1 /* 2 * Copyright (C) STMicroelectronics 2009 3 * Copyright (C) ST-Ericsson SA 2010 4 * 5 * License Terms: GNU General Public License v2 6 * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com> 7 * Author: Sundar Iyer <sundar.iyer@stericsson.com> 8 * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com> 9 * 10 * U8500 PRCM Unit interface driver 11 * 12 */ 13 #include <linux/module.h> 14 #include <linux/kernel.h> 15 #include <linux/delay.h> 16 #include <linux/errno.h> 17 #include <linux/err.h> 18 #include <linux/spinlock.h> 19 #include <linux/io.h> 20 #include <linux/slab.h> 21 #include <linux/mutex.h> 22 #include <linux/completion.h> 23 #include <linux/irq.h> 24 #include <linux/jiffies.h> 25 #include <linux/bitops.h> 26 #include <linux/fs.h> 27 #include <linux/of.h> 28 #include <linux/of_irq.h> 29 #include <linux/platform_device.h> 30 #include <linux/uaccess.h> 31 #include <linux/mfd/core.h> 32 #include <linux/mfd/dbx500-prcmu.h> 33 #include <linux/mfd/abx500/ab8500.h> 34 #include <linux/regulator/db8500-prcmu.h> 35 #include <linux/regulator/machine.h> 36 #include <linux/cpufreq.h> 37 #include <linux/platform_data/ux500_wdt.h> 38 #include <linux/platform_data/db8500_thermal.h> 39 #include "dbx500-prcmu-regs.h" 40 41 /* Index of different voltages to be used when accessing AVSData */ 42 #define PRCM_AVS_BASE 0x2FC 43 #define PRCM_AVS_VBB_RET (PRCM_AVS_BASE + 0x0) 44 #define PRCM_AVS_VBB_MAX_OPP (PRCM_AVS_BASE + 0x1) 45 #define PRCM_AVS_VBB_100_OPP (PRCM_AVS_BASE + 0x2) 46 #define PRCM_AVS_VBB_50_OPP (PRCM_AVS_BASE + 0x3) 47 #define PRCM_AVS_VARM_MAX_OPP (PRCM_AVS_BASE + 0x4) 48 #define PRCM_AVS_VARM_100_OPP (PRCM_AVS_BASE + 0x5) 49 #define PRCM_AVS_VARM_50_OPP (PRCM_AVS_BASE + 0x6) 50 #define PRCM_AVS_VARM_RET (PRCM_AVS_BASE + 0x7) 51 #define PRCM_AVS_VAPE_100_OPP (PRCM_AVS_BASE + 0x8) 52 #define PRCM_AVS_VAPE_50_OPP (PRCM_AVS_BASE + 0x9) 53 #define PRCM_AVS_VMOD_100_OPP (PRCM_AVS_BASE + 0xA) 54 #define PRCM_AVS_VMOD_50_OPP (PRCM_AVS_BASE + 0xB) 55 #define PRCM_AVS_VSAFE (PRCM_AVS_BASE + 0xC) 56 57 #define PRCM_AVS_VOLTAGE 0 58 #define PRCM_AVS_VOLTAGE_MASK 0x3f 59 #define PRCM_AVS_ISSLOWSTARTUP 6 60 #define PRCM_AVS_ISSLOWSTARTUP_MASK (1 << PRCM_AVS_ISSLOWSTARTUP) 61 #define PRCM_AVS_ISMODEENABLE 7 62 #define PRCM_AVS_ISMODEENABLE_MASK (1 << PRCM_AVS_ISMODEENABLE) 63 64 #define PRCM_BOOT_STATUS 0xFFF 65 #define PRCM_ROMCODE_A2P 0xFFE 66 #define PRCM_ROMCODE_P2A 0xFFD 67 #define PRCM_XP70_CUR_PWR_STATE 0xFFC /* 4 BYTES */ 68 69 #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */ 70 71 #define _PRCM_MBOX_HEADER 0xFE8 /* 16 bytes */ 72 #define PRCM_MBOX_HEADER_REQ_MB0 (_PRCM_MBOX_HEADER + 0x0) 73 #define PRCM_MBOX_HEADER_REQ_MB1 (_PRCM_MBOX_HEADER + 0x1) 74 #define PRCM_MBOX_HEADER_REQ_MB2 (_PRCM_MBOX_HEADER + 0x2) 75 #define PRCM_MBOX_HEADER_REQ_MB3 (_PRCM_MBOX_HEADER + 0x3) 76 #define PRCM_MBOX_HEADER_REQ_MB4 (_PRCM_MBOX_HEADER + 0x4) 77 #define PRCM_MBOX_HEADER_REQ_MB5 (_PRCM_MBOX_HEADER + 0x5) 78 #define PRCM_MBOX_HEADER_ACK_MB0 (_PRCM_MBOX_HEADER + 0x8) 79 80 /* Req Mailboxes */ 81 #define PRCM_REQ_MB0 0xFDC /* 12 bytes */ 82 #define PRCM_REQ_MB1 0xFD0 /* 12 bytes */ 83 #define PRCM_REQ_MB2 0xFC0 /* 16 bytes */ 84 #define PRCM_REQ_MB3 0xE4C /* 372 bytes */ 85 #define PRCM_REQ_MB4 0xE48 /* 4 bytes */ 86 #define PRCM_REQ_MB5 0xE44 /* 4 bytes */ 87 88 /* Ack Mailboxes */ 89 #define PRCM_ACK_MB0 0xE08 /* 52 bytes */ 90 #define PRCM_ACK_MB1 0xE04 /* 4 bytes */ 91 #define PRCM_ACK_MB2 0xE00 /* 4 bytes */ 92 #define PRCM_ACK_MB3 0xDFC /* 4 bytes */ 93 #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */ 94 #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */ 95 96 /* Mailbox 0 headers */ 97 #define MB0H_POWER_STATE_TRANS 0 98 #define MB0H_CONFIG_WAKEUPS_EXE 1 99 #define MB0H_READ_WAKEUP_ACK 3 100 #define MB0H_CONFIG_WAKEUPS_SLEEP 4 101 102 #define MB0H_WAKEUP_EXE 2 103 #define MB0H_WAKEUP_SLEEP 5 104 105 /* Mailbox 0 REQs */ 106 #define PRCM_REQ_MB0_AP_POWER_STATE (PRCM_REQ_MB0 + 0x0) 107 #define PRCM_REQ_MB0_AP_PLL_STATE (PRCM_REQ_MB0 + 0x1) 108 #define PRCM_REQ_MB0_ULP_CLOCK_STATE (PRCM_REQ_MB0 + 0x2) 109 #define PRCM_REQ_MB0_DO_NOT_WFI (PRCM_REQ_MB0 + 0x3) 110 #define PRCM_REQ_MB0_WAKEUP_8500 (PRCM_REQ_MB0 + 0x4) 111 #define PRCM_REQ_MB0_WAKEUP_4500 (PRCM_REQ_MB0 + 0x8) 112 113 /* Mailbox 0 ACKs */ 114 #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS (PRCM_ACK_MB0 + 0x0) 115 #define PRCM_ACK_MB0_READ_POINTER (PRCM_ACK_MB0 + 0x1) 116 #define PRCM_ACK_MB0_WAKEUP_0_8500 (PRCM_ACK_MB0 + 0x4) 117 #define PRCM_ACK_MB0_WAKEUP_0_4500 (PRCM_ACK_MB0 + 0x8) 118 #define PRCM_ACK_MB0_WAKEUP_1_8500 (PRCM_ACK_MB0 + 0x1C) 119 #define PRCM_ACK_MB0_WAKEUP_1_4500 (PRCM_ACK_MB0 + 0x20) 120 #define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20 121 122 /* Mailbox 1 headers */ 123 #define MB1H_ARM_APE_OPP 0x0 124 #define MB1H_RESET_MODEM 0x2 125 #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3 126 #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4 127 #define MB1H_RELEASE_USB_WAKEUP 0x5 128 #define MB1H_PLL_ON_OFF 0x6 129 130 /* Mailbox 1 Requests */ 131 #define PRCM_REQ_MB1_ARM_OPP (PRCM_REQ_MB1 + 0x0) 132 #define PRCM_REQ_MB1_APE_OPP (PRCM_REQ_MB1 + 0x1) 133 #define PRCM_REQ_MB1_PLL_ON_OFF (PRCM_REQ_MB1 + 0x4) 134 #define PLL_SOC0_OFF 0x1 135 #define PLL_SOC0_ON 0x2 136 #define PLL_SOC1_OFF 0x4 137 #define PLL_SOC1_ON 0x8 138 139 /* Mailbox 1 ACKs */ 140 #define PRCM_ACK_MB1_CURRENT_ARM_OPP (PRCM_ACK_MB1 + 0x0) 141 #define PRCM_ACK_MB1_CURRENT_APE_OPP (PRCM_ACK_MB1 + 0x1) 142 #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2) 143 #define PRCM_ACK_MB1_DVFS_STATUS (PRCM_ACK_MB1 + 0x3) 144 145 /* Mailbox 2 headers */ 146 #define MB2H_DPS 0x0 147 #define MB2H_AUTO_PWR 0x1 148 149 /* Mailbox 2 REQs */ 150 #define PRCM_REQ_MB2_SVA_MMDSP (PRCM_REQ_MB2 + 0x0) 151 #define PRCM_REQ_MB2_SVA_PIPE (PRCM_REQ_MB2 + 0x1) 152 #define PRCM_REQ_MB2_SIA_MMDSP (PRCM_REQ_MB2 + 0x2) 153 #define PRCM_REQ_MB2_SIA_PIPE (PRCM_REQ_MB2 + 0x3) 154 #define PRCM_REQ_MB2_SGA (PRCM_REQ_MB2 + 0x4) 155 #define PRCM_REQ_MB2_B2R2_MCDE (PRCM_REQ_MB2 + 0x5) 156 #define PRCM_REQ_MB2_ESRAM12 (PRCM_REQ_MB2 + 0x6) 157 #define PRCM_REQ_MB2_ESRAM34 (PRCM_REQ_MB2 + 0x7) 158 #define PRCM_REQ_MB2_AUTO_PM_SLEEP (PRCM_REQ_MB2 + 0x8) 159 #define PRCM_REQ_MB2_AUTO_PM_IDLE (PRCM_REQ_MB2 + 0xC) 160 161 /* Mailbox 2 ACKs */ 162 #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0) 163 #define HWACC_PWR_ST_OK 0xFE 164 165 /* Mailbox 3 headers */ 166 #define MB3H_ANC 0x0 167 #define MB3H_SIDETONE 0x1 168 #define MB3H_SYSCLK 0xE 169 170 /* Mailbox 3 Requests */ 171 #define PRCM_REQ_MB3_ANC_FIR_COEFF (PRCM_REQ_MB3 + 0x0) 172 #define PRCM_REQ_MB3_ANC_IIR_COEFF (PRCM_REQ_MB3 + 0x20) 173 #define PRCM_REQ_MB3_ANC_SHIFTER (PRCM_REQ_MB3 + 0x60) 174 #define PRCM_REQ_MB3_ANC_WARP (PRCM_REQ_MB3 + 0x64) 175 #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN (PRCM_REQ_MB3 + 0x68) 176 #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C) 177 #define PRCM_REQ_MB3_SYSCLK_MGT (PRCM_REQ_MB3 + 0x16C) 178 179 /* Mailbox 4 headers */ 180 #define MB4H_DDR_INIT 0x0 181 #define MB4H_MEM_ST 0x1 182 #define MB4H_HOTDOG 0x12 183 #define MB4H_HOTMON 0x13 184 #define MB4H_HOT_PERIOD 0x14 185 #define MB4H_A9WDOG_CONF 0x16 186 #define MB4H_A9WDOG_EN 0x17 187 #define MB4H_A9WDOG_DIS 0x18 188 #define MB4H_A9WDOG_LOAD 0x19 189 #define MB4H_A9WDOG_KICK 0x20 190 191 /* Mailbox 4 Requests */ 192 #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE (PRCM_REQ_MB4 + 0x0) 193 #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE (PRCM_REQ_MB4 + 0x1) 194 #define PRCM_REQ_MB4_ESRAM0_ST (PRCM_REQ_MB4 + 0x3) 195 #define PRCM_REQ_MB4_HOTDOG_THRESHOLD (PRCM_REQ_MB4 + 0x0) 196 #define PRCM_REQ_MB4_HOTMON_LOW (PRCM_REQ_MB4 + 0x0) 197 #define PRCM_REQ_MB4_HOTMON_HIGH (PRCM_REQ_MB4 + 0x1) 198 #define PRCM_REQ_MB4_HOTMON_CONFIG (PRCM_REQ_MB4 + 0x2) 199 #define PRCM_REQ_MB4_HOT_PERIOD (PRCM_REQ_MB4 + 0x0) 200 #define HOTMON_CONFIG_LOW BIT(0) 201 #define HOTMON_CONFIG_HIGH BIT(1) 202 #define PRCM_REQ_MB4_A9WDOG_0 (PRCM_REQ_MB4 + 0x0) 203 #define PRCM_REQ_MB4_A9WDOG_1 (PRCM_REQ_MB4 + 0x1) 204 #define PRCM_REQ_MB4_A9WDOG_2 (PRCM_REQ_MB4 + 0x2) 205 #define PRCM_REQ_MB4_A9WDOG_3 (PRCM_REQ_MB4 + 0x3) 206 #define A9WDOG_AUTO_OFF_EN BIT(7) 207 #define A9WDOG_AUTO_OFF_DIS 0 208 #define A9WDOG_ID_MASK 0xf 209 210 /* Mailbox 5 Requests */ 211 #define PRCM_REQ_MB5_I2C_SLAVE_OP (PRCM_REQ_MB5 + 0x0) 212 #define PRCM_REQ_MB5_I2C_HW_BITS (PRCM_REQ_MB5 + 0x1) 213 #define PRCM_REQ_MB5_I2C_REG (PRCM_REQ_MB5 + 0x2) 214 #define PRCM_REQ_MB5_I2C_VAL (PRCM_REQ_MB5 + 0x3) 215 #define PRCMU_I2C_WRITE(slave) (((slave) << 1) | BIT(6)) 216 #define PRCMU_I2C_READ(slave) (((slave) << 1) | BIT(0) | BIT(6)) 217 #define PRCMU_I2C_STOP_EN BIT(3) 218 219 /* Mailbox 5 ACKs */ 220 #define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1) 221 #define PRCM_ACK_MB5_I2C_VAL (PRCM_ACK_MB5 + 0x3) 222 #define I2C_WR_OK 0x1 223 #define I2C_RD_OK 0x2 224 225 #define NUM_MB 8 226 #define MBOX_BIT BIT 227 #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1) 228 229 /* 230 * Wakeups/IRQs 231 */ 232 233 #define WAKEUP_BIT_RTC BIT(0) 234 #define WAKEUP_BIT_RTT0 BIT(1) 235 #define WAKEUP_BIT_RTT1 BIT(2) 236 #define WAKEUP_BIT_HSI0 BIT(3) 237 #define WAKEUP_BIT_HSI1 BIT(4) 238 #define WAKEUP_BIT_CA_WAKE BIT(5) 239 #define WAKEUP_BIT_USB BIT(6) 240 #define WAKEUP_BIT_ABB BIT(7) 241 #define WAKEUP_BIT_ABB_FIFO BIT(8) 242 #define WAKEUP_BIT_SYSCLK_OK BIT(9) 243 #define WAKEUP_BIT_CA_SLEEP BIT(10) 244 #define WAKEUP_BIT_AC_WAKE_ACK BIT(11) 245 #define WAKEUP_BIT_SIDE_TONE_OK BIT(12) 246 #define WAKEUP_BIT_ANC_OK BIT(13) 247 #define WAKEUP_BIT_SW_ERROR BIT(14) 248 #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15) 249 #define WAKEUP_BIT_ARM BIT(17) 250 #define WAKEUP_BIT_HOTMON_LOW BIT(18) 251 #define WAKEUP_BIT_HOTMON_HIGH BIT(19) 252 #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20) 253 #define WAKEUP_BIT_GPIO0 BIT(23) 254 #define WAKEUP_BIT_GPIO1 BIT(24) 255 #define WAKEUP_BIT_GPIO2 BIT(25) 256 #define WAKEUP_BIT_GPIO3 BIT(26) 257 #define WAKEUP_BIT_GPIO4 BIT(27) 258 #define WAKEUP_BIT_GPIO5 BIT(28) 259 #define WAKEUP_BIT_GPIO6 BIT(29) 260 #define WAKEUP_BIT_GPIO7 BIT(30) 261 #define WAKEUP_BIT_GPIO8 BIT(31) 262 263 static struct { 264 bool valid; 265 struct prcmu_fw_version version; 266 } fw_info; 267 268 static struct irq_domain *db8500_irq_domain; 269 270 /* 271 * This vector maps irq numbers to the bits in the bit field used in 272 * communication with the PRCMU firmware. 273 * 274 * The reason for having this is to keep the irq numbers contiguous even though 275 * the bits in the bit field are not. (The bits also have a tendency to move 276 * around, to further complicate matters.) 277 */ 278 #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name)) 279 #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name) 280 281 #define IRQ_PRCMU_RTC 0 282 #define IRQ_PRCMU_RTT0 1 283 #define IRQ_PRCMU_RTT1 2 284 #define IRQ_PRCMU_HSI0 3 285 #define IRQ_PRCMU_HSI1 4 286 #define IRQ_PRCMU_CA_WAKE 5 287 #define IRQ_PRCMU_USB 6 288 #define IRQ_PRCMU_ABB 7 289 #define IRQ_PRCMU_ABB_FIFO 8 290 #define IRQ_PRCMU_ARM 9 291 #define IRQ_PRCMU_MODEM_SW_RESET_REQ 10 292 #define IRQ_PRCMU_GPIO0 11 293 #define IRQ_PRCMU_GPIO1 12 294 #define IRQ_PRCMU_GPIO2 13 295 #define IRQ_PRCMU_GPIO3 14 296 #define IRQ_PRCMU_GPIO4 15 297 #define IRQ_PRCMU_GPIO5 16 298 #define IRQ_PRCMU_GPIO6 17 299 #define IRQ_PRCMU_GPIO7 18 300 #define IRQ_PRCMU_GPIO8 19 301 #define IRQ_PRCMU_CA_SLEEP 20 302 #define IRQ_PRCMU_HOTMON_LOW 21 303 #define IRQ_PRCMU_HOTMON_HIGH 22 304 #define NUM_PRCMU_WAKEUPS 23 305 306 static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = { 307 IRQ_ENTRY(RTC), 308 IRQ_ENTRY(RTT0), 309 IRQ_ENTRY(RTT1), 310 IRQ_ENTRY(HSI0), 311 IRQ_ENTRY(HSI1), 312 IRQ_ENTRY(CA_WAKE), 313 IRQ_ENTRY(USB), 314 IRQ_ENTRY(ABB), 315 IRQ_ENTRY(ABB_FIFO), 316 IRQ_ENTRY(CA_SLEEP), 317 IRQ_ENTRY(ARM), 318 IRQ_ENTRY(HOTMON_LOW), 319 IRQ_ENTRY(HOTMON_HIGH), 320 IRQ_ENTRY(MODEM_SW_RESET_REQ), 321 IRQ_ENTRY(GPIO0), 322 IRQ_ENTRY(GPIO1), 323 IRQ_ENTRY(GPIