_AVS_ISSLOWSTARTUP) 61 #define PRCM_AVS_ISMODEENABLE 7 62 #define PRCM_AVS_ISMODEENABLE_MASK (1 << PRCM_AVS_ISMODEENABLE) 63 64 #define PRCM_BOOT_STATUS 0xFFF 65 #define PRCM_ROMCODE_A2P 0xFFE 66 #define PRCM_ROMCODE_P2A 0xFFD 67 #define PRCM_XP70_CUR_PWR_STATE 0xFFC /* 4 BYTES */ 68 69 #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */ 70 71 #define _PRCM_MBOX_HEADER 0xFE8 /* 16 bytes */ 72 #define PRCM_MBOX_HEADER_REQ_MB0 (_PRCM_MBOX_HEADER + 0x0) 73 #define PRCM_MBOX_HEADER_REQ_MB1 (_PRCM_MBOX_HEADER + 0x1) 74 #define PRCM_MBOX_HEADER_REQ_MB2 (_PRCM_MBOX_HEADER + 0x2) 75 #define PRCM_MBOX_HEADER_REQ_MB3 (_PRCM_MBOX_HEADER + 0x3) 76 #define PRCM_MBOX_HEADER_REQ_MB4 (_PRCM_MBOX_HEADER + 0x4) 77 #define PRCM_MBOX_HEADER_REQ_MB5 (_PRCM_MBOX_HEADER + 0x5) 78 #define PRCM_MBOX_HEADER_ACK_MB0 (_PRCM_MBOX_HEADER + 0x8) 79 80 /* Req Mailboxes */ 81 #define PRCM_REQ_MB0 0xFDC /* 12 bytes */ 82 #define PRCM_REQ_MB1 0xFD0 /* 12 bytes */ 83 #define PRCM_REQ_MB2 0xFC0 /* 16 bytes */ 84 #define PRCM_REQ_MB3 0xE4C /* 372 bytes */ 85 #define PRCM_REQ_MB4 0xE48 /* 4 bytes */ 86 #define PRCM_REQ_MB5 0xE44 /* 4 bytes */ 87 88 /* Ack Mailboxes */ 89 #define PRCM_ACK_MB0 0xE08 /* 52 bytes */ 90 #define PRCM_ACK_MB1 0xE04 /* 4 bytes */ 91 #define PRCM_ACK_MB2 0xE00 /* 4 bytes */ 92 #define PRCM_ACK_MB3 0xDFC /* 4 bytes */ 93 #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */ 94 #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */ 95 96 /* Mailbox 0 headers */ 97 #define MB0H_POWER_STATE_TRANS 0 98 #define MB0H_CONFIG_WAKEUPS_EXE 1 99 #define MB0H_READ_WAKEUP_ACK 3 100 #define MB0H_CONFIG_WAKEUPS_SLEEP 4 101 102 #define MB0H_WAKEUP_EXE 2 103 #define MB0H_WAKEUP_SLEEP 5 104 105 /* Mailbox 0 REQs */ 106 #define PRCM_REQ_MB0_AP_POWER_STATE (PRCM_REQ_MB0 + 0x0) 107 #define PRCM_REQ_MB0_AP_PLL_STATE (PRCM_REQ_MB0 + 0x1) 108 #define PRCM_REQ_MB0_ULP_CLOCK_STATE (PRCM_REQ_MB0 + 0x2) 109 #define PRCM_REQ_MB0_DO_NOT_WFI (PRCM_REQ_MB0 + 0x3) 110 #define PRCM_REQ_MB0_WAKEUP_8500 (PRCM_REQ_MB0 + 0x4) 111 #define PRCM_REQ_MB0_WAKEUP_4500 (PRCM_REQ_MB0 + 0x8) 112 113 /* Mailbox 0 ACKs */ 114 #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS (PRCM_ACK_MB0 + 0x0) 115 #define PRCM_ACK_MB0_READ_POINTER (PRCM_ACK_MB0 + 0x1) 116 #define PRCM_ACK_MB0_WAKEUP_0_8500 (PRCM_ACK_MB0 + 0x4) 117 #define PRCM_ACK_MB0_WAKEUP_0_4500 (PRCM_ACK_MB0 + 0x8) 118 #define PRCM_ACK_MB0_WAKEUP_1_8500 (PRCM_ACK_MB0 + 0x1C) 119 #define PRCM_ACK_MB0_WAKEUP_1_4500 (PRCM_ACK_MB0 + 0x20) 120 #define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20 121 122 /* Mailbox 1 headers */ 123 #define MB1H_ARM_APE_OPP 0x0 124 #define MB1H_RESET_MODEM 0x2 125 #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3 126 #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4 127 #define MB1H_RELEASE_USB_WAKEUP 0x5 128 #define MB1H_PLL_ON_OFF 0x6 129 130 /* Mailbox 1 Requests */ 131 #define PRCM_REQ_MB1_ARM_OPP (PRCM_REQ_MB1 + 0x0) 132 #define PRCM_REQ_MB1_APE_OPP (PRCM_REQ_MB1 + 0x1) 133 #define PRCM_REQ_MB1_PLL_ON_OFF (PRCM_REQ_MB1 + 0x4) 134 #define PLL_SOC0_OFF 0x1 135 #define PLL_SOC0_ON 0x2 136 #define PLL_SOC1_OFF 0x4 137 #define PLL_SOC1_ON 0x8 138 139 /* Mailbox 1 ACKs */ 140 #define PRCM_ACK_MB1_CURRENT_ARM_OPP (PRCM_ACK_MB1 + 0x0) 141 #define PRCM_ACK_MB1_CURRENT_APE_OPP (PRCM_ACK_MB1 + 0x1) 142 #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2) 143 #define PRCM_ACK_MB1_DVFS_STATUS (PRCM_ACK_MB1 + 0x3) 144 145 /* Mailbox 2 headers */ 146 #define MB2H_DPS 0x0 147 #define MB2H_AUTO_PWR 0x1 148 149 /* Mailbox 2 REQs */ 150 #define PRCM_REQ_MB2_SVA_MMDSP (PRCM_REQ_MB2 + 0x0) 151 #define PRCM_REQ_MB2_SVA_PIPE (PRCM_REQ_MB2 + 0x1) 152 #define PRCM_REQ_MB2_SIA_MMDSP (PRCM_REQ_MB2 + 0x2) 153 #define PRCM_REQ_MB2_SIA_PIPE (PRCM_REQ_MB2 + 0x3) 154 #define PRCM_REQ_MB2_SGA (PRCM_REQ_MB2 + 0x4) 155 #define PRCM_REQ_MB2_B2R2_MCDE (PRCM_REQ_MB2 + 0x5) 156 #define PRCM_REQ_MB2_ESRAM12 (PRCM_REQ_MB2 + 0x6) 157 #define PRCM_REQ_MB2_ESRAM34 (PRCM_REQ_MB2 + 0x7) 158 #define PRCM_REQ_MB2_AUTO_PM_SLEEP (PRCM_REQ_MB2 + 0x8) 159 #define PRCM_REQ_MB2_AUTO_PM_IDLE (PRCM_REQ_MB2 + 0xC) 160 161 /* Mailbox 2 ACKs */ 162 #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0) 163 #define HWACC_PWR_ST_OK 0xFE 164 165 /* Mailbox 3 headers */ 166 #define MB3H_ANC 0x0 167 #define MB3H_SIDETONE 0x1 168 #define MB3H_SYSCLK 0xE 169 170 /* Mailbox 3 Requests */ 171 #define PRCM_REQ_MB3_ANC_FIR_COEFF (PRCM_REQ_MB3 + 0x0) 172 #define PRCM_REQ_MB3_ANC_IIR_COEFF (PRCM_REQ_MB3 + 0x20) 173 #define PRCM_REQ_MB3_ANC_SHIFTER (PRCM_REQ_MB3 + 0x60) 174 #define PRCM_REQ_MB3_ANC_WARP (PRCM_REQ_MB3 + 0x64) 175 #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN (PRCM_REQ_MB3 + 0x68) 176 #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C) 177 #define PRCM_REQ_MB3_SYSCLK_MGT (PRCM_REQ_MB3 + 0x16C) 178 179 /* Mailbox 4 headers */ 180 #define MB4H_DDR_INIT 0x0 181 #define MB4H_MEM_ST 0x1 182 #define MB4H_HOTDOG 0x12 183 #define MB4H_HOTMON 0x13 184 #define MB4H_HOT_PERIOD 0x14 185 #define MB4H_A9WDOG_CONF 0x16 186 #define MB4H_A9WDOG_EN 0x17 187 #define MB4H_A9WDOG_DIS 0x18 188 #define MB4H_A9WDOG_LOAD 0x19 189 #define MB4H_A9WDOG_KICK 0x20 190 191 /* Mailbox 4 Requests */ 192 #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE (PRCM_REQ_MB4 + 0x0) 193 #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE (PRCM_REQ_MB4 + 0x1) 194 #define PRCM_REQ_MB4_ESRAM0_ST (PRCM_REQ_MB4 + 0x3) 195 #define PRCM_REQ_MB4_HOTDOG_THRESHOLD (PRCM_REQ_MB4 + 0x0) 196 #define PRCM_REQ_MB4_HOTMON_LOW (PRCM_REQ_MB4 + 0x0) 197 #define PRCM_REQ_MB4_HOTMON_HIGH (PRCM_REQ_MB4 + 0x1) 198 #define PRCM_REQ_MB4_HOTMON_CONFIG (PRCM_REQ_MB4 + 0x2) 199 #define PRCM_REQ_MB4_HOT_PERIOD (PRCM_REQ_MB4 + 0x0) 200 #define HOTMON_CONFIG_LOW BIT(0) 201 #define HOTMON_CONFIG_HIGH BIT(1) 202 #define PRCM_REQ_MB4_A9WDOG_0 (PRCM_REQ_MB4 + 0x0) 203 #define PRCM_REQ_MB4_A9WDOG_1 (PRCM_REQ_MB4 + 0x1) 204 #define PRCM_REQ_MB4_A9WDOG_2 (PRCM_REQ_MB4 + 0x2) 205 #define PRCM_REQ_MB4_A9WDOG_3 (PRCM_REQ_MB4 + 0x3) 206 #define A9WDOG_AUTO_OFF_EN BIT(7) 207 #define A9WDOG_AUTO_OFF_DIS 0 208 #define A9WDOG_ID_MASK 0xf 209 210 /* Mailbox 5 Requests */ 211 #define PRCM_REQ_MB5_I2C_SLAVE_OP (PRCM_REQ_MB5 + 0x0) 212 #define PRCM_REQ_MB5_I2C_HW_BITS (PRCM_REQ_MB5 + 0x1) 213 #define PRCM_REQ_MB5_I2C_REG (PRCM_REQ_MB5 + 0x2) 214 #define PRCM_REQ_MB5_I2C_VAL (PRCM_REQ_MB5 + 0x3) 215 #define PRCMU_I2C_WRITE(slave) (((slave) << 1) | BIT(6)) 216 #define PRCMU_I2C_READ(slave) (((slave) << 1) | BIT(0) | BIT(6)) 217 #define PRCMU_I2C_STOP_EN BIT(3) 218 219 /* Mailbox 5 ACKs */ 220 #define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1) 221 #define PRCM_ACK_MB5_I2C_VAL (PRCM_ACK_MB5 + 0x3) 222 #define I2C_WR_OK 0x1 223 #define I2C_RD_OK 0x2 224 225 #define NUM_MB 8 226 #define MBOX_BIT BIT 227 #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1) 228 229 /* 230 * Wakeups/IRQs 231 */ 232 233 #define WAKEUP_BIT_RTC BIT(0) 234 #define WAKEUP_BIT_RTT0 BIT(1) 235 #define WAKEUP_BIT_RTT1 BIT(2) 236 #define WAKEUP_BIT_HSI0 BIT(3) 237 #define WAKEUP_BIT_HSI1 BIT(4) 238 #define WAKEUP_BIT_CA_WAKE BIT(5) 239 #define WAKEUP_BIT_USB BIT(6) 240 #define WAKEUP_BIT_ABB BIT(7) 241 #define WAKEUP_BIT_ABB_FIFO BIT(8) 242 #define WAKEUP_BIT_SYSCLK_OK BIT(9) 243 #define WAKEUP_BIT_CA_SLEEP BIT(10) 244 #define WAKEUP_BIT_AC_WAKE_ACK BIT(11) 245 #define WAKEUP_BIT_SIDE_TONE_OK BIT(12) 246 #define WAKEUP_BIT_ANC_OK BIT(13) 247 #define WAKEUP_BIT_SW_ERROR BIT(14) 248 #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15) 249 #define WAKEUP_BIT_ARM BIT(17) 250 #define WAKEUP_BIT_HOTMON_LOW BIT(18) 251 #define WAKEUP_BIT_HOTMON_HIGH BIT(19) 252 #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20) 253 #define WAKEUP_BIT_GPIO0 BIT(23) 254 #define WAKEUP_BIT_GPIO1 BIT(24) 255 #define WAKEUP_BIT_GPIO2 BIT(25) 256 #define WAKEUP_BIT_GPIO3 BIT(26) 257 #define WAKEUP_BIT_GPIO4 BIT(27) 258 #define WAKEUP_BIT_GPIO5 BIT(28) 259 #define WAKEUP_BIT_GPIO6 BIT(29) 260 #define WAKEUP_BIT_GPIO7 BIT(30) 261 #define WAKEUP_BIT_GPIO8 BIT(31) 262 263 static struct { 264 bool valid; 265 struct prcmu_fw_version version; 266 } fw_info; 267 268 static struct irq_domain *db8500_irq_domain; 269 270 /* 271 * This vector maps irq numbers to the bits in the bit field used in 272 * communication with the PRCMU firmware. 273 * 274 * The reason for having this is to keep the irq numbers contiguous even though 275 * the bits in the bit field are not. (The bits also have a tendency to move 276 * around, to further complicate matters.) 277 */ 278 #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name)) 279 #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name) 280 281 #define IRQ_PRCMU_RTC 0 282 #define IRQ_PRCMU_RTT0 1 283 #define IRQ_PRCMU_RTT1 2 284 #define IRQ_PRCMU_HSI0 3 285 #define IRQ_PRCMU_HSI1 4 286 #define IRQ_PRCMU_CA_WAKE 5 287 #define IRQ_PRCMU_USB 6 288 #define IRQ_PRCMU_ABB 7 289 #define IRQ_PRCMU_ABB_FIFO 8 290 #define IRQ_PRCMU_ARM 9 291 #define IRQ_PRCMU_MODEM_SW_RESET_REQ 10 292 #define IRQ_PRCMU_GPIO0 11 293 #define IRQ_PRCMU_GPIO1 12 294 #define IRQ_PRCMU_GPIO2 13 295 #define IRQ_PRCMU_GPIO3 14 296 #define IRQ_PRCMU_GPIO4 15 297 #define IRQ_PRCMU_GPIO5 16 298 #define IRQ_PRCMU_GPIO6 17 299 #define IRQ_PRCMU_GPIO7 18 300 #define IRQ_PRCMU_GPIO8 19 301 #define IRQ_PRCMU_CA_SLEEP 20 302 #define IRQ_PRCMU_HOTMON_LOW 21 303 #define IRQ_PRCMU_HOTMON_HIGH 22 304 #define NUM_PRCMU_WAKEUPS 23 305 306 static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = { 307 IRQ_ENTRY(RTC), 308 IRQ_ENTRY(RTT0), 309 IRQ_ENTRY(RTT1), 310 IRQ_ENTRY(HSI0), 311 IRQ_ENTRY(HSI1), 312 IRQ_ENTRY(CA_WAKE), 313 IRQ_ENTRY(USB), 314 IRQ_ENTRY(ABB), 315 IRQ_ENTRY(ABB_FIFO), 316 IRQ_ENTRY(CA_SLEEP), 317 IRQ_ENTRY(ARM), 318 IRQ_ENTRY(HOTMON_LOW), 319 IRQ_ENTRY(HOTMON_HIGH), 320 IRQ_ENTRY(MODEM_SW_RESET_REQ), 321 IRQ_ENTRY(GPIO0), 322 IRQ_ENTRY(GPIO1), 323 IRQ_ENTRY(GPIO2), 324 IRQ_ENTRY(GPIO3), 325 IRQ_ENTRY(GPIO4), 326 IRQ_ENTRY(GPIO5), 327 IRQ_ENTRY(GPIO6), 328 IRQ_ENTRY(GPIO7), 329 IRQ_ENTRY(GPIO8) 330 }; 331 332 #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1) 333 #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name) 334 static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = { 335 WAKEUP_ENTRY(RTC), 336 WAKEUP_ENTRY(RTT0), 337 WAKEUP_ENTRY(RTT1), 338 WAKEUP_ENTRY(HSI0), 339 WAKEUP_ENTRY(HSI1), 340 WAKEUP_ENTRY(USB), 341 WAKEUP_ENTRY(ABB), 342 WAKEUP_ENTRY(ABB_FIFO), 343 WAKEUP_ENTRY(ARM) 344 }; 345 346 /* 347 * mb0_transfer - state needed for mailbox 0 communication. 348 * @lock: The transaction lock. 349 * @dbb_events_lock: A lock used to handle concurrent access to (parts of) 350 * the request data. 351 * @mask_work: Work structure used for (un)masking wakeup interrupts. 352 * @req: Request data that need to persist between requests. 353 */ 354 static struct { 355 spinlock_t lock; 356 spinlock_t dbb_irqs_lock; 357 struct work_struct mask_work; 358 struct mutex ac_wake_lock; 359 struct completion ac_wake_work; 360 struct { 361 u32 dbb_irqs; 362 u32 dbb_wakeups; 363 u32 abb_events; 364 } req; 365 } mb0_transfer; 366 367 /* 368 * mb1_transfer - state needed for mailbox 1 communication. 369 * @lock: The transaction lock. 370 * @work: The transaction completion structure. 371 * @ape_opp: The current APE OPP. 372 * @ack: Reply ("acknowledge") data. 373 */ 374 static struct { 375 struct mutex lock; 376 struct completion work; 377 u8 ape_opp; 378 struct { 379 u8 header; 380 u8 arm_opp; 381 u8 ape_opp; 382 u8 ape_voltage_status; 383 } ack; 384 } mb1_transfer; 385 386 /* 387 * mb2_transfer - state needed for mailbox 2 communication. 388 * @lock: The transaction lock. 389 * @work: The transaction completion structure. 390 * @auto_pm_lock: The autonomous power management configuration lock. 391 * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled. 392 * @req: Request data that need to persist between requests. 393 * @ack: Reply ("acknowledge") data. 394 */ 395 static struct { 396 struct mutex lock; 397 struct completion work; 398 spinlock_t auto_pm_lock; 399 bool auto_pm_enabled; 400 struct { 401 u8 status; 402 } ack; 403 } mb2_transfer; 404 405 /* 406 * mb3_transfer - state needed for mailbox 3 communication. 407 * @lock: The request lock. 408 * @sysclk_lock: A lock used to handle concurrent sysclk requests. 409 * @sysclk_work: Work structure used for sysclk requests. 410 */ 411 static struct { 412 spinlock_t lock; 413 struct mutex sysclk_lock; 414 struct completion sysclk_work; 415 } mb3_transfer; 416 417 /* 418 * mb4_transfer - state needed for mailbox 4 communication. 419 * @lock: The transaction lock. 420 * @work: The transaction completion structure. 421 */ 422 static struct { 423 struct mutex lock; 424 struct completion work; 425 } mb4_transfer; 426 427 /* 428 * mb5_transfer - state needed for mailbox 5 communication. 429 * @lock: The transaction lock. 430 * @work: The transaction completion structure. 431 * @ack: Reply ("acknowledge") data. 432 */ 433 static struct { 434 struct mutex lock; 435 struct completion work; 436 struct { 437 u8 status; 438 u8 value; 439 } ack; 440 } mb5_transfer; 441 442 static atomic_t ac_wake_req_state = ATOMIC_INIT(0); 443 444 /* Spinlocks */ 445 static DEFINE_SPINLOCK(prcmu_lock); 446 static DEFINE_SPINLOCK(clkout_lock); 447 448 /* Global var to runtime determine TCDM base for v2 or v1 */ 449 static __iomem void *tcdm_base; 450 static __iomem void *prcmu_base; 451 452 struct clk_mgt { 453 u32 offset; 454 u32 pllsw; 455 int branch; 456 bool clk38div; 457 }; 458 459 enum { 460 PLL_RAW, 461 PLL_FIX, 462 PLL_DIV 463 }; 464 465 static DEFINE_SPINLOCK(clk_mgt_lock); 466 467 #define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \ 468 { (PRCM_##_name##_MGT), 0 , _branch, _clk38div} 469 static struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = { 470 CLK_MGT_ENTRY(SGACLK, PLL_DIV, false), 471 CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true), 472 CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true), 473 CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true), 474 CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true), 475 CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true), 476 CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true), 477 CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true), 478 CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true), 479 CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true), 480 CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true), 481 CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true), 482 CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true), 483 CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true), 484 CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true), 485 CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true), 486 CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true), 487 CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false), 488 CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true), 489 CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true), 490 CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true), 491 CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true), 492 CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false), 493 CLK_MGT_ENTRY(DMACLK, PLL_DIV, true), 494 CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true), 495 CLK_MGT_ENTRY(TVCLK, PLL_FIX, true), 496 CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true), 497 CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true), 498 CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false), 499 }; 500 501 struct dsiclk { 502 u32 divsel_mask; 503 u32 divsel_shift; 504 u32 divsel; 505 }; 506 507 static struct dsiclk dsiclk[2] = { 508 { 509 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK, 510 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT, 511 .divsel = PRCM_DSI_PLLOUT_SEL_PHI, 512 }, 513 { 514 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK, 515 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT, 516 .divsel = PRCM_DSI_PLLOUT_SEL_PHI, 517 } 518 }; 519 520 struct dsiescclk { 521 u32 en; 522 u32 div_mask; 523 u32 div_shift; 524 }; 525 526 static struct dsiescclk dsiescclk[3] = { 527 { 528 .en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN, 529 .div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK, 530 .div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT, 531 }, 532 { 533 .en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN, 534 .div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK, 535 .div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT, 536 }, 537 { 538 .en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN, 539 .div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK, 540 .div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT, 541 } 542 }; 543 544 545 /* 546 * Used by MCDE to setup all necessary PRCMU registers 547 */ 548 #define PRCMU_RESET_DSIPLL 0x00004000 549 #define PRCMU_UNCLAMP_DSIPLL 0x00400800 550 551 #define PRCMU_CLK_PLL_DIV_SHIFT 0 552 #define PRCMU_CLK_PLL_SW_SHIFT 5 553 #define PRCMU_CLK_38 (1 << 9) 554 #define PRCMU_CLK_38_SRC (1 << 10) 555 #define PRCMU_CLK_38_DIV (1 << 11) 556 557 /* PLLDIV=12, PLLSW=4 (PLLDDR) */ 558 #define PRCMU_DSI_CLOCK_SETTING 0x0000008C 559 560 /* DPI 50000000 Hz */ 561 #define PRCMU_DPI_CLOCK_SETTING ((1 << PRCMU_CLK_PLL_SW_SHIFT) | \ 562 (16 << PRCMU_CLK_PLL_DIV_SHIFT)) 563 #define PRCMU_DSI_LP_CLOCK_SETTING 0x00000E00 564 565 /* D=101, N=1, R=4, SELDIV2=0 */ 566 #define PRCMU_PLLDSI_FREQ_SETTING 0x00040165 567 568 #define PRCMU_ENABLE_PLLDSI 0x00000001 569 #define PRCMU_DISABLE_PLLDSI 0x00000000 570 #define PRCMU_RELEASE_RESET_DSS 0x0000400C 571 #define PRCMU_DSI_PLLOUT_SEL_SETTING 0x00000202 572 /* ESC clk, div0=1, div1=1, div2=3 */ 573 #define PRCMU_ENABLE_ESCAPE_CLOCK_DIV 0x07030101 574 #define PRCMU_DISABLE_ESCAPE_CLOCK_DIV 0x00030101 575 #define PRCMU_DSI_RESET_SW 0x00000007 576 577 #define PRCMU_PLLDSI_LOCKP_LOCKED 0x3 578 579 int db8500_prcmu_enable_dsipll(void) 580 { 581 int i; 582 583 /* Clear DSIPLL_RESETN */ 584 writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR); 585 /* Unclamp DSIPLL in/out */ 586 writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR); 587 588 /* Set DSI PLL FREQ */ 589 writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ); 590 writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL); 591 /* Enable Escape clocks */ 592 writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV); 593 594 /* Start DSI PLL */ 595 writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE); 596 /* Reset DSI PLL */ 597 writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET); 598 for (i = 0; i < 10; i++) { 599 if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED) 600 == PRCMU_PLLDSI_LOCKP_LOCKED) 601 break; 602 udelay(100); 603 } 604 /* Set DSIPLL_RESETN */ 605 writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET); 606 return 0; 607 } 608 609 int db8500_prcmu_disable_dsipll(void) 610 { 611 /* Disable dsi pll */ 612 writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE); 613 /* Disable escapeclock */ 614 writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV); 615 return 0; 616 } 617 618 int db8500_prcmu_set_display_clocks(void) 619 { 620 unsigned long flags; 621 622 spin_lock_irqsave(&clk_mgt_lock, flags); 623 624 /* Grab the HW semaphore. */ 625 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0) 626 cpu_relax(); 627 628 writel(PRCMU_DSI_CLOCK_SETTING, prcmu_base + PRCM_HDMICLK_MGT); 629 writel(PRCMU_DSI_LP_CLOCK_SETTING, prcmu_base + PRCM_TVCLK_MGT); 630 writel(PRCMU_DPI_CLOCK_SETTING, prcmu_base + PRCM_LCDCLK_MGT); 631 632 /* Release the HW semaphore. */ 633 writel(0, PRCM_SEM); 634 635 spin_unlock_irqrestore(&clk_mgt_lock, flags); 636 637 return 0; 638 } 639 640 u32 db8500_prcmu_read(unsigned int reg) 641 { 642 return readl(prcmu_base + reg); 643 } 644 645 void db8500_prcmu_write(unsigned int reg, u32 value) 646 { 647 unsigned long flags; 648 649 spin_lock_irqsave(&prcmu_lock, flags); 650 writel(value, (prcmu_base + reg)); 651 spin_unlock_irqrestore(&prcmu_lock, flags); 652 } 653 654 void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value) 655 { 656 u32 val; 657 unsigned long flags; 658 659 spin_lock_irqsave(&prcmu_lock, flags); 660 val = readl(prcmu_base + reg); 661 val = ((val & ~mask) | (value & mask)); 662 writel(val, (prcmu_base + reg)); 663 spin_unlock_irqrestore(&prcmu_lock, flags); 664 } 665 666 struct prcmu_fw_version *prcmu_get_fw_version(void) 667 { 668 return fw_info.valid ? &fw_info.version : NULL; 669 } 670 671 bool prcmu_has_arm_maxopp(void) 672 { 673 return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) & 674 PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK; 675 } 676 677 /** 678 * prcmu_set_rc_a2p - This function is used to run few power state sequences 679 * @val: Value to be set, i.e. transition requested 680 * Returns: 0 on success, -EINVAL on invalid argument 681 * 682 * This function is used to run the following power state sequences - 683 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep 684 */ 685 int prcmu_set_rc_a2p(enum romcode_write val) 686 { 687 if (val < RDY_2_DS || val > RDY_2_XP70_RST) 688 return -EINVAL; 689 writeb(val, (tcdm_base + PRCM_ROMCODE_A2P)); 690 return 0; 691 } 692 693 /** 694 * prcmu_get_rc_p2a - This function is used to get power state sequences 695 * Returns: the power transition that has last happened 696 * 697 * This function can return the following transitions- 698 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep 699 */ 700 enum romcode_read prcmu_get_rc_p2a(void) 701 { 702 return readb(tcdm_base + PRCM_ROMCODE_P2A); 703 } 704 705 /** 706 * prcmu_get_current_mode - Return the current XP70 power mode 707 * Returns: Returns the current AP(ARM) power mode: init, 708 * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset 709 */ 710 enum ap_pwrst prcmu_get_xp70_current_state(void) 711 { 712 return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE); 713 } 714 715 /** 716 * prcmu_config_clkout - Configure one of the programmable clock outputs. 717 * @clkout: The CLKOUT number (0 or 1). 718 * @source: The clock to be used (one of the PRCMU_CLKSRC_*). 719 * @div: The divider to be applied. 720 * 721 * Configures one of the programmable clock outputs (CLKOUTs). 722 * @div should be in the range [1,63] to request a configuration, or 0 to 723 * inform that the configuration is no longer requested. 724 */ 725 int prcmu_config_clkout(u8 clkout, u8 source, u8 div) 726 { 727 static int requests[2]; 728 int r = 0; 729 unsigned long flags; 730 u32 val; 731 u32 bits; 732 u32 mask; 733 u32 div_mask; 734 735 BUG_ON(clkout > 1); 736 BUG_ON(div > 63); 737 BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009)); 738 739 if (!div && !requests[clkout]) 740 return -EINVAL; 741 742 switch (clkout) { 743 case 0: 744 div_mask = PRCM_CLKOCR_CLKODIV0_MASK; 745 mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK); 746 bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) | 747 (div << PRCM_CLKOCR_CLKODIV0_SHIFT)); 748 break; 749 case 1: 750 div_mask = PRCM_CLKOCR_CLKODIV1_MASK; 751 mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK | 752 PRCM_CLKOCR_CLK1TYPE); 753 bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) | 754 (div << PRCM_CLKOCR_CLKODIV1_SHIFT)); 755 break; 756 } 757 bits &= mask; 758 759 spin_lock_irqsave(&clkout_lock, flags); 760 761 val = readl(PRCM_CLKOCR); 762 if (val & div_mask) { 763 if (div) { 764 if ((val & mask) != bits) { 765 r = -EBUSY; 766 goto unlock_and_return; 767 } 768 } else { 769 if ((val & mask & ~div_mask) != bits) { 770 r = -EINVAL; 771 goto unlock_and_return; 772 } 773 } 774 } 775 writel((bits | (val & ~mask)), PRCM_CLKOCR); 776 requests[clkout] += (div ? 