xref: /openbmc/linux/drivers/mfd/db8500-prcmu.c (revision d6e3002e)
1 /*
2  * Copyright (C) STMicroelectronics 2009
3  * Copyright (C) ST-Ericsson SA 2010
4  *
5  * License Terms: GNU General Public License v2
6  * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
7  * Author: Sundar Iyer <sundar.iyer@stericsson.com>
8  * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
9  *
10  * U8500 PRCM Unit interface driver
11  *
12  */
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/delay.h>
16 #include <linux/errno.h>
17 #include <linux/err.h>
18 #include <linux/spinlock.h>
19 #include <linux/io.h>
20 #include <linux/slab.h>
21 #include <linux/mutex.h>
22 #include <linux/completion.h>
23 #include <linux/irq.h>
24 #include <linux/jiffies.h>
25 #include <linux/bitops.h>
26 #include <linux/fs.h>
27 #include <linux/platform_device.h>
28 #include <linux/uaccess.h>
29 #include <linux/mfd/core.h>
30 #include <linux/mfd/dbx500-prcmu.h>
31 #include <linux/regulator/db8500-prcmu.h>
32 #include <linux/regulator/machine.h>
33 #include <mach/hardware.h>
34 #include <mach/irqs.h>
35 #include <mach/db8500-regs.h>
36 #include <mach/id.h>
37 #include "dbx500-prcmu-regs.h"
38 
39 /* Offset for the firmware version within the TCPM */
40 #define PRCMU_FW_VERSION_OFFSET 0xA4
41 
42 /* PRCMU project numbers, defined by PRCMU FW */
43 #define PRCMU_PROJECT_ID_8500V1_0 1
44 #define PRCMU_PROJECT_ID_8500V2_0 2
45 #define PRCMU_PROJECT_ID_8400V2_0 3
46 
47 /* Index of different voltages to be used when accessing AVSData */
48 #define PRCM_AVS_BASE		0x2FC
49 #define PRCM_AVS_VBB_RET	(PRCM_AVS_BASE + 0x0)
50 #define PRCM_AVS_VBB_MAX_OPP	(PRCM_AVS_BASE + 0x1)
51 #define PRCM_AVS_VBB_100_OPP	(PRCM_AVS_BASE + 0x2)
52 #define PRCM_AVS_VBB_50_OPP	(PRCM_AVS_BASE + 0x3)
53 #define PRCM_AVS_VARM_MAX_OPP	(PRCM_AVS_BASE + 0x4)
54 #define PRCM_AVS_VARM_100_OPP	(PRCM_AVS_BASE + 0x5)
55 #define PRCM_AVS_VARM_50_OPP	(PRCM_AVS_BASE + 0x6)
56 #define PRCM_AVS_VARM_RET	(PRCM_AVS_BASE + 0x7)
57 #define PRCM_AVS_VAPE_100_OPP	(PRCM_AVS_BASE + 0x8)
58 #define PRCM_AVS_VAPE_50_OPP	(PRCM_AVS_BASE + 0x9)
59 #define PRCM_AVS_VMOD_100_OPP	(PRCM_AVS_BASE + 0xA)
60 #define PRCM_AVS_VMOD_50_OPP	(PRCM_AVS_BASE + 0xB)
61 #define PRCM_AVS_VSAFE		(PRCM_AVS_BASE + 0xC)
62 
63 #define PRCM_AVS_VOLTAGE		0
64 #define PRCM_AVS_VOLTAGE_MASK		0x3f
65 #define PRCM_AVS_ISSLOWSTARTUP		6
66 #define PRCM_AVS_ISSLOWSTARTUP_MASK	(1 << PRCM_AVS_ISSLOWSTARTUP)
67 #define PRCM_AVS_ISMODEENABLE		7
68 #define PRCM_AVS_ISMODEENABLE_MASK	(1 << PRCM_AVS_ISMODEENABLE)
69 
70 #define PRCM_BOOT_STATUS	0xFFF
71 #define PRCM_ROMCODE_A2P	0xFFE
72 #define PRCM_ROMCODE_P2A	0xFFD
73 #define PRCM_XP70_CUR_PWR_STATE 0xFFC      /* 4 BYTES */
74 
75 #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
76 
77 #define _PRCM_MBOX_HEADER		0xFE8 /* 16 bytes */
78 #define PRCM_MBOX_HEADER_REQ_MB0	(_PRCM_MBOX_HEADER + 0x0)
79 #define PRCM_MBOX_HEADER_REQ_MB1	(_PRCM_MBOX_HEADER + 0x1)
80 #define PRCM_MBOX_HEADER_REQ_MB2	(_PRCM_MBOX_HEADER + 0x2)
81 #define PRCM_MBOX_HEADER_REQ_MB3	(_PRCM_MBOX_HEADER + 0x3)
82 #define PRCM_MBOX_HEADER_REQ_MB4	(_PRCM_MBOX_HEADER + 0x4)
83 #define PRCM_MBOX_HEADER_REQ_MB5	(_PRCM_MBOX_HEADER + 0x5)
84 #define PRCM_MBOX_HEADER_ACK_MB0	(_PRCM_MBOX_HEADER + 0x8)
85 
86 /* Req Mailboxes */
87 #define PRCM_REQ_MB0 0xFDC /* 12 bytes  */
88 #define PRCM_REQ_MB1 0xFD0 /* 12 bytes  */
89 #define PRCM_REQ_MB2 0xFC0 /* 16 bytes  */
90 #define PRCM_REQ_MB3 0xE4C /* 372 bytes  */
91 #define PRCM_REQ_MB4 0xE48 /* 4 bytes  */
92 #define PRCM_REQ_MB5 0xE44 /* 4 bytes  */
93 
94 /* Ack Mailboxes */
95 #define PRCM_ACK_MB0 0xE08 /* 52 bytes  */
96 #define PRCM_ACK_MB1 0xE04 /* 4 bytes */
97 #define PRCM_ACK_MB2 0xE00 /* 4 bytes */
98 #define PRCM_ACK_MB3 0xDFC /* 4 bytes */
99 #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
100 #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
101 
102 /* Mailbox 0 headers */
103 #define MB0H_POWER_STATE_TRANS		0
104 #define MB0H_CONFIG_WAKEUPS_EXE		1
105 #define MB0H_READ_WAKEUP_ACK		3
106 #define MB0H_CONFIG_WAKEUPS_SLEEP	4
107 
108 #define MB0H_WAKEUP_EXE 2
109 #define MB0H_WAKEUP_SLEEP 5
110 
111 /* Mailbox 0 REQs */
112 #define PRCM_REQ_MB0_AP_POWER_STATE	(PRCM_REQ_MB0 + 0x0)
113 #define PRCM_REQ_MB0_AP_PLL_STATE	(PRCM_REQ_MB0 + 0x1)
114 #define PRCM_REQ_MB0_ULP_CLOCK_STATE	(PRCM_REQ_MB0 + 0x2)
115 #define PRCM_REQ_MB0_DO_NOT_WFI		(PRCM_REQ_MB0 + 0x3)
116 #define PRCM_REQ_MB0_WAKEUP_8500	(PRCM_REQ_MB0 + 0x4)
117 #define PRCM_REQ_MB0_WAKEUP_4500	(PRCM_REQ_MB0 + 0x8)
118 
119 /* Mailbox 0 ACKs */
120 #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS	(PRCM_ACK_MB0 + 0x0)
121 #define PRCM_ACK_MB0_READ_POINTER	(PRCM_ACK_MB0 + 0x1)
122 #define PRCM_ACK_MB0_WAKEUP_0_8500	(PRCM_ACK_MB0 + 0x4)
123 #define PRCM_ACK_MB0_WAKEUP_0_4500	(PRCM_ACK_MB0 + 0x8)
124 #define PRCM_ACK_MB0_WAKEUP_1_8500	(PRCM_ACK_MB0 + 0x1C)
125 #define PRCM_ACK_MB0_WAKEUP_1_4500	(PRCM_ACK_MB0 + 0x20)
126 #define PRCM_ACK_MB0_EVENT_4500_NUMBERS	20
127 
128 /* Mailbox 1 headers */
129 #define MB1H_ARM_APE_OPP 0x0
130 #define MB1H_RESET_MODEM 0x2
131 #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
132 #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
133 #define MB1H_RELEASE_USB_WAKEUP 0x5
134 #define MB1H_PLL_ON_OFF 0x6
135 
136 /* Mailbox 1 Requests */
137 #define PRCM_REQ_MB1_ARM_OPP			(PRCM_REQ_MB1 + 0x0)
138 #define PRCM_REQ_MB1_APE_OPP			(PRCM_REQ_MB1 + 0x1)
139 #define PRCM_REQ_MB1_PLL_ON_OFF			(PRCM_REQ_MB1 + 0x4)
140 #define PLL_SOC1_OFF	0x4
141 #define PLL_SOC1_ON	0x8
142 
143 /* Mailbox 1 ACKs */
144 #define PRCM_ACK_MB1_CURRENT_ARM_OPP	(PRCM_ACK_MB1 + 0x0)
145 #define PRCM_ACK_MB1_CURRENT_APE_OPP	(PRCM_ACK_MB1 + 0x1)
146 #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS	(PRCM_ACK_MB1 + 0x2)
147 #define PRCM_ACK_MB1_DVFS_STATUS	(PRCM_ACK_MB1 + 0x3)
148 
149 /* Mailbox 2 headers */
150 #define MB2H_DPS	0x0
151 #define MB2H_AUTO_PWR	0x1
152 
153 /* Mailbox 2 REQs */
154 #define PRCM_REQ_MB2_SVA_MMDSP		(PRCM_REQ_MB2 + 0x0)
155 #define PRCM_REQ_MB2_SVA_PIPE		(PRCM_REQ_MB2 + 0x1)
156 #define PRCM_REQ_MB2_SIA_MMDSP		(PRCM_REQ_MB2 + 0x2)
157 #define PRCM_REQ_MB2_SIA_PIPE		(PRCM_REQ_MB2 + 0x3)
158 #define PRCM_REQ_MB2_SGA		(PRCM_REQ_MB2 + 0x4)
159 #define PRCM_REQ_MB2_B2R2_MCDE		(PRCM_REQ_MB2 + 0x5)
160 #define PRCM_REQ_MB2_ESRAM12		(PRCM_REQ_MB2 + 0x6)
161 #define PRCM_REQ_MB2_ESRAM34		(PRCM_REQ_MB2 + 0x7)
162 #define PRCM_REQ_MB2_AUTO_PM_SLEEP	(PRCM_REQ_MB2 + 0x8)
163 #define PRCM_REQ_MB2_AUTO_PM_IDLE	(PRCM_REQ_MB2 + 0xC)
164 
165 /* Mailbox 2 ACKs */
166 #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
167 #define HWACC_PWR_ST_OK 0xFE
168 
169 /* Mailbox 3 headers */
170 #define MB3H_ANC	0x0
171 #define MB3H_SIDETONE	0x1
172 #define MB3H_SYSCLK	0xE
173 
174 /* Mailbox 3 Requests */
175 #define PRCM_REQ_MB3_ANC_FIR_COEFF	(PRCM_REQ_MB3 + 0x0)
176 #define PRCM_REQ_MB3_ANC_IIR_COEFF	(PRCM_REQ_MB3 + 0x20)
177 #define PRCM_REQ_MB3_ANC_SHIFTER	(PRCM_REQ_MB3 + 0x60)
178 #define PRCM_REQ_MB3_ANC_WARP		(PRCM_REQ_MB3 + 0x64)
