1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * DB8500 PRCM Unit driver 4 * 5 * Copyright (C) STMicroelectronics 2009 6 * Copyright (C) ST-Ericsson SA 2010 7 * 8 * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com> 9 * Author: Sundar Iyer <sundar.iyer@stericsson.com> 10 * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com> 11 * 12 * U8500 PRCM Unit interface driver 13 */ 14 #include <linux/init.h> 15 #include <linux/export.h> 16 #include <linux/kernel.h> 17 #include <linux/delay.h> 18 #include <linux/errno.h> 19 #include <linux/err.h> 20 #include <linux/spinlock.h> 21 #include <linux/io.h> 22 #include <linux/slab.h> 23 #include <linux/mutex.h> 24 #include <linux/completion.h> 25 #include <linux/irq.h> 26 #include <linux/jiffies.h> 27 #include <linux/bitops.h> 28 #include <linux/fs.h> 29 #include <linux/of.h> 30 #include <linux/of_irq.h> 31 #include <linux/platform_device.h> 32 #include <linux/uaccess.h> 33 #include <linux/mfd/core.h> 34 #include <linux/mfd/dbx500-prcmu.h> 35 #include <linux/mfd/abx500/ab8500.h> 36 #include <linux/regulator/db8500-prcmu.h> 37 #include <linux/regulator/machine.h> 38 #include <linux/platform_data/ux500_wdt.h> 39 #include <linux/platform_data/db8500_thermal.h> 40 #include "dbx500-prcmu-regs.h" 41 42 /* Index of different voltages to be used when accessing AVSData */ 43 #define PRCM_AVS_BASE 0x2FC 44 #define PRCM_AVS_VBB_RET (PRCM_AVS_BASE + 0x0) 45 #define PRCM_AVS_VBB_MAX_OPP (PRCM_AVS_BASE + 0x1) 46 #define PRCM_AVS_VBB_100_OPP (PRCM_AVS_BASE + 0x2) 47 #define PRCM_AVS_VBB_50_OPP (PRCM_AVS_BASE + 0x3) 48 #define PRCM_AVS_VARM_MAX_OPP (PRCM_AVS_BASE + 0x4) 49 #define PRCM_AVS_VARM_100_OPP (PRCM_AVS_BASE + 0x5) 50 #define PRCM_AVS_VARM_50_OPP (PRCM_AVS_BASE + 0x6) 51 #define PRCM_AVS_VARM_RET (PRCM_AVS_BASE + 0x7) 52 #define PRCM_AVS_VAPE_100_OPP (PRCM_AVS_BASE + 0x8) 53 #define PRCM_AVS_VAPE_50_OPP (PRCM_AVS_BASE + 0x9) 54 #define PRCM_AVS_VMOD_100_OPP (PRCM_AVS_BASE + 0xA) 55 #define PRCM_AVS_VMOD_50_OPP (PRCM_AVS_BASE + 0xB) 56 #define PRCM_AVS_VSAFE (PRCM_AVS_BASE + 0xC) 57 58 #define PRCM_AVS_VOLTAGE 0 59 #define PRCM_AVS_VOLTAGE_MASK 0x3f 60 #define PRCM_AVS_ISSLOWSTARTUP 6 61 #define PRCM_AVS_ISSLOWSTARTUP_MASK (1 << PRCM_AVS_ISSLOWSTARTUP) 62 #define PRCM_AVS_ISMODEENABLE 7 63 #define PRCM_AVS_ISMODEENABLE_MASK (1 << PRCM_AVS_ISMODEENABLE) 64 65 #define PRCM_BOOT_STATUS 0xFFF 66 #define PRCM_ROMCODE_A2P 0xFFE 67 #define PRCM_ROMCODE_P2A 0xFFD 68 #define PRCM_XP70_CUR_PWR_STATE 0xFFC /* 4 BYTES */ 69 70 #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */ 71 72 #define _PRCM_MBOX_HEADER 0xFE8 /* 16 bytes */ 73 #define PRCM_MBOX_HEADER_REQ_MB0 (_PRCM_MBOX_HEADER + 0x0) 74 #define PRCM_MBOX_HEADER_REQ_MB1 (_PRCM_MBOX_HEADER + 0x1) 75 #define PRCM_MBOX_HEADER_REQ_MB2 (_PRCM_MBOX_HEADER + 0x2) 76 #define PRCM_MBOX_HEADER_REQ_MB3 (_PRCM_MBOX_HEADER + 0x3) 77 #define PRCM_MBOX_HEADER_REQ_MB4 (_PRCM_MBOX_HEADER + 0x4) 78 #define PRCM_MBOX_HEADER_REQ_MB5 (_PRCM_MBOX_HEADER + 0x5) 79 #define PRCM_MBOX_HEADER_ACK_MB0 (_PRCM_MBOX_HEADER + 0x8) 80 81 /* Req Mailboxes */ 82 #define PRCM_REQ_MB0 0xFDC /* 12 bytes */ 83 #define PRCM_REQ_MB1 0xFD0 /* 12 bytes */ 84 #define PRCM_REQ_MB2 0xFC0 /* 16 bytes */ 85 #define PRCM_REQ_MB3 0xE4C /* 372 bytes */ 86 #define PRCM_REQ_MB4 0xE48 /* 4 bytes */ 87 #define PRCM_REQ_MB5 0xE44 /* 4 bytes */ 88 89 /* Ack Mailboxes */ 90 #define PRCM_ACK_MB0 0xE08 /* 52 bytes */ 91 #define PRCM_ACK_MB1 0xE04 /* 4 bytes */ 92 #define PRCM_ACK_MB2 0xE00 /* 4 bytes */ 93 #define PRCM_ACK_MB3 0xDFC /* 4 bytes */ 94 #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */ 95 #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */ 96 97 /* Mailbox 0 headers */ 98 #define MB0H_POWER_STATE_TRANS 0 99 #define MB0H_CONFIG_WAKEUPS_EXE 1 100 #define MB0H_READ_WAKEUP_ACK 3 101 #define MB0H_CONFIG_WAKEUPS_SLEEP 4 102 103 #define MB0H_WAKEUP_EXE 2 104 #define MB0H_WAKEUP_SLEEP 5 105 106 /* Mailbox 0 REQs */ 107 #define PRCM_REQ_MB0_AP_POWER_STATE (PRCM_REQ_MB0 + 0x0) 108 #define PRCM_REQ_MB0_AP_PLL_STATE (PRCM_REQ_MB0 + 0x1) 109 #define PRCM_REQ_MB0_ULP_CLOCK_STATE (PRCM_REQ_MB0 + 0x2) 110 #define PRCM_REQ_MB0_DO_NOT_WFI (PRCM_REQ_MB0 + 0x3) 111 #define PRCM_REQ_MB0_WAKEUP_8500 (PRCM_REQ_MB0 + 0x4) 112 #define PRCM_REQ_MB0_WAKEUP_4500 (PRCM_REQ_MB0 + 0x8) 113 114 /* Mailbox 0 ACKs */ 115 #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS (PRCM_ACK_MB0 + 0x0) 116 #define PRCM_ACK_MB0_READ_POINTER (PRCM_ACK_MB0 + 0x1) 117 #define PRCM_ACK_MB0_WAKEUP_0_8500 (PRCM_ACK_MB0 + 0x4) 118 #define PRCM_ACK_MB0_WAKEUP_0_4500 (PRCM_ACK_MB0 + 0x8) 119 #define PRCM_ACK_MB0_WAKEUP_1_8500 (PRCM_ACK_MB0 + 0x1C) 120 #define PRCM_ACK_MB0_WAKEUP_1_4500 (PRCM_ACK_MB0 + 0x20) 121 #define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20 122 123 /* Mailbox 1 headers */ 124 #define MB1H_ARM_APE_OPP 0x0 125 #define MB1H_RESET_MODEM 0x2 126 #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3 127 #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4 128 #define MB1H_RELEASE_USB_WAKEUP 0x5 129 #define MB1H_PLL_ON_OFF 0x6 130 131 /* Mailbox 1 Requests */ 132 #define PRCM_REQ_MB1_ARM_OPP (PRCM_REQ_MB1 + 0x0) 133 #define PRCM_REQ_MB1_APE_OPP (PRCM_REQ_MB1 + 0x1) 134 #define PRCM_REQ_MB1_PLL_ON_OFF (PRCM_REQ_MB1 + 0x4) 135 #define PLL_SOC0_OFF 0x1 136 #define PLL_SOC0_ON 0x2 137 #define PLL_SOC1_OFF 0x4 138 #define PLL_SOC1_ON 0x8 139 140 /* Mailbox 1 ACKs */ 141 #define PRCM_ACK_MB1_CURRENT_ARM_OPP (PRCM_ACK_MB1 + 0x0) 142 #define PRCM_ACK_MB1_CURRENT_APE_OPP (PRCM_ACK_MB1 + 0x1) 143 #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2) 144 #define PRCM_ACK_MB1_DVFS_STATUS (PRCM_ACK_MB1 + 0x3) 145 146 /* Mailbox 2 headers */ 147 #define MB2H_DPS 0x0 148 #define MB2H_AUTO_PWR 0x1 149 150 /* Mailbox 2 REQs */ 151 #define PRCM_REQ_MB2_SVA_MMDSP (PRCM_REQ_MB2 + 0x0) 152 #define PRCM_REQ_MB2_SVA_PIPE (PRCM_REQ_MB2 + 0x1) 153 #define PRCM_REQ_MB2_SIA_MMDSP (PRCM_REQ_MB2 + 0x2) 154 #define PRCM_REQ_MB2_SIA_PIPE (PRCM_REQ_MB2 + 0x3) 155 #define PRCM_REQ_MB2_SGA (PRCM_REQ_MB2 + 0x4) 156 #define PRCM_REQ_MB2_B2R2_MCDE (PRCM_REQ_MB2 + 0x5) 157 #define PRCM_REQ_MB2_ESRAM12 (PRCM_REQ_MB2 + 0x6) 158 #define PRCM_REQ_MB2_ESRAM34 (PRCM_REQ_MB2 + 0x7) 159 #define PRCM_REQ_MB2_AUTO_PM_SLEEP (PRCM_REQ_MB2 + 0x8) 160 #define PRCM_REQ_MB2_AUTO_PM_IDLE (PRCM_REQ_MB2 + 0xC) 161 162 /* Mailbox 2 ACKs */ 163 #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0) 164 #define HWACC_PWR_ST_OK 0xFE 165 166 /* Mailbox 3 headers */ 167 #define MB3H_ANC 0x0 168 #define MB3H_SIDETONE 0x1 169 #define MB3H_SYSCLK 0xE 170 171 /* Mailbox 3 Requests */ 172 #define PRCM_REQ_MB3_ANC_FIR_COEFF (PRCM_REQ_MB3 + 0x0) 173 #define PRCM_REQ_MB3_ANC_IIR_COEFF (PRCM_REQ_MB3 + 0x20) 174 #define PRCM_REQ_MB3_ANC_SHIFTER (PRCM_REQ_MB3 + 0x60) 175 #define PRCM_REQ_MB3_ANC_WARP (PRCM_REQ_MB3 + 0x64) 176 #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN (PRCM_REQ_MB3 + 0x68) 177 #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C) 178 #define PRCM_REQ_MB3_SYSCLK_MGT (PRCM_REQ_MB3 + 0x16C) 179 180 /* Mailbox 4 headers */ 181 #define MB4H_DDR_INIT 0x0 182 #define MB4H_MEM_ST 0x1 183 #define MB4H_HOTDOG 0x12 184 #define MB4H_HOTMON 0x13 185 #define MB4H_HOT_PERIOD 0x14 186 #define MB4H_A9WDOG_CONF 0x16 187 #define MB4H_A9WDOG_EN 0x17 188 #define MB4H_A9WDOG_DIS 0x18 189 #define MB4H_A9WDOG_LOAD 0x19 190 #define MB4H_A9WDOG_KICK 0x20 191 192 /* Mailbox 4 Requests */ 193 #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE (PRCM_REQ_MB4 + 0x0) 194 #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE (PRCM_REQ_MB4 + 0x1) 195 #define PRCM_REQ_MB4_ESRAM0_ST (PRCM_REQ_MB4 + 0x3) 196 #define PRCM_REQ_MB4_HOTDOG_THRESHOLD (PRCM_REQ_MB4 + 0x0) 197 #define PRCM_REQ_MB4_HOTMON_LOW (PRCM_REQ_MB4 + 0x0) 198 #define PRCM_REQ_MB4_HOTMON_HIGH (PRCM_REQ_MB4 + 0x1) 199 #define PRCM_REQ_MB4_HOTMON_CONFIG (PRCM_REQ_MB4 + 0x2) 200 #define PRCM_REQ_MB4_HOT_PERIOD (PRCM_REQ_MB4 + 0x0) 201 #define HOTMON_CONFIG_LOW BIT(0) 202 #define HOTMON_CONFIG_HIGH BIT(1) 203 #define PRCM_REQ_MB4_A9WDOG_0 (PRCM_REQ_MB4 + 0x0) 204 #define PRCM_REQ_MB4_A9WDOG_1 (PRCM_REQ_MB4 + 0x1) 205 #define PRCM_REQ_MB4_A9WDOG_2 (PRCM_REQ_MB4 + 0x2) 206 #define PRCM_REQ_MB4_A9WDOG_3 (PRCM_REQ_MB4 + 0x3) 207 #define A9WDOG_AUTO_OFF_EN BIT(7) 208 #define A9WDOG_AUTO_OFF_DIS 0 209 #define A9WDOG_ID_MASK 0xf 210 211 /* Mailbox 5 Requests */ 212 #define PRCM_REQ_MB5_I2C_SLAVE_OP (PRCM_REQ_MB5 + 0x0) 213 #define PRCM_REQ_MB5_I2C_HW_BITS (PRCM_REQ_MB5 + 0x1) 214 #define PRCM_REQ_MB5_I2C_REG (PRCM_REQ_MB5 + 0x2) 215 #define PRCM_REQ_MB5_I2C_VAL (PRCM_REQ_MB5 + 0x3) 216 #define PRCMU_I2C_WRITE(slave) (((slave) << 1) | BIT(6)) 217 #define PRCMU_I2C_READ(slave) (((slave) << 1) | BIT(0) | BIT(6)) 218 #define PRCMU_I2C_STOP_EN BIT(3) 219 220 /* Mailbox 5 ACKs */ 221 #define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1) 222 #define PRCM_ACK_MB5_I2C_VAL (PRCM_ACK_MB5 + 0x3) 223 #define I2C_WR_OK 0x1 224 #define I2C_RD_OK 0x2 225 226 #define NUM_MB 8 227 #define MBOX_BIT BIT 228 #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1) 229 230 /* 231 * Wakeups/IRQs 232 */ 233 234 #define WAKEUP_BIT_RTC BIT(0) 235 #define WAKEUP_BIT_RTT0 BIT(1) 236 #define WAKEUP_BIT_RTT1 BIT(2) 237 #define WAKEUP_BIT_HSI0 BIT(3) 238 #define WAKEUP_BIT_HSI1 BIT(4) 239 #define WAKEUP_BIT_CA_WAKE BIT(5) 240 #define WAKEUP_BIT_USB BIT(6) 241 #define WAKEUP_BIT_ABB BIT(7) 242 #define WAKEUP_BIT_ABB_FIFO BIT(8) 243 #define WAKEUP_BIT_SYSCLK_OK BIT(9) 244 #define WAKEUP_BIT_CA_SLEEP BIT(10) 245 #define WAKEUP_BIT_AC_WAKE_ACK BIT(11) 246 #define WAKEUP_BIT_SIDE_TONE_OK BIT(12) 247 #define WAKEUP_BIT_ANC_OK BIT(13) 248 #define WAKEUP_BIT_SW_ERROR BIT(14) 249 #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15) 250 #define WAKEUP_BIT_ARM BIT(17) 251 #define WAKEUP_BIT_HOTMON_LOW BIT(18) 252 #define WAKEUP_BIT_HOTMON_HIGH BIT(19) 253 #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20) 254 #define WAKEUP_BIT_GPIO0 BIT(23) 255 #define WAKEUP_BIT_GPIO1 BIT(24) 256 #define WAKEUP_BIT_GPIO2 BIT(25) 257 #define WAKEUP_BIT_GPIO3 BIT(26) 258 #define WAKEUP_BIT_GPIO4 BIT(27) 259 #define WAKEUP_BIT_GPIO5 BIT(28) 260 #define WAKEUP_BIT_GPIO6 BIT(29) 261 #define WAKEUP_BIT_GPIO7 BIT(30) 262 #define WAKEUP_BIT_GPIO8 BIT(31) 263 264 static struct { 265 bool valid; 266 struct prcmu_fw_version version; 267 } fw_info; 268 269 static struct irq_domain *db8500_irq_domain; 270 271 /* 272 * This vector maps irq numbers to the bits in the bit field used in 273 * communication with the PRCMU firmware. 274 * 275 * The reason for having this is to keep the irq numbers contiguous even though 276 * the bits in the bit field are not. (The bits also have a tendency to move 277 * around, to further complicate matters.) 278 */ 279 #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name)) 280 #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name) 281 282 #define IRQ_PRCMU_RTC 0 283 #define IRQ_PRCMU_RTT0 1 284 #define IRQ_PRCMU_RTT1 2 285 #define IRQ_PRCMU_HSI0 3 286 #define IRQ_PRCMU_HSI1 4 287 #define IRQ_PRCMU_CA_WAKE 5 288 #define IRQ_PRCMU_USB 6 289 #define IRQ_PRCMU_ABB 7 290 #define IRQ_PRCMU_ABB_FIFO 8 291 #define IRQ_PRCMU_ARM 9 292 #define IRQ_PRCMU_MODEM_SW_RESET_REQ 10 293 #define IRQ_PRCMU_GPIO0 11 294 #define IRQ_PRCMU_GPIO1 12 295 #define IRQ_PRCMU_GPIO2 13 296 #define IRQ_PRCMU_GPIO3 14 297 #define IRQ_PRCMU_GPIO4 15 298 #define IRQ_PRCMU_GPIO5 16 299 #define IRQ_PRCMU_GPIO6 17 300 #define IRQ_PRCMU_GPIO7 18 301 #define IRQ_PRCMU_GPIO8 19 302 #define IRQ_PRCMU_CA_SLEEP 20 303 #define IRQ_PRCMU_HOTMON_LOW 21 304 #define IRQ_PRCMU_HOTMON_HIGH 22 305 #define NUM_PRCMU_WAKEUPS 23 306 307 static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = { 308 IRQ_ENTRY(RTC), 309 IRQ_ENTRY(RTT0), 310 IRQ_ENTRY(RTT1), 311 IRQ_ENTRY(HSI0), 312 IRQ_ENTRY(HSI1), 313 IRQ_ENTRY(CA_WAKE), 314 IRQ_ENTRY(USB), 315 IRQ_ENTRY(ABB), 316 IRQ_ENTRY(ABB_FIFO), 317 IRQ_ENTRY(CA_SLEEP), 318 IRQ_ENTRY(ARM), 319 IRQ_ENTRY(HOTMON_LOW), 320 IRQ_ENTRY(HOTMON_HIGH), 321 IRQ_ENTRY(MODEM_SW_RESET_REQ), 322 IRQ_ENTRY(GPIO0), 323 IRQ_ENTRY(GPIO1), 324 IRQ_ENTRY(GPIO2), 325 IRQ_ENTRY(GPIO3), 326 IRQ_ENTRY(GPIO4), 327 IRQ_ENTRY(GPIO5), 328 IRQ_ENTRY(GPIO6), 329 IRQ_ENTRY(GPIO7), 330 IRQ_ENTRY(GPIO8) 331 }; 332 333 #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1) 334 #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name) 335 static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = { 336 WAKEUP_ENTRY(RTC), 337 WAKEUP_ENTRY(RTT0), 338 WAKEUP_ENTRY(RTT1), 339 WAKEUP_ENTRY(HSI0), 340 WAKEUP_ENTRY(HSI1), 341 WAKEUP_ENTRY(USB), 342 WAKEUP_ENTRY(ABB), 343 WAKEUP_ENTRY(ABB_FIFO), 344 WAKEUP_ENTRY(ARM) 345 }; 346 347 /* 348 * mb0_transfer - state needed for mailbox 0 communication. 