1 : -1); 777 778 unlock_and_return: 779 spin_unlock_irqrestore(&clkout_lock, flags); 780 781 return r; 782 } 783 784 int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll) 785 { 786 unsigned long flags; 787 788 BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state)); 789 790 spin_lock_irqsave(&mb0_transfer.lock, flags); 791 792 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0)) 793 cpu_relax(); 794 795 writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0)); 796 writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE)); 797 writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE)); 798 writeb((keep_ulp_clk ? 1 : 0), 799 (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE)); 800 writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI)); 801 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET); 802 803 spin_unlock_irqrestore(&mb0_transfer.lock, flags); 804 805 return 0; 806 } 807 808 u8 db8500_prcmu_get_power_state_result(void) 809 { 810 return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS); 811 } 812 813 /* This function should only be called while mb0_transfer.lock is held. */ 814 static void config_wakeups(void) 815 { 816 const u8 header[2] = { 817 MB0H_CONFIG_WAKEUPS_EXE, 818 MB0H_CONFIG_WAKEUPS_SLEEP 819 }; 820 static u32 last_dbb_events; 821 static u32 last_abb_events; 822 u32 dbb_events; 823 u32 abb_events; 824 unsigned int i; 825 826 dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups; 827 dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK); 828 829 abb_events = mb0_transfer.req.abb_events; 830 831 if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events)) 832 return; 833 834 for (i = 0; i < 2; i++) { 835 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0)) 836 cpu_relax(); 837 writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500)); 838 writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500)); 839 writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0)); 840 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET); 841 } 842 last_dbb_events = dbb_events; 843 last_abb_events = abb_events; 844 } 845 846 void db8500_prcmu_enable_wakeups(u32 wakeups) 847 { 848 unsigned long flags; 849 u32 bits; 850 int i; 851 852 BUG_ON(wakeups != (wakeups & VALID_WAKEUPS)); 853 854 for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) { 855 if (wakeups & BIT(i)) 856 bits |= prcmu_wakeup_bit[i]; 857 } 858 859 spin_lock_irqsave(&mb0_transfer.lock, flags); 860 861 mb0_transfer.req.dbb_wakeups = bits; 862 config_wakeups(); 863 864 spin_unlock_irqrestore(&mb0_transfer.lock, flags); 865 } 866 867 void db8500_prcmu_config_abb_event_readout(u32 abb_events) 868 { 869 unsigned long flags; 870 871 spin_lock_irqsave(&mb0_transfer.lock, flags); 872 873 mb0_transfer.req.abb_events = abb_events; 874 config_wakeups(); 875 876 spin_unlock_irqrestore(&mb0_transfer.lock, flags); 877 } 878 879 void db8500_prcmu_get_abb_event_buffer(void __iomem **buf) 880 { 881 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1) 882 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500); 883 else 884 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500); 885 } 886 887 /** 888 * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP 889 * @opp: The new ARM operating point to which transition is to be made 890 * Returns: 0 on success, non-zero on failure 891 * 892 * This function sets the the operating point of the ARM. 893 */ 894 int db8500_prcmu_set_arm_opp(u8 opp) 895 { 896 int r; 897 898 if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK) 899 return -EINVAL; 900 901 r = 0; 902 903 mutex_lock(&mb1_transfer.lock); 904 905 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1)) 906 cpu_relax(); 907 908 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1)); 909 writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP)); 910 writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP)); 911 912 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET); 913 wait_for_completion(&mb1_transfer.work); 914 915 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) || 916 (mb1_transfer.ack.arm_opp != opp)) 917 r = -EIO; 918 919 mutex_unlock(&mb1_transfer.lock); 920 921 return r; 922 } 923 924 /** 925 * db8500_prcmu_get_arm_opp - get the current ARM OPP 926 * 927 * Returns: the current ARM OPP 928 */ 929 int db8500_prcmu_get_arm_opp(void) 930 { 931 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP); 932 } 933 934 /** 935 * db8500_prcmu_get_ddr_opp - get the current DDR OPP 936 * 937 * Returns: the current DDR OPP 938 */ 939 int db8500_prcmu_get_ddr_opp(void) 940 { 941 return readb(PRCM_DDR_SUBSYS_APE_MINBW); 942 } 943 944 /** 945 * db8500_set_ddr_opp - set the appropriate DDR OPP 946 * @opp: The new DDR operating point to which transition is to be made 947 * Returns: 0 on success, non-zero on failure 948 * 949 * This function sets the operating point of the DDR. 950 */ 951 static bool enable_set_ddr_opp; 952 int db8500_prcmu_set_ddr_opp(u8 opp) 953 { 954 if (opp < DDR_100_OPP || opp > DDR_25_OPP) 955 return -EINVAL; 956 /* Changing the DDR OPP can hang the hardware pre-v21 */ 957 if (enable_set_ddr_opp) 958 writeb(opp, PRCM_DDR_SUBSYS_APE_MINBW); 959 960 return 0; 961 } 962 963 /* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */ 964 static void request_even_slower_clocks(bool enable) 965 { 966 u32 clock_reg[] = { 967 PRCM_ACLK_MGT, 968 PRCM_DMACLK_MGT 969 }; 970 unsigned long flags; 971 unsigned int i; 972 973 spin_lock_irqsave(&clk_mgt_lock, flags); 974 975 /* Grab the HW semaphore. */ 976 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0) 977 cpu_relax(); 978 979 for (i = 0; i < ARRAY_SIZE(clock_reg); i++) { 980 u32 val; 981 u32 div; 982 983 val = readl(prcmu_base + clock_reg[i]); 984 div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK); 985 if (enable) { 986 if ((div <= 1) || (div > 15)) { 987 pr_err("prcmu: Bad clock divider %d in %s\n", 988 div, __func__); 989 goto unlock_and_return; 990 } 991 div <<= 1; 992 } else { 993 if (div <= 2) 994 goto unlock_and_return; 995 div >>= 1; 996 } 997 val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) | 998 (div & PRCM_CLK_MGT_CLKPLLDIV_MASK)); 999 writel(val, prcmu_base + clock_reg[i]); 1000 } 1001 1002 unlock_and_return: 1003 /* Release the HW semaphore. */ 1004 writel(0, PRCM_SEM); 1005 1006 spin_unlock_irqrestore(&clk_mgt_lock, flags); 1007 } 1008 1009 /** 1010 * db8500_set_ape_opp - set the appropriate APE OPP 1011 * @opp: The new APE operating point to which transition is to be made 1012 * Returns: 0 on success, non-zero on failure 1013 * 1014 * This function sets the operating point of the APE. 1015 */ 1016 int db8500_prcmu_set_ape_opp(u8 opp) 1017 { 1018 int r = 0; 1019 1020 if (opp == mb1_transfer.ape_opp) 1021 return 0; 1022 1023 mutex_lock(&mb1_transfer.lock); 1024 1025 if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP) 1026 request_even_slower_clocks(false); 1027 1028 if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP)) 1029 goto skip_message; 1030 1031 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1)) 1032 cpu_relax(); 1033 1034 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1)); 1035 writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP)); 1036 writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp), 1037 (tcdm_base + PRCM_REQ_MB1_APE_OPP)); 1038 1039 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET); 1040 wait_for_completion(&mb1_transfer.work); 1041 1042 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) || 1043 (mb1_transfer.ack.ape_opp != opp)) 1044 r = -EIO; 1045 1046 skip_message: 1047 if ((!r && (opp == APE_50_PARTLY_25_OPP)) || 1048 (r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP))) 1049 request_even_slower_clocks(true); 1050 if (!r) 1051 mb1_transfer.ape_opp = opp; 1052 1053 mutex_unlock(&mb1_transfer.lock); 1054 1055 return r; 1056 } 1057 1058 /** 1059 * db8500_prcmu_get_ape_opp - get the current APE OPP 1060 * 1061 * Returns: the current APE OPP 1062 */ 1063 int db8500_prcmu_get_ape_opp(void) 1064 { 1065 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP); 1066 } 1067 1068 /** 1069 * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage 1070 * @enable: true to request the higher voltage, false to drop a request. 1071 * 1072 * Calls to this function to enable and disable requests must be balanced. 1073 */ 1074 int db8500_prcmu_request_ape_opp_100_voltage(bool enable) 1075 { 1076 int r = 0; 1077 u8 header; 1078 static unsigned int requests; 1079 1080 mutex_lock(&mb1_transfer.lock); 1081 1082 if (enable) { 1083 if (0 != requests++) 1084 goto unlock_and_return; 1085 header = MB1H_REQUEST_APE_OPP_100_VOLT; 1086 } else { 1087 if (requests == 0) { 1088 r = -EIO; 1089 goto unlock_and_return; 1090 } else if (1 != requests--) { 1091 goto unlock_and_return; 1092 } 1093 header = MB1H_RELEASE_APE_OPP_100_VOLT; 1094 } 1095 1096 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1)) 1097 cpu_relax(); 1098 1099 writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1)); 1100 1101 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET); 1102 wait_for_completion(&mb1_transfer.work); 1103 1104 if ((mb1_transfer.ack.header != header) || 1105 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0)) 1106 r = -EIO; 1107 1108 unlock_and_return: 1109 mutex_unlock(&mb1_transfer.lock); 1110 1111 return r; 1112 } 1113 1114 /** 1115 * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup 1116 * 1117 * This function releases the power state requirements of a USB wakeup. 1118 */ 1119 int prcmu_release_usb_wakeup_state(void) 1120 { 1121 int r = 0; 1122 1123 mutex_lock(&mb1_transfer.lock); 1124 1125 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1)) 1126 cpu_relax(); 1127 1128 writeb(MB1H_RELEASE_USB_WAKEUP, 1129 (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1)); 1130 1131 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET); 1132 wait_for_completion(&mb1_transfer.work); 1133 1134 if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) || 1135 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0)) 1136 r = -EIO; 1137 1138 mutex_unlock(&mb1_transfer.lock); 1139 1140 return r; 1141 } 1142 1143 static int request_pll(u8 clock, bool enable) 1144 { 1145 int r = 0; 1146 1147 if (clock == PRCMU_PLLSOC0) 1148 clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF); 1149 else if (clock == PRCMU_PLLSOC1) 1150 clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF); 1151 else 1152 return -EINVAL; 1153 1154 mutex_lock(&mb1_transfer.lock); 1155 1156 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1)) 1157 cpu_relax(); 1158 1159 writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1)); 1160 writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF)); 1161 1162 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET); 1163 wait_for_completion(&mb1_transfer.work); 1164 1165 if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF) 1166 r = -EIO; 1167 1168 mutex_unlock(&mb1_transfer.lock); 1169 1170 return r; 1171 } 1172 1173 /** 1174 * db8500_prcmu_set_epod - set the state of a EPOD (power domain) 1175 * @epod_id: The EPOD to set 1176 * @epod_state: The new EPOD state 1177 * 1178 * This function sets the state of a EPOD (power domain). It may not be called 1179 * from interrupt context. 1180 */ 1181 int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state) 1182 { 1183 int r = 0; 1184 bool ram_retention = false; 1185 int i; 1186 1187 /* check argument */ 1188 BUG_ON(epod_id >= NUM_EPOD_ID); 1189 1190 /* set flag if retention is possible */ 1191 switch (epod_id) { 1192 case EPOD_ID_SVAMMDSP: 1193 case EPOD_ID_SIAMMDSP: 1194 case EPOD_ID_ESRAM12: 1195 case EPOD_ID_ESRAM34: 1196 ram_retention = true; 1197 break; 1198 } 1199 1200 /* check argument */ 1201 BUG_ON(epod_state > EPOD_STATE_ON); 1202 BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention); 1203 1204 /* get lock */ 1205 mutex_lock(&mb2_transfer.lock); 1206 1207 /* wait for mailbox */ 1208 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2)) 1209 cpu_relax(); 1210 1211 /* fill in mailbox */ 1212 for (i = 0; i < NUM_EPOD_ID; i++) 1213 writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i)); 1214 writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id)); 1215 1216 writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2)); 1217 1218 writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET); 1219 1220 /* 1221 * The current firmware version does not handle errors correctly, 1222 * and we cannot recover if there is an error. 