179 #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN	(PRCM_REQ_MB3 + 0x68)
180 #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF	(PRCM_REQ_MB3 + 0x6C)
181 #define PRCM_REQ_MB3_SYSCLK_MGT		(PRCM_REQ_MB3 + 0x16C)
182 
183 /* Mailbox 4 headers */
184 #define MB4H_DDR_INIT	0x0
185 #define MB4H_MEM_ST	0x1
186 #define MB4H_HOTDOG	0x12
187 #define MB4H_HOTMON	0x13
188 #define MB4H_HOT_PERIOD	0x14
189 #define MB4H_A9WDOG_CONF 0x16
190 #define MB4H_A9WDOG_EN   0x17
191 #define MB4H_A9WDOG_DIS  0x18
192 #define MB4H_A9WDOG_LOAD 0x19
193 #define MB4H_A9WDOG_KICK 0x20
194 
195 /* Mailbox 4 Requests */
196 #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE	(PRCM_REQ_MB4 + 0x0)
197 #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE	(PRCM_REQ_MB4 + 0x1)
198 #define PRCM_REQ_MB4_ESRAM0_ST			(PRCM_REQ_MB4 + 0x3)
199 #define PRCM_REQ_MB4_HOTDOG_THRESHOLD		(PRCM_REQ_MB4 + 0x0)
200 #define PRCM_REQ_MB4_HOTMON_LOW			(PRCM_REQ_MB4 + 0x0)
201 #define PRCM_REQ_MB4_HOTMON_HIGH		(PRCM_REQ_MB4 + 0x1)
202 #define PRCM_REQ_MB4_HOTMON_CONFIG		(PRCM_REQ_MB4 + 0x2)
203 #define PRCM_REQ_MB4_HOT_PERIOD			(PRCM_REQ_MB4 + 0x0)
204 #define HOTMON_CONFIG_LOW			BIT(0)
205 #define HOTMON_CONFIG_HIGH			BIT(1)
206 #define PRCM_REQ_MB4_A9WDOG_0			(PRCM_REQ_MB4 + 0x0)
207 #define PRCM_REQ_MB4_A9WDOG_1			(PRCM_REQ_MB4 + 0x1)
208 #define PRCM_REQ_MB4_A9WDOG_2			(PRCM_REQ_MB4 + 0x2)
209 #define PRCM_REQ_MB4_A9WDOG_3			(PRCM_REQ_MB4 + 0x3)
210 #define A9WDOG_AUTO_OFF_EN			BIT(7)
211 #define A9WDOG_AUTO_OFF_DIS			0
212 #define A9WDOG_ID_MASK				0xf
213 
214 /* Mailbox 5 Requests */
215 #define PRCM_REQ_MB5_I2C_SLAVE_OP	(PRCM_REQ_MB5 + 0x0)
216 #define PRCM_REQ_MB5_I2C_HW_BITS	(PRCM_REQ_MB5 + 0x1)
217 #define PRCM_REQ_MB5_I2C_REG		(PRCM_REQ_MB5 + 0x2)
218 #define PRCM_REQ_MB5_I2C_VAL		(PRCM_REQ_MB5 + 0x3)
219 #define PRCMU_I2C_WRITE(slave) \
220 	(((slave) << 1) | (cpu_is_u8500v2() ? BIT(6) : 0))
221 #define PRCMU_I2C_READ(slave) \
222 	(((slave) << 1) | BIT(0) | (cpu_is_u8500v2() ? BIT(6) : 0))
223 #define PRCMU_I2C_STOP_EN		BIT(3)
224 
225 /* Mailbox 5 ACKs */
226 #define PRCM_ACK_MB5_I2C_STATUS	(PRCM_ACK_MB5 + 0x1)
227 #define PRCM_ACK_MB5_I2C_VAL	(PRCM_ACK_MB5 + 0x3)
228 #define I2C_WR_OK 0x1
229 #define I2C_RD_OK 0x2
230 
231 #define NUM_MB 8
232 #define MBOX_BIT BIT
233 #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
234 
235 /*
236  * Wakeups/IRQs
237  */
238 
239 #define WAKEUP_BIT_RTC BIT(0)
240 #define WAKEUP_BIT_RTT0 BIT(1)
241 #define WAKEUP_BIT_RTT1 BIT(2)
242 #define WAKEUP_BIT_HSI0 BIT(3)
243 #define WAKEUP_BIT_HSI1 BIT(4)
244 #define WAKEUP_BIT_CA_WAKE BIT(5)
245 #define WAKEUP_BIT_USB BIT(6)
246 #define WAKEUP_BIT_ABB BIT(7)
247 #define WAKEUP_BIT_ABB_FIFO BIT(8)
248 #define WAKEUP_BIT_SYSCLK_OK BIT(9)
249 #define WAKEUP_BIT_CA_SLEEP BIT(10)
250 #define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
251 #define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
252 #define WAKEUP_BIT_ANC_OK BIT(13)
253 #define WAKEUP_BIT_SW_ERROR BIT(14)
254 #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
255 #define WAKEUP_BIT_ARM BIT(17)
256 #define WAKEUP_BIT_HOTMON_LOW BIT(18)
257 #define WAKEUP_BIT_HOTMON_HIGH BIT(19)
258 #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
259 #define WAKEUP_BIT_GPIO0 BIT(23)
260 #define WAKEUP_BIT_GPIO1 BIT(24)
261 #define WAKEUP_BIT_GPIO2 BIT(25)
262 #define WAKEUP_BIT_GPIO3 BIT(26)
263 #define WAKEUP_BIT_GPIO4 BIT(27)
264 #define WAKEUP_BIT_GPIO5 BIT(28)
265 #define WAKEUP_BIT_GPIO6 BIT(29)
266 #define WAKEUP_BIT_GPIO7 BIT(30)
267 #define WAKEUP_BIT_GPIO8 BIT(31)
268 
269 /*
270  * This vector maps irq numbers to the bits in the bit field used in
271  * communication with the PRCMU firmware.
272  *
273  * The reason for having this is to keep the irq numbers contiguous even though
274  * the bits in the bit field are not. (The bits also have a tendency to move
275  * around, to further complicate matters.)
276  */
277 #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name) - IRQ_PRCMU_BASE)
278 #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
279 static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
280 	IRQ_ENTRY(RTC),
281 	IRQ_ENTRY(RTT0),
282 	IRQ_ENTRY(RTT1),
283 	IRQ_ENTRY(HSI0),
284 	IRQ_ENTRY(HSI1),
285 	IRQ_ENTRY(CA_WAKE),
286 	IRQ_ENTRY(USB),
287 	IRQ_ENTRY(ABB),
288 	IRQ_ENTRY(ABB_FIFO),
289 	IRQ_ENTRY(CA_SLEEP),
290 	IRQ_ENTRY(ARM),
291 	IRQ_ENTRY(HOTMON_LOW),
292 	IRQ_ENTRY(HOTMON_HIGH),
293 	IRQ_ENTRY(MODEM_SW_RESET_REQ),
294 	IRQ_ENTRY(GPIO0),
295 	IRQ_ENTRY(GPIO1),
296 	IRQ_ENTRY(GPIO2),
297 	IRQ_ENTRY(GPIO3),
298 	IRQ_ENTRY(GPIO4),
299 	IRQ_ENTRY(GPIO5),
300 	IRQ_ENTRY(GPIO6),
301 	IRQ_ENTRY(GPIO7),
302 	IRQ_ENTRY(GPIO8)
303 };
304 
305 #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
306 #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
307 static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
308 	WAKEUP_ENTRY(RTC),
309 	WAKEUP_ENTRY(RTT0),
310 	WAKEUP_ENTRY(RTT1),
311 	WAKEUP_ENTRY(HSI0),
312 	WAKEUP_ENTRY(HSI1),
313 	WAKEUP_ENTRY(USB),
314 	WAKEUP_ENTRY(ABB),
315 	WAKEUP_ENTRY(ABB_FIFO),
316 	WAKEUP_ENTRY(ARM)
317 };
318 
319 /*
320  * mb0_transfer - state needed for mailbox 0 communication.
321  * @lock:		The transaction lock.
322  * @dbb_events_lock:	A lock used to handle concurrent access to (parts of)
323  *			the request data.
324  * @mask_work:		Work structure used for (un)masking wakeup interrupts.
325  * @req:		Request data that need to persist between requests.
326  */
327 static struct {
328 	spinlock_t lock;
329 	spinlock_t dbb_irqs_lock;
330 	struct work_struct mask_work;
331 	struct mutex ac_wake_lock;
332 	struct completion ac_wake_work;
333 	struct {
334 		u32 dbb_irqs;
335 		u32 dbb_wakeups;
336 		u32 abb_events;
337 	} req;
338 } mb0_transfer;
339 
340 /*
341  * mb1_transfer - state needed for mailbox 1 communication.
342  * @lock:	The transaction lock.
343  * @work:	The transaction completion structure.
344  * @ack:	Reply ("acknowledge") data.
345  */
346 static struct {
347 	struct mutex lock;
348 	struct completion work;
349 	struct {
350 		u8 header;
351 		u8 arm_opp;
352 		u8 ape_opp;
353 		u8 ape_voltage_status;
354 	} ack;
355 } mb1_transfer;
356 
357 /*
358  * mb2_transfer - state needed for mailbox 2 communication.
359  * @lock:            The transaction lock.
360  * @work:            The transaction completion structure.
361  * @auto_pm_lock:    The autonomous power management configuration lock.
362  * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
363  * @req:             Request data that need to persist between requests.
364  * @ack:             Reply ("acknowledge") data.
365  */
366 static struct {
367 	struct mutex lock;
368 	struct completion work;
369 	spinlock_t auto_pm_lock;
370 	bool auto_pm_enabled;
371 	struct {
372 		u8 status;
373 	} ack;
374 } mb2_transfer;
375 
376 /*
377  * mb3_transfer - state needed for mailbox 3 communication.
378  * @lock:		The request lock.
379  * @sysclk_lock:	A lock used to handle concurrent sysclk requests.
380  * @sysclk_work:	Work structure used for sysclk requests.