349 * @lock: The transaction lock. 350 * @dbb_events_lock: A lock used to handle concurrent access to (parts of) 351 * the request data. 352 * @mask_work: Work structure used for (un)masking wakeup interrupts. 353 * @req: Request data that need to persist between requests. 354 */ 355 static struct { 356 spinlock_t lock; 357 spinlock_t dbb_irqs_lock; 358 struct work_struct mask_work; 359 struct mutex ac_wake_lock; 360 struct completion ac_wake_work; 361 struct { 362 u32 dbb_irqs; 363 u32 dbb_wakeups; 364 u32 abb_events; 365 } req; 366 } mb0_transfer; 367 368 /* 369 * mb1_transfer - state needed for mailbox 1 communication. 370 * @lock: The transaction lock. 371 * @work: The transaction completion structure. 372 * @ape_opp: The current APE OPP. 373 * @ack: Reply ("acknowledge") data. 374 */ 375 static struct { 376 struct mutex lock; 377 struct completion work; 378 u8 ape_opp; 379 struct { 380 u8 header; 381 u8 arm_opp; 382 u8 ape_opp; 383 u8 ape_voltage_status; 384 } ack; 385 } mb1_transfer; 386 387 /* 388 * mb2_transfer - state needed for mailbox 2 communication. 389 * @lock: The transaction lock. 390 * @work: The transaction completion structure. 391 * @auto_pm_lock: The autonomous power management configuration lock. 392 * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled. 393 * @req: Request data that need to persist between requests. 394 * @ack: Reply ("acknowledge") data. 395 */ 396 static struct { 397 struct mutex lock; 398 struct completion work; 399 spinlock_t auto_pm_lock; 400 bool auto_pm_enabled; 401 struct { 402 u8 status; 403 } ack; 404 } mb2_transfer; 405 406 /* 407 * mb3_transfer - state needed for mailbox 3 communication. 408 * @lock: The request lock. 409 * @sysclk_lock: A lock used to handle concurrent sysclk requests. 410 * @sysclk_work: Work structure used for sysclk requests. 411 */ 412 static struct { 413 spinlock_t lock; 414 struct mutex sysclk_lock; 415 struct completion sysclk_work; 416 } mb3_transfer; 417 418 /* 419 * mb4_transfer - state needed for mailbox 4 communication. 420 * @lock: The transaction lock. 421 * @work: The transaction completion structure. 422 */ 423 static struct { 424 struct mutex lock; 425 struct completion work; 426 } mb4_transfer; 427 428 /* 429 * mb5_transfer - state needed for mailbox 5 communication. 430 * @lock: The transaction lock. 431 * @work: The transaction completion structure. 432 * @ack: Reply ("acknowledge") data. 433 */ 434 static struct { 435 struct mutex lock; 436 struct completion work; 437 struct { 438 u8 status; 439 u8 value; 440 } ack; 441 } mb5_transfer; 442 443 static atomic_t ac_wake_req_state = ATOMIC_INIT(0); 444 445 /* Spinlocks */ 446 static DEFINE_SPINLOCK(prcmu_lock); 447 static DEFINE_SPINLOCK(clkout_lock); 448 449 /* Global var to runtime determine TCDM base for v2 or v1 */ 450 static __iomem void *tcdm_base; 451 static __iomem void *prcmu_base; 452 453 struct clk_mgt { 454 u32 offset; 455 u32 pllsw; 456 int branch; 457 bool clk38div; 458 }; 459 460 enum { 461 PLL_RAW, 462 PLL_FIX, 463 PLL_DIV 464 }; 465 466 static DEFINE_SPINLOCK(clk_mgt_lock); 467 468 #define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \ 469 { (PRCM_##_name##_MGT), 0 , _branch, _clk38div} 470 static struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = { 471 CLK_MGT_ENTRY(SGACLK, PLL_DIV, false), 472 CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true), 473 CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true), 474 CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true), 475 CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true), 476 CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true), 477 CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true), 478 CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true), 479 CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true), 480 CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true), 481 CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true), 482 CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true), 483 CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true), 484 CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true), 485 CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true), 486 CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true), 487 CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true), 488 CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false), 489 CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true), 490 CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true), 491 CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true), 492 CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true), 493 CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false), 494 CLK_MGT_ENTRY(DMACLK, PLL_DIV, true), 495 CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true), 496 CLK_MGT_ENTRY(TVCLK, PLL_FIX, true), 497 CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true), 498 CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true), 499 CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false), 500 }; 501 502 struct dsiclk { 503 u32 divsel_mask; 504 u32 divsel_shift; 505 u32 divsel; 506 }; 507 508 static struct dsiclk dsiclk[2] = { 509 { 510 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK, 511 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT, 512 .divsel = PRCM_DSI_PLLOUT_SEL_PHI, 513 }, 514 { 515 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK, 516 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT, 517 .divsel = PRCM_DSI_PLLOUT_SEL_PHI, 518 } 519 }; 520 521 struct dsiescclk { 522 u32 en; 523 u32 div_mask; 524 u32 div_shift; 525 }; 526 527 static struct dsiescclk dsiescclk[3] = { 528 { 529 .en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN, 530 .div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK, 531 .div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT, 532 }, 533 { 534 .en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN, 535 .div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK, 536 .div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT, 537 }, 538 { 539 .en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN, 540 .div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK, 541 .div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT, 542 } 543 }; 544 545 546 /* 547 * Used by MCDE to setup all necessary PRCMU registers 548 */ 549 #define PRCMU_RESET_DSIPLL 0x00004000 550 #define PRCMU_UNCLAMP_DSIPLL 0x00400800 551 552 #define PRCMU_CLK_PLL_DIV_SHIFT 0 553 #define PRCMU_CLK_PLL_SW_SHIFT 5 554 #define PRCMU_CLK_38 (1 << 9) 555 #define PRCMU_CLK_38_SRC (1 << 10) 556 #define PRCMU_CLK_38_DIV (1 << 11) 557 558 /* PLLDIV=12, PLLSW=4 (PLLDDR) */ 559 #define PRCMU_DSI_CLOCK_SETTING 0x0000008C 560 561 /* DPI 50000000 Hz */ 562 #define PRCMU_DPI_CLOCK_SETTING ((1 << PRCMU_CLK_PLL_SW_SHIFT) | \ 563 (16 << PRCMU_CLK_PLL_DIV_SHIFT)) 564 #define PRCMU_DSI_LP_CLOCK_SETTING 0x00000E00 565 566 /* D=101, N=1, R=4, SELDIV2=0 */ 567 #define PRCMU_PLLDSI_FREQ_SETTING 0x00040165 568 569 #define PRCMU_ENABLE_PLLDSI 0x00000001 570 #define PRCMU_DISABLE_PLLDSI 0x00000000 571 #define PRCMU_RELEASE_RESET_DSS 0x0000400C 572 #define PRCMU_DSI_PLLOUT_SEL_SETTING 0x00000202 573 /* ESC clk, div0=1, div1=1, div2=3 */ 574 #define PRCMU_ENABLE_ESCAPE_CLOCK_DIV 0x07030101 575 #define PRCMU_DISABLE_ESCAPE_CLOCK_DIV 0x00030101 576 #define PRCMU_DSI_RESET_SW 0x00000007 577 578 #define PRCMU_PLLDSI_LOCKP_LOCKED 0x3 579 580 int db8500_prcmu_enable_dsipll(void) 581 { 582 int i; 583 584 /* Clear DSIPLL_RESETN */ 585 writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR); 586 /* Unclamp DSIPLL in/out */ 587 writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR); 588 589 /* Set DSI PLL FREQ */ 590 writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ); 591 writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL); 592 /* Enable Escape clocks */ 593 writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV); 594 595 /* Start DSI PLL */ 596 writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE); 597 /* Reset DSI PLL */ 598 writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET); 599 for (i = 0; i < 10; i++) { 600 if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED) 601 == PRCMU_PLLDSI_LOCKP_LOCKED) 602 break; 603 udelay(100); 604 } 605 /* Set DSIPLL_RESETN */ 606 writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET); 607 return 0; 608 } 609 610 int db8500_prcmu_disable_dsipll(void) 611 { 612 /* Disable dsi pll */ 613 writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE); 614 /* Disable escapeclock */ 615 writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV); 616 return 0; 617 } 618 619 int db8500_prcmu_set_display_clocks(void) 620 { 621 unsigned long flags; 622 623 spin_lock_irqsave(&clk_mgt_lock, flags); 624 625 /* Grab the HW semaphore. */ 626 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0) 627 cpu_relax(); 628 629 writel(PRCMU_DSI_CLOCK_SETTING, prcmu_base + PRCM_HDMICLK_MGT); 630 writel(PRCMU_DSI_LP_CLOCK_SETTING, prcmu_base + PRCM_TVCLK_MGT); 631 writel(PRCMU_DPI_CLOCK_SETTING, prcmu_base + PRCM_LCDCLK_MGT); 632 633 /* Release the HW semaphore. */ 634 writel(0, PRCM_SEM); 635 636 spin_unlock_irqrestore(&clk_mgt_lock, flags); 637 638 return 0; 639 } 640 641 u32 db8500_prcmu_read(unsigned int reg) 642 { 643 return readl(prcmu_base + reg); 644 } 645 646 void db8500_prcmu_write(unsigned int reg, u32 value) 647 { 648 unsigned long flags; 649 650 spin_lock_irqsave(&prcmu_lock, flags); 651 writel(value, (prcmu_base + reg)); 652 spin_unlock_irqrestore(&prcmu_lock, flags); 653 } 654 655 void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value) 656 { 657 u32 val; 658 unsigned long flags; 659 660 spin_lock_irqsave(&prcmu_lock, flags); 661 val = readl(prcmu_base + reg); 662 val = ((val & ~mask) | (value & mask)); 663 writel(val, (prcmu_base + reg)); 664 spin_unlock_irqrestore(&prcmu_lock, flags); 665 } 666 667 struct prcmu_fw_version *prcmu_get_fw_version(void) 668 { 669 return fw_info.valid ? &fw_info.version : NULL; 670 } 671 672 bool prcmu_has_arm_maxopp(void) 673 { 674 return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) & 675 PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK; 676 } 677 678 /** 679 * prcmu_set_rc_a2p - This function is used to run few power state sequences 680 * @val: Value to be set, i.e. transition requested 681 * Returns: 0 on success, -EINVAL on invalid argument 682 * 683 * This function is used to run the following power state sequences - 684 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep 685 */ 686 int prcmu_set_rc_a2p(enum romcode_write val) 687 { 688 if (val < RDY_2_DS || val > RDY_2_XP70_RST) 689 return -EINVAL; 690 writeb(val, (tcdm_base + PRCM_ROMCODE_A2P)); 691 return 0; 692 } 693 694 /** 695 * prcmu_get_rc_p2a - This function is used to get power state sequences 696 * Returns: the power transition that has last happened 697 * 698 * This function can return the following transitions- 699 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep 700 */ 701 enum romcode_read prcmu_get_rc_p2a(void) 702 { 703 return readb(tcdm_base + PRCM_ROMCODE_P2A); 704 } 705 706 /** 707 * prcmu_get_current_mode - Return the current XP70 power mode 708 * Returns: Returns the current AP(ARM) power mode: init, 709 * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset 710 */ 711 enum ap_pwrst prcmu_get_xp70_current_state(void) 712 { 713 return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE); 714 } 715 716 /** 717 * prcmu_config_clkout - Configure one of the programmable clock outputs. 