1223 * This is expected to change when the firmware is updated. 1224 */ 1225 if (!wait_for_completion_timeout(&mb2_transfer.work, 1226 msecs_to_jiffies(20000))) { 1227 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n", 1228 __func__); 1229 r = -EIO; 1230 goto unlock_and_return; 1231 } 1232 1233 if (mb2_transfer.ack.status != HWACC_PWR_ST_OK) 1234 r = -EIO; 1235 1236 unlock_and_return: 1237 mutex_unlock(&mb2_transfer.lock); 1238 return r; 1239 } 1240 1241 /** 1242 * prcmu_configure_auto_pm - Configure autonomous power management. 1243 * @sleep: Configuration for ApSleep. 1244 * @idle: Configuration for ApIdle. 1245 */ 1246 void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep, 1247 struct prcmu_auto_pm_config *idle) 1248 { 1249 u32 sleep_cfg; 1250 u32 idle_cfg; 1251 unsigned long flags; 1252 1253 BUG_ON((sleep == NULL) || (idle == NULL)); 1254 1255 sleep_cfg = (sleep->sva_auto_pm_enable & 0xF); 1256 sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF)); 1257 sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF)); 1258 sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF)); 1259 sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF)); 1260 sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF)); 1261 1262 idle_cfg = (idle->sva_auto_pm_enable & 0xF); 1263 idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF)); 1264 idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF)); 1265 idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF)); 1266 idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF)); 1267 idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF)); 1268 1269 spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags); 1270 1271 /* 1272 * The autonomous power management configuration is done through 1273 * fields in mailbox 2, but these fields are only used as shared 1274 * variables - i.e. there is no need to send a message. 1275 */ 1276 writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP)); 1277 writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE)); 1278 1279 mb2_transfer.auto_pm_enabled = 1280 ((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) || 1281 (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) || 1282 (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) || 1283 (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON)); 1284 1285 spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags); 1286 } 1287 EXPORT_SYMBOL(prcmu_configure_auto_pm); 1288 1289 bool prcmu_is_auto_pm_enabled(void) 1290 { 1291 return mb2_transfer.auto_pm_enabled; 1292 } 1293 1294 static int request_sysclk(bool enable) 1295 { 1296 int r; 1297 unsigned long flags; 1298 1299 r = 0; 1300 1301 mutex_lock(&mb3_transfer.sysclk_lock); 1302 1303 spin_lock_irqsave(&mb3_transfer.lock, flags); 1304 1305 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3)) 1306 cpu_relax(); 1307 1308 writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT)); 1309 1310 writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3)); 1311 writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET); 1312 1313 spin_unlock_irqrestore(&mb3_transfer.lock, flags); 1314 1315 /* 1316 * The firmware only sends an ACK if we want to enable the 1317 * SysClk, and it succeeds. 1318 */ 1319 if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work, 1320 msecs_to_jiffies(20000))) { 1321 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n", 1322 __func__); 1323 r = -EIO; 1324 } 1325 1326 mutex_unlock(&mb3_transfer.sysclk_lock); 1327 1328 return r; 1329 } 1330 1331 static int request_timclk(bool enable) 1332 { 1333 u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK); 1334 1335 if (!enable) 1336 val |= PRCM_TCR_STOP_TIMERS; 1337 writel(val, PRCM_TCR); 1338 1339 return 0; 1340 } 1341 1342 static int request_clock(u8 clock, bool enable) 1343 { 1344 u32 val; 1345 unsigned long flags; 1346 1347 spin_lock_irqsave(&clk_mgt_lock, flags); 1348 1349 /* Grab the HW semaphore. */ 1350 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0) 1351 cpu_relax(); 1352 1353 val = readl(prcmu_base + clk_mgt[clock].offset); 1354 if (enable) { 1355 val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw); 1356 } else { 1357 clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK); 1358 val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK); 1359 } 1360 writel(val, prcmu_base + clk_mgt[clock].offset); 1361 1362 /* Release the HW semaphore. */ 1363 writel(0, PRCM_SEM); 1364 1365 spin_unlock_irqrestore(&clk_mgt_lock, flags); 1366 1367 return 0; 1368 } 1369 1370 static int request_sga_clock(u8 clock, bool enable) 1371 { 1372 u32 val; 1373 int ret; 1374 1375 if (enable) { 1376 val = readl(PRCM_CGATING_BYPASS); 1377 writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS); 1378 } 1379 1380 ret = request_clock(clock, enable); 1381 1382 if (!ret && !enable) { 1383 val = readl(PRCM_CGATING_BYPASS); 1384 writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS); 1385 } 1386 1387 return ret; 1388 } 1389 1390 static inline bool plldsi_locked(void) 1391 { 1392 return (readl(PRCM_PLLDSI_LOCKP) & 1393 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 | 1394 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) == 1395 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 | 1396 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3); 1397 } 1398 1399 static int request_plldsi(bool enable) 1400 { 1401 int r = 0; 1402 u32 val; 1403 1404 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP | 1405 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ? 1406 PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET)); 1407 1408 val = readl(PRCM_PLLDSI_ENABLE); 1409 if (enable) 1410 val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE; 1411 else 1412 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE; 1413 writel(val, PRCM_PLLDSI_ENABLE); 1414 1415 if (enable) { 1416 unsigned int i; 1417 bool locked = plldsi_locked(); 1418 1419 for (i = 10; !locked && (i > 0); --i) { 1420 udelay(100); 1421 locked = plldsi_locked(); 1422 } 1423 if (locked) { 1424 writel(PRCM_APE_RESETN_DSIPLL_RESETN, 1425 PRCM_APE_RESETN_SET); 1426 } else { 1427 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP | 1428 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), 1429 PRCM_MMIP_LS_CLAMP_SET); 1430 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE; 1431 writel(val, PRCM_PLLDSI_ENABLE); 1432 r = -EAGAIN; 1433 } 1434 } else { 1435 writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR); 1436 } 1437 return r; 1438 } 1439 1440 static int request_dsiclk(u8 n, bool enable) 1441 { 1442 u32 val; 1443 1444 val = readl(PRCM_DSI_PLLOUT_SEL); 1445 val &= ~dsiclk[n].divsel_mask; 1446 val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) << 1447 dsiclk[n].divsel_shift); 1448 writel(val, PRCM_DSI_PLLOUT_SEL); 1449 return 0; 1450 } 1451 1452 static int request_dsiescclk(u8 n, bool enable) 1453 { 1454 u32 val; 1455 1456 val = readl(PRCM_DSITVCLK_DIV); 1457 enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en); 1458 writel(val, PRCM_DSITVCLK_DIV); 1459 return 0; 1460 } 1461 1462 /** 1463 * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled. 1464 * @clock: The clock for which the request is made. 1465 * @enable: Whether the clock should be enabled (true) or disabled (false). 1466 * 1467 * This function should only be used by the clock implementation. 1468 * Do not use it from any other place! 1469 */ 1470 int db8500_prcmu_request_clock(u8 clock, bool enable) 1471 { 1472 if (clock == PRCMU_SGACLK) 1473 return request_sga_clock(clock, enable); 1474 else if (clock < PRCMU_NUM_REG_CLOCKS) 1475 return request_clock(clock, enable); 1476 else if (clock == PRCMU_TIMCLK) 1477 return request_timclk(enable); 1478 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK)) 1479 return request_dsiclk((clock - PRCMU_DSI0CLK), enable); 1480 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK)) 1481 return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable); 1482 else if (clock == PRCMU_PLLDSI) 1483 return request_plldsi(enable); 1484 else if (clock == PRCMU_SYSCLK) 1485 return request_sysclk(enable); 1486 else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1)) 1487 return request_pll(clock, enable); 1488 else 1489 return -EINVAL; 1490 } 1491 1492 static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate, 1493 int branch) 1494 { 1495 u64 rate; 1496 u32 val; 1497 u32 d; 1498 u32 div = 1; 1499 1500 val = readl(reg); 1501 1502 rate = src_rate; 1503 rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT); 1504 1505 d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT); 1506 if (d > 1) 1507 div *= d; 1508 1509 d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT); 1510 if (d > 1) 1511 div *= d; 1512 1513 if (val & PRCM_PLL_FREQ_SELDIV2) 1514 div *= 2; 1515 1516 if ((branch == PLL_FIX) || ((branch == PLL_DIV) && 1517 (val & PRCM_PLL_FREQ_DIV2EN) && 1518 ((reg == PRCM_PLLSOC0_FREQ) || 1519 (reg == PRCM_PLLARM_FREQ) || 1520 (reg == PRCM_PLLDDR_FREQ)))) 1521 div *= 2; 1522 1523 (void)do_div(rate, div); 1524 1525 return (unsigned long)rate; 1526 } 1527 1528 #define ROOT_CLOCK_RATE 38400000 1529 1530 static unsigned long clock_rate(u8 clock) 1531 { 1532 u32 val; 1533 u32 pllsw; 1534 unsigned long rate = ROOT_CLOCK_RATE; 1535 1536 val = readl(prcmu_base + clk_mgt[clock].offset); 1537 1538 if (val & PRCM_CLK_MGT_CLK38) { 1539 if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV)) 1540 rate /= 2; 1541 return rate; 1542 } 1543 1544 val |= clk_mgt[clock].pllsw; 1545 pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK); 1546 1547 if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0) 1548 rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch); 1549 else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1) 1550 rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch); 1551 else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR) 1552 rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch); 1553 else 1554 return 0; 1555 1556 if ((clock == PRCMU_SGACLK) && 1557 (val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) { 1558 u64 r = (rate * 10); 1559 1560 (void)do_div(r, 25); 1561 return (unsigned long)r; 1562 } 1563 val &= PRCM_CLK_MGT_CLKPLLDIV_MASK; 1564 if (val) 1565 return rate / val; 1566 else 1567 return 0; 1568 } 1569 1570 static unsigned long armss_rate(void) 1571 { 1572 u32 r; 1573 unsigned long rate; 1574 1575 r = readl(PRCM_ARM_CHGCLKREQ); 1576 1577 if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) { 1578 /* External ARMCLKFIX clock */ 1579 1580 rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX); 1581 1582 /* Check PRCM_ARM_CHGCLKREQ divider */ 1583 if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL)) 1584 rate /= 2; 1585 1586 /* Check PRCM_ARMCLKFIX_MGT divider */ 1587 r = readl(PRCM_ARMCLKFIX_MGT); 1588 r &= PRCM_CLK_MGT_CLKPLLDIV_MASK; 1589 rate /= r; 1590 1591 } else {/* ARM PLL */ 1592 rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV); 1593 } 1594 1595 return rate; 1596 } 1597 1598 static unsigned long dsiclk_rate(u8 n) 1599 { 1600 u32 divsel; 1601 u32 div = 1; 1602 1603 divsel = readl(PRCM_DSI_PLLOUT_SEL); 1604 divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift); 1605 1606 if (divsel == PRCM_DSI_PLLOUT_SEL_OFF) 1607 divsel = dsiclk[n].divsel; 1608 else 1609 dsiclk[n].divsel = divsel; 1610 1611 switch (divsel) { 1612 case PRCM_DSI_PLLOUT_SEL_PHI_4: 1613 div *= 2; 1614 case PRCM_DSI_PLLOUT_SEL_PHI_2: 1615 div *= 2; 1616 case PRCM_DSI_PLLOUT_SEL_PHI: 1617 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK), 1618 PLL_RAW) / div; 1619 default: 1620 return 0; 1621 } 1622 } 1623 1624 static unsigned long dsiescclk_rate(u8 n) 1625 { 1626 u32 div; 