381  */
382 static struct {
383 	spinlock_t lock;
384 	struct mutex sysclk_lock;
385 	struct completion sysclk_work;
386 } mb3_transfer;
387 
388 /*
389  * mb4_transfer - state needed for mailbox 4 communication.
390  * @lock:	The transaction lock.
391  * @work:	The transaction completion structure.
392  */
393 static struct {
394 	struct mutex lock;
395 	struct completion work;
396 } mb4_transfer;
397 
398 /*
399  * mb5_transfer - state needed for mailbox 5 communication.
400  * @lock:	The transaction lock.
401  * @work:	The transaction completion structure.
402  * @ack:	Reply ("acknowledge") data.
403  */
404 static struct {
405 	struct mutex lock;
406 	struct completion work;
407 	struct {
408 		u8 status;
409 		u8 value;
410 	} ack;
411 } mb5_transfer;
412 
413 static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
414 
415 /* Spinlocks */
416 static DEFINE_SPINLOCK(clkout_lock);
417 static DEFINE_SPINLOCK(gpiocr_lock);
418 
419 /* Global var to runtime determine TCDM base for v2 or v1 */
420 static __iomem void *tcdm_base;
421 
422 struct clk_mgt {
423 	unsigned int offset;
424 	u32 pllsw;
425 };
426 
427 static DEFINE_SPINLOCK(clk_mgt_lock);
428 
429 #define CLK_MGT_ENTRY(_name)[PRCMU_##_name] = { (PRCM_##_name##_MGT_OFF), 0 }
430 struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
431 	CLK_MGT_ENTRY(SGACLK),
432 	CLK_MGT_ENTRY(UARTCLK),
433 	CLK_MGT_ENTRY(MSP02CLK),
434 	CLK_MGT_ENTRY(MSP1CLK),
435 	CLK_MGT_ENTRY(I2CCLK),
436 	CLK_MGT_ENTRY(SDMMCCLK),
437 	CLK_MGT_ENTRY(SLIMCLK),
438 	CLK_MGT_ENTRY(PER1CLK),
439 	CLK_MGT_ENTRY(PER2CLK),
440 	CLK_MGT_ENTRY(PER3CLK),
441 	CLK_MGT_ENTRY(PER5CLK),
442 	CLK_MGT_ENTRY(PER6CLK),
443 	CLK_MGT_ENTRY(PER7CLK),
444 	CLK_MGT_ENTRY(LCDCLK),
445 	CLK_MGT_ENTRY(BMLCLK),
446 	CLK_MGT_ENTRY(HSITXCLK),
447 	CLK_MGT_ENTRY(HSIRXCLK),
448 	CLK_MGT_ENTRY(HDMICLK),
449 	CLK_MGT_ENTRY(APEATCLK),
450 	CLK_MGT_ENTRY(APETRACECLK),
451 	CLK_MGT_ENTRY(MCDECLK),
452 	CLK_MGT_ENTRY(IPI2CCLK),
453 	CLK_MGT_ENTRY(DSIALTCLK),
454 	CLK_MGT_ENTRY(DMACLK),
455 	CLK_MGT_ENTRY(B2R2CLK),
456 	CLK_MGT_ENTRY(TVCLK),
457 	CLK_MGT_ENTRY(SSPCLK),
458 	CLK_MGT_ENTRY(RNGCLK),
459 	CLK_MGT_ENTRY(UICCCLK),
460 };
461 
462 static struct regulator *hwacc_regulator[NUM_HW_ACC];
463 static struct regulator *hwacc_ret_regulator[NUM_HW_ACC];
464 
465 static bool hwacc_enabled[NUM_HW_ACC];
466 static bool hwacc_ret_enabled[NUM_HW_ACC];
467 
468 static const char *hwacc_regulator_name[NUM_HW_ACC] = {
469 	[HW_ACC_SVAMMDSP]	= "hwacc-sva-mmdsp",
470 	[HW_ACC_SVAPIPE]	= "hwacc-sva-pipe",
471 	[HW_ACC_SIAMMDSP]	= "hwacc-sia-mmdsp",
472 	[HW_ACC_SIAPIPE]	= "hwacc-sia-pipe",
473 	[HW_ACC_SGA]		= "hwacc-sga",
474 	[HW_ACC_B2R2]		= "hwacc-b2r2",
475 	[HW_ACC_MCDE]		= "hwacc-mcde",
476 	[HW_ACC_ESRAM1]		= "hwacc-esram1",
477 	[HW_ACC_ESRAM2]		= "hwacc-esram2",
478 	[HW_ACC_ESRAM3]		= "hwacc-esram3",
479 	[HW_ACC_ESRAM4]		= "hwacc-esram4",
480 };
481 
482 static const char *hwacc_ret_regulator_name[NUM_HW_ACC] = {
483 	[HW_ACC_SVAMMDSP]	= "hwacc-sva-mmdsp-ret",
484 	[HW_ACC_SIAMMDSP]	= "hwacc-sia-mmdsp-ret",
485 	[HW_ACC_ESRAM1]		= "hwacc-esram1-ret",
486 	[HW_ACC_ESRAM2]		= "hwacc-esram2-ret",
487 	[HW_ACC_ESRAM3]		= "hwacc-esram3-ret",
488 	[HW_ACC_ESRAM4]		= "hwacc-esram4-ret",
489 };
490 
491 /*
492 * Used by MCDE to setup all necessary PRCMU registers
493 */
494 #define PRCMU_RESET_DSIPLL		0x00004000
495 #define PRCMU_UNCLAMP_DSIPLL		0x00400800
496 
497 #define PRCMU_CLK_PLL_DIV_SHIFT		0
498 #define PRCMU_CLK_PLL_SW_SHIFT		5
499 #define PRCMU_CLK_38			(1 << 9)
500 #define PRCMU_CLK_38_SRC		(1 << 10)
501 #define PRCMU_CLK_38_DIV		(1 << 11)
502 
503 /* PLLDIV=12, PLLSW=4 (PLLDDR) */
504 #define PRCMU_DSI_CLOCK_SETTING		0x0000008C
505 
506 /* PLLDIV=8, PLLSW=4 (PLLDDR) */
507 #define PRCMU_DSI_CLOCK_SETTING_U8400	0x00000088
508 
509 /* DPI 50000000 Hz */
510 #define PRCMU_DPI_CLOCK_SETTING		((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
511 					  (16 << PRCMU_CLK_PLL_DIV_SHIFT))
512 #define PRCMU_DSI_LP_CLOCK_SETTING	0x00000E00
513 
514 /* D=101, N=1, R=4, SELDIV2=0 */
515 #define PRCMU_PLLDSI_FREQ_SETTING	0x00040165
516 
517 /* D=70, N=1, R=3, SELDIV2=0 */
518 #define PRCMU_PLLDSI_FREQ_SETTING_U8400	0x00030146
519 
520 #define PRCMU_ENABLE_PLLDSI		0x00000001
521 #define PRCMU_DISABLE_PLLDSI		0x00000000
522 #define PRCMU_RELEASE_RESET_DSS		0x0000400C
523 #define PRCMU_DSI_PLLOUT_SEL_SETTING	0x00000202
524 /* ESC clk, div0=1, div1=1, div2=3 */
525 #define PRCMU_ENABLE_ESCAPE_CLOCK_DIV	0x07030101
526 #define PRCMU_DISABLE_ESCAPE_CLOCK_DIV	0x00030101
527 #define PRCMU_DSI_RESET_SW		0x00000007
528 
529 #define PRCMU_PLLDSI_LOCKP_LOCKED	0x3
530 
531 static struct {
532 	u8 project_number;
533 	u8 api_version;
534 	u8 func_version;
535 	u8 errata;
536 } prcmu_version;
537 
538 
539 int db8500_prcmu_enable_dsipll(void)
540 {
541 	int i;
542 	unsigned int plldsifreq;
543 
544 	/* Clear DSIPLL_RESETN */
545 	writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR);
546 	/* Unclamp DSIPLL in/out */
547 	writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR);
548 
549 	if (prcmu_is_u8400())
550 		plldsifreq = PRCMU_PLLDSI_FREQ_SETTING_U8400;
551 	else
552 		plldsifreq = PRCMU_PLLDSI_FREQ_SETTING;
553 	/* Set DSI PLL FREQ */
554 	writel(plldsifreq, PRCM_PLLDSI_FREQ);
555 	writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL);
556 	/* Enable Escape clocks */
557 	writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
558 
559 	/* Start DSI PLL */
560 	writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
561 	/* Reset DSI PLL */
562 	writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET);
563 	for (i = 0; i < 10; i++) {
564 		if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED)
565 					== PRCMU_PLLDSI_LOCKP_LOCKED)
566 			break;
567 		udelay(100);
568 	}
569 	/* Set DSIPLL_RESETN */
570 	writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET);
571 	return 0;
572 }
573 
574 int db8500_prcmu_disable_dsipll(void)
575 {
576 	/* Disable dsi pll */
577 	writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
578 	/* Disable  escapeclock */
579 	writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
580 	return 0;
581 }
582 
583 int db8500_prcmu_set_display_clocks(void)
584 {
585 	unsigned long flags;
586 	unsigned int dsiclk;
587 
588 	if (prcmu_is_u8400())
589 		dsiclk = PRCMU_DSI_CLOCK_SETTING_U8400;
590 	else
591 		dsiclk = PRCMU_DSI_CLOCK_SETTING;
592 
593 	spin_lock_irqsave(&clk_mgt_lock, flags);
594 
595 	/* Grab the HW semaphore. */
596 	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
597 		cpu_relax();
598 
599 	writel(dsiclk, PRCM_HDMICLK_MGT);
600 	writel(PRCMU_DSI_LP_CLOCK_SETTING, PRCM_TVCLK_MGT);
601 	writel(PRCMU_DPI_CLOCK_SETTING, PRCM_LCDCLK_MGT);
602 
603 	/* Release the HW semaphore. */
604 	writel(0, PRCM_SEM);
605 
606 	spin_unlock_irqrestore(&clk_mgt_lock, flags);
607 
608 	return 0;
609 }
610 
611 /**
612  * prcmu_enable_spi2 - Enables pin muxing for SPI2 on OtherAlternateC1.
613  */
614 void prcmu_enable_spi2(void)
615 {
616 	u32 reg;
617 	unsigned long flags;
618 
619 	spin_lock_irqsave(&gpiocr_lock, flags);
620 	reg = readl(PRCM_GPIOCR);
621 	writel(reg | PRCM_GPIOCR_SPI2_SELECT, PRCM_GPIOCR);
622 	spin_unlock_irqrestore(&gpiocr_lock, flags);
623 }
624 
625 /**
626  * prcmu_disable_spi2 - Disables pin muxing for SPI2 on OtherAlternateC1.