718 * @clkout: The CLKOUT number (0 or 1). 719 * @source: The clock to be used (one of the PRCMU_CLKSRC_*). 720 * @div: The divider to be applied. 721 * 722 * Configures one of the programmable clock outputs (CLKOUTs). 723 * @div should be in the range [1,63] to request a configuration, or 0 to 724 * inform that the configuration is no longer requested. 725 */ 726 int prcmu_config_clkout(u8 clkout, u8 source, u8 div) 727 { 728 static int requests[2]; 729 int r = 0; 730 unsigned long flags; 731 u32 val; 732 u32 bits; 733 u32 mask; 734 u32 div_mask; 735 736 BUG_ON(clkout > 1); 737 BUG_ON(div > 63); 738 BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009)); 739 740 if (!div && !requests[clkout]) 741 return -EINVAL; 742 743 if (clkout == 0) { 744 div_mask = PRCM_CLKOCR_CLKODIV0_MASK; 745 mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK); 746 bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) | 747 (div << PRCM_CLKOCR_CLKODIV0_SHIFT)); 748 } else { 749 div_mask = PRCM_CLKOCR_CLKODIV1_MASK; 750 mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK | 751 PRCM_CLKOCR_CLK1TYPE); 752 bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) | 753 (div << PRCM_CLKOCR_CLKODIV1_SHIFT)); 754 } 755 bits &= mask; 756 757 spin_lock_irqsave(&clkout_lock, flags); 758 759 val = readl(PRCM_CLKOCR); 760 if (val & div_mask) { 761 if (div) { 762 if ((val & mask) != bits) { 763 r = -EBUSY; 764 goto unlock_and_return; 765 } 766 } else { 767 if ((val & mask & ~div_mask) != bits) { 768 r = -EINVAL; 769 goto unlock_and_return; 770 } 771 } 772 } 773 writel((bits | (val & ~mask)), PRCM_CLKOCR); 774 requests[clkout] += (div ? 1 : -1); 775 776 unlock_and_return: 777 spin_unlock_irqrestore(&clkout_lock, flags); 778 779 return r; 780 } 781 782 int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll) 783 { 784 unsigned long flags; 785 786 BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state)); 787 788 spin_lock_irqsave(&mb0_transfer.lock, flags); 789 790 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0)) 791 cpu_relax(); 792 793 writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0)); 794 writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE)); 795 writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE)); 796 writeb((keep_ulp_clk ? 1 : 0), 797 (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE)); 798 writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI)); 799 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET); 800 801 spin_unlock_irqrestore(&mb0_transfer.lock, flags); 802 803 return 0; 804 } 805 806 u8 db8500_prcmu_get_power_state_result(void) 807 { 808 return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS); 809 } 810 811 /* This function should only be called while mb0_transfer.lock is held. */ 812 static void config_wakeups(void) 813 { 814 const u8 header[2] = { 815 MB0H_CONFIG_WAKEUPS_EXE, 816 MB0H_CONFIG_WAKEUPS_SLEEP 817 }; 818 static u32 last_dbb_events; 819 static u32 last_abb_events; 820 u32 dbb_events; 821 u32 abb_events; 822 unsigned int i; 823 824 dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups; 825 dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK); 826 827 abb_events = mb0_transfer.req.abb_events; 828 829 if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events)) 830 return; 831 832 for (i = 0; i < 2; i++) { 833 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0)) 834 cpu_relax(); 835 writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500)); 836 writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500)); 837 writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0)); 838 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET); 839 } 840 last_dbb_events = dbb_events; 841 last_abb_events = abb_events; 842 } 843 844 void db8500_prcmu_enable_wakeups(u32 wakeups) 845 { 846 unsigned long flags; 847 u32 bits; 848 int i; 849 850 BUG_ON(wakeups != (wakeups & VALID_WAKEUPS)); 851 852 for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) { 853 if (wakeups & BIT(i)) 854 bits |= prcmu_wakeup_bit[i]; 855 } 856 857 spin_lock_irqsave(&mb0_transfer.lock, flags); 858 859 mb0_transfer.req.dbb_wakeups = bits; 860 config_wakeups(); 861 862 spin_unlock_irqrestore(&mb0_transfer.lock, flags); 863 } 864 865 void db8500_prcmu_config_abb_event_readout(u32 abb_events) 866 { 867 unsigned long flags; 868 869 spin_lock_irqsave(&mb0_transfer.lock, flags); 870 871 mb0_transfer.req.abb_events = abb_events; 872 config_wakeups(); 873 874 spin_unlock_irqrestore(&mb0_transfer.lock, flags); 875 } 876 877 void db8500_prcmu_get_abb_event_buffer(void __iomem **buf) 878 { 879 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1) 880 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500); 881 else 882 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500); 883 } 884 885 /** 886 * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP 887 * @opp: The new ARM operating point to which transition is to be made 888 * Returns: 0 on success, non-zero on failure 889 * 890 * This function sets the the operating point of the ARM. 891 */ 892 int db8500_prcmu_set_arm_opp(u8 opp) 893 { 894 int r; 895 896 if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK) 897 return -EINVAL; 898 899 r = 0; 900 901 mutex_lock(&mb1_transfer.lock); 902 903 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1)) 904 cpu_relax(); 905 906 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1)); 907 writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP)); 908 writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP)); 909 910 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET); 911 wait_for_completion(&mb1_transfer.work); 912 913 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) || 914 (mb1_transfer.ack.arm_opp != opp)) 915 r = -EIO; 916 917 mutex_unlock(&mb1_transfer.lock); 918 919 return r; 920 } 921 922 /** 923 * db8500_prcmu_get_arm_opp - get the current ARM OPP 924 * 925 * Returns: the current ARM OPP 926 */ 927 int db8500_prcmu_get_arm_opp(void) 928 { 929 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP); 930 } 931 932 /** 933 * db8500_prcmu_get_ddr_opp - get the current DDR OPP 934 * 935 * Returns: the current DDR OPP 936 */ 937 int db8500_prcmu_get_ddr_opp(void) 938 { 939 return readb(PRCM_DDR_SUBSYS_APE_MINBW); 940 } 941 942 /* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */ 943 static void request_even_slower_clocks(bool enable) 944 { 945 u32 clock_reg[] = { 946 PRCM_ACLK_MGT, 947 PRCM_DMACLK_MGT 948 }; 949 unsigned long flags; 950 unsigned int i; 951 952 spin_lock_irqsave(&clk_mgt_lock, flags); 953 954 /* Grab the HW semaphore. */ 955 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0) 956 cpu_relax(); 957 958 for (i = 0; i < ARRAY_SIZE(clock_reg); i++) { 959 u32 val; 960 u32 div; 961 962 val = readl(prcmu_base + clock_reg[i]); 963 div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK); 964 if (enable) { 965 if ((div <= 1) || (div > 15)) { 966 pr_err("prcmu: Bad clock divider %d in %s\n", 967 div, __func__); 968 goto unlock_and_return; 969 } 970 div <<= 1; 971 } else { 972 if (div <= 2) 973 goto unlock_and_return; 974 div >>= 1; 975 } 976 val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) | 977 (div & PRCM_CLK_MGT_CLKPLLDIV_MASK)); 978 writel(val, prcmu_base + clock_reg[i]); 979 } 980 981 unlock_and_return: 982 /* Release the HW semaphore. */ 983 writel(0, PRCM_SEM); 984 985 spin_unlock_irqrestore(&clk_mgt_lock, flags); 986 } 987 988 /** 989 * db8500_set_ape_opp - set the appropriate APE OPP 990 * @opp: The new APE operating point to which transition is to be made 991 * Returns: 0 on success, non-zero on failure 992 * 993 * This function sets the operating point of the APE. 994 */ 995 int db8500_prcmu_set_ape_opp(u8 opp) 996 { 997 int r = 0; 998 999 if (opp == mb1_transfer.ape_opp) 1000 return 0; 1001 1002 mutex_lock(&mb1_transfer.lock); 1003 1004 if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP) 1005 request_even_slower_clocks(false); 1006 1007 if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP)) 1008 goto skip_message; 1009 1010 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1)) 1011 cpu_relax(); 1012 1013 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1)); 1014 writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP)); 1015 writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp), 1016 (tcdm_base + PRCM_REQ_MB1_APE_OPP)); 1017 1018 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET); 1019 wait_for_completion(&mb1_transfer.work); 1020 1021 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) || 1022 (mb1_transfer.ack.ape_opp != opp)) 1023 r = -EIO; 1024 1025 skip_message: 1026 if ((!r && (opp == APE_50_PARTLY_25_OPP)) || 1027 (r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP))) 1028 request_even_slower_clocks(true); 1029 if (!r) 1030 mb1_transfer.ape_opp = opp; 1031 1032 mutex_unlock(&mb1_transfer.lock); 1033 1034 return r; 1035 } 1036 1037 /** 1038 * db8500_prcmu_get_ape_opp - get the current APE OPP 1039 * 1040 * Returns: the current APE OPP 1041 */ 1042 int db8500_prcmu_get_ape_opp(void) 1043 { 1044 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP); 1045 } 1046 1047 /** 1048 * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage 1049 * @enable: true to request the higher voltage, false to drop a request. 1050 * 1051 * Calls to this function to enable and disable requests must be balanced. 1052 */ 1053 int db8500_prcmu_request_ape_opp_100_voltage(bool enable) 1054 { 1055 int r = 0; 1056 u8 header; 1057 static unsigned int requests; 1058 1059 mutex_lock(&mb1_transfer.lock); 1060 1061 if (enable) { 1062 if (0 != requests++) 1063 goto unlock_and_return; 1064 header = MB1H_REQUEST_APE_OPP_100_VOLT; 1065 } else { 1066 if (requests == 0) { 1067 r = -EIO; 1068 goto unlock_and_return; 1069 } else if (1 != requests--) { 1070 goto unlock_and_return; 1071 } 1072 header = MB1H_RELEASE_APE_OPP_100_VOLT; 1073 } 1074 1075 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1)) 1076 cpu_relax(); 1077 1078 writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1)); 1079 1080 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET); 1081 wait_for_completion(&mb1_transfer.work); 1082 1083 if ((mb1_transfer.ack.header != header) || 1084 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0)) 1085 r = -EIO; 1086 1087 unlock_and_return: 1088 mutex_unlock(&mb1_transfer.lock); 1089 1090 return r; 1091 } 1092 1093 /** 1094 * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup 1095 * 1096 * This function releases the power state requirements of a USB wakeup. 1097 */ 1098 int prcmu_release_usb_wakeup_state(void) 1099 { 1100 int r = 0; 1101 1102 mutex_lock(&mb1_transfer.lock); 1103 1104 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1)) 1105 cpu_relax(); 1106 1107 writeb(MB1H_RELEASE_USB_WAKEUP, 1108 (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1)); 1109 1110 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET); 1111 wait_for_completion(&mb1_transfer.work); 1112 1113 if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) || 1114 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0)) 1115 r = -EIO; 1116 1117 mutex_unlock(&mb1_transfer.lock); 1118 1119 return r; 1120 } 1121 1122 static int request_pll(u8 clock, bool enable) 1123 { 1124 int r = 0; 1125 1126 if (clock == PRCMU_PLLSOC0) 1127 clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF); 1128 else if (clock == PRCMU_PLLSOC1) 1129 clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF); 1130 else 1131 return -EINVAL; 1132 1133 mutex_lock(&mb1_transfer.lock); 1134 1135 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1)) 1136 cpu_relax(); 1137 1138 writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1)); 1139 writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF)); 1140 1141 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET); 1142 wait_for_completion(&mb1_transfer.work); 1143 1144 if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF) 1145 r = -EIO; 1146 1147 mutex_unlock(&mb1_transfer.lock); 1148 1149 return r; 1150 } 1151 1152 /** 1153 * db8500_prcmu_set_epod - set the state of a EPOD (power domain) 1154 * @epod_id: The EPOD to set 1155 * @epod_state: The new EPOD state 1156 * 1157 * This function sets the state of a EPOD (power domain). It may not be called 1158 * from interrupt context. 1159 */ 1160 int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state) 1161 { 1162 int r = 0; 1163 bool ram_retention = false; 1164 int i; 1165 1166 /* check argument */ 1167 BUG_ON(epod_id >= NUM_EPOD_ID); 1168 1169 /* set flag if retention is possible */ 1170 switch (epod_id) { 1171 case EPOD_ID_SVAMMDSP: 1172 case EPOD_ID_SIAMMDSP: 1173 case EPOD_ID_ESRAM12: 1174 case EPOD_ID_ESRAM34: 1175 ram_retention = true; 1176 break; 1177 } 1178 1179 /* check argument */ 1180 BUG_ON(epod_state > EPOD_STATE_ON); 1181 BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention); 1182 1183 /* get lock */ 1184 mutex_lock(&mb2_transfer.lock); 1185 1186 /* wait for mailbox */ 1187 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2)) 1188 cpu_relax(); 1189 1190 /* fill in mailbox */ 1191 for (i = 0; i < NUM_EPOD_ID; i++) 1192 writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i)); 1193 writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id)); 1194 1195 writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2)); 1196 1197 writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET); 1198 1199 /* 1200 * The current firmware version does not handle errors correctly, 1201 * and we cannot recover if there is an error. 1202 * This is expected to change when the firmware is updated. 1203 */ 1204 if (!wait_for_completion_timeout(&mb2_transfer.work, 1205 msecs_to_jiffies(20000))) { 1206 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n", 1207 __func__); 1208 r = -EIO; 1209 goto unlock_and_return; 1210 } 1211 1212 if (mb2_transfer.ack.status != HWACC_PWR_ST_OK) 1213 r = -EIO; 1214 1215 unlock_and_return: 1216 mutex_unlock(&mb2_transfer.lock); 1217 return r; 1218 } 1219 1220 /** 1221 * prcmu_configure_auto_pm - Configure autonomous power management. 1222 * @sleep: Configuration for ApSleep. 1223 * @idle: Configuration for ApIdle. 1224 */ 1225 void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep, 1226 struct prcmu_auto_pm_config *idle) 1227 { 1228 u32 sleep_cfg; 1229 u32 idle_cfg; 1230 unsigned long flags; 1231 1232 BUG_ON((sleep == NULL) || (idle == NULL)); 1233 1234 sleep_cfg = (sleep->sva_auto_pm_enable & 0xF); 1235 sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF)); 1236 sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF)); 1237 sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF)); 1238 sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF)); 1239 sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF)); 1240 1241 idle_cfg = (idle->sva_auto_pm_enable & 0xF); 1242 idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF)); 1243 idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF)); 1244 idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF)); 1245 idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF)); 1246 idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF)); 1247 1248 spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags); 1249 1250 /* 1251 * The autonomous power management configuration is done through 1252 * fields in mailbox 2, but these fields are only used as shared 1253 * variables - i.e. there is no need to send a message. 1254 */ 1255 writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP)); 1256 writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE)); 1257 1258 mb2_transfer.auto_pm_enabled = 1259 ((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) || 1260 (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) || 1261 (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) || 1262 (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON)); 1263 1264 spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags); 1265 } 1266 EXPORT_SYMBOL(prcmu_configure_auto_pm); 1267 1268 bool prcmu_is_auto_pm_enabled(void) 1269 { 1270 return mb2_transfer.auto_pm_enabled; 1271 } 1272 1273 static int request_sysclk(bool enable) 1274 { 1275 int r; 1276 unsigned long flags; 1277 1278 r = 0; 1279 1280 mutex_lock(&mb3_transfer.sysclk_lock); 1281 1282 spin_lock_irqsave(&mb3_transfer.lock, flags); 1283 1284 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3)) 1285 cpu_relax(); 1286 1287 writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT)); 1288 1289 writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3)); 1290 writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET); 1291 1292 spin_unlock_irqrestore(&mb3_transfer.lock, flags); 1293 1294 /* 1295 * The firmware only sends an ACK if we want to enable the 1296 * SysClk, and it succeeds. 1297 */ 1298 if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work, 1299 msecs_to_jiffies(20000))) { 1300 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n", 1301 __func__); 1302 r = -EIO; 1303 } 1304 1305 mutex_unlock(&mb3_transfer.sysclk_lock); 1306 1307 return r; 1308 } 1309 1310 static int request_timclk(bool enable) 1311 { 1312 u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK); 1313 1314 if (!enable) 1315 val |= PRCM_TCR_STOP_TIMERS; 1316 writel(val, PRCM_TCR); 1317 1318 return 0; 1319 } 1320 1321 static int request_clock(u8 clock, bool enable) 1322 { 1323 u32 val; 1324 unsigned long flags; 1325 1326 spin_lock_irqsave(&clk_mgt_lock, flags); 1327 1328 /* Grab the HW semaphore. */ 1329 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0) 1330 cpu_relax(); 1331 1332 val = readl(prcmu_base + clk_mgt[clock].offset); 1333 if (enable) { 1334 val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw); 1335 } else { 1336 clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK); 1337 val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK); 1338 } 1339 writel(val, prcmu_base + clk_mgt[clock].offset); 1340 1341 /* Release the HW semaphore. */ 1342 writel(0, PRCM_SEM); 1343 1344 spin_unlock_irqrestore(&clk_mgt_lock, flags); 1345 1346 return 0; 1347 } 1348 1349 static int request_sga_clock(u8 clock, bool enable) 1350 { 1351 u32 val; 1352 int ret; 1353 1354 if (enable) { 1355 val = readl(PRCM_CGATING_BYPASS); 1356 writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS); 1357 } 1358 1359 ret = request_clock(clock, enable); 1360 1361 if (!ret && !enable) { 1362 val = readl(PRCM_CGATING_BYPASS); 1363 writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS); 1364 } 1365 1366 return ret; 1367 } 1368 1369 static inline bool plldsi_locked(void) 1370 { 1371 return (readl(PRCM_PLLDSI_LOCKP) & 1372 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 | 1373 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) == 1374 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 | 1375 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3); 1376 } 1377 1378 static int request_plldsi(bool enable) 1379 { 1380 int r = 0; 1381 u32 val; 1382 1383 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP | 1384 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ? 1385 PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET)); 1386 1387 val = readl(PRCM_PLLDSI_ENABLE); 1388 if (enable) 1389 val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE; 1390 else 1391 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE; 1392 writel(val, PRCM_PLLDSI_ENABLE); 1393 1394 if (enable) { 1395 unsigned int i; 1396 bool locked = plldsi_locked(); 1397 1398 for (i = 10; !locked && (i > 0); --i) { 1399 udelay(100); 1400 locked = plldsi_locked(); 1401 } 1402 if (locked) { 1403 writel(PRCM_APE_RESETN_DSIPLL_RESETN, 1404 PRCM_APE_RESETN_SET); 1405 } else { 1406 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP | 1407 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), 1408 PRCM_MMIP_LS_CLAMP_SET); 1409 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE; 1410 writel(val, PRCM_PLLDSI_ENABLE); 1411 r = -EAGAIN; 1412 } 1413 } else { 1414 writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR); 1415 } 1416 return r; 1417 } 1418 1419 static int request_dsiclk(u8 n, bool enable) 1420 { 1421 u32 val; 1422 1423 val = readl(PRCM_DSI_PLLOUT_SEL); 1424 val &= ~dsiclk[n].divsel_mask; 1425 val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) << 1426 dsiclk[n].divsel_shift); 1427 writel(val, PRCM_DSI_PLLOUT_SEL); 1428 return 0; 1429 } 1430 1431 static int request_dsiescclk(u8 n, bool enable) 1432 { 1433 u32 val; 1434 1435 val = readl(PRCM_DSITVCLK_DIV); 1436 enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en); 1437 writel(val, PRCM_DSITVCLK_DIV); 1438 return 0; 1439 } 1440 1441 /** 1442 * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled. 1443 * @clock: The clock for which the request is made. 1444 * @enable: Whether the clock should be enabled (true) or disabled (false). 1445 * 1446 * This function should only be used by the clock implementation. 1447 * Do not use it from any other place! 1448 */ 1449 int db8500_prcmu_request_clock(u8 clock, bool enable) 1450 { 1451 if (clock == PRCMU_SGACLK) 1452 return request_sga_clock(clock, enable); 1453 else if (clock < PRCMU_NUM_REG_CLOCKS) 1454 return request_clock(clock, enable); 1455 else if (clock == PRCMU_TIMCLK) 1456 return request_timclk(enable); 1457 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK)) 1458 return request_dsiclk((clock - PRCMU_DSI0CLK), enable); 1459 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK)) 1460 return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable); 1461 else if (clock == PRCMU_PLLDSI) 1462 return request_plldsi(enable); 1463 else if (clock == PRCMU_SYSCLK) 1464 return request_sysclk(enable); 1465 else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1)) 1466 return request_pll(clock, enable); 1467 else 1468 return -EINVAL; 1469 } 1470 1471 static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate, 1472 int branch) 1473 { 1474 u64 rate; 1475 u32 val; 1476 u32 d; 1477 u32 div = 1; 1478 1479 val = readl(reg); 1480 1481 rate = src_rate; 1482 rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT); 1483 1484 d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT); 1485 if (d > 1) 1486 div *= d; 1487 1488 d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT); 1489 if (d > 1) 1490 div *= d; 1491 1492 if (val & PRCM_PLL_FREQ_SELDIV2) 1493 div *= 2; 1494 1495 if ((branch == PLL_FIX) || ((branch == PLL_DIV) && 1496 (val & PRCM_PLL_FREQ_DIV2EN) && 1497 ((reg == PRCM_PLLSOC0_FREQ) || 1498 (reg == PRCM_PLLARM_FREQ) || 1499 (reg == PRCM_PLLDDR_FREQ)))) 1500 div *= 2; 1501 1502 (void)do_div(rate, div); 1503 1504 return (unsigned long)rate; 1505 } 1506 1507 #define ROOT_CLOCK_RATE 38400000 1508 1509 static unsigned long clock_rate(u8 clock) 1510 { 1511 u32 val; 1512 u32 pllsw; 1513 unsigned long rate = ROOT_CLOCK_RATE; 1514 1515 val = readl(prcmu_base + clk_mgt[clock].offset); 1516 1517 if (val & PRCM_CLK_MGT_CLK38) { 1518 if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV)) 1519 rate /= 2; 1520 return rate; 1521 } 1522 1523 val |= clk_mgt[clock].pllsw; 1524 pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK); 1525 1526 if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0) 1527 rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch); 1528 else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1) 1529 rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch); 1530 else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR) 1531 rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch); 1532 else 1533 return 0; 1534 1535 if ((clock == PRCMU_SGACLK) && 1536 (val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) { 1537 u64 r = (rate * 10); 1538 1539 (void)do_div(r, 25); 1540 return (unsigned long)r; 1541 } 1542 val &= PRCM_CLK_MGT_CLKPLLDIV_MASK; 1543 if (val) 1544 return rate / val; 1545 else 1546 return 0; 1547 } 1548 1549 static unsigned long armss_rate(void) 1550 { 1551 u32 r; 1552 unsigned long rate; 1553 1554 r = readl(PRCM_ARM_CHGCLKREQ); 1555 1556 if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) { 1557 /* External ARMCLKFIX clock */ 1558 1559 rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX); 1560 1561 /* Check PRCM_ARM_CHGCLKREQ divider */ 1562 if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL)) 1563 rate /= 2; 1564 1565 /* Check PRCM_ARMCLKFIX_MGT divider */ 1566 r = readl(PRCM_ARMCLKFIX_MGT); 1567 r &= PRCM_CLK_MGT_CLKPLLDIV_MASK; 1568 rate /= r; 1569 1570 } else {/* ARM PLL */ 1571 rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV); 1572 } 1573 1574 return rate; 1575 } 1576 1577 static unsigned long dsiclk_rate(u8 n) 1578 { 1579 u32 divsel; 1580 u32 div = 1; 1581 1582 divsel = readl(PRCM_DSI_PLLOUT_SEL); 1583 divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift); 1584 1585 if (divsel == PRCM_DSI_PLLOUT_SEL_OFF) 1586 divsel = dsiclk[n].divsel; 1587 else 1588 dsiclk[n].divsel = divsel; 1589 1590 switch (divsel) { 1591 case PRCM_DSI_PLLOUT_SEL_PHI_4: 1592 div *= 2; 1593 /* Fall through */ 1594 case PRCM_DSI_PLLOUT_SEL_PHI_2: 1595 div *= 2; 1596 /* Fall through */ 1597 case PRCM_DSI_PLLOUT_SEL_PHI: 1598 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK), 1599 PLL_RAW) / div; 1600 default: 1601 return 0; 1602 } 1603 } 1604 1605 static unsigned long dsiescclk_rate(u8 n) 1606 { 1607 u32 div; 1608 1609 div = readl(PRCM_DSITVCLK_DIV); 1610 div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift)); 1611 return clock_rate(PRCMU_TVCLK) / max((u32)1, div); 1612 } 1613 1614 unsigned long prcmu_clock_rate(u8 clock) 1615 { 1616 if (clock < PRCMU_NUM_REG_CLOCKS) 1617 return clock_rate(clock); 1618 else if (clock == PRCMU_TIMCLK) 1619 return ROOT_CLOCK_RATE / 16; 1620 else if (clock == PRCMU_SYSCLK) 1621 return ROOT_CLOCK_RATE; 1622 else if (clock == PRCMU_PLLSOC0) 1623 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW); 1624 else if (clock == PRCMU_PLLSOC1) 1625 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW); 1626 else if (clock == PRCMU_ARMSS) 1627 return armss_rate(); 1628 else if (clock == PRCMU_PLLDDR) 1629 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW); 1630 else if (clock == PRCMU_PLLDSI) 1631 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK), 1632 PLL_RAW); 1633 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK)) 1634 return dsiclk_rate(clock - PRCMU_DSI0CLK); 1635 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK)) 1636 return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK); 1637 else 1638 return 0; 1639 } 1640 1641 static unsigned long clock_source_rate(u32 clk_mgt_val, int branch) 1642 { 1643 if (clk_mgt_val & PRCM_CLK_MGT_CLK38) 1644 return ROOT_CLOCK_RATE; 1645 clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK; 1646 if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0) 1647 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch); 1648 else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1) 1649 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch); 1650 else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR) 1651 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch); 1652 else 1653 return 0; 1654 } 1655 1656 static u32 clock_divider(unsigned long src_rate, unsigned long rate) 1657 { 1658 u32 div; 1659 1660 div = (src_rate / rate); 1661 if (div == 0) 1662 return 1; 1663 if (rate < (src_rate / div)) 1664 div++; 1665 return div; 1666 } 1667 1668 static long round_clock_rate(u8 clock, unsigned long rate) 1669 { 1670 u32 val; 1671 u32 div; 1672 unsigned long src_rate; 1673 long rounded_rate; 1674 1675 val = readl(prcmu_base + clk_mgt[clock].offset); 1676 src_rate = clock_source_rate((val | clk_mgt[clock].pllsw), 1677 clk_mgt[clock].branch); 1678 div = clock_divider(src_rate, rate); 1679 if (val & PRCM_CLK_MGT_CLK38) { 1680 if (clk_mgt[clock].clk38div) { 1681 if (div > 2) 1682 div = 2; 1683 } else { 1684 div = 1; 1685 } 1686 } else if ((clock == PRCMU_SGACLK) && (div == 3)) { 1687 u64 r = (src_rate * 10); 1688 1689 (void)do_div(r, 25); 1690 if (r <= rate) 1691 return (unsigned long)r; 1692 } 1693 rounded_rate = (src_rate / min(div, (u32)31)); 1694 1695 return rounded_rate; 1696 } 1697 1698 static const unsigned long armss_freqs[] = { 1699 200000000, 1700 400000000, 1701 800000000, 1702 998400000 1703 }; 1704 1705 static long round_armss_rate(unsigned long rate) 1706 { 1707 unsigned long freq = 0; 1708 int i; 1709 1710 /* Find the corresponding arm opp from the cpufreq table. */ 1711 for (i = 0; i < ARRAY_SIZE(armss_freqs); i++) { 1712 freq = armss_freqs[i]; 1713 if (rate <= freq) 1714 break; 1715 } 1716 1717 /* Return the last valid value, even if a match was not found. */ 1718 return freq; 1719 } 1720 1721 #define MIN_PLL_VCO_RATE 600000000ULL 1722 #define MAX_PLL_VCO_RATE 1680640000ULL 1723 1724 static long round_plldsi_rate(unsigned long rate) 1725 { 1726 long rounded_rate = 0; 1727 unsigned long src_rate; 1728 unsigned long rem; 1729 u32 r; 1730 1731 src_rate = clock_rate(PRCMU_HDMICLK); 1732 rem = rate; 1733 1734 for (r = 7; (rem > 0) && (r > 0); r--) { 1735 u64 d; 1736 1737 d = (r * rate); 1738 (void)do_div(d, src_rate); 1739 if (d < 6) 1740 d = 6; 1741 else if (d > 255) 1742 d = 255; 1743 d *= src_rate; 1744 if (((2 * d) < (r * MIN_PLL_VCO_RATE)) || 1745 ((r * MAX_PLL_VCO_RATE) < (2 * d))) 1746 continue; 1747 (void)do_div(d, r); 1748 if (rate < d) { 1749 if (rounded_rate == 0) 1750 rounded_rate = (long)d; 1751 break; 1752 } 1753 if ((rate - d) < rem) { 1754 rem = (rate - d); 1755 rounded_rate = (long)d; 1756 } 1757 } 1758 return rounded_rate; 1759 } 1760 1761 static long round_dsiclk_rate(unsigned long rate) 1762 { 1763 u32 div; 1764 unsigned long src_rate; 1765 long rounded_rate; 1766 1767 src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK), 1768 PLL_RAW); 1769 div = clock_divider(src_rate, rate); 1770 rounded_rate = (src_rate / ((div > 2) ? 4 : div)); 1771 1772 return rounded_rate; 1773 } 1774 1775 static long round_dsiescclk_rate(unsigned long rate) 1776 { 1777 u32 div; 1778 unsigned long src_rate; 1779 long rounded_rate; 1780 1781 src_rate = clock_rate(PRCMU_TVCLK); 1782 div = clock_divider(src_rate, rate); 1783 rounded_rate = (src_rate / min(div, (u32)255)); 1784 1785 return rounded_rate; 1786 } 1787 1788 long prcmu_round_clock_rate(u8 clock, unsigned long rate) 1789 { 1790 if (clock < PRCMU_NUM_REG_CLOCKS) 1791 return round_clock_rate(clock, rate); 1792 else if (clock == PRCMU_ARMSS) 1793 return round_armss_rate(rate); 1794 else if (clock == PRCMU_PLLDSI) 1795 return round_plldsi_rate(rate); 1796 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK)) 1797 return round_dsiclk_rate(rate); 1798 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK)) 1799 return round_dsiescclk_rate(rate); 1800 else 1801 return (long)prcmu_clock_rate(clock); 1802 } 1803 1804 static void set_clock_rate(u8 clock, unsigned long rate) 1805 { 1806 u32 val; 1807 u32 div; 1808 unsigned long src_rate; 1809 unsigned long flags; 1810 1811 spin_lock_irqsave(&clk_mgt_lock, flags); 1812 1813 /* Grab the HW semaphore. */ 1814 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0) 1815 cpu_relax(); 1816 1817 val = readl(prcmu_base + clk_mgt[clock].offset); 1818 src_rate = clock_source_rate((val | clk_mgt[clock].pllsw), 1819 clk_mgt[clock].branch); 1820 div = clock_divider(src_rate, rate); 1821 if (val & PRCM_CLK_MGT_CLK38) { 1822 if (clk_mgt[clock].clk38div) { 1823 if (div > 1) 1824 val |= PRCM_CLK_MGT_CLK38DIV; 1825 else 1826 val &= ~PRCM_CLK_MGT_CLK38DIV; 1827 } 1828 } else if (clock == PRCMU_SGACLK) { 1829 val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK | 1830 PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN); 1831 if (div == 3) { 1832 u64 r = (src_rate * 10); 1833 1834 (void)do_div(r, 25); 1835 if (r <= rate) { 1836 val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN; 1837 div = 0; 1838 } 1839 } 1840 val |= min(div, (u32)31); 1841 } else { 1842 val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK; 1843 val |= min(div, (u32)31); 1844 } 1845 writel(val, prcmu_base + clk_mgt[clock].offset); 1846 1847 /* Release the HW semaphore. */ 1848 writel(0, PRCM_SEM); 1849 1850 spin_unlock_irqrestore(&clk_mgt_lock, flags); 1851 } 1852 1853 static int set_armss_rate(unsigned long rate) 1854 { 1855 unsigned long freq; 1856 u8 opps[] = { ARM_EXTCLK, ARM_50_OPP, ARM_100_OPP, ARM_MAX_OPP }; 1857 int i; 1858 1859 /* Find the corresponding arm opp from the cpufreq table. */ 1860 for (i = 0; i < ARRAY_SIZE(armss_freqs); i++) { 1861 freq = armss_freqs[i]; 1862 if (rate == freq) 1863 break; 1864 } 1865 1866 if (rate != freq) 1867 return -EINVAL; 1868 1869 /* Set the new arm opp. */ 1870 pr_debug("SET ARM OPP 0x%02x\n", opps[i]); 1871 return db8500_prcmu_set_arm_opp(opps[i]); 1872 } 1873 1874 static int set_plldsi_rate(unsigned long rate) 1875 { 1876 unsigned long src_rate; 1877 unsigned long rem; 1878 u32 pll_freq = 0; 1879 u32 r; 1880 1881 src_rate = clock_rate(PRCMU_HDMICLK); 1882 rem = rate; 1883 1884 for (r = 7; (rem > 0) && (r > 0); r--) { 1885 u64 d; 1886 u64 hwrate; 1887 1888 d = (r * rate); 1889 (void)do_div(d, src_rate); 1890 if (d < 6) 1891 d = 6; 1892 else if (d > 255) 1893 d = 255; 1894 hwrate = (d * src_rate); 1895 if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) || 1896 ((r * MAX_PLL_VCO_RATE) < (2 * hwrate))) 1897 continue; 1898 (void)do_div(hwrate, r); 1899 if (rate < hwrate) { 1900 if (pll_freq == 0) 1901 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) | 1902 (r << PRCM_PLL_FREQ_R_SHIFT)); 1903 break; 1904 } 1905 if ((rate - hwrate) < rem) { 1906 rem = (rate - hwrate); 1907 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) | 1908 (r << PRCM_PLL_FREQ_R_SHIFT)); 1909 } 1910 } 1911 if (pll_freq == 0) 1912 return -EINVAL; 1913 1914 pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT); 1915 writel(pll_freq, PRCM_PLLDSI_FREQ); 1916 1917 return 0; 1918 } 1919 1920 static void set_dsiclk_rate(u8 n, unsigned long rate) 1921 { 1922 u32 val; 1923 u32 div; 1924 1925 div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ, 1926 clock_rate(PRCMU_HDMICLK), PLL_RAW), rate); 1927 1928 dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI : 1929 (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 : 1930 /* else */ PRCM_DSI_PLLOUT_SEL_PHI_4; 1931 1932 val = readl(PRCM_DSI_PLLOUT_SEL); 1933 val &= ~dsiclk[n].divsel_mask; 1934 val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift); 1935 writel(val, PRCM_DSI_PLLOUT_SEL); 1936 } 1937 1938 static void set_dsiescclk_rate(u8 n, unsigned long rate) 1939 { 1940 u32 val; 1941 u32 div; 1942 1943 div = clock_divider(clock_rate(PRCMU_TVCLK), rate); 1944 val = readl(PRCM_DSITVCLK_DIV); 1945 val &= ~dsiescclk[n].div_mask; 1946 val |= (min(div, (u32)255) << dsiescclk[n].div_shift); 1947 writel(val, PRCM_DSITVCLK_DIV); 1948 } 1949 1950 int prcmu_set_clock_rate(u8 clock, unsigned long rate) 1951 { 1952 if (clock < PRCMU_NUM_REG_CLOCKS) 1953 set_clock_rate(clock, rate); 1954 else if (clock == PRCMU_ARMSS) 1955 return set_armss_rate(rate); 1956 else if (clock == PRCMU_PLLDSI) 1957 return set_plldsi_rate(rate); 1958 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK)) 1959 set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate); 1960 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK)) 1961 set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate); 1962 return 0; 1963 } 1964 1965 int db8500_prcmu_config_esram0_deep_sleep(u8 state) 1966 { 1967 if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) || 1968 (state < ESRAM0_DEEP_SLEEP_STATE_OFF)) 1969 return -EINVAL; 1970 1971 mutex_lock(&mb4_transfer.lock); 1972 1973 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4)) 1974 cpu_relax(); 1975 1976 writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4)); 1977 writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON), 1978 (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE)); 1979 writeb(DDR_PWR_STATE_ON, 1980 (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE)); 1981 writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST)); 1982 1983 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET); 1984 wait_for_completion(&mb4_transfer.work); 1985 1986 mutex_unlock(&mb4_transfer.lock); 1987 1988 return 0; 1989 } 1990 1991 int db8500_prcmu_config_hotdog(u8 threshold) 1992 { 1993 mutex_lock(&mb4_transfer.lock); 1994 1995 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4)) 1996 cpu_relax(); 1997 1998 writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD)); 1999 writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4)); 2000 2001 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET); 2002 wait_for_completion(&mb4_transfer.work); 2003 2004 mutex_unlock(&mb4_transfer.lock); 2005 2006 return 0; 2007 } 2008 2009 int db8500_prcmu_config_hotmon(u8 low, u8 high) 2010 { 2011 mutex_lock(&mb4_transfer.lock); 2012 2013 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4)) 2014 cpu_relax(); 2015 2016 writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW)); 2017 writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH)); 2018 writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH), 2019 (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG)); 2020 writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4)); 2021 2022 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET); 2023 wait_for_completion(&mb4_transfer.work); 2024 2025 mutex_unlock(&mb4_transfer.lock); 2026 2027 return 0; 2028 } 2029 EXPORT_SYMBOL_GPL(db8500_prcmu_config_hotmon); 2030 2031 static int config_hot_period(u16 val) 2032 { 2033 mutex_lock(&mb4_transfer.lock); 2034 2035 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4)) 2036 cpu_relax(); 2037 2038 writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD)); 2039 writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4)); 2040 2041 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET); 2042 wait_for_completion(&mb4_transfer.work); 2043 2044 mutex_unlock(&mb4_transfer.lock); 2045 2046 return 0; 2047 } 2048 2049 int db8500_prcmu_start_temp_sense(u16 cycles32k) 2050 { 2051 if (cycles32k == 0xFFFF) 2052 return -EINVAL; 2053 2054 return config_hot_period(cycles32k); 2055 } 2056 EXPORT_SYMBOL_GPL(db8500_prcmu_start_temp_sense); 2057 2058 int db8500_prcmu_stop_temp_sense(void) 2059 { 2060 return config_hot_period(0xFFFF); 2061 } 2062 EXPORT_SYMBOL_GPL(db8500_prcmu_stop_temp_sense); 2063 2064 static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3) 2065 { 2066 2067 mutex_lock(&mb4_transfer.lock); 2068 2069 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4)) 2070 cpu_relax(); 2071 2072 writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0)); 2073 writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1)); 2074 writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2)); 2075 writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3)); 2076 2077 writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4)); 2078 2079 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET); 2080 wait_for_completion(&mb4_transfer.work); 2081 2082 mutex_unlock(&mb4_transfer.lock); 2083 2084 return 0; 2085 2086 } 2087 2088 int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off) 2089 { 2090 BUG_ON(num == 0 || num > 0xf); 2091 return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0, 2092 sleep_auto_off ? A9WDOG_AUTO_OFF_EN : 2093 A9WDOG_AUTO_OFF_DIS); 2094 } 2095 EXPORT_SYMBOL(db8500_prcmu_config_a9wdog); 2096 2097 int db8500_prcmu_enable_a9wdog(u8 id) 2098 { 2099 return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0); 2100 } 2101 EXPORT_SYMBOL(db8500_prcmu_enable_a9wdog); 2102 2103 int db8500_prcmu_disable_a9wdog(u8 id) 2104 { 2105 return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0); 2106 } 2107 EXPORT_SYMBOL(db8500_prcmu_disable_a9wdog); 2108 2109 int db8500_prcmu_kick_a9wdog(u8 id) 2110 { 2111 return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0); 2112 } 2113 EXPORT_SYMBOL(db8500_prcmu_kick_a9wdog); 2114 2115 /* 2116 * timeout is 28 bit, in ms. 2117 */ 2118 int db8500_prcmu_load_a9wdog(u8 id, u32 timeout) 2119 { 2120 return prcmu_a9wdog(MB4H_A9WDOG_LOAD, 2121 (id & A9WDOG_ID_MASK) | 2122 /* 2123 * Put the lowest 28 bits of timeout at 2124 * offset 4. Four first bits are used for id. 2125 */ 2126 (u8)((timeout << 4) & 0xf0), 2127 (u8)((timeout >> 4) & 0xff), 2128 (u8)((timeout >> 12) & 0xff), 2129 (u8)((timeout >> 20) & 0xff)); 2130 } 2131 EXPORT_SYMBOL(db8500_prcmu_load_a9wdog); 2132 2133 /** 2134 * prcmu_abb_read() - Read register value(s) from the ABB. 2135 * @slave: The I2C slave address. 2136 * @reg: The (start) register address. 2137 * @value: The read out value(s). 2138 * @size: The number of registers to read. 2139 * 2140 * Reads register value(s) from the ABB. 2141 * @size has to be 1 for the current firmware version. 2142 */ 2143 int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size) 2144 { 2145 int r; 2146 2147 if (size != 1) 2148 return -EINVAL; 2149 2150 mutex_lock(&mb5_transfer.lock); 2151 2152 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5)) 2153 cpu_relax(); 2154 2155 writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5)); 2156 writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP)); 2157 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS)); 2158 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG)); 2159 writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL)); 2160 2161 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET); 2162 2163 if (!wait_for_completion_timeout(&mb5_transfer.work, 2164 msecs_to_jiffies(20000))) { 2165 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n", 2166 __func__); 2167 r = -EIO; 2168 } else { 2169 r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO); 2170 } 2171 2172 if (!r) 2173 *value = mb5_transfer.ack.value; 2174 2175 mutex_unlock(&mb5_transfer.lock); 2176 2177 return r; 2178 } 2179 2180 /** 2181 * prcmu_abb_write_masked() - Write masked register value(s) to the ABB. 2182 * @slave: The I2C slave address. 2183 * @reg: The (start) register address. 2184 * @value: The value(s) to write. 2185 * @mask: The mask(s) to use. 2186 * @size: The number of registers to write. 2187 * 2188 * Writes masked register value(s) to the ABB. 2189 * For each @value, only the bits set to 1 in the corresponding @mask 2190 * will be written. The other bits are not changed. 2191 * @size has to be 1 for the current firmware version. 2192 */ 2193 int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size) 2194 { 2195 int r; 2196 2197 if (size != 1) 2198 return -EINVAL; 2199 2200 mutex_lock(&mb5_transfer.lock); 2201 2202 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5)) 2203 cpu_relax(); 2204 2205 writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5)); 2206 writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP)); 2207 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS)); 2208 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG)); 2209 writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL)); 2210 2211 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET); 2212 2213 if (!wait_for_completion_timeout(&mb5_transfer.work, 2214 msecs_to_jiffies(20000))) { 2215 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n", 2216 __func__); 2217 r = -EIO; 2218 } else { 2219 r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO); 2220 } 2221 2222 mutex_unlock(&mb5_transfer.lock); 2223 2224 return r; 2225 } 2226 2227 /** 2228 * prcmu_abb_write() - Write register value(s) to the ABB. 2229 * @slave: The I2C slave address. 2230 * @reg: The (start) register address. 2231 * @value: The value(s) to write. 2232 * @size: The number of registers to write. 2233 * 2234 * Writes register value(s) to the ABB. 2235 * @size has to be 1 for the current firmware version. 2236 */ 2237 int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size) 2238 { 2239 u8 mask = ~0; 2240 2241 return prcmu_abb_write_masked(slave, reg, value, &mask, size); 2242 } 2243 2244 /** 2245 * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem 2246 */ 2247 int prcmu_ac_wake_req(void) 2248 { 2249 u32 val; 2250 int ret = 0; 2251 2252 mutex_lock(&mb0_transfer.ac_wake_lock); 2253 2254 val = readl(PRCM_HOSTACCESS_REQ); 2255 if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ) 2256 goto unlock_and_return; 2257 2258 atomic_set(&ac_wake_req_state, 1); 2259 2260 /* 2261 * Force Modem Wake-up before hostaccess_req ping-pong. 2262 * It prevents Modem to enter in Sleep while acking the hostaccess 2263 * request. The 31us delay has been calculated by HWI. 2264 */ 2265 val |= PRCM_HOSTACCESS_REQ_WAKE_REQ; 2266 writel(val, PRCM_HOSTACCESS_REQ); 2267 2268 udelay(31); 2269 2270 val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ; 2271 writel(val, PRCM_HOSTACCESS_REQ); 2272 2273 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work, 2274 msecs_to_jiffies(5000))) { 2275 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n", 2276 __func__); 2277 ret = -EFAULT; 2278 } 2279 2280 unlock_and_return: 2281 mutex_unlock(&mb0_transfer.ac_wake_lock); 2282 return ret; 2283 } 2284 2285 /** 2286 * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem 2287 */ 2288 void prcmu_ac_sleep_req(void) 2289 { 2290 u32 val; 2291 2292 mutex_lock(&mb0_transfer.ac_wake_lock); 2293 2294 val = readl(PRCM_HOSTACCESS_REQ); 2295 if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)) 2296 goto unlock_and_return; 2297 2298 writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ), 2299 PRCM_HOSTACCESS_REQ); 2300 2301 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work, 2302 msecs_to_jiffies(5000))) { 2303 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n", 2304 __func__); 2305 } 2306 2307 atomic_set(&ac_wake_req_state, 0); 2308 2309 unlock_and_return: 2310 mutex_unlock(&mb0_transfer.ac_wake_lock); 2311 } 2312 2313 bool db8500_prcmu_is_ac_wake_requested(void) 2314 { 2315 return (atomic_read(&ac_wake_req_state) != 0); 2316 } 2317 2318 /** 2319 * db8500_prcmu_system_reset - System reset 2320 * 2321 * Saves the reset reason code and then sets the APE_SOFTRST register which 2322 * fires interrupt to fw 2323 */ 2324 void db8500_prcmu_system_reset(u16 reset_code) 2325 { 2326 writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON)); 2327 writel(1, PRCM_APE_SOFTRST); 2328 } 2329 2330 /** 2331 * db8500_prcmu_get_reset_code - Retrieve SW reset reason code 2332 * 2333 * Retrieves the reset reason code stored by prcmu_system_reset() before 2334 * last restart. 2335 */ 2336 u16 db8500_prcmu_get_reset_code(void) 2337 { 2338 return readw(tcdm_base + PRCM_SW_RST_REASON); 2339 } 2340 2341 /** 2342 * db8500_prcmu_reset_modem - ask the PRCMU to reset modem 2343 */ 2344 void db8500_prcmu_modem_reset(void) 2345 { 2346 mutex_lock(&mb1_transfer.lock); 2347 2348 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1)) 2349 cpu_relax(); 2350 2351 writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1)); 2352 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET); 2353 wait_for_completion(&mb1_transfer.work); 2354 2355 /* 2356 * No need to check return from PRCMU as modem should go in reset state 2357 * This state is already managed by upper layer 2358 */ 2359 2360 mutex_unlock(&mb1_transfer.lock); 2361 } 2362 2363 static void ack_dbb_wakeup(void) 2364 { 2365 unsigned long flags; 2366 2367 spin_lock_irqsave(&mb0_transfer.lock, flags); 2368 2369 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0)) 2370 cpu_relax(); 2371 2372 writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0)); 2373 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET); 2374 2375 spin_unlock_irqrestore(&mb0_transfer.lock, flags); 2376 } 2377 2378 static inline void print_unknown_header_warning(u8 n, u8 header) 2379 { 2380 pr_warn("prcmu: Unknown message header (%d) in mailbox %d\n", 2381 header, n); 2382 } 2383 2384 static bool read_mailbox_0(void) 2385 { 2386 bool r; 2387 u32 ev; 2388 unsigned int n; 2389 u8 header; 2390 2391 header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0); 2392 switch (header) { 2393 case MB0H_WAKEUP_EXE: 2394 case MB0H_WAKEUP_SLEEP: 2395 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1) 2396 ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500); 2397 else 2398 ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500); 2399 2400 if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK)) 2401 complete(&mb0_transfer.ac_wake_work); 2402 if (ev & WAKEUP_BIT_SYSCLK_OK) 2403 complete(&mb3_transfer.sysclk_work); 2404 2405 ev &= mb0_transfer.req.dbb_irqs; 2406 2407 for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) { 2408 if (ev & prcmu_irq_bit[n]) 2409 generic_handle_irq(irq_find_mapping(db8500_irq_domain, n)); 2410 } 2411 r = true; 2412 break; 2413 default: 2414 print_unknown_header_warning(0, header); 2415 r = false; 2416 break; 2417 } 2418 writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR); 2419 return r; 2420 } 2421 2422 static bool read_mailbox_1(void) 2423 { 2424 mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1); 2425 mb1_transfer.ack.arm_opp = readb(tcdm_base + 2426 PRCM_ACK_MB1_CURRENT_ARM_OPP); 2427 mb1_transfer.ack.ape_opp = readb(tcdm_base + 2428 PRCM_ACK_MB1_CURRENT_APE_OPP); 2429 mb1_transfer.ack.ape_voltage_status = readb(tcdm_base + 2430 PRCM_ACK_MB1_APE_VOLTAGE_STATUS); 2431 writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR); 2432 complete(&mb1_transfer.work); 2433 return false; 2434 } 2435 2436 static bool read_mailbox_2(void) 2437 { 2438 mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS); 2439 writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR); 2440 complete(&mb2_transfer.work); 2441 return false; 2442 } 2443 2444 static bool read_mailbox_3(void) 2445 { 2446 writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR); 2447 return false; 2448 } 2449 2450 static bool read_mailbox_4(void) 2451 { 2452 u8 header; 2453 bool do_complete = true; 2454 2455 header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4); 2456 switch (header) { 2457 case MB4H_MEM_ST: 2458 case MB4H_HOTDOG: 2459 case MB4H_HOTMON: 2460 case MB4H_HOT_PERIOD: 2461 case MB4H_A9WDOG_CONF: 2462 case MB4H_A9WDOG_EN: 2463 case MB4H_A9WDOG_DIS: 2464 case MB4H_A9WDOG_LOAD: 2465 case MB4H_A9WDOG_KICK: 2466 break; 2467 default: 2468 print_unknown_header_warning(4, header); 2469 do_complete = false; 2470 break; 2471 } 2472 2473 writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR); 2474 2475 if (do_complete) 2476 complete(&mb4_transfer.work); 2477 2478 return false; 2479 } 2480 2481 static bool read_mailbox_5(void) 2482 { 2483 mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS); 2484 mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL); 2485 writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR); 2486 complete(&mb5_transfer.work); 2487 return false; 2488 } 2489 2490 static bool read_mailbox_6(void) 2491 { 2492 writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR); 2493 return false; 2494 } 2495 2496 static bool read_mailbox_7(void) 2497 { 2498 writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR); 2499 return false; 2500 } 2501 2502 static bool (* const read_mailbox[NUM_MB])(void) = { 2503 read_mailbox_0, 2504 read_mailbox_1, 2505 read_mailbox_2, 2506 read_mailbox_3, 2507 read_mailbox_4, 2508 read_mailbox_5, 2509 read_mailbox_6, 2510 read_mailbox_7 2511 }; 2512 2513 static irqreturn_t prcmu_irq_handler(int irq, void *data) 2514 { 2515 u32 bits; 2516 u8 n; 2517 irqreturn_t r; 2518 2519 bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS); 2520 if (unlikely(!bits)) 2521 return IRQ_NONE; 2522 2523 r = IRQ_HANDLED; 2524 for (n = 0; bits; n++) { 2525 if (bits & MBOX_BIT(n)) { 2526 bits -= MBOX_BIT(n); 2527 if (read_mailbox[n]()) 2528 r = IRQ_WAKE_THREAD; 2529 } 2530 } 2531 return r; 2532 } 2533 2534 static irqreturn_t prcmu_irq_thread_fn(int irq, void *data) 2535 { 2536 ack_dbb_wakeup(); 2537 return IRQ_HANDLED; 2538 } 2539 2540 static void prcmu_mask_work(struct work_struct *work) 2541 { 2542 unsigned long flags; 2543 2544 spin_lock_irqsave(&mb0_transfer.lock, flags); 2545 2546 config_wakeups(); 2547 2548 spin_unlock_irqrestore(&mb0_transfer.lock, flags); 2549 } 2550 2551 static void prcmu_irq_mask(struct irq_data *d) 2552 { 2553 unsigned long flags; 2554 2555 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags); 2556 2557 mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq]; 2558 2559 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags); 2560 2561 if (d->irq != IRQ_PRCMU_CA_SLEEP) 2562 schedule_work(&mb0_transfer.mask_work); 2563 } 2564 2565 static void prcmu_irq_unmask(struct irq_data *d) 2566 { 2567 unsigned long flags; 2568 2569 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags); 2570 2571 mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq]; 2572 2573 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags); 2574 2575 if (d->irq != IRQ_PRCMU_CA_SLEEP) 2576 schedule_work(&mb0_transfer.mask_work); 2577 } 2578 2579 static void noop(struct irq_data *d) 2580 { 2581 } 2582 2583 static struct irq_chip prcmu_irq_chip = { 2584 .name = "prcmu", 2585 .irq_disable = prcmu_irq_mask, 2586 .irq_ack = noop, 2587 .irq_mask = prcmu_irq_mask, 2588 .irq_unmask = prcmu_irq_unmask, 2589 }; 2590 2591 static char *fw_project_name(u32 project) 2592 { 2593 switch (project) { 2594 case PRCMU_FW_PROJECT_U8500: 2595 return "U8500"; 2596 case PRCMU_FW_PROJECT_U8400: 2597 return "U8400"; 2598 case PRCMU_FW_PROJECT_U9500: 2599 return "U9500"; 2600 case PRCMU_FW_PROJECT_U8500_MBB: 2601 return "U8500 MBB"; 2602 case PRCMU_FW_PROJECT_U8500_C1: 2603 return "U8500 C1"; 2604 case PRCMU_FW_PROJECT_U8500_C2: 2605 return "U8500 C2"; 2606 case PRCMU_FW_PROJECT_U8500_C3: 2607 return "U8500 C3"; 2608 case PRCMU_FW_PROJECT_U8500_C4: 2609 return "U8500 C4"; 2610 case PRCMU_FW_PROJECT_U9500_MBL: 2611 return "U9500 MBL"; 2612 case PRCMU_FW_PROJECT_U8500_MBL: 2613 return "U8500 MBL"; 2614 case PRCMU_FW_PROJECT_U8500_MBL2: 2615 return "U8500 MBL2"; 2616 case PRCMU_FW_PROJECT_U8520: 2617 return "U8520 MBL"; 2618 case PRCMU_FW_PROJECT_U8420: 2619 return "U8420"; 2620 case PRCMU_FW_PROJECT_U9540: 2621 return "U9540"; 2622 case PRCMU_FW_PROJECT_A9420: 2623 return "A9420"; 2624 case PRCMU_FW_PROJECT_L8540: 2625 return "L8540"; 2626 case PRCMU_FW_PROJECT_L8580: 2627 return "L8580"; 2628 default: 2629 return "Unknown"; 2630 } 2631 } 2632 2633 static int db8500_irq_map(struct irq_domain *d, unsigned int virq, 2634 irq_hw_number_t hwirq) 2635 { 2636 irq_set_chip_and_handler(virq, &prcmu_irq_chip, 2637 handle_simple_irq); 2638 2639 return 0; 2640 } 2641 2642 static const struct irq_domain_ops db8500_irq_ops = { 2643 .map = db8500_irq_map, 2644 .xlate = irq_domain_xlate_twocell, 2645 }; 2646 2647 static int db8500_irq_init(struct device_node *np) 2648 { 2649 int i; 2650 2651 db8500_irq_domain = irq_domain_add_simple( 2652 np, NUM_PRCMU_WAKEUPS, 0, 2653 &db8500_irq_ops, NULL); 2654 2655 if (!db8500_irq_domain) { 2656 pr_err("Failed to create irqdomain\n"); 2657 return -ENOSYS; 2658 } 2659 2660 /* All wakeups will be used, so create mappings for all */ 2661 for (i = 0; i < NUM_PRCMU_WAKEUPS; i++) 2662 irq_create_mapping(db8500_irq_domain, i); 2663 2664 return 0; 2665 } 2666 2667 static void dbx500_fw_version_init(struct platform_device *pdev, 2668 u32 version_offset) 2669 { 2670 struct resource *res; 2671 void __iomem *tcpm_base; 2672 u32 version; 2673 2674 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, 2675 "prcmu-tcpm"); 2676 if (!res) { 2677 dev_err(&pdev->dev, 2678 "Error: no prcmu tcpm memory region provided\n"); 2679 return; 2680 } 2681 tcpm_base = ioremap(res->start, resource_size(res)); 2682 if (!tcpm_base) { 2683 dev_err(&pdev->dev, "no prcmu tcpm mem region provided\n"); 2684 return; 2685 } 2686 2687 version = readl(tcpm_base + version_offset); 2688 fw_info.version.project = (version & 0xFF); 2689 fw_info.version.api_version = (version >> 8) & 0xFF; 2690 fw_info.version.func_version = (version >> 16) & 0xFF; 2691 fw_info.version.errata = (version >> 24) & 0xFF; 2692 strncpy(fw_info.version.project_name, 2693 fw_project_name(fw_info.version.project), 2694 PRCMU_FW_PROJECT_NAME_LEN); 2695 fw_info.valid = true; 2696 pr_info("PRCMU firmware: %s(%d), version %d.%d.%d\n", 2697 fw_info.version.project_name, 2698 fw_info.version.project, 2699 fw_info.version.api_version, 2700 fw_info.version.func_version, 2701 fw_info.version.errata); 2702 iounmap(tcpm_base); 2703 } 2704 2705 void __init db8500_prcmu_early_init(u32 phy_base, u32 size) 2706 { 2707 /* 2708 * This is a temporary remap to bring up the clocks. It is 2709 * subsequently replaces with a real remap. After the merge of 2710 * the mailbox subsystem all of this early code goes away, and the 2711 * clock driver can probe independently. An early initcall will 2712 * still be needed, but it can be diverted into drivers/clk/ux500. 2713 */ 2714 prcmu_base = ioremap(phy_base, size); 2715 if (!prcmu_base) 2716 pr_err("%s: ioremap() of prcmu registers failed!\n", __func__); 2717 2718 spin_lock_init(&mb0_transfer.lock); 2719 spin_lock_init(&mb0_transfer.dbb_irqs_lock); 2720 mutex_init(&mb0_transfer.ac_wake_lock); 2721 init_completion(&mb0_transfer.ac_wake_work); 2722 mutex_init(&mb1_transfer.lock); 2723 init_completion(&mb1_transfer.work); 2724 mb1_transfer.ape_opp = APE_NO_CHANGE; 2725 mutex_init(&mb2_transfer.lock); 2726 init_completion(&mb2_transfer.work); 2727 spin_lock_init(&mb2_transfer.auto_pm_lock); 2728 spin_lock_init(&mb3_transfer.lock); 2729 mutex_init(&mb3_transfer.sysclk_lock); 2730 init_completion(&mb3_transfer.sysclk_work); 2731 mutex_init(&mb4_transfer.lock); 2732 init_completion(&mb4_transfer.work); 2733 mutex_init(&mb5_transfer.lock); 2734 init_completion(&mb5_transfer.work); 2735 2736 INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work); 2737 } 2738 2739 static void init_prcm_registers(void) 2740 { 2741 u32 val; 2742 2743 val = readl(PRCM_A9PL_FORCE_CLKEN); 2744 val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN | 2745 PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN); 2746 writel(val, (PRCM_A9PL_FORCE_CLKEN)); 2747 } 2748 2749 /* 2750 * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC 2751 */ 2752 static struct regulator_consumer_supply db8500_vape_consumers[] = { 2753 REGULATOR_SUPPLY("v-ape", NULL), 2754 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"), 2755 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"), 2756 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"), 2757 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"), 2758 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"), 2759 /* "v-mmc" changed to "vcore" in the mainline kernel */ 2760 REGULATOR_SUPPLY("vcore", "sdi0"), 2761 REGULATOR_SUPPLY("vcore", "sdi1"), 2762 REGULATOR_SUPPLY("vcore", "sdi2"), 2763 REGULATOR_SUPPLY("vcore", "sdi3"), 2764 REGULATOR_SUPPLY("vcore", "sdi4"), 2765 REGULATOR_SUPPLY("v-dma", "dma40.0"), 2766 REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"), 2767 /* "v-uart" changed to "vcore" in the mainline kernel */ 2768 REGULATOR_SUPPLY("vcore", "uart0"), 2769 REGULATOR_SUPPLY("vcore", "uart1"), 2770 REGULATOR_SUPPLY("vcore", "uart2"), 2771 REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"), 2772 REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"), 2773 REGULATOR_SUPPLY("vddvario", "smsc911x.0"), 2774 }; 2775 2776 static struct regulator_consumer_supply db8500_vsmps2_consumers[] = { 2777 REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"), 2778 /* AV8100 regulator */ 2779 REGULATOR_SUPPLY("hdmi_1v8", "0-0070"), 2780 }; 2781 2782 static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = { 2783 REGULATOR_SUPPLY("vsupply", "b2r2_bus"), 2784 REGULATOR_SUPPLY("vsupply", "mcde"), 2785 }; 2786 2787 /* SVA MMDSP regulator switch */ 2788 static struct regulator_consumer_supply db8500_svammdsp_consumers[] = { 2789 REGULATOR_SUPPLY("sva-mmdsp", "cm_control"), 2790 }; 2791 2792 /* SVA pipe regulator switch */ 2793 static struct regulator_consumer_supply db8500_svapipe_consumers[] = { 2794 REGULATOR_SUPPLY("sva-pipe", "cm_control"), 2795 }; 2796 2797 /* SIA MMDSP regulator switch */ 2798 static struct regulator_consumer_supply db8500_siammdsp_consumers[] = { 2799 REGULATOR_SUPPLY("sia-mmdsp", "cm_control"), 2800 }; 2801 2802 /* SIA pipe regulator switch */ 2803 static struct regulator_consumer_supply db8500_siapipe_consumers[] = { 2804 REGULATOR_SUPPLY("sia-pipe", "cm_control"), 2805 }; 2806 2807 static struct regulator_consumer_supply db8500_sga_consumers[] = { 2808 REGULATOR_SUPPLY("v-mali", NULL), 2809 }; 2810 2811 /* ESRAM1 and 2 regulator switch */ 2812 static struct regulator_consumer_supply db8500_esram12_consumers[] = { 2813 REGULATOR_SUPPLY("esram12", "cm_control"), 2814 }; 2815 2816 /* ESRAM3 and 4 regulator switch */ 2817 static struct regulator_consumer_supply db8500_esram34_consumers[] = { 2818 REGULATOR_SUPPLY("v-esram34", "mcde"), 2819 REGULATOR_SUPPLY("esram34", "cm_control"), 2820 REGULATOR_SUPPLY("lcla_esram", "dma40.0"), 2821 }; 2822 2823 static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = { 2824 [DB8500_REGULATOR_VAPE] = { 2825 .constraints = { 2826 .name = "db8500-vape", 2827 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2828 .always_on = true, 2829 }, 2830 .consumer_supplies = db8500_vape_consumers, 2831 .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers), 2832 }, 2833 [DB8500_REGULATOR_VARM] = { 2834 .constraints = { 2835 .name = "db8500-varm", 2836 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2837 }, 2838 }, 2839 [DB8500_REGULATOR_VMODEM] = { 2840 .constraints = { 2841 .name = "db8500-vmodem", 2842 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2843 }, 2844 }, 2845 [DB8500_REGULATOR_VPLL] = { 2846 .constraints = { 2847 .name = "db8500-vpll", 2848 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2849 }, 2850 }, 2851 [DB8500_REGULATOR_VSMPS1] = { 2852 .constraints = { 2853 .name = "db8500-vsmps1", 2854 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2855 }, 2856 }, 2857 [DB8500_REGULATOR_VSMPS2] = { 2858 .constraints = { 2859 .name = "db8500-vsmps2", 2860 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2861 }, 2862 .consumer_supplies = db8500_vsmps2_consumers, 2863 .num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers), 2864 }, 2865 [DB8500_REGULATOR_VSMPS3] = { 2866 .constraints = { 2867 .name = "db8500-vsmps3", 2868 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2869 }, 2870 }, 2871 [DB8500_REGULATOR_VRF1] = { 2872 .constraints = { 2873 .name = "db8500-vrf1", 2874 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2875 }, 2876 }, 2877 [DB8500_REGULATOR_SWITCH_SVAMMDSP] = { 2878 /* dependency to u8500-vape is handled outside regulator framework */ 2879 .constraints = { 2880 .name = "db8500-sva-mmdsp", 2881 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2882 }, 2883 .consumer_supplies = db8500_svammdsp_consumers, 2884 .num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers), 2885 }, 2886 [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = { 2887 .constraints = { 2888 /* "ret" means "retention" */ 2889 .name = "db8500-sva-mmdsp-ret", 2890 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2891 }, 2892 }, 2893 [DB8500_REGULATOR_SWITCH_SVAPIPE] = { 2894 /* dependency to u8500-vape is handled outside regulator framework */ 2895 .constraints = { 2896 .name = "db8500-sva-pipe", 2897 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2898 }, 2899 .consumer_supplies = db8500_svapipe_consumers, 2900 .num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers), 2901 }, 2902 [DB8500_REGULATOR_SWITCH_SIAMMDSP] = { 2903 /* dependency to u8500-vape is handled outside regulator framework */ 2904 .constraints = { 2905 .name = "db8500-sia-mmdsp", 2906 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2907 }, 2908 .consumer_supplies = db8500_siammdsp_consumers, 2909 .num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers), 2910 }, 2911 [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = { 2912 .constraints = { 2913 .name = "db8500-sia-mmdsp-ret", 2914 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2915 }, 2916 }, 2917 [DB8500_REGULATOR_SWITCH_SIAPIPE] = { 2918 /* dependency to u8500-vape is handled outside regulator framework */ 2919 .constraints = { 2920 .name = "db8500-sia-pipe", 2921 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2922 }, 2923 .consumer_supplies = db8500_siapipe_consumers, 2924 .num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers), 2925 }, 2926 [DB8500_REGULATOR_SWITCH_SGA] = { 2927 .supply_regulator = "db8500-vape", 2928 .constraints = { 2929 .name = "db8500-sga", 2930 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2931 }, 2932 .consumer_supplies = db8500_sga_consumers, 2933 .num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers), 2934 2935 }, 2936 [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = { 2937 .supply_regulator = "db8500-vape", 2938 .constraints = { 2939 .name = "db8500-b2r2-mcde", 2940 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2941 }, 2942 .consumer_supplies = db8500_b2r2_mcde_consumers, 2943 .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers), 2944 }, 2945 [DB8500_REGULATOR_SWITCH_ESRAM12] = { 2946 /* 2947 * esram12 is set in retention and supplied by Vsafe when Vape is off, 2948 * no need to hold Vape 2949 */ 2950 .constraints = { 2951 .name = "db8500-esram12", 2952 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2953 }, 2954 .consumer_supplies = db8500_esram12_consumers, 2955 .num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers), 2956 }, 2957 [DB8500_REGULATOR_SWITCH_ESRAM12RET] = { 2958 .constraints = { 2959 .name = "db8500-esram12-ret", 2960 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2961 }, 2962 }, 2963 [DB8500_REGULATOR_SWITCH_ESRAM34] = { 2964 /* 2965 * esram34 is set in retention and supplied by Vsafe when Vape is off, 2966 * no need to hold Vape 2967 */ 2968 .constraints = { 2969 .name = "db8500-esram34", 2970 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2971 }, 2972 .consumer_supplies = db8500_esram34_consumers, 2973 .num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers), 2974 }, 2975 [DB8500_REGULATOR_SWITCH_ESRAM34RET] = { 2976 .constraints = { 2977 .name = "db8500-esram34-ret", 2978 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2979 }, 2980 }, 2981 }; 2982 2983 static struct ux500_wdt_data db8500_wdt_pdata = { 2984 .timeout = 600, /* 10 minutes */ 2985 .has_28_bits_resolution = true, 2986 }; 2987 /* 2988 * Thermal Sensor 2989 */ 2990 2991 static struct resource db8500_thsens_resources[] = { 2992 { 2993 .name = "IRQ_HOTMON_LOW", 2994 .start = IRQ_PRCMU_HOTMON_LOW, 2995 .end = IRQ_PRCMU_HOTMON_LOW, 2996 .flags = IORESOURCE_IRQ, 2997 }, 2998 { 2999 .name = "IRQ_HOTMON_HIGH", 3000 .start = IRQ_PRCMU_HOTMON_HIGH, 3001 .end = IRQ_PRCMU_HOTMON_HIGH, 3002 .flags = IORESOURCE_IRQ, 3003 }, 3004 }; 3005 3006 static struct db8500_thsens_platform_data db8500_thsens_data = { 3007 .trip_points[0] = { 3008 .temp = 70000, 3009 .type = THERMAL_TRIP_ACTIVE, 3010 .cdev_name = { 3011 [0] = "thermal-cpufreq-0", 3012 }, 3013 }, 3014 .trip_points[1] = { 3015 .temp = 75000, 3016 .type = THERMAL_TRIP_ACTIVE, 3017 .cdev_name = { 3018 [0] = "thermal-cpufreq-0", 3019 }, 3020 }, 3021 .trip_points[2] = { 3022 .temp = 80000, 3023 .type = THERMAL_TRIP_ACTIVE, 3024 .cdev_name = { 3025 [0] = "thermal-cpufreq-0", 3026 }, 3027 }, 3028 .trip_points[3] = { 3029 .temp = 85000, 3030 .type = THERMAL_TRIP_CRITICAL, 3031 }, 3032 .num_trips = 4, 3033 }; 3034 3035 static const struct mfd_cell common_prcmu_devs[] = { 3036 { 3037 .name = "ux500_wdt", 3038 .platform_data = &db8500_wdt_pdata, 3039 .pdata_size = sizeof(db8500_wdt_pdata), 3040 .id = -1, 3041 }, 3042 }; 3043 3044 static const struct mfd_cell db8500_prcmu_devs[] = { 3045 { 3046 .name = "db8500-prcmu-regulators", 3047 .of_compatible = "stericsson,db8500-prcmu-regulator", 3048 .platform_data = &db8500_regulators, 3049 .pdata_size = sizeof(db8500_regulators), 3050 }, 3051 { 3052 .name = "cpuidle-dbx500", 3053 .of_compatible = "stericsson,cpuidle-dbx500", 3054 }, 3055 { 3056 .name = "db8500-thermal", 3057 .num_resources = ARRAY_SIZE(db8500_thsens_resources), 3058 .resources = db8500_thsens_resources, 3059 .platform_data = &db8500_thsens_data, 3060 .pdata_size = sizeof(db8500_thsens_data), 3061 }, 3062 }; 3063 3064 static int db8500_prcmu_register_ab8500(struct device *parent) 3065 { 3066 struct device_node *np; 3067 struct resource ab8500_resource; 3068 const struct mfd_cell ab8500_cell = { 3069 .name = "ab8500-core", 3070 .of_compatible = "stericsson,ab8500", 3071 .id = AB8500_VERSION_AB8500, 3072 .resources = &ab8500_resource, 3073 .num_resources = 1, 3074 }; 3075 3076 if (!parent->of_node) 3077 return -ENODEV; 3078 3079 /* Look up the device node, sneak the IRQ out of it */ 3080 for_each_child_of_node(parent->of_node, np) { 3081 if (of_device_is_compatible(np, ab8500_cell.of_compatible)) 3082 break; 3083 } 3084 if (!np) { 3085 dev_info(parent, "could not find AB8500 node in the device tree\n"); 3086 return -ENODEV; 3087 } 3088 of_irq_to_resource_table(np, &ab8500_resource, 1); 3089 3090 return mfd_add_devices(parent, 0, &ab8500_cell, 1, NULL, 0, NULL); 3091 } 3092 3093 /** 3094 * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic 3095 * 3096 */ 3097 static int db8500_prcmu_probe(struct platform_device *pdev) 3098 { 3099 struct device_node *np = pdev->dev.of_node; 3100 int irq = 0, err = 0; 3101 struct resource *res; 3102 3103 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu"); 3104 if (!res) { 3105 dev_err(&pdev->dev, "no prcmu memory region provided\n"); 3106 return -EINVAL; 3107 } 3108 prcmu_base = devm_ioremap(&pdev->dev, res->start, resource_size(res)); 3109 if (!prcmu_base) { 3110 dev_err(&pdev->dev, 3111 "failed to ioremap prcmu register memory\n"); 3112 return -ENOMEM; 3113 } 3114 init_prcm_registers(); 3115 dbx500_fw_version_init(pdev, DB8500_PRCMU_FW_VERSION_OFFSET); 3116 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu-tcdm"); 3117 if (!res) { 3118 dev_err(&pdev->dev, "no prcmu tcdm region provided\n"); 3119 return -EINVAL; 3120 } 3121 tcdm_base = devm_ioremap(&pdev->dev, res->start, 3122 resource_size(res)); 3123 if (!tcdm_base) { 3124 dev_err(&pdev->dev, 3125 "failed to ioremap prcmu-tcdm register memory\n"); 3126 return -ENOMEM; 3127 } 3128 3129 /* Clean up the mailbox interrupts after pre-kernel code. */ 3130 writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR); 3131 3132 irq = platform_get_irq(pdev, 0); 3133 if (irq <= 0) { 3134 dev_err(&pdev->dev, "no prcmu irq provided\n"); 3135 return irq; 3136 } 3137 3138 err = request_threaded_irq(irq, prcmu_irq_handler, 3139 prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL); 3140 if (err < 0) { 3141 pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n"); 3142 return err; 3143 } 3144 3145 db8500_irq_init(np); 3146 3147 prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET); 3148 3149 err = mfd_add_devices(&pdev->dev, 0, common_prcmu_devs, 3150 ARRAY_SIZE(common_prcmu_devs), NULL, 0, db8500_irq_domain); 3151 if (err) { 3152 pr_err("prcmu: Failed to add subdevices\n"); 3153 return err; 3154 } 3155 3156 /* TODO: Remove restriction when clk definitions are available. */ 3157 if (!of_machine_is_compatible("st-ericsson,u8540")) { 3158 err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs, 3159 ARRAY_SIZE(db8500_prcmu_devs), NULL, 0, 3160 db8500_irq_domain); 3161 if (err) { 3162 mfd_remove_devices(&pdev->dev); 3163 pr_err("prcmu: Failed to add subdevices\n"); 3164 return err; 3165 } 3166 } 3167 3168 err = db8500_prcmu_register_ab8500(&pdev->dev); 3169 if (err) { 3170 mfd_remove_devices(&pdev->dev); 3171 pr_err("prcmu: Failed to add ab8500 subdevice\n"); 3172 return err; 3173 } 3174 3175 pr_info("DB8500 PRCMU initialized\n"); 3176 return err; 3177 } 3178 static const struct of_device_id db8500_prcmu_match[] = { 3179 { .compatible = "stericsson,db8500-prcmu"}, 3180 { }, 3181 }; 3182 3183 static struct platform_driver db8500_prcmu_driver = { 3184 .driver = { 3185 .name = "db8500-prcmu", 3186 .of_match_table = db8500_prcmu_match, 3187 }, 3188 .probe = db8500_prcmu_probe, 3189 }; 3190 3191 static int __init db8500_prcmu_init(void) 3192 { 3193 return platform_driver_register(&db8500_prcmu_driver); 3194 } 3195 core_initcall(db8500_prcmu_init); 3196