1627 1628 div = readl(PRCM_DSITVCLK_DIV); 1629 div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift)); 1630 return clock_rate(PRCMU_TVCLK) / max((u32)1, div); 1631 } 1632 1633 unsigned long prcmu_clock_rate(u8 clock) 1634 { 1635 if (clock < PRCMU_NUM_REG_CLOCKS) 1636 return clock_rate(clock); 1637 else if (clock == PRCMU_TIMCLK) 1638 return ROOT_CLOCK_RATE / 16; 1639 else if (clock == PRCMU_SYSCLK) 1640 return ROOT_CLOCK_RATE; 1641 else if (clock == PRCMU_PLLSOC0) 1642 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW); 1643 else if (clock == PRCMU_PLLSOC1) 1644 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW); 1645 else if (clock == PRCMU_ARMSS) 1646 return armss_rate(); 1647 else if (clock == PRCMU_PLLDDR) 1648 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW); 1649 else if (clock == PRCMU_PLLDSI) 1650 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK), 1651 PLL_RAW); 1652 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK)) 1653 return dsiclk_rate(clock - PRCMU_DSI0CLK); 1654 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK)) 1655 return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK); 1656 else 1657 return 0; 1658 } 1659 1660 static unsigned long clock_source_rate(u32 clk_mgt_val, int branch) 1661 { 1662 if (clk_mgt_val & PRCM_CLK_MGT_CLK38) 1663 return ROOT_CLOCK_RATE; 1664 clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK; 1665 if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0) 1666 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch); 1667 else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1) 1668 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch); 1669 else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR) 1670 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch); 1671 else 1672 return 0; 1673 } 1674 1675 static u32 clock_divider(unsigned long src_rate, unsigned long rate) 1676 { 1677 u32 div; 1678 1679 div = (src_rate / rate); 1680 if (div == 0) 1681 return 1; 1682 if (rate < (src_rate / div)) 1683 div++; 1684 return div; 1685 } 1686 1687 static long round_clock_rate(u8 clock, unsigned long rate) 1688 { 1689 u32 val; 1690 u32 div; 1691 unsigned long src_rate; 1692 long rounded_rate; 1693 1694 val = readl(prcmu_base + clk_mgt[clock].offset); 1695 src_rate = clock_source_rate((val | clk_mgt[clock].pllsw), 1696 clk_mgt[clock].branch); 1697 div = clock_divider(src_rate, rate); 1698 if (val & PRCM_CLK_MGT_CLK38) { 1699 if (clk_mgt[clock].clk38div) { 1700 if (div > 2) 1701 div = 2; 1702 } else { 1703 div = 1; 1704 } 1705 } else if ((clock == PRCMU_SGACLK) && (div == 3)) { 1706 u64 r = (src_rate * 10); 1707 1708 (void)do_div(r, 25); 1709 if (r <= rate) 1710 return (unsigned long)r; 1711 } 1712 rounded_rate = (src_rate / min(div, (u32)31)); 1713 1714 return rounded_rate; 1715 } 1716 1717 /* CPU FREQ table, may be changed due to if MAX_OPP is supported. */ 1718 static struct cpufreq_frequency_table db8500_cpufreq_table[] = { 1719 { .frequency = 200000, .driver_data = ARM_EXTCLK,}, 1720 { .frequency = 400000, .driver_data = ARM_50_OPP,}, 1721 { .frequency = 800000, .driver_data = ARM_100_OPP,}, 1722 { .frequency = CPUFREQ_TABLE_END,}, /* To be used for MAX_OPP. */ 1723 { .frequency = CPUFREQ_TABLE_END,}, 1724 }; 1725 1726 static long round_armss_rate(unsigned long rate) 1727 { 1728 struct cpufreq_frequency_table *pos; 1729 long freq = 0; 1730 1731 /* cpufreq table frequencies is in KHz. */ 1732 rate = rate / 1000; 1733 1734 /* Find the corresponding arm opp from the cpufreq table. */ 1735 cpufreq_for_each_entry(pos, db8500_cpufreq_table) { 1736 freq = pos->frequency; 1737 if (freq == rate) 1738 break; 1739 } 1740 1741 /* Return the last valid value, even if a match was not found. */ 1742 return freq * 1000; 1743 } 1744 1745 #define MIN_PLL_VCO_RATE 600000000ULL 1746 #define MAX_PLL_VCO_RATE 1680640000ULL 1747 1748 static long round_plldsi_rate(unsigned long rate) 1749 { 1750 long rounded_rate = 0; 1751 unsigned long src_rate; 1752 unsigned long rem; 1753 u32 r; 1754 1755 src_rate = clock_rate(PRCMU_HDMICLK); 1756 rem = rate; 1757 1758 for (r = 7; (rem > 0) && (r > 0); r--) { 1759 u64 d; 1760 1761 d = (r * rate); 1762 (void)do_div(d, src_rate); 1763 if (d < 6) 1764 d = 6; 1765 else if (d > 255) 1766 d = 255; 1767 d *= src_rate; 1768 if (((2 * d) < (r * MIN_PLL_VCO_RATE)) || 1769 ((r * MAX_PLL_VCO_RATE) < (2 * d))) 1770 continue; 1771 (void)do_div(d, r); 1772 if (rate < d) { 1773 if (rounded_rate == 0) 1774 rounded_rate = (long)d; 1775 break; 1776 } 1777 if ((rate - d) < rem) { 1778 rem = (rate - d); 1779 rounded_rate = (long)d; 1780 } 1781 } 1782 return rounded_rate; 1783 } 1784 1785 static long round_dsiclk_rate(unsigned long rate) 1786 { 1787 u32 div; 1788 unsigned long src_rate; 1789 long rounded_rate; 1790 1791 src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK), 1792 PLL_RAW); 1793 div = clock_divider(src_rate, rate); 1794 rounded_rate = (src_rate / ((div > 2) ? 4 : div)); 1795 1796 return rounded_rate; 1797 } 1798 1799 static long round_dsiescclk_rate(unsigned long rate) 1800 { 1801 u32 div; 1802 unsigned long src_rate; 1803 long rounded_rate; 1804 1805 src_rate = clock_rate(PRCMU_TVCLK); 1806 div = clock_divider(src_rate, rate); 1807 rounded_rate = (src_rate / min(div, (u32)255)); 1808 1809 return rounded_rate; 1810 } 1811 1812 long prcmu_round_clock_rate(u8 clock, unsigned long rate) 1813 { 1814 if (clock < PRCMU_NUM_REG_CLOCKS) 1815 return round_clock_rate(clock, rate); 1816 else if (clock == PRCMU_ARMSS) 1817 return round_armss_rate(rate); 1818 else if (clock == PRCMU_PLLDSI) 1819 return round_plldsi_rate(rate); 1820 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK)) 1821 return round_dsiclk_rate(rate); 1822 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK)) 1823 return round_dsiescclk_rate(rate); 1824 else 1825 return (long)prcmu_clock_rate(clock); 1826 } 1827 1828 static void set_clock_rate(u8 clock, unsigned long rate) 1829 { 1830 u32 val; 1831 u32 div; 1832 unsigned long src_rate; 1833 unsigned long flags; 1834 1835 spin_lock_irqsave(&clk_mgt_lock, flags); 1836 1837 /* Grab the HW semaphore. */ 1838 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0) 1839 cpu_relax(); 1840 1841 val = readl(prcmu_base + clk_mgt[clock].offset); 1842 src_rate = clock_source_rate((val | clk_mgt[clock].pllsw), 1843 clk_mgt[clock].branch); 1844 div = clock_divider(src_rate, rate); 1845 if (val & PRCM_CLK_MGT_CLK38) { 1846 if (clk_mgt[clock].clk38div) { 1847 if (div > 1) 1848 val |= PRCM_CLK_MGT_CLK38DIV; 1849 else 1850 val &= ~PRCM_CLK_MGT_CLK38DIV; 1851 } 1852 } else if (clock == PRCMU_SGACLK) { 1853 val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK | 1854 PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN); 1855 if (div == 3) { 1856 u64 r = (src_rate * 10); 1857 1858 (void)do_div(r, 25); 1859 if (r <= rate) { 1860 val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN; 1861 div = 0; 1862 } 1863 } 1864 val |= min(div, (u32)31); 1865 } else { 1866 val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK; 1867 val |= min(div, (u32)31); 1868 } 1869 writel(val, prcmu_base + clk_mgt[clock].offset); 1870 1871 /* Release the HW semaphore. */ 1872 writel(0, PRCM_SEM); 1873 1874 spin_unlock_irqrestore(&clk_mgt_lock, flags); 1875 } 1876 1877 static int set_armss_rate(unsigned long rate) 1878 { 1879 struct cpufreq_frequency_table *pos; 1880 1881 /* cpufreq table frequencies is in KHz. */ 1882 rate = rate / 1000; 1883 1884 /* Find the corresponding arm opp from the cpufreq table. */ 1885 cpufreq_for_each_entry(pos, db8500_cpufreq_table) 1886 if (pos->frequency == rate) 1887 break; 1888 1889 if (pos->frequency != rate) 1890 return -EINVAL; 1891 1892 /* Set the new arm opp. */ 1893 return db8500_prcmu_set_arm_opp(pos->driver_data); 1894 } 1895 1896 static int set_plldsi_rate(unsigned long rate) 1897 { 1898 unsigned long src_rate; 1899 unsigned long rem; 1900 u32 pll_freq = 0; 1901 u32 r; 1902 1903 src_rate = clock_rate(PRCMU_HDMICLK); 1904 rem = rate; 1905 1906 for (r = 7; (rem > 0) && (r > 0); r--) { 1907 u64 d; 1908 u64 hwrate; 1909 1910 d = (r * rate); 1911 (void)do_div(d, src_rate); 1912 if (d < 6) 1913 d = 6; 1914 else if (d > 255) 1915 d = 255; 1916 hwrate = (d * src_rate); 1917 if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) || 1918 ((r * MAX_PLL_VCO_RATE) < (2 * hwrate))) 1919 continue; 1920 (void)do_div(hwrate, r); 1921 if (rate < hwrate) { 1922 if (pll_freq == 0) 1923 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) | 1924 (r << PRCM_PLL_FREQ_R_SHIFT)); 1925 break; 1926 } 1927 if ((rate - hwrate) < rem) { 1928 rem = (rate - hwrate); 1929 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) | 1930 (r << PRCM_PLL_FREQ_R_SHIFT)); 1931 } 1932 } 1933 if (pll_freq == 0) 1934 return -EINVAL; 1935 1936 pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT); 1937 writel(pll_freq, PRCM_PLLDSI_FREQ); 1938 1939 return 0; 1940 } 1941 1942 static void set_dsiclk_rate(u8 n, unsigned long rate) 1943 { 1944 u32 val; 1945 u32 div; 1946 1947 div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ, 1948 clock_rate(PRCMU_HDMICLK), PLL_RAW), rate); 1949 1950 dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI : 1951 (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 : 1952 /* else */ PRCM_DSI_PLLOUT_SEL_PHI_4; 1953 1954 val = readl(PRCM_DSI_PLLOUT_SEL); 1955 val &= ~dsiclk[n].divsel_mask; 1956 val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift); 1957 writel(val, PRCM_DSI_PLLOUT_SEL); 1958 } 1959 1960 static void set_dsiescclk_rate(u8 n, unsigned long rate) 1961 { 1962 u32 val; 1963 u32 div; 1964 1965 div = clock_divider(clock_rate(PRCMU_TVCLK), rate); 1966 val = readl(PRCM_DSITVCLK_DIV); 1967 val &= ~dsiescclk[n].div_mask; 1968 val |= (min(div, (u32)255) << dsiescclk[n].div_shift); 1969 writel(val, PRCM_DSITVCLK_DIV); 1970 } 1971 1972 int prcmu_set_clock_rate(u8 clock, unsigned long rate) 1973 { 1974 if (clock < PRCMU_NUM_REG_CLOCKS) 1975 set_clock_rate(clock, rate); 1976 else if (clock == PRCMU_ARMSS) 1977 return set_armss_rate(rate); 1978 else if (clock == PRCMU_PLLDSI) 1979 return set_plldsi_rate(rate); 1980 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK)) 1981 set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate); 1982 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK)) 1983 set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate); 1984 return 0; 1985 } 1986 1987 int db8500_prcmu_config_esram0_deep_sleep(u8 state) 1988 { 1989 if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) || 1990 (state < ESRAM0_DEEP_SLEEP_STATE_OFF)) 1991 return -EINVAL; 1992 1993 mutex_lock(&mb4_transfer.lock); 1994 1995 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4)) 1996 cpu_relax(); 1997 1998 writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4)); 1999 writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON), 2000 (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE)); 2001 writeb(DDR_PWR_STATE_ON, 2002 (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE)); 2003 writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST)); 2004 2005 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET); 2006 wait_for_completion(&mb4_transfer.work); 2007 2008 mutex_unlock(&mb4_transfer.lock); 2009 2010 return 0; 2011 } 2012 2013 int db8500_prcmu_config_hotdog(u8 threshold) 2014 { 2015 mutex_lock(&mb4_transfer.lock); 2016 2017 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4)) 2018 cpu_relax(); 2019 2020 writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD)); 2021 writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4)); 2022 2023 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET); 2024 wait_for_completion(&mb4_transfer.work); 2025 2026 mutex_unlock(&mb4_transfer.lock); 2027 2028 return 0; 2029 } 2030 2031 int db8500_prcmu_config_hotmon(u8 low, u8 high) 2032 { 2033 mutex_lock(&mb4_transfer.lock); 2034 2035 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4)) 2036 cpu_relax(); 2037 2038 writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW)); 2039 writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH)); 2040 writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH), 2041 (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG)); 2042 writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4)); 2043 2044 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET); 2045 wait_for_completion(&mb4_transfer.work); 2046 2047 mutex_unlock(&mb4_transfer.lock); 2048 2049 return 0; 2050 } 2051 2052 static int config_hot_period(u16 val) 2053 { 2054 mutex_lock(&mb4_transfer.lock); 2055 2056 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4)) 2057 cpu_relax(); 2058 2059 writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD)); 2060 writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4)); 2061 2062 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET); 2063 wait_for_completion(&mb4_transfer.work); 2064 2065 mutex_unlock(&mb4_transfer.lock); 2066 2067 return 0; 2068 } 2069 2070 int db8500_prcmu_start_temp_sense(u16 cycles32k) 2071 { 2072 if (cycles32k == 0xFFFF) 2073 return -EINVAL; 2074 2075 return config_hot_period(cycles32k); 2076 } 2077 2078 int db8500_prcmu_stop_temp_sense(void) 2079 { 2080 return config_hot_period(0xFFFF); 2081 } 2082 2083 static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3) 2084 { 2085 2086 mutex_lock(&mb4_transfer.lock); 2087 2088 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4)) 2089 cpu_relax(); 2090 2091 writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0)); 2092 writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1)); 2093 writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2)); 2094 writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3)); 2095 2096 writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4)); 2097 2098 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET); 2099 wait_for_completion(&mb4_transfer.work); 2100 2101 mutex_unlock(&mb4_transfer.lock); 2102 2103 return 0; 2104 2105 } 2106 2107 int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off) 2108 { 2109 BUG_ON(num == 0 || num > 0xf); 2110 return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0, 2111 sleep_auto_off ? A9WDOG_AUTO_OFF_EN : 2112 A9WDOG_AUTO_OFF_DIS); 2113 } 2114 EXPORT_SYMBOL(db8500_prcmu_config_a9wdog); 2115 2116 int db8500_prcmu_enable_a9wdog(u8 id) 2117 { 2118 return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0); 2119 } 2120 EXPORT_SYMBOL(db8500_prcmu_enable_a9wdog); 2121 2122 int db8500_prcmu_disable_a9wdog(u8 id) 2123 { 2124 return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0); 2125 } 2126 EXPORT_SYMBOL(db8500_prcmu_disable_a9wdog); 2127 2128 int db8500_prcmu_kick_a9wdog(u8 id) 2129 { 2130 return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0); 2131 } 2132 EXPORT_SYMBOL(db8500_prcmu_kick_a9wdog); 2133 2134 /* 2135 * timeout is 28 bit, in ms. 2136 */ 2137 int db8500_prcmu_load_a9wdog(u8 id, u32 timeout) 2138 { 2139 return prcmu_a9wdog(MB4H_A9WDOG_LOAD, 2140 (id & A9WDOG_ID_MASK) | 2141 /* 2142 * Put the lowest 28 bits of timeout at 2143 * offset 4. Four first bits are used for id. 2144 */ 2145 (u8)((timeout << 4) & 0xf0), 2146 (u8)((timeout >> 4) & 0xff), 2147 (u8)((timeout >> 12) & 0xff), 2148 (u8)((timeout >> 20) & 0xff)); 2149 } 2150 EXPORT_SYMBOL(db8500_prcmu_load_a9wdog); 2151 2152 /** 2153 * prcmu_abb_read() - Read register value(s) from the ABB. 2154 * @slave: The I2C slave address. 2155 * @reg: The (start) register address. 2156 * @value: The read out value(s). 2157 * @size: The number of registers to read. 2158 * 2159 * Reads register value(s) from the ABB. 2160 * @size has to be 1 for the current firmware version. 2161 */ 2162 int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size) 2163 { 2164 int r; 2165 2166 if (size != 1) 2167 return -EINVAL; 2168 2169 mutex_lock(&mb5_transfer.lock); 2170 2171 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5)) 2172 cpu_relax(); 2173 2174 writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5)); 2175 writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP)); 2176 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS)); 2177 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG)); 2178 writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL)); 2179 2180 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET); 2181 2182 if (!wait_for_completion_timeout(&mb5_transfer.work, 2183 msecs_to_jiffies(20000))) { 2184 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n", 2185 __func__); 2186 r = -EIO; 2187 } else { 2188 r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO); 2189 } 2190 2191 if (!r) 2192 *value = mb5_transfer.ack.value; 2193 2194 mutex_unlock(&mb5_transfer.lock); 2195 2196 return r; 2197 } 2198 2199 /** 2200 * prcmu_abb_write_masked() - Write masked register value(s) to the ABB. 2201 * @slave: The I2C slave address. 2202 * @reg: The (start) register address. 2203 * @value: The value(s) to write. 2204 * @mask: The mask(s) to use. 2205 * @size: The number of registers to write. 2206 * 2207 * Writes masked register value(s) to the ABB. 2208 * For each @value, only the bits set to 1 in the corresponding @mask 2209 * will be written. The other bits are not changed. 2210 * @size has to be 1 for the current firmware version. 2211 */ 2212 int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size) 2213 { 2214 int r; 2215 2216 if (size != 1) 2217 return -EINVAL; 2218 2219 mutex_lock(&mb5_transfer.lock); 2220 2221 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5)) 2222 cpu_relax(); 2223 2224 writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5)); 2225 writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP)); 2226 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS)); 2227 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG)); 2228 writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL)); 2229 2230 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET); 2231 2232 if (!wait_for_completion_timeout(&mb5_transfer.work, 2233 msecs_to_jiffies(20000))) { 2234 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n", 2235 __func__); 2236 r = -EIO; 2237 } else { 2238 r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO); 2239 } 2240 2241 mutex_unlock(&mb5_transfer.lock); 2242 2243 return r; 2244 } 2245 2246 /** 2247 * prcmu_abb_write() - Write register value(s) to the ABB. 2248 * @slave: The I2C slave address. 2249 * @reg: The (start) register address. 2250 * @value: The value(s) to write. 2251 * @size: The number of registers to write. 2252 * 2253 * Writes register value(s) to the ABB. 2254 * @size has to be 1 for the current firmware version. 2255 */ 2256 int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size) 2257 { 2258 u8 mask = ~0; 2259 2260 return prcmu_abb_write_masked(slave, reg, value, &mask, size); 2261 } 2262 2263 /** 2264 * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem 2265 */ 2266 int prcmu_ac_wake_req(void) 2267 { 2268 u32 val; 2269 int ret = 0; 2270 2271 mutex_lock(&mb0_transfer.ac_wake_lock); 2272 2273 val = readl(PRCM_HOSTACCESS_REQ); 2274 if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ) 2275 goto unlock_and_return; 2276 2277 atomic_set(&ac_wake_req_state, 1); 2278 2279 /* 2280 * Force Modem Wake-up before hostaccess_req ping-pong. 2281 * It prevents Modem to enter in Sleep while acking the hostaccess 2282 * request. The 31us delay has been calculated by HWI. 2283 */ 2284 val |= PRCM_HOSTACCESS_REQ_WAKE_REQ; 2285 writel(val, PRCM_HOSTACCESS_REQ); 2286 2287 udelay(31); 2288 2289 val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ; 2290 writel(val, PRCM_HOSTACCESS_REQ); 2291 2292 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work, 2293 msecs_to_jiffies(5000))) { 2294 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n", 2295 __func__); 2296 ret = -EFAULT; 2297 } 2298 2299 unlock_and_return: 2300 mutex_unlock(&mb0_transfer.ac_wake_lock); 2301 return ret; 2302 } 2303 2304 /** 2305 * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem 2306 */ 2307 void prcmu_ac_sleep_req(void) 2308 { 2309 u32 val; 2310 2311 mutex_lock(&mb0_transfer.ac_wake_lock); 2312 2313 val = readl(PRCM_HOSTACCESS_REQ); 2314 if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)) 2315 goto unlock_and_return; 2316 2317 writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ), 2318 PRCM_HOSTACCESS_REQ); 2319 2320 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work, 2321 msecs_to_jiffies(5000))) { 2322 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n", 2323 __func__); 2324 } 2325 2326 atomic_set(&ac_wake_req_state, 0); 2327 2328 unlock_and_return: 2329 mutex_unlock(&mb0_transfer.ac_wake_lock); 2330 } 2331 2332 bool db8500_prcmu_is_ac_wake_requested(void) 2333 { 2334 return (atomic_read(&ac_wake_req_state) != 0); 2335 } 2336 2337 /** 2338 * db8500_prcmu_system_reset - System reset 2339 * 2340 * Saves the reset reason code and then sets the APE_SOFTRST register which 2341 * fires interrupt to fw 2342 */ 2343 void db8500_prcmu_system_reset(u16 reset_code) 2344 { 2345 writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON)); 2346 writel(1, PRCM_APE_SOFTRST); 2347 } 2348 2349 /** 2350 * db8500_prcmu_get_reset_code - Retrieve SW reset reason code 2351 * 2352 * Retrieves the reset reason code stored by prcmu_system_reset() before 2353 * last restart. 2354 */ 2355 u16 db8500_prcmu_get_reset_code(void) 2356 { 2357 return readw(tcdm_base + PRCM_SW_RST_REASON); 2358 } 2359 2360 /** 2361 * db8500_prcmu_reset_modem - ask the PRCMU to reset modem 2362 */ 2363 void db8500_prcmu_modem_reset(void) 2364 { 2365 mutex_lock(&mb1_transfer.lock); 2366 2367 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1)) 2368 cpu_relax(); 2369 2370 writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1)); 2371 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET); 2372 wait_for_completion(&mb1_transfer.work); 2373 2374 /* 2375 * No need to check return from PRCMU as modem should go in reset state 2376 * This state is already managed by upper layer 2377 */ 2378 2379 mutex_unlock(&mb1_transfer.lock); 2380 } 2381 2382 static void ack_dbb_wakeup(void) 2383 { 2384 unsigned long flags; 2385 2386 spin_lock_irqsave(&mb0_transfer.lock, flags); 2387 2388 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0)) 2389 cpu_relax(); 2390 2391 writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0)); 2392 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET); 2393 2394 spin_unlock_irqrestore(&mb0_transfer.lock, flags); 2395 } 2396 2397 static inline void print_unknown_header_warning(u8 n, u8 header) 2398 { 2399 pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n", 2400 header, n); 2401 } 2402 2403 static bool read_mailbox_0(void) 2404 { 2405 bool r; 2406 u32 ev; 2407 unsigned int n; 2408 u8 header; 2409 2410 header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0); 2411 switch (header) { 2412 case MB0H_WAKEUP_EXE: 2413 case MB0H_WAKEUP_SLEEP: 2414 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1) 2415 ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500); 2416 else 2417 ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500); 2418 2419 if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK)) 2420 complete(&mb0_transfer.ac_wake_work); 2421 if (ev & WAKEUP_BIT_SYSCLK_OK) 2422 complete(&mb3_transfer.sysclk_work); 2423 2424 ev &= mb0_transfer.req.dbb_irqs; 2425 2426 for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) { 2427 if (ev & prcmu_irq_bit[n]) 2428 generic_handle_irq(irq_find_mapping(db8500_irq_domain, n)); 2429 } 2430 r = true; 2431 break; 2432 default: 2433 print_unknown_header_warning(0, header); 2434 r = false; 2435 break; 2436 } 2437 writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR); 2438 return r; 2439 } 2440 2441 static bool read_mailbox_1(void) 2442 { 2443 mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1); 2444 mb1_transfer.ack.arm_opp = readb(tcdm_base + 2445 PRCM_ACK_MB1_CURRENT_ARM_OPP); 2446 mb1_transfer.ack.ape_opp = readb(tcdm_base + 2447 PRCM_ACK_MB1_CURRENT_APE_OPP); 2448 mb1_transfer.ack.ape_voltage_status = readb(tcdm_base + 2449 PRCM_ACK_MB1_APE_VOLTAGE_STATUS); 2450 writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR); 2451 complete(&mb1_transfer.work); 2452 return false; 2453 } 2454 2455 static bool read_mailbox_2(void) 2456 { 2457 mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS); 2458 writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR); 2459 complete(&mb2_transfer.work); 2460 return false; 2461 } 2462 2463 static bool read_mailbox_3(void) 2464 { 2465 writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR); 2466 return false; 2467 } 2468 2469 static bool read_mailbox_4(void) 2470 { 2471 u8 header; 2472 bool do_complete = true; 2473 2474 header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4); 2475 switch (header) { 2476 case MB4H_MEM_ST: 2477 case MB4H_HOTDOG: 2478 case MB4H_HOTMON: 2479 case MB4H_HOT_PERIOD: 2480 case MB4H_A9WDOG_CONF: 2481 case MB4H_A9WDOG_EN: 2482 case MB4H_A9WDOG_DIS: 2483 case MB4H_A9WDOG_LOAD: 2484 case MB4H_A9WDOG_KICK: 2485 break; 2486 default: 2487 print_unknown_header_warning(4, header); 2488 do_complete = false; 2489 break; 2490 } 2491 2492 writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR); 2493 2494 if (do_complete) 2495 complete(&mb4_transfer.work); 2496 2497 return false; 2498 } 2499 2500 static bool read_mailbox_5(void) 2501 { 2502 mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS); 2503 mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL); 2504 writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR); 2505 complete(&mb5_transfer.work); 2506 return false; 2507 } 2508 2509 static bool read_mailbox_6(void) 2510 { 2511 writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR); 2512 return false; 2513 } 2514 2515 static bool read_mailbox_7(void) 2516 { 2517 writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR); 2518 return false; 2519 } 2520 2521 static bool (* const read_mailbox[NUM_MB])(void) = { 2522 read_mailbox_0, 2523 read_mailbox_1, 2524 read_mailbox_2, 2525 read_mailbox_3, 2526 read_mailbox_4, 2527 read_mailbox_5, 2528 read_mailbox_6, 2529 read_mailbox_7 2530 }; 2531 2532 static irqreturn_t prcmu_irq_handler(int irq, void *data) 2533 { 2534 u32 bits; 2535 u8 n; 2536 irqreturn_t r; 2537 2538 bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS); 2539 if (unlikely(!bits)) 2540 return IRQ_NONE; 2541 2542 r = IRQ_HANDLED; 2543 for (n = 0; bits; n++) { 2544 if (bits & MBOX_BIT(n)) { 2545 bits -= MBOX_BIT(n); 2546 if (read_mailbox[n]()) 2547 r = IRQ_WAKE_THREAD; 2548 } 2549 } 2550 return r; 2551 } 2552 2553 static irqreturn_t prcmu_irq_thread_fn(int irq, void *data) 2554 { 2555 ack_dbb_wakeup(); 2556 return IRQ_HANDLED; 2557 } 2558 2559 static void prcmu_mask_work(struct work_struct *work) 2560 { 2561 unsigned long flags; 2562 2563 spin_lock_irqsave(&mb0_transfer.lock, flags); 2564 2565 config_wakeups(); 2566 2567 spin_unlock_irqrestore(&mb0_transfer.lock, flags); 2568 } 2569 2570 static void prcmu_irq_mask(struct irq_data *d) 2571 { 2572 unsigned long flags; 2573 2574 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags); 2575 2576 mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq]; 2577 2578 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags); 2579 2580 if (d->irq != IRQ_PRCMU_CA_SLEEP) 2581 schedule_work(&mb0_transfer.mask_work); 2582 } 2583 2584 static void prcmu_irq_unmask(struct irq_data *d) 2585 { 2586 unsigned long flags; 2587 2588 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags); 2589 2590 mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq]; 2591 2592 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags); 2593 2594 if (d->irq != IRQ_PRCMU_CA_SLEEP) 2595 schedule_work(&mb0_transfer.mask_work); 2596 } 2597 2598 static void noop(struct irq_data *d) 2599 { 2600 } 2601 2602 static struct irq_chip prcmu_irq_chip = { 2603 .name = "prcmu", 2604 .irq_disable = prcmu_irq_mask, 2605 .irq_ack = noop, 2606 .irq_mask = prcmu_irq_mask, 2607 .irq_unmask = prcmu_irq_unmask, 2608 }; 2609 2610 static __init char *fw_project_name(u32 project) 2611 { 2612 switch (project) { 2613 case PRCMU_FW_PROJECT_U8500: 2614 return "U8500"; 2615 case PRCMU_FW_PROJECT_U8400: 2616 return "U8400"; 2617 case PRCMU_FW_PROJECT_U9500: 2618 return "U9500"; 2619 case PRCMU_FW_PROJECT_U8500_MBB: 2620 return "U8500 MBB"; 2621 case PRCMU_FW_PROJECT_U8500_C1: 2622 return "U8500 C1"; 2623 case PRCMU_FW_PROJECT_U8500_C2: 2624 return "U8500 C2"; 2625 case PRCMU_FW_PROJECT_U8500_C3: 2626 return "U8500 C3"; 2627 case PRCMU_FW_PROJECT_U8500_C4: 2628 return "U8500 C4"; 2629 case PRCMU_FW_PROJECT_U9500_MBL: 2630 return "U9500 MBL"; 2631 case PRCMU_FW_PROJECT_U8500_MBL: 2632 return "U8500 MBL"; 2633 case PRCMU_FW_PROJECT_U8500_MBL2: 2634 return "U8500 MBL2"; 2635 case PRCMU_FW_PROJECT_U8520: 2636 return "U8520 MBL"; 2637 case PRCMU_FW_PROJECT_U8420: 2638 return "U8420"; 2639 case PRCMU_FW_PROJECT_U9540: 2640 return "U9540"; 2641 case PRCMU_FW_PROJECT_A9420: 2642 return "A9420"; 2643 case PRCMU_FW_PROJECT_L8540: 2644 return "L8540"; 2645 case PRCMU_FW_PROJECT_L8580: 2646 return "L8580"; 2647 default: 2648 return "Unknown"; 2649 } 2650 } 2651 2652 static int db8500_irq_map(struct irq_domain *d, unsigned int virq, 2653 irq_hw_number_t hwirq) 2654 { 2655 irq_set_chip_and_handler(virq, &prcmu_irq_chip, 2656 handle_simple_irq); 2657 2658 return 0; 2659 } 2660 2661 static const struct irq_domain_ops db8500_irq_ops = { 2662 .map = db8500_irq_map, 2663 .xlate = irq_domain_xlate_twocell, 2664 }; 2665 2666 static int db8500_irq_init(struct device_node *np) 2667 { 2668 int i; 2669 2670 db8500_irq_domain = irq_domain_add_simple( 2671 np, NUM_PRCMU_WAKEUPS, 0, 2672 &db8500_irq_ops, NULL); 2673 2674 if (!db8500_irq_domain) { 2675 pr_err("Failed to create irqdomain\n"); 2676 return -ENOSYS; 2677 } 2678 2679 /* All wakeups will be used, so create mappings for all */ 2680 for (i = 0; i < NUM_PRCMU_WAKEUPS; i++) 2681 irq_create_mapping(db8500_irq_domain, i); 2682 2683 return 0; 2684 } 2685 2686 static void dbx500_fw_version_init(struct platform_device *pdev, 2687 u32 version_offset) 2688 { 2689 struct resource *res; 2690 void __iomem *tcpm_base; 2691 u32 version; 2692 2693 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, 2694 "prcmu-tcpm"); 2695 if (!res) { 2696 dev_err(&pdev->dev, 2697 "Error: no prcmu tcpm memory region provided\n"); 2698 return; 2699 } 2700 tcpm_base = ioremap(res->start, resource_size(res)); 2701 if (!tcpm_base) { 2702 dev_err(&pdev->dev, "no prcmu tcpm mem region provided\n"); 2703 return; 2704 } 2705 2706 version = readl(tcpm_base + version_offset); 2707 fw_info.version.project = (version & 0xFF); 2708 fw_info.version.api_version = (version >> 8) & 0xFF; 2709 fw_info.version.func_version = (version >> 16) & 0xFF; 2710 fw_info.version.errata = (version >> 24) & 0xFF; 2711 strncpy(fw_info.version.project_name, 2712 fw_project_name(fw_info.version.project), 2713 PRCMU_FW_PROJECT_NAME_LEN); 2714 fw_info.valid = true; 2715 pr_info("PRCMU firmware: %s(%d), version %d.%d.%d\n", 2716 fw_info.version.project_name, 2717 fw_info.version.project, 2718 fw_info.version.api_version, 2719 fw_info.version.func_version, 2720 fw_info.version.errata); 2721 iounmap(tcpm_base); 2722 } 2723 2724 void __init db8500_prcmu_early_init(u32 phy_base, u32 size) 2725 { 2726 /* 2727 * This is a temporary remap to bring up the clocks. It is 2728 * subsequently replaces with a real remap. After the merge of 2729 * the mailbox subsystem all of this early code goes away, and the 2730 * clock driver can probe independently. An early initcall will 2731 * still be needed, but it can be diverted into drivers/clk/ux500. 2732 */ 2733 prcmu_base = ioremap(phy_base, size); 2734 if (!prcmu_base) 2735 pr_err("%s: ioremap() of prcmu registers failed!\n", __func__); 2736 2737 spin_lock_init(&mb0_transfer.lock); 2738 spin_lock_init(&mb0_transfer.dbb_irqs_lock); 2739 mutex_init(&mb0_transfer.ac_wake_lock); 2740 init_completion(&mb0_transfer.ac_wake_work); 2741 mutex_init(&mb1_transfer.lock); 2742 init_completion(&mb1_transfer.work); 2743 mb1_transfer.ape_opp = APE_NO_CHANGE; 2744 mutex_init(&mb2_transfer.lock); 2745 init_completion(&mb2_transfer.work); 2746 spin_lock_init(&mb2_transfer.auto_pm_lock); 2747 spin_lock_init(&mb3_transfer.lock); 2748 mutex_init(&mb3_transfer.sysclk_lock); 2749 init_completion(&mb3_transfer.sysclk_work); 2750 mutex_init(&mb4_transfer.lock); 2751 init_completion(&mb4_transfer.work); 2752 mutex_init(&mb5_transfer.lock); 2753 init_completion(&mb5_transfer.work); 2754 2755 INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work); 2756 } 2757 2758 static void __init init_prcm_registers(void) 2759 { 2760 u32 val; 2761 2762 val = readl(PRCM_A9PL_FORCE_CLKEN); 2763 val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN | 2764 PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN); 2765 writel(val, (PRCM_A9PL_FORCE_CLKEN)); 2766 } 2767 2768 /* 2769 * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC 2770 */ 2771 static struct regulator_consumer_supply db8500_vape_consumers[] = { 2772 REGULATOR_SUPPLY("v-ape", NULL), 2773 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"), 2774 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"), 2775 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"), 2776 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"), 2777 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"), 2778 /* "v-mmc" changed to "vcore" in the mainline kernel */ 2779 REGULATOR_SUPPLY("vcore", "sdi0"), 2780 REGULATOR_SUPPLY("vcore", "sdi1"), 2781 REGULATOR_SUPPLY("vcore", "sdi2"), 2782 REGULATOR_SUPPLY("vcore", "sdi3"), 2783 REGULATOR_SUPPLY("vcore", "sdi4"), 2784 REGULATOR_SUPPLY("v-dma", "dma40.0"), 2785 REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"), 2786 /* "v-uart" changed to "vcore" in the mainline kernel */ 2787 REGULATOR_SUPPLY("vcore", "uart0"), 2788 REGULATOR_SUPPLY("vcore", "uart1"), 2789 REGULATOR_SUPPLY("vcore", "uart2"), 2790 REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"), 2791 REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"), 2792 REGULATOR_SUPPLY("vddvario", "smsc911x.0"), 2793 }; 2794 2795 static struct regulator_consumer_supply db8500_vsmps2_consumers[] = { 2796 REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"), 2797 /* AV8100 regulator */ 2798 REGULATOR_SUPPLY("hdmi_1v8", "0-0070"), 2799 }; 2800 2801 static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = { 2802 REGULATOR_SUPPLY("vsupply", "b2r2_bus"), 2803 REGULATOR_SUPPLY("vsupply", "mcde"), 2804 }; 2805 2806 /* SVA MMDSP regulator switch */ 2807 static struct regulator_consumer_supply db8500_svammdsp_consumers[] = { 2808 REGULATOR_SUPPLY("sva-mmdsp", "cm_control"), 2809 }; 2810 2811 /* SVA pipe regulator switch */ 2812 static struct regulator_consumer_supply db8500_svapipe_consumers[] = { 2813 REGULATOR_SUPPLY("sva-pipe", "cm_control"), 2814 }; 2815 2816 /* SIA MMDSP regulator switch */ 2817 static struct regulator_consumer_supply db8500_siammdsp_consumers[] = { 2818 REGULATOR_SUPPLY("sia-mmdsp", "cm_control"), 2819 }; 2820 2821 /* SIA pipe regulator switch */ 2822 static struct regulator_consumer_supply db8500_siapipe_consumers[] = { 2823 REGULATOR_SUPPLY("sia-pipe", "cm_control"), 2824 }; 2825 2826 static struct regulator_consumer_supply db8500_sga_consumers[] = { 2827 REGULATOR_SUPPLY("v-mali", NULL), 2828 }; 2829 2830 /* ESRAM1 and 2 regulator switch */ 2831 static struct regulator_consumer_supply db8500_esram12_consumers[] = { 2832 REGULATOR_SUPPLY("esram12", "cm_control"), 2833 }; 2834 2835 /* ESRAM3 and 4 regulator switch */ 2836 static struct regulator_consumer_supply db8500_esram34_consumers[] = { 2837 REGULATOR_SUPPLY("v-esram34", "mcde"), 2838 REGULATOR_SUPPLY("esram34", "cm_control"), 2839 REGULATOR_SUPPLY("lcla_esram", "dma40.0"), 2840 }; 2841 2842 static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = { 2843 [DB8500_REGULATOR_VAPE] = { 2844 .constraints = { 2845 .name = "db8500-vape", 2846 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2847 .always_on = true, 2848 }, 2849 .consumer_supplies = db8500_vape_consumers, 2850 .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers), 2851 }, 2852 [DB8500_REGULATOR_VARM] = { 2853 .constraints = { 2854 .name = "db8500-varm", 2855 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2856 }, 2857 }, 2858 [DB8500_REGULATOR_VMODEM] = { 2859 .constraints = { 2860 .name = "db8500-vmodem", 2861 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2862 }, 2863 }, 2864 [DB8500_REGULATOR_VPLL] = { 2865 .constraints = { 2866 .name = "db8500-vpll", 2867 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2868 }, 2869 }, 2870 [DB8500_REGULATOR_VSMPS1] = { 2871 .constraints = { 2872 .name = "db8500-vsmps1", 2873 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2874 }, 2875 }, 2876 [DB8500_REGULATOR_VSMPS2] = { 2877 .constraints = { 2878 .name = "db8500-vsmps2", 2879 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2880 }, 2881 .consumer_supplies = db8500_vsmps2_consumers, 2882 .num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers), 2883 }, 2884 [DB8500_REGULATOR_VSMPS3] = { 2885 .constraints = { 2886 .name = "db8500-vsmps3", 2887 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2888 }, 2889 }, 2890 [DB8500_REGULATOR_VRF1] = { 2891 .constraints = { 2892 .name = "db8500-vrf1", 2893 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2894 }, 2895 }, 2896 [DB8500_REGULATOR_SWITCH_SVAMMDSP] = { 2897 /* dependency to u8500-vape is handled outside regulator framework */ 2898 .constraints = { 2899 .name = "db8500-sva-mmdsp", 2900 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2901 }, 2902 .consumer_supplies = db8500_svammdsp_consumers, 2903 .num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers), 2904 }, 2905 [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = { 2906 .constraints = { 2907 /* "ret" means "retention" */ 2908 .name = "db8500-sva-mmdsp-ret", 2909 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2910 }, 2911 }, 2912 [DB8500_REGULATOR_SWITCH_SVAPIPE] = { 2913 /* dependency to u8500-vape is handled outside regulator framework */ 2914 .constraints = { 2915 .name = "db8500-sva-pipe", 2916 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2917 }, 2918 .consumer_supplies = db8500_svapipe_consumers, 2919 .num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers), 2920 }, 2921 [DB8500_REGULATOR_SWITCH_SIAMMDSP] = { 2922 /* dependency to u8500-vape is handled outside regulator framework */ 2923 .constraints = { 2924 .name = "db8500-sia-mmdsp", 2925 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2926 }, 2927 .consumer_supplies = db8500_siammdsp_consumers, 2928 .num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers), 2929 }, 2930 [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = { 2931 .constraints = { 2932 .name = "db8500-sia-mmdsp-ret", 2933 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2934 }, 2935 }, 2936 [DB8500_REGULATOR_SWITCH_SIAPIPE] = { 2937 /* dependency to u8500-vape is handled outside regulator framework */ 2938 .constraints = { 2939 .name = "db8500-sia-pipe", 2940 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2941 }, 2942 .consumer_supplies = db8500_siapipe_consumers, 2943 .num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers), 2944 }, 2945 [DB8500_REGULATOR_SWITCH_SGA] = { 2946 .supply_regulator = "db8500-vape", 2947 .constraints = { 2948 .name = "db8500-sga", 2949 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2950 }, 2951 .consumer_supplies = db8500_sga_consumers, 2952 .num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers), 2953 2954 }, 2955 [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = { 2956 .supply_regulator = "db8500-vape", 2957 .constraints = { 2958 .name = "db8500-b2r2-mcde", 2959 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2960 }, 2961 .consumer_supplies = db8500_b2r2_mcde_consumers, 2962 .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers), 2963 }, 2964 [DB8500_REGULATOR_SWITCH_ESRAM12] = { 2965 /* 2966 * esram12 is set in retention and supplied by Vsafe when Vape is off, 2967 * no need to hold Vape 2968 */ 2969 .constraints = { 2970 .name = "db8500-esram12", 2971 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2972 }, 2973 .consumer_supplies = db8500_esram12_consumers, 2974 .num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers), 2975 }, 2976 [DB8500_REGULATOR_SWITCH_ESRAM12RET] = { 2977 .constraints = { 2978 .name = "db8500-esram12-ret", 2979 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2980 }, 2981 }, 2982 [DB8500_REGULATOR_SWITCH_ESRAM34] = { 2983 /* 2984 * esram34 is set in retention and supplied by Vsafe when Vape is off, 2985 * no need to hold Vape 2986 */ 2987 .constraints = { 2988 .name = "db8500-esram34", 2989 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2990 }, 2991 .consumer_supplies = db8500_esram34_consumers, 2992 .num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers), 2993 }, 2994 [DB8500_REGULATOR_SWITCH_ESRAM34RET] = { 2995 .constraints = { 2996 .name = "db8500-esram34-ret", 2997 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2998 }, 2999 }, 3000 }; 3001 3002 static struct ux500_wdt_data db8500_wdt_pdata = { 3003 .timeout = 600, /* 10 minutes */ 3004 .has_28_bits_resolution = true, 3005 }; 3006 /* 3007 * Thermal Sensor 3008 */ 3009 3010 static struct resource db8500_thsens_resources[] = { 3011 { 3012 .name = "IRQ_HOTMON_LOW", 3013 .start = IRQ_PRCMU_HOTMON_LOW, 3014 .end = IRQ_PRCMU_HOTMON_LOW, 3015 .flags = IORESOURCE_IRQ, 3016 }, 3017 { 3018 .name = "IRQ_HOTMON_HIGH", 3019 .start = IRQ_PRCMU_HOTMON_HIGH, 3020 .end = IRQ_PRCMU_HOTMON_HIGH, 3021 .flags = IORESOURCE_IRQ, 3022 }, 3023 }; 3024 3025 static struct db8500_thsens_platform_data db8500_thsens_data = { 3026 .trip_points[0] = { 3027 .temp = 70000, 3028 .type = THERMAL_TRIP_ACTIVE, 3029 .cdev_name = { 3030 [0] = "thermal-cpufreq-0", 3031 }, 3032 }, 3033 .trip_points[1] = { 3034 .temp = 75000, 3035 .type = THERMAL_TRIP_ACTIVE, 3036 .cdev_name = { 3037 [0] = "thermal-cpufreq-0", 3038 }, 3039 }, 3040 .trip_points[2] = { 3041 .temp = 80000, 3042 .type = THERMAL_TRIP_ACTIVE, 3043 .cdev_name = { 3044 [0] = "thermal-cpufreq-0", 3045 }, 3046 }, 3047 .trip_points[3] = { 3048 .temp = 85000, 3049 .type = THERMAL_TRIP_CRITICAL, 3050 }, 3051 .num_trips = 4, 3052 }; 3053 3054 static const struct mfd_cell common_prcmu_devs[] = { 3055 { 3056 .name = "ux500_wdt", 3057 .platform_data = &db8500_wdt_pdata, 3058 .pdata_size = sizeof(db8500_wdt_pdata), 3059 .id = -1, 3060 }, 3061 }; 3062 3063 static const struct mfd_cell db8500_prcmu_devs[] = { 3064 { 3065 .name = "db8500-prcmu-regulators", 3066 .of_compatible = "stericsson,db8500-prcmu-regulator", 3067 .platform_data = &db8500_regulators, 3068 .pdata_size = sizeof(db8500_regulators), 3069 }, 3070 { 3071 .name = "cpufreq-ux500", 3072 .of_compatible = "stericsson,cpufreq-ux500", 3073 .platform_data = &db8500_cpufreq_table, 3074 .pdata_size = sizeof(db8500_cpufreq_table), 3075 }, 3076 { 3077 .name = "cpuidle-dbx500", 3078 .of_compatible = "stericsson,cpuidle-dbx500", 3079 }, 3080 { 3081 .name = "db8500-thermal", 3082 .num_resources = ARRAY_SIZE(db8500_thsens_resources), 3083 .resources = db8500_thsens_resources, 3084 .platform_data = &db8500_thsens_data, 3085 .pdata_size = sizeof(db8500_thsens_data), 3086 }, 3087 }; 3088 3089 static void db8500_prcmu_update_cpufreq(void) 3090 { 3091 if (prcmu_has_arm_maxopp()) { 3092 db8500_cpufreq_table[3].frequency = 1000000; 3093 db8500_cpufreq_table[3].driver_data = ARM_MAX_OPP; 3094 } 3095 } 3096 3097 static int db8500_prcmu_register_ab8500(struct device *parent, 3098 struct ab8500_platform_data *pdata) 3099 { 3100 struct device_node *np; 3101 struct resource ab8500_resource; 3102 const struct mfd_cell ab8500_cell = { 3103 .name = "ab8500-core", 3104 .of_compatible = "stericsson,ab8500", 3105 .id = AB8500_VERSION_AB8500, 3106 .platform_data = pdata, 3107 .pdata_size = sizeof(struct ab8500_platform_data), 3108 .resources = &ab8500_resource, 3109 .num_resources = 1, 3110 }; 3111 3112 if (!parent->of_node) 3113 return -ENODEV; 3114 3115 /* Look up the device node, sneak the IRQ out of it */ 3116 for_each_child_of_node(parent->of_node, np) { 3117 if (of_device_is_compatible(np, ab8500_cell.of_compatible)) 3118 break; 3119 } 3120 if (!np) { 3121 dev_info(parent, "could not find AB8500 node in the device tree\n"); 3122 return -ENODEV; 3123 } 3124 of_irq_to_resource_table(np, &ab8500_resource, 1); 3125 3126 return mfd_add_devices(parent, 0, &ab8500_cell, 1, NULL, 0, NULL); 3127 } 3128 3129 /** 3130 * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic 3131 * 3132 */ 3133 static int db8500_prcmu_probe(struct platform_device *pdev) 3134 { 3135 struct device_node *np = pdev->dev.of_node; 3136 struct prcmu_pdata *pdata = dev_get_platdata(&pdev->dev); 3137 int irq = 0, err = 0; 3138 struct resource *res; 3139 3140 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu"); 3141 if (!res) { 3142 dev_err(&pdev->dev, "no prcmu memory region provided\n"); 3143 return -EINVAL; 3144 } 3145 prcmu_base = devm_ioremap(&pdev->dev, res->start, resource_size(res)); 3146 if (!prcmu_base) { 3147 dev_err(&pdev->dev, 3148 "failed to ioremap prcmu register memory\n"); 3149 return -ENOMEM; 3150 } 3151 init_prcm_registers(); 3152 dbx500_fw_version_init(pdev, pdata->version_offset); 3153 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu-tcdm"); 3154 if (!res) { 3155 dev_err(&pdev->dev, "no prcmu tcdm region provided\n"); 3156 return -EINVAL; 3157 } 3158 tcdm_base = devm_ioremap(&pdev->dev, res->start, 3159 resource_size(res)); 3160 if (!tcdm_base) { 3161 dev_err(&pdev->dev, 3162 "failed to ioremap prcmu-tcdm register memory\n"); 3163 return -ENOMEM; 3164 } 3165 3166 /* Clean up the mailbox interrupts after pre-kernel code. */ 3167 writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR); 3168 3169 irq = platform_get_irq(pdev, 0); 3170 if (irq <= 0) { 3171 dev_err(&pdev->dev, "no prcmu irq provided\n"); 3172 return irq; 3173 } 3174 3175 err = request_threaded_irq(irq, prcmu_irq_handler, 3176 prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL); 3177 if (err < 0) { 3178 pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n"); 3179 return err; 3180 } 3181 3182 db8500_irq_init(np); 3183 3184 prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET); 3185 3186 db8500_prcmu_update_cpufreq(); 3187 3188 err = mfd_add_devices(&pdev->dev, 0, common_prcmu_devs, 3189 ARRAY_SIZE(common_prcmu_devs), NULL, 0, db8500_irq_domain); 3190 if (err) { 3191 pr_err("prcmu: Failed to add subdevices\n"); 3192 return err; 3193 } 3194 3195 /* TODO: Remove restriction when clk definitions are available. */ 3196 if (!of_machine_is_compatible("st-ericsson,u8540")) { 3197 err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs, 3198 ARRAY_SIZE(db8500_prcmu_devs), NULL, 0, 3199 db8500_irq_domain); 3200 if (err) { 3201 mfd_remove_devices(&pdev->dev); 3202 pr_err("prcmu: Failed to add subdevices\n"); 3203 return err; 3204 } 3205 } 3206 3207 err = db8500_prcmu_register_ab8500(&pdev->dev, pdata->ab_platdata); 3208 if (err) { 3209 mfd_remove_devices(&pdev->dev); 3210 pr_err("prcmu: Failed to add ab8500 subdevice\n"); 3211 return err; 3212 } 3213 3214 pr_info("DB8500 PRCMU initialized\n"); 3215 return err; 3216 } 3217 static const struct of_device_id db8500_prcmu_match[] = { 3218 { .compatible = "stericsson,db8500-prcmu"}, 3219 { }, 3220 }; 3221 3222 static struct platform_driver db8500_prcmu_driver = { 3223 .driver = { 3224 .name = "db8500-prcmu", 3225 .of_match_table = db8500_prcmu_match, 3226 }, 3227 .probe = db8500_prcmu_probe, 3228 }; 3229 3230 static int __init db8500_prcmu_init(void) 3231 { 3232 return platform_driver_register(&db8500_prcmu_driver); 3233 } 3234 3235 core_initcall(db8500_prcmu_init); 3236 3237 MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>"); 3238 MODULE_DESCRIPTION("DB8500 PRCM Unit driver"); 3239 MODULE_LICENSE("GPL v2"); 3240