627  */
628 void prcmu_disable_spi2(void)
629 {
630 	u32 reg;
631 	unsigned long flags;
632 
633 	spin_lock_irqsave(&gpiocr_lock, flags);
634 	reg = readl(PRCM_GPIOCR);
635 	writel(reg & ~PRCM_GPIOCR_SPI2_SELECT, PRCM_GPIOCR);
636 	spin_unlock_irqrestore(&gpiocr_lock, flags);
637 }
638 
639 bool prcmu_has_arm_maxopp(void)
640 {
641 	return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
642 		PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
643 }
644 
645 bool prcmu_is_u8400(void)
646 {
647 	return prcmu_version.project_number == PRCMU_PROJECT_ID_8400V2_0;
648 }
649 
650 /**
651  * prcmu_get_boot_status - PRCMU boot status checking
652  * Returns: the current PRCMU boot status
653  */
654 int prcmu_get_boot_status(void)
655 {
656 	return readb(tcdm_base + PRCM_BOOT_STATUS);
657 }
658 
659 /**
660  * prcmu_set_rc_a2p - This function is used to run few power state sequences
661  * @val: Value to be set, i.e. transition requested
662  * Returns: 0 on success, -EINVAL on invalid argument
663  *
664  * This function is used to run the following power state sequences -
665  * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
666  */
667 int prcmu_set_rc_a2p(enum romcode_write val)
668 {
669 	if (val < RDY_2_DS || val > RDY_2_XP70_RST)
670 		return -EINVAL;
671 	writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
672 	return 0;
673 }
674 
675 /**
676  * prcmu_get_rc_p2a - This function is used to get power state sequences
677  * Returns: the power transition that has last happened
678  *
679  * This function can return the following transitions-
680  * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
681  */
682 enum romcode_read prcmu_get_rc_p2a(void)
683 {
684 	return readb(tcdm_base + PRCM_ROMCODE_P2A);
685 }
686 
687 /**
688  * prcmu_get_current_mode - Return the current XP70 power mode
689  * Returns: Returns the current AP(ARM) power mode: init,
690  * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
691  */
692 enum ap_pwrst prcmu_get_xp70_current_state(void)
693 {
694 	return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
695 }
696 
697 /**
698  * prcmu_config_clkout - Configure one of the programmable clock outputs.
699  * @clkout:	The CLKOUT number (0 or 1).
700  * @source:	The clock to be used (one of the PRCMU_CLKSRC_*).
701  * @div:	The divider to be applied.
702  *
703  * Configures one of the programmable clock outputs (CLKOUTs).
704  * @div should be in the range [1,63] to request a configuration, or 0 to
705  * inform that the configuration is no longer requested.
706  */
707 int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
708 {
709 	static int requests[2];
710 	int r = 0;
711 	unsigned long flags;
712 	u32 val;
713 	u32 bits;
714 	u32 mask;
715 	u32 div_mask;
716 
717 	BUG_ON(clkout > 1);
718 	BUG_ON(div > 63);
719 	BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
720 
721 	if (!div && !requests[clkout])
722 		return -EINVAL;
723 
724 	switch (clkout) {
725 	case 0:
726 		div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
727 		mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
728 		bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
729 			(div << PRCM_CLKOCR_CLKODIV0_SHIFT));
730 		break;
731 	case 1:
732 		div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
733 		mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
734 			PRCM_CLKOCR_CLK1TYPE);
735 		bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
736 			(div << PRCM_CLKOCR_CLKODIV1_SHIFT));
737 		break;
738 	}
739 	bits &= mask;
740 
741 	spin_lock_irqsave(&clkout_lock, flags);
742 
743 	val = readl(PRCM_CLKOCR);
744 	if (val & div_mask) {
745 		if (div) {
746 			if ((val & mask) != bits) {
747 				r = -EBUSY;
748 				goto unlock_and_return;
749 			}
750 		} else {
751 			if ((val & mask & ~div_mask) != bits) {
752 				r = -EINVAL;
753 				goto unlock_and_return;
754 			}
755 		}
756 	}
757 	writel((bits | (val & ~mask)), PRCM_CLKOCR);
758 	requests[clkout] += (div ? 1 : -1);
759 
760 unlock_and_return:
761 	spin_unlock_irqrestore(&clkout_lock, flags);
762 
763 	return r;
764 }
765 
766 int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
767 {
768 	unsigned long flags;
769 
770 	BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
771 
772 	spin_lock_irqsave(&mb0_transfer.lock, flags);
773 
774 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
775 		cpu_relax();
776 
777 	writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
778 	writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
779 	writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
780 	writeb((keep_ulp_clk ? 1 : 0),
781 		(tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
782 	writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
783 	writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
784 
785 	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
786 
787 	return 0;
788 }
789 
790 /* This function should only be called while mb0_transfer.lock is held. */
791 static void config_wakeups(void)
792 {
793 	const u8 header[2] = {
794 		MB0H_CONFIG_WAKEUPS_EXE,
795 		MB0H_CONFIG_WAKEUPS_SLEEP
796 	};
797 	static u32 last_dbb_events;
798 	static u32 last_abb_events;
799 	u32 dbb_events;
800 	u32 abb_events;
801 	unsigned int i;
802 
803 	dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
804 	dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
805 
806 	abb_events = mb0_transfer.req.abb_events;
807 
808 	if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
809 		return;
810 
811 	for (i = 0; i < 2; i++) {
812 		while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
813 			cpu_relax();
814 		writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
815 		writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
816 		writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
817 		writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
818 	}
819 	last_dbb_events = dbb_events;
820 	last_abb_events = abb_events;
821 }
822 
823 void db8500_prcmu_enable_wakeups(u32 wakeups)
824 {
825 	unsigned long flags;
826 	u32 bits;
827 	int i;
828 
829 	BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
830 
831 	for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
832 		if (wakeups & BIT(i))
833 			bits |= prcmu_wakeup_bit[i];
834 	}
835 
836 	spin_lock_irqsave(&mb0_transfer.lock, flags);
837 
838 	mb0_transfer.req.dbb_wakeups = bits;
839 	config_wakeups();
840 
841 	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
842 }
843 
844 void db8500_prcmu_config_abb_event_readout(u32 abb_events)
845 {
846 	unsigned long flags;
847 
848 	spin_lock_irqsave(&mb0_transfer.lock, flags);
849 
850 	mb0_transfer.req.abb_events = abb_events;
851 	config_wakeups();
852 
853 	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
854 }
855 
856 void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
857 {
858 	if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
859 		*buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
860 	else
861 		*buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
862 }
863 
864 /**
865  * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
866  * @opp: The new ARM operating point to which transition is to be made
867  * Returns: 0 on success, non-zero on failure
868  *
869  * This function sets the the operating point of the ARM.
870  */
871 int db8500_prcmu_set_arm_opp(u8 opp)
872 {
873 	int r;
874 
875 	if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
876 		return -EINVAL;
877 
878 	r = 0;
879 
880 	mutex_lock(&mb1_transfer.lock);
881 
882 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
883 		cpu_relax();
884 
885 	writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
886 	writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
887 	writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
888 
889 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
890 	wait_for_completion(&mb1_transfer.work);
891 
892 	if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
893 		(mb1_transfer.ack.arm_opp != opp))
894 		r = -EIO;
895 
896 	mutex_unlock(&mb1_transfer.lock);
897 
898 	return r;
899 }
900 
901 /**
902  * db8500_prcmu_get_arm_opp - get the current ARM OPP
903  *
904  * Returns: the current ARM OPP
905  */
906 int db8500_prcmu_get_arm_opp(void)
907 {
908 	return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
909 }
910 
911 /**
912  * prcmu_get_ddr_opp - get the current DDR OPP
913  *
914  * Returns: the current DDR OPP
915  */
916 int prcmu_get_ddr_opp(void)
917 {
918 	return readb(PRCM_DDR_SUBSYS_APE_MINBW);
919 }
920 
921 /**
922  * set_ddr_opp - set the appropriate DDR OPP
923  * @opp: The new DDR operating point to which transition is to be made
924  * Returns: 0 on success, non-zero on failure
925  *
926  * This function sets the operating point of the DDR.
927  */
928 int prcmu_set_ddr_opp(u8 opp)
929 {
930 	if (opp < DDR_100_OPP || opp > DDR_25_OPP)
931 		return -EINVAL;
932 	/* Changing the DDR OPP can hang the hardware pre-v21 */
933 	if (cpu_is_u8500v20_or_later() && !cpu_is_u8500v20())
934 		writeb(opp, PRCM_DDR_SUBSYS_APE_MINBW);
935 
936 	return 0;
937 }
938 /**
939  * set_ape_opp - set the appropriate APE OPP
940  * @opp: The new APE operating point to which transition is to be made
941  * Returns: 0 on success, non-zero on failure
942  *
943  * This function sets the operating point of the APE.
944  */
945 int prcmu_set_ape_opp(u8 opp)
946 {
947 	int r = 0;
948 
949 	mutex_lock(&mb1_transfer.lock);
950 
951 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
952 		cpu_relax();
953 
954 	writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
955 	writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
956 	writeb(opp, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
957 
958 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
959 	wait_for_completion(&mb1_transfer.work);
960 
961 	if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
962 		(mb1_transfer.ack.ape_opp != opp))
963 		r = -EIO;
964 
965 	mutex_unlock(&mb1_transfer.lock);
966 
967 	return r;
968 }
969 
970 /**
971  * prcmu_get_ape_opp - get the current APE OPP
972  *
973  * Returns: the current APE OPP
974  */
975 int prcmu_get_ape_opp(void)
976 {
977 	return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
978 }
979 
980 /**
981  * prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
982  * @enable: true to request the higher voltage, false to drop a request.
983  *
984  * Calls to this function to enable and disable requests must be balanced.
985  */
986 int prcmu_request_ape_opp_100_voltage(bool enable)
987 {
988 	int r = 0;
989 	u8 header;
990 	static unsigned int requests;
991 
992 	mutex_lock(&mb1_transfer.lock);
993 
994 	if (enable) {
995 		if (0 != requests++)
996 			goto unlock_and_return;
997 		header = MB1H_REQUEST_APE_OPP_100_VOLT;
998 	} else {
999 		if (requests == 0) {
1000 			r = -EIO;
1001 			goto unlock_and_return;
1002 		} else if (1 != requests--) {
1003 			goto unlock_and_return;
1004 		}
1005 		header = MB1H_RELEASE_APE_OPP_100_VOLT;
1006 	}
1007 
1008 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1009 		cpu_relax();
1010 
1011 	writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1012 
1013 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1014 	wait_for_completion(&mb1_transfer.work);
1015 
1016 	if ((mb1_transfer.ack.header != header) ||
1017 		((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1018 		r = -EIO;
1019 
1020 unlock_and_return:
1021 	mutex_unlock(&mb1_transfer.lock);
1022 
1023 	return r;
1024 }
1025 
1026 /**
1027  * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
1028  *
1029  * This function releases the power state requirements of a USB wakeup.
1030  */
1031 int prcmu_release_usb_wakeup_state(void)
1032 {
1033 	int r = 0;
1034 
1035 	mutex_lock(&mb1_transfer.lock);
1036 
1037 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1038 		cpu_relax();
1039 
1040 	writeb(MB1H_RELEASE_USB_WAKEUP,
1041 		(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1042 
1043 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1044 	wait_for_completion(&mb1_transfer.work);
1045 
1046 	if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
1047 		((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1048 		r = -EIO;
1049 
1050 	mutex_unlock(&mb1_transfer.lock);
1051 
1052 	return r;
1053 }
1054 
1055 static int request_pll(u8 clock, bool enable)
1056 {
1057 	int r = 0;
1058 
1059 	if (clock == PRCMU_PLLSOC1)
1060 		clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
1061 	else
1062 		return -EINVAL;
1063 
1064 	mutex_lock(&mb1_transfer.lock);
1065 
1066 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1067 		cpu_relax();
1068 
1069 	writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1070 	writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
1071 
1072 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1073 	wait_for_completion(&mb1_transfer.work);
1074 
1075 	if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
1076 		r = -EIO;
1077 
1078 	mutex_unlock(&mb1_transfer.lock);
1079 
1080 	return r;
1081 }
1082 
1083 /**
1084  * prcmu_set_hwacc - set the power state of a h/w accelerator
1085  * @hwacc_dev: The hardware accelerator (enum hw_acc_dev).
1086  * @state: The new power state (enum hw_acc_state).
1087  *
1088  * This function sets the power state of a hardware accelerator.
1089  * This function should not be called from interrupt context.
1090  *
1091  * NOTE! Deprecated, to be removed when all users switched over to use the
1092  * regulator framework API.
1093  */
1094 int prcmu_set_hwacc(u16 hwacc_dev, u8 state)
1095 {
1096 	int r = 0;
1097 	bool ram_retention = false;
1098 	bool enable, enable_ret;
1099 
1100 	/* check argument */
1101 	BUG_ON(hwacc_dev >= NUM_HW_ACC);
1102 
1103 	/* get state of switches */
1104 	enable = hwacc_enabled[hwacc_dev];
1105 	enable_ret = hwacc_ret_enabled[hwacc_dev];
1106 
1107 	/* set flag if retention is possible */
1108 	switch (hwacc_dev) {
1109 	case HW_ACC_SVAMMDSP:
1110 	case HW_ACC_SIAMMDSP:
1111 	case HW_ACC_ESRAM1:
1112 	case HW_ACC_ESRAM2:
1113 	case HW_ACC_ESRAM3:
1114 	case HW_ACC_ESRAM4:
1115 		ram_retention = true;
1116 		break;
1117 	}
1118 
1119 	/* check argument */
1120 	BUG_ON(state > HW_ON);
1121 	BUG_ON(state == HW_OFF_RAMRET && !ram_retention);
1122 
1123 	/* modify enable flags */
1124 	switch (state) {
1125 	case HW_OFF:
1126 		enable_ret = false;
1127 		enable = false;
1128 		break;
1129 	case HW_ON:
1130 		enable = true;
1131 		break;
1132 	case HW_OFF_RAMRET:
1133 		enable_ret = true;
1134 		enable = false;
1135 		break;
1136 	}
1137 
1138 	/* get regulator (lazy) */
1139 	if (hwacc_regulator[hwacc_dev] == NULL) {
1140 		hwacc_regulator[hwacc_dev] = regulator_get(NULL,
1141 			hwacc_regulator_name[hwacc_dev]);
1142 		if (IS_ERR(hwacc_regulator[hwacc_dev])) {
1143 			pr_err("prcmu: failed to get supply %s\n",
1144 				hwacc_regulator_name[hwacc_dev]);
1145 			r = PTR_ERR(hwacc_regulator[hwacc_dev]);
1146 			goto out;
1147 		}
1148 	}
1149 
1150 	if (ram_retention) {
1151 		if (hwacc_ret_regulator[hwacc_dev] == NULL) {
1152 			hwacc_ret_regulator[hwacc_dev] = regulator_get(NULL,
1153 				hwacc_ret_regulator_name[hwacc_dev]);
1154 			if (IS_ERR(hwacc_ret_regulator[hwacc_dev])) {
1155 				pr_err("prcmu: failed to get supply %s\n",
1156 					hwacc_ret_regulator_name[hwacc_dev]);
1157 				r = PTR_ERR(hwacc_ret_regulator[hwacc_dev]);
1158 				goto out;
1159 			}
1160 		}
1161 	}
1162 
1163 	/* set regulators */
1164 	if (ram_retention) {
1165 		if (enable_ret && !hwacc_ret_enabled[hwacc_dev]) {
1166 			r = regulator_enable(hwacc_ret_regulator[hwacc_dev]);
1167 			if (r < 0) {
1168 				pr_err("prcmu_set_hwacc: ret enable failed\n");
1169 				goto out;
1170 			}
1171 			hwacc_ret_enabled[hwacc_dev] = true;
1172 		}
1173 	}
1174 
1175 	if (enable && !hwacc_enabled[hwacc_dev]) {
1176 		r = regulator_enable(hwacc_regulator[hwacc_dev]);
1177 		if (r < 0) {
1178 			pr_err("prcmu_set_hwacc: enable failed\n");
1179 			goto out;
1180 		}
1181 		hwacc_enabled[hwacc_dev] = true;
1182 	}
1183 
1184 	if (!enable && hwacc_enabled[hwacc_dev]) {
1185 		r = regulator_disable(hwacc_regulator[hwacc_dev]);
1186 		if (r < 0) {
1187 			pr_err("prcmu_set_hwacc: disable failed\n");
1188 			goto out;
1189 		}
1190 		hwacc_enabled[hwacc_dev] = false;
1191 	}
1192 
1193 	if (ram_retention) {
1194 		if (!enable_ret && hwacc_ret_enabled[hwacc_dev]) {
1195 			r = regulator_disable(hwacc_ret_regulator[hwacc_dev]);
1196 			if (r < 0) {
1197 				pr_err("prcmu_set_hwacc: ret disable failed\n");
1198 				goto out;
1199 			}
1200 			hwacc_ret_enabled[hwacc_dev] = false;
1201 		}
1202 	}
1203 
1204 out:
1205 	return r;
1206 }
1207 EXPORT_SYMBOL(prcmu_set_hwacc);
1208 
1209 /**
1210  * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
1211  * @epod_id: The EPOD to set
1212  * @epod_state: The new EPOD state
1213  *
1214  * This function sets the state of a EPOD (power domain). It may not be called
1215  * from interrupt context.
1216  */
1217 int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
1218 {
1219 	int r = 0;
1220 	bool ram_retention = false;
1221 	int i;
1222 
1223 	/* check argument */
1224 	BUG_ON(epod_id >= NUM_EPOD_ID);
1225 
1226 	/* set flag if retention is possible */
1227 	switch (epod_id) {
1228 	case EPOD_ID_SVAMMDSP:
1229 	case EPOD_ID_SIAMMDSP:
1230 	case EPOD_ID_ESRAM12:
1231 	case EPOD_ID_ESRAM34:
1232 		ram_retention = true;
1233 		break;
1234 	}
1235 
1236 	/* check argument */
1237 	BUG_ON(epod_state > EPOD_STATE_ON);
1238 	BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
1239 
1240 	/* get lock */
1241 	mutex_lock(&mb2_transfer.lock);
1242 
1243 	/* wait for mailbox */
1244 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
1245 		cpu_relax();
1246 
1247 	/* fill in mailbox */
1248 	for (i = 0; i < NUM_EPOD_ID; i++)
1249 		writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
1250 	writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
1251 
1252 	writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
1253 
1254 	writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
1255 
1256 	/*
1257 	 * The current firmware version does not handle errors correctly,
1258 	 * and we cannot recover if there is an error.
1259 	 * This is expected to change when the firmware is updated.
1260 	 */
1261 	if (!wait_for_completion_timeout(&mb2_transfer.work,
1262 			msecs_to_jiffies(20000))) {
1263 		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1264 			__func__);
1265 		r = -EIO;
1266 		goto unlock_and_return;
1267 	}
1268 
1269 	if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
1270 		r = -EIO;
1271 
1272 unlock_and_return:
1273 	mutex_unlock(&mb2_transfer.lock);
1274 	return r;
1275 }
1276 
1277 /**
1278  * prcmu_configure_auto_pm - Configure autonomous power management.
1279  * @sleep: Configuration for ApSleep.
1280  * @idle:  Configuration for ApIdle.
1281  */
1282 void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
1283 	struct prcmu_auto_pm_config *idle)
1284 {
1285 	u32 sleep_cfg;
1286 	u32 idle_cfg;
1287 	unsigned long flags;
1288 
1289 	BUG_ON((sleep == NULL) || (idle == NULL));
1290 
1291 	sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
1292 	sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
1293 	sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
1294 	sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
1295 	sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
1296 	sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
1297 
1298 	idle_cfg = (idle->sva_auto_pm_enable & 0xF);
1299 	idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
1300 	idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
1301 	idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
1302 	idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
1303 	idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
1304 
1305 	spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
1306 
1307 	/*
1308 	 * The autonomous power management configuration is done through
1309 	 * fields in mailbox 2, but these fields are only used as shared
1310 	 * variables - i.e. there is no need to send a message.
1311 	 */
1312 	writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
1313 	writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
1314 
1315 	mb2_transfer.auto_pm_enabled =
1316 		((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1317 		 (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1318 		 (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1319 		 (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
1320 
1321 	spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
1322 }
1323 EXPORT_SYMBOL(prcmu_configure_auto_pm);
1324 
1325 bool prcmu_is_auto_pm_enabled(void)
1326 {
1327 	return mb2_transfer.auto_pm_enabled;
1328 }
1329 
1330 static int request_sysclk(bool enable)
1331 {
1332 	int r;
1333 	unsigned long flags;
1334 
1335 	r = 0;
1336 
1337 	mutex_lock(&mb3_transfer.sysclk_lock);
1338 
1339 	spin_lock_irqsave(&mb3_transfer.lock, flags);
1340 
1341 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
1342 		cpu_relax();
1343 
1344 	writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
1345 
1346 	writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
1347 	writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
1348 
1349 	spin_unlock_irqrestore(&mb3_transfer.lock, flags);
1350 
1351 	/*
1352 	 * The firmware only sends an ACK if we want to enable the
1353 	 * SysClk, and it succeeds.
1354 	 */
1355 	if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
1356 			msecs_to_jiffies(20000))) {
1357 		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1358 			__func__);
1359 		r = -EIO;
1360 	}
1361 
1362 	mutex_unlock(&mb3_transfer.sysclk_lock);
1363 
1364 	return r;
1365 }
1366 
1367 static int request_timclk(bool enable)
1368 {
1369 	u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
1370 
1371 	if (!enable)
1372 		val |= PRCM_TCR_STOP_TIMERS;
1373 	writel(val, PRCM_TCR);
1374 
1375 	return 0;
1376 }
1377 
1378 static int request_reg_clock(u8 clock, bool enable)
1379 {
1380 	u32 val;
1381 	unsigned long flags;
1382 
1383 	spin_lock_irqsave(&clk_mgt_lock, flags);
1384 
1385 	/* Grab the HW semaphore. */
1386 	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1387 		cpu_relax();
1388 
1389 	val = readl(_PRCMU_BASE + clk_mgt[clock].offset);
1390 	if (enable) {
1391 		val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
1392 	} else {
1393 		clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1394 		val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
1395 	}
1396 	writel(val, (_PRCMU_BASE + clk_mgt[clock].offset));
1397 
1398 	/* Release the HW semaphore. */
1399 	writel(0, PRCM_SEM);
1400 
1401 	spin_unlock_irqrestore(&clk_mgt_lock, flags);
1402 
1403 	return 0;
1404 }
1405 
1406 static int request_sga_clock(u8 clock, bool enable)
1407 {
1408 	u32 val;
1409 	int ret;
1410 
1411 	if (enable) {
1412 		val = readl(PRCM_CGATING_BYPASS);
1413 		writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1414 	}
1415 
1416 	ret = request_reg_clock(clock, enable);
1417 
1418 	if (!ret && !enable) {
1419 		val = readl(PRCM_CGATING_BYPASS);
1420 		writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1421 	}
1422 
1423 	return ret;
1424 }
1425 
1426 /**
1427  * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
1428  * @clock:      The clock for which the request is made.
1429  * @enable:     Whether the clock should be enabled (true) or disabled (false).
1430  *
1431  * This function should only be used by the clock implementation.
1432  * Do not use it from any other place!
1433  */
1434 int db8500_prcmu_request_clock(u8 clock, bool enable)
1435 {
1436 	if (clock == PRCMU_SGACLK)
1437 		return request_sga_clock(clock, enable);
1438 	else if (clock < PRCMU_NUM_REG_CLOCKS)
1439 		return request_reg_clock(clock, enable);
1440 	else if (clock == PRCMU_TIMCLK)
1441 		return request_timclk(enable);
1442 	else if (clock == PRCMU_SYSCLK)
1443 		return request_sysclk(enable);
1444 	else if (clock == PRCMU_PLLSOC1)
1445 		return request_pll(clock, enable);
1446 	else
1447 		return -EINVAL;
1448 }
1449 
1450 int db8500_prcmu_config_esram0_deep_sleep(u8 state)
1451 {
1452 	if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
1453 	    (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
1454 		return -EINVAL;
1455 
1456 	mutex_lock(&mb4_transfer.lock);
1457 
1458 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1459 		cpu_relax();
1460 
1461 	writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1462 	writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
1463 	       (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
1464 	writeb(DDR_PWR_STATE_ON,
1465 	       (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
1466 	writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
1467 
1468 	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1469 	wait_for_completion(&mb4_transfer.work);
1470 
1471 	mutex_unlock(&mb4_transfer.lock);
1472 
1473 	return 0;
1474 }
1475 
1476 int prcmu_config_hotdog(u8 threshold)
1477 {
1478 	mutex_lock(&mb4_transfer.lock);
1479 
1480 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1481 		cpu_relax();
1482 
1483 	writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
1484 	writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1485 
1486 	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1487 	wait_for_completion(&mb4_transfer.work);
1488 
1489 	mutex_unlock(&mb4_transfer.lock);
1490 
1491 	return 0;
1492 }
1493 
1494 int prcmu_config_hotmon(u8 low, u8 high)
1495 {
1496 	mutex_lock(&mb4_transfer.lock);
1497 
1498 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1499 		cpu_relax();
1500 
1501 	writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
1502 	writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
1503 	writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
1504 		(tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
1505 	writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1506 
1507 	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1508 	wait_for_completion(&mb4_transfer.work);
1509 
1510 	mutex_unlock(&mb4_transfer.lock);
1511 
1512 	return 0;
1513 }
1514 
1515 static int config_hot_period(u16 val)
1516 {
1517 	mutex_lock(&mb4_transfer.lock);
1518 
1519 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1520 		cpu_relax();
1521 
1522 	writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
1523 	writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1524 
1525 	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1526 	wait_for_completion(&mb4_transfer.work);
1527 
1528 	mutex_unlock(&mb4_transfer.lock);
1529 
1530 	return 0;
1531 }
1532 
1533 int prcmu_start_temp_sense(u16 cycles32k)
1534 {
1535 	if (cycles32k == 0xFFFF)
1536 		return -EINVAL;
1537 
1538 	return config_hot_period(cycles32k);
1539 }
1540 
1541 int prcmu_stop_temp_sense(void)
1542 {
1543 	return config_hot_period(0xFFFF);
1544 }
1545 
1546 static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
1547 {
1548 
1549 	mutex_lock(&mb4_transfer.lock);
1550 
1551 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1552 		cpu_relax();
1553 
1554 	writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
1555 	writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
1556 	writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
1557 	writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
1558 
1559 	writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1560 
1561 	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1562 	wait_for_completion(&mb4_transfer.work);
1563 
1564 	mutex_unlock(&mb4_transfer.lock);
1565 
1566 	return 0;
1567 
1568 }
1569 
1570 int prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
1571 {
1572 	BUG_ON(num == 0 || num > 0xf);
1573 	return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
1574 			    sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
1575 			    A9WDOG_AUTO_OFF_DIS);
1576 }
1577 
1578 int prcmu_enable_a9wdog(u8 id)
1579 {
1580 	return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
1581 }
1582 
1583 int prcmu_disable_a9wdog(u8 id)
1584 {
1585 	return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
1586 }
1587 
1588 int prcmu_kick_a9wdog(u8 id)
1589 {
1590 	return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
1591 }
1592 
1593 /*
1594  * timeout is 28 bit, in ms.
1595  */
1596 #define MAX_WATCHDOG_TIMEOUT 131000
1597 int prcmu_load_a9wdog(u8 id, u32 timeout)
1598 {
1599 	if (timeout > MAX_WATCHDOG_TIMEOUT)
1600 		/*
1601 		 * Due to calculation bug in prcmu fw, timeouts
1602 		 * can't be bigger than 131 seconds.
1603 		 */
1604 		return -EINVAL;
1605 
1606 	return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
1607 			    (id & A9WDOG_ID_MASK) |
1608 			    /*
1609 			     * Put the lowest 28 bits of timeout at
1610 			     * offset 4. Four first bits are used for id.
1611 			     */
1612 			    (u8)((timeout << 4) & 0xf0),
1613 			    (u8)((timeout >> 4) & 0xff),
1614 			    (u8)((timeout >> 12) & 0xff),
1615 			    (u8)((timeout >> 20) & 0xff));
1616 }
1617 
1618 /**
1619  * prcmu_set_clock_divider() - Configure the clock divider.
1620  * @clock:	The clock for which the request is made.
1621  * @divider:	The clock divider. (< 32)
1622  *
1623  * This function should only be used by the clock implementation.
1624  * Do not use it from any other place!
1625  */
1626 int prcmu_set_clock_divider(u8 clock, u8 divider)
1627 {
1628 	u32 val;
1629 	unsigned long flags;
1630 
1631 	if ((clock >= PRCMU_NUM_REG_CLOCKS) || (divider < 1) || (31 < divider))
1632 		return -EINVAL;
1633 
1634 	spin_lock_irqsave(&clk_mgt_lock, flags);
1635 
1636 	/* Grab the HW semaphore. */
1637 	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1638 		cpu_relax();
1639 
1640 	val = readl(_PRCMU_BASE + clk_mgt[clock].offset);
1641 	val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK);
1642 	val |= (u32)divider;
1643 	writel(val, (_PRCMU_BASE + clk_mgt[clock].offset));
1644 
1645 	/* Release the HW semaphore. */
1646 	writel(0, PRCM_SEM);
1647 
1648 	spin_unlock_irqrestore(&clk_mgt_lock, flags);
1649 
1650 	return 0;
1651 }
1652 
1653 /**
1654  * prcmu_abb_read() - Read register value(s) from the ABB.
1655  * @slave:	The I2C slave address.
1656  * @reg:	The (start) register address.
1657  * @value:	The read out value(s).
1658  * @size:	The number of registers to read.
1659  *
1660  * Reads register value(s) from the ABB.
1661  * @size has to be 1 for the current firmware version.
1662  */
1663 int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
1664 {
1665 	int r;
1666 
1667 	if (size != 1)
1668 		return -EINVAL;
1669 
1670 	mutex_lock(&mb5_transfer.lock);
1671 
1672 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
1673 		cpu_relax();
1674 
1675 	writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
1676 	writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
1677 	writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
1678 	writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
1679 
1680 	writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
1681 
1682 	if (!wait_for_completion_timeout(&mb5_transfer.work,
1683 				msecs_to_jiffies(20000))) {
1684 		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1685 			__func__);
1686 		r = -EIO;
1687 	} else {
1688 		r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
1689 	}
1690 
1691 	if (!r)
1692 		*value = mb5_transfer.ack.value;
1693 
1694 	mutex_unlock(&mb5_transfer.lock);
1695 
1696 	return r;
1697 }
1698 
1699 /**
1700  * prcmu_abb_write() - Write register value(s) to the ABB.
1701  * @slave:	The I2C slave address.
1702  * @reg:	The (start) register address.
1703  * @value:	The value(s) to write.
1704  * @size:	The number of registers to write.
1705  *
1706  * Reads register value(s) from the ABB.
1707  * @size has to be 1 for the current firmware version.
1708  */
1709 int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
1710 {
1711 	int r;
1712 
1713 	if (size != 1)
1714 		return -EINVAL;
1715 
1716 	mutex_lock(&mb5_transfer.lock);
1717 
1718 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
1719 		cpu_relax();
1720 
1721 	writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
1722 	writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
1723 	writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
1724 	writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
1725 
1726 	writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
1727 
1728 	if (!wait_for_completion_timeout(&mb5_transfer.work,
1729 				msecs_to_jiffies(20000))) {
1730 		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1731 			__func__);
1732 		r = -EIO;
1733 	} else {
1734 		r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
1735 	}
1736 
1737 	mutex_unlock(&mb5_transfer.lock);
1738 
1739 	return r;
1740 }
1741 
1742 /**
1743  * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
1744  */
1745 void prcmu_ac_wake_req(void)
1746 {
1747 	u32 val;
1748 	u32 status;
1749 
1750 	mutex_lock(&mb0_transfer.ac_wake_lock);
1751 
1752 	val = readl(PRCM_HOSTACCESS_REQ);
1753 	if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
1754 		goto unlock_and_return;
1755 
1756 	atomic_set(&ac_wake_req_state, 1);
1757 
1758 retry:
1759 	writel((val | PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ), PRCM_HOSTACCESS_REQ);
1760 
1761 	if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
1762 			msecs_to_jiffies(5000))) {
1763 		panic("prcmu: %s timed out (5 s) waiting for a reply.\n",
1764 			__func__);
1765 		goto unlock_and_return;
1766 	}
1767 
1768 	/*
1769 	 * The modem can generate an AC_WAKE_ACK, and then still go to sleep.
1770 	 * As a workaround, we wait, and then check that the modem is indeed
1771 	 * awake (in terms of the value of the PRCM_MOD_AWAKE_STATUS
1772 	 * register, which may not be the whole truth).
1773 	 */
1774 	udelay(400);
1775 	status = (readl(PRCM_MOD_AWAKE_STATUS) & BITS(0, 2));
1776 	if (status != (PRCM_MOD_AWAKE_STATUS_PRCM_MOD_AAPD_AWAKE |
1777 			PRCM_MOD_AWAKE_STATUS_PRCM_MOD_COREPD_AWAKE)) {
1778 		pr_err("prcmu: %s received ack, but modem not awake (0x%X).\n",
1779 			__func__, status);
1780 		udelay(1200);
1781 		writel(val, PRCM_HOSTACCESS_REQ);
1782 		if (wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
1783 				msecs_to_jiffies(5000)))
1784 			goto retry;
1785 		panic("prcmu: %s timed out (5 s) waiting for AC_SLEEP_ACK.\n",
1786 			__func__);
1787 	}
1788 
1789 unlock_and_return:
1790 	mutex_unlock(&mb0_transfer.ac_wake_lock);
1791 }
1792 
1793 /**
1794  * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
1795  */
1796 void prcmu_ac_sleep_req()
1797 {
1798 	u32 val;
1799 
1800 	mutex_lock(&mb0_transfer.ac_wake_lock);
1801 
1802 	val = readl(PRCM_HOSTACCESS_REQ);
1803 	if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
1804 		goto unlock_and_return;
1805 
1806 	writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
1807 		PRCM_HOSTACCESS_REQ);
1808 
1809 	if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
1810 			msecs_to_jiffies(5000))) {
1811 		panic("prcmu: %s timed out (5 s) waiting for a reply.\n",
1812 			__func__);
1813 	}
1814 
1815 	atomic_set(&ac_wake_req_state, 0);
1816 
1817 unlock_and_return:
1818 	mutex_unlock(&mb0_transfer.ac_wake_lock);
1819 }
1820 
1821 bool db8500_prcmu_is_ac_wake_requested(void)
1822 {
1823 	return (atomic_read(&ac_wake_req_state) != 0);
1824 }
1825 
1826 /**
1827  * db8500_prcmu_system_reset - System reset
1828  *
1829  * Saves the reset reason code and then sets the APE_SOFTRST register which
1830  * fires interrupt to fw
1831  */
1832 void db8500_prcmu_system_reset(u16 reset_code)
1833 {
1834 	writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
1835 	writel(1, PRCM_APE_SOFTRST);
1836 }
1837 
1838 /**
1839  * prcmu_reset_modem - ask the PRCMU to reset modem
1840  */
1841 void prcmu_modem_reset(void)
1842 {
1843 	mutex_lock(&mb1_transfer.lock);
1844 
1845 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1846 		cpu_relax();
1847 
1848 	writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1849 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1850 	wait_for_completion(&mb1_transfer.work);
1851 
1852 	/*
1853 	 * No need to check return from PRCMU as modem should go in reset state
1854 	 * This state is already managed by upper layer
1855 	 */
1856 
1857 	mutex_unlock(&mb1_transfer.lock);
1858 }
1859 
1860 static void ack_dbb_wakeup(void)
1861 {
1862 	unsigned long flags;
1863 
1864 	spin_lock_irqsave(&mb0_transfer.lock, flags);
1865 
1866 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
1867 		cpu_relax();
1868 
1869 	writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
1870 	writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
1871 
1872 	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
1873 }
1874 
1875 static inline void print_unknown_header_warning(u8 n, u8 header)
1876 {
1877 	pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n",
1878 		header, n);
1879 }
1880 
1881 static bool read_mailbox_0(void)
1882 {
1883 	bool r;
1884 	u32 ev;
1885 	unsigned int n;
1886 	u8 header;
1887 
1888 	header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
1889 	switch (header) {
1890 	case MB0H_WAKEUP_EXE:
1891 	case MB0H_WAKEUP_SLEEP:
1892 		if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
1893 			ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
1894 		else
1895 			ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
1896 
1897 		if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
1898 			complete(&mb0_transfer.ac_wake_work);
1899 		if (ev & WAKEUP_BIT_SYSCLK_OK)
1900 			complete(&mb3_transfer.sysclk_work);
1901 
1902 		ev &= mb0_transfer.req.dbb_irqs;
1903 
1904 		for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
1905 			if (ev & prcmu_irq_bit[n])
1906 				generic_handle_irq(IRQ_PRCMU_BASE + n);
1907 		}
1908 		r = true;
1909 		break;
1910 	default:
1911 		print_unknown_header_warning(0, header);
1912 		r = false;
1913 		break;
1914 	}
1915 	writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
1916 	return r;
1917 }
1918 
1919 static bool read_mailbox_1(void)
1920 {
1921 	mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
1922 	mb1_transfer.ack.arm_opp = readb(tcdm_base +
1923 		PRCM_ACK_MB1_CURRENT_ARM_OPP);
1924 	mb1_transfer.ack.ape_opp = readb(tcdm_base +
1925 		PRCM_ACK_MB1_CURRENT_APE_OPP);
1926 	mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
1927 		PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
1928 	writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
1929 	complete(&mb1_transfer.work);
1930 	return false;
1931 }
1932 
1933 static bool read_mailbox_2(void)
1934 {
1935 	mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
1936 	writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
1937 	complete(&mb2_transfer.work);
1938 	return false;
1939 }
1940 
1941 static bool read_mailbox_3(void)
1942 {
1943 	writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
1944 	return false;
1945 }
1946 
1947 static bool read_mailbox_4(void)
1948 {
1949 	u8 header;
1950 	bool do_complete = true;
1951 
1952 	header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
1953 	switch (header) {
1954 	case MB4H_MEM_ST:
1955 	case MB4H_HOTDOG:
1956 	case MB4H_HOTMON:
1957 	case MB4H_HOT_PERIOD:
1958 	case MB4H_A9WDOG_CONF:
1959 	case MB4H_A9WDOG_EN:
1960 	case MB4H_A9WDOG_DIS:
1961 	case MB4H_A9WDOG_LOAD:
1962 	case MB4H_A9WDOG_KICK:
1963 		break;
1964 	default:
1965 		print_unknown_header_warning(4, header);
1966 		do_complete = false;
1967 		break;
1968 	}
1969 
1970 	writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
1971 
1972 	if (do_complete)
1973 		complete(&mb4_transfer.work);
1974 
1975 	return false;
1976 }
1977 
1978 static bool read_mailbox_5(void)
1979 {
1980 	mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
1981 	mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
1982 	writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
1983 	complete(&mb5_transfer.work);
1984 	return false;
1985 }
1986 
1987 static bool read_mailbox_6(void)
1988 {
1989 	writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
1990 	return false;
1991 }
1992 
1993 static bool read_mailbox_7(void)
1994 {
1995 	writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
1996 	return false;
1997 }
1998 
1999 static bool (* const read_mailbox[NUM_MB])(void) = {
2000 	read_mailbox_0,
2001 	read_mailbox_1,
2002 	read_mailbox_2,
2003 	read_mailbox_3,
2004 	read_mailbox_4,
2005 	read_mailbox_5,
2006 	read_mailbox_6,
2007 	read_mailbox_7
2008 };
2009 
2010 static irqreturn_t prcmu_irq_handler(int irq, void *data)
2011 {
2012 	u32 bits;
2013 	u8 n;
2014 	irqreturn_t r;
2015 
2016 	bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
2017 	if (unlikely(!bits))
2018 		return IRQ_NONE;
2019 
2020 	r = IRQ_HANDLED;
2021 	for (n = 0; bits; n++) {
2022 		if (bits & MBOX_BIT(n)) {
2023 			bits -= MBOX_BIT(n);
2024 			if (read_mailbox[n]())
2025 				r = IRQ_WAKE_THREAD;
2026 		}
2027 	}
2028 	return r;
2029 }
2030 
2031 static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
2032 {
2033 	ack_dbb_wakeup();
2034 	return IRQ_HANDLED;
2035 }
2036 
2037 static void prcmu_mask_work(struct work_struct *work)
2038 {
2039 	unsigned long flags;
2040 
2041 	spin_lock_irqsave(&mb0_transfer.lock, flags);
2042 
2043 	config_wakeups();
2044 
2045 	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2046 }
2047 
2048 static void prcmu_irq_mask(struct irq_data *d)
2049 {
2050 	unsigned long flags;
2051 
2052 	spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2053 
2054 	mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->irq - IRQ_PRCMU_BASE];
2055 
2056 	spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2057 
2058 	if (d->irq != IRQ_PRCMU_CA_SLEEP)
2059 		schedule_work(&mb0_transfer.mask_work);
2060 }
2061 
2062 static void prcmu_irq_unmask(struct irq_data *d)
2063 {
2064 	unsigned long flags;
2065 
2066 	spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2067 
2068 	mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->irq - IRQ_PRCMU_BASE];
2069 
2070 	spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2071 
2072 	if (d->irq != IRQ_PRCMU_CA_SLEEP)
2073 		schedule_work(&mb0_transfer.mask_work);
2074 }
2075 
2076 static void noop(struct irq_data *d)
2077 {
2078 }
2079 
2080 static struct irq_chip prcmu_irq_chip = {
2081 	.name		= "prcmu",
2082 	.irq_disable	= prcmu_irq_mask,
2083 	.irq_ack	= noop,
2084 	.irq_mask	= prcmu_irq_mask,
2085 	.irq_unmask	= prcmu_irq_unmask,
2086 };
2087 
2088 void __init db8500_prcmu_early_init(void)
2089 {
2090 	unsigned int i;
2091 
2092 	if (cpu_is_u8500v1()) {
2093 		tcdm_base = __io_address(U8500_PRCMU_TCDM_BASE_V1);
2094 	} else if (cpu_is_u8500v2()) {
2095 		void *tcpm_base = ioremap_nocache(U8500_PRCMU_TCPM_BASE, SZ_4K);
2096 
2097 		if (tcpm_base != NULL) {
2098 			int version;
2099 			version = readl(tcpm_base + PRCMU_FW_VERSION_OFFSET);
2100 			prcmu_version.project_number = version & 0xFF;
2101 			prcmu_version.api_version = (version >> 8) & 0xFF;
2102 			prcmu_version.func_version = (version >> 16) & 0xFF;
2103 			prcmu_version.errata = (version >> 24) & 0xFF;
2104 			pr_info("PRCMU firmware version %d.%d.%d\n",
2105 				(version >> 8) & 0xFF, (version >> 16) & 0xFF,
2106 				(version >> 24) & 0xFF);
2107 			iounmap(tcpm_base);
2108 		}
2109 
2110 		tcdm_base = __io_address(U8500_PRCMU_TCDM_BASE);
2111 	} else {
2112 		pr_err("prcmu: Unsupported chip version\n");
2113 		BUG();
2114 	}
2115 
2116 	spin_lock_init(&mb0_transfer.lock);
2117 	spin_lock_init(&mb0_transfer.dbb_irqs_lock);
2118 	mutex_init(&mb0_transfer.ac_wake_lock);
2119 	init_completion(&mb0_transfer.ac_wake_work);
2120 	mutex_init(&mb1_transfer.lock);
2121 	init_completion(&mb1_transfer.work);
2122 	mutex_init(&mb2_transfer.lock);
2123 	init_completion(&mb2_transfer.work);
2124 	spin_lock_init(&mb2_transfer.auto_pm_lock);
2125 	spin_lock_init(&mb3_transfer.lock);
2126 	mutex_init(&mb3_transfer.sysclk_lock);
2127 	init_completion(&mb3_transfer.sysclk_work);
2128 	mutex_init(&mb4_transfer.lock);
2129 	init_completion(&mb4_transfer.work);
2130 	mutex_init(&mb5_transfer.lock);
2131 	init_completion(&mb5_transfer.work);
2132 
2133 	INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
2134 
2135 	/* Initalize irqs. */
2136 	for (i = 0; i < NUM_PRCMU_WAKEUPS; i++) {
2137 		unsigned int irq;
2138 
2139 		irq = IRQ_PRCMU_BASE + i;
2140 		irq_set_chip_and_handler(irq, &prcmu_irq_chip,
2141 					 handle_simple_irq);
2142 		set_irq_flags(irq, IRQF_VALID);
2143 	}
2144 }
2145 
2146 static void __init init_prcm_registers(void)
2147 {
2148 	u32 val;
2149 
2150 	val = readl(PRCM_A9PL_FORCE_CLKEN);
2151 	val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
2152 		PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
2153 	writel(val, (PRCM_A9PL_FORCE_CLKEN));
2154 }
2155 
2156 /*
2157  * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
2158  */
2159 static struct regulator_consumer_supply db8500_vape_consumers[] = {
2160 	REGULATOR_SUPPLY("v-ape", NULL),
2161 	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2162 	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2163 	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2164 	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
2165 	/* "v-mmc" changed to "vcore" in the mainline kernel */
2166 	REGULATOR_SUPPLY("vcore", "sdi0"),
2167 	REGULATOR_SUPPLY("vcore", "sdi1"),
2168 	REGULATOR_SUPPLY("vcore", "sdi2"),
2169 	REGULATOR_SUPPLY("vcore", "sdi3"),
2170 	REGULATOR_SUPPLY("vcore", "sdi4"),
2171 	REGULATOR_SUPPLY("v-dma", "dma40.0"),
2172 	REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2173 	/* "v-uart" changed to "vcore" in the mainline kernel */
2174 	REGULATOR_SUPPLY("vcore", "uart0"),
2175 	REGULATOR_SUPPLY("vcore", "uart1"),
2176 	REGULATOR_SUPPLY("vcore", "uart2"),
2177 	REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
2178 };
2179 
2180 static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
2181 	/* CG2900 and CW1200 power to off-chip peripherals */
2182 	REGULATOR_SUPPLY("gbf_1v8", "cg2900-uart.0"),
2183 	REGULATOR_SUPPLY("wlan_1v8", "cw1200.0"),
2184 	REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2185 	/* AV8100 regulator */
2186 	REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2187 };
2188 
2189 static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
2190 	REGULATOR_SUPPLY("vsupply", "b2r2.0"),
2191 	REGULATOR_SUPPLY("vsupply", "mcde.0"),
2192 };
2193 
2194 static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
2195 	[DB8500_REGULATOR_VAPE] = {
2196 		.constraints = {
2197 			.name = "db8500-vape",
2198 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2199 		},
2200 		.consumer_supplies = db8500_vape_consumers,
2201 		.num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
2202 	},
2203 	[DB8500_REGULATOR_VARM] = {
2204 		.constraints = {
2205 			.name = "db8500-varm",
2206 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2207 		},
2208 	},
2209 	[DB8500_REGULATOR_VMODEM] = {
2210 		.constraints = {
2211 			.name = "db8500-vmodem",
2212 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2213 		},
2214 	},
2215 	[DB8500_REGULATOR_VPLL] = {
2216 		.constraints = {
2217 			.name = "db8500-vpll",
2218 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2219 		},
2220 	},
2221 	[DB8500_REGULATOR_VSMPS1] = {
2222 		.constraints = {
2223 			.name = "db8500-vsmps1",
2224 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2225 		},
2226 	},
2227 	[DB8500_REGULATOR_VSMPS2] = {
2228 		.constraints = {
2229 			.name = "db8500-vsmps2",
2230 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2231 		},
2232 		.consumer_supplies = db8500_vsmps2_consumers,
2233 		.num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
2234 	},
2235 	[DB8500_REGULATOR_VSMPS3] = {
2236 		.constraints = {
2237 			.name = "db8500-vsmps3",
2238 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2239 		},
2240 	},
2241 	[DB8500_REGULATOR_VRF1] = {
2242 		.constraints = {
2243 			.name = "db8500-vrf1",
2244 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2245 		},
2246 	},
2247 	[DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
2248 		.supply_regulator = "db8500-vape",
2249 		.constraints = {
2250 			.name = "db8500-sva-mmdsp",
2251 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2252 		},
2253 	},
2254 	[DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
2255 		.constraints = {
2256 			/* "ret" means "retention" */
2257 			.name = "db8500-sva-mmdsp-ret",
2258 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2259 		},
2260 	},
2261 	[DB8500_REGULATOR_SWITCH_SVAPIPE] = {
2262 		.supply_regulator = "db8500-vape",
2263 		.constraints = {
2264 			.name = "db8500-sva-pipe",
2265 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2266 		},
2267 	},
2268 	[DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
2269 		.supply_regulator = "db8500-vape",
2270 		.constraints = {
2271 			.name = "db8500-sia-mmdsp",
2272 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2273 		},
2274 	},
2275 	[DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
2276 		.constraints = {
2277 			.name = "db8500-sia-mmdsp-ret",
2278 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2279 		},
2280 	},
2281 	[DB8500_REGULATOR_SWITCH_SIAPIPE] = {
2282 		.supply_regulator = "db8500-vape",
2283 		.constraints = {
2284 			.name = "db8500-sia-pipe",
2285 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2286 		},
2287 	},
2288 	[DB8500_REGULATOR_SWITCH_SGA] = {
2289 		.supply_regulator = "db8500-vape",
2290 		.constraints = {
2291 			.name = "db8500-sga",
2292 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2293 		},
2294 	},
2295 	[DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
2296 		.supply_regulator = "db8500-vape",
2297 		.constraints = {
2298 			.name = "db8500-b2r2-mcde",
2299 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2300 		},
2301 		.consumer_supplies = db8500_b2r2_mcde_consumers,
2302 		.num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
2303 	},
2304 	[DB8500_REGULATOR_SWITCH_ESRAM12] = {
2305 		.supply_regulator = "db8500-vape",
2306 		.constraints = {
2307 			.name = "db8500-esram12",
2308 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2309 		},
2310 	},
2311 	[DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
2312 		.constraints = {
2313 			.name = "db8500-esram12-ret",
2314 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2315 		},
2316 	},
2317 	[DB8500_REGULATOR_SWITCH_ESRAM34] = {
2318 		.supply_regulator = "db8500-vape",
2319 		.constraints = {
2320 			.name = "db8500-esram34",
2321 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2322 		},
2323 	},
2324 	[DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
2325 		.constraints = {
2326 			.name = "db8500-esram34-ret",
2327 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2328 		},
2329 	},
2330 };
2331 
2332 static struct mfd_cell db8500_prcmu_devs[] = {
2333 	{
2334 		.name = "db8500-prcmu-regulators",
2335 		.platform_data = &db8500_regulators,
2336 		.pdata_size = sizeof(db8500_regulators),
2337 	},
2338 	{
2339 		.name = "cpufreq-u8500",
2340 	},
2341 };
2342 
2343 /**
2344  * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
2345  *
2346  */
2347 static int __init db8500_prcmu_probe(struct platform_device *pdev)
2348 {
2349 	int err = 0;
2350 
2351 	if (ux500_is_svp())
2352 		return -ENODEV;
2353 
2354 	init_prcm_registers();
2355 
2356 	/* Clean up the mailbox interrupts after pre-kernel code. */
2357 	writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
2358 
2359 	err = request_threaded_irq(IRQ_DB8500_PRCMU1, prcmu_irq_handler,
2360 		prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
2361 	if (err < 0) {
2362 		pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
2363 		err = -EBUSY;
2364 		goto no_irq_return;
2365 	}
2366 
2367 	if (cpu_is_u8500v20_or_later())
2368 		prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
2369 
2370 	err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
2371 			      ARRAY_SIZE(db8500_prcmu_devs), NULL,
2372 			      0);
2373 
2374 	if (err)
2375 		pr_err("prcmu: Failed to add subdevices\n");
2376 	else
2377 		pr_info("DB8500 PRCMU initialized\n");
2378 
2379 no_irq_return:
2380 	return err;
2381 }
2382 
2383 static struct platform_driver db8500_prcmu_driver = {
2384 	.driver = {
2385 		.name = "db8500-prcmu",
2386 		.owner = THIS_MODULE,
2387 	},
2388 };
2389 
2390 static int __init db8500_prcmu_init(void)
2391 {
2392 	return platform_driver_probe(&db8500_prcmu_driver, db8500_prcmu_probe);
2393 }
2394 
2395 arch_initcall(db8500_prcmu_init);
2396 
2397 MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>");
2398 MODULE_DESCRIPTION("DB8500 PRCM Unit driver");
2399 MODULE_LICENSE("GPL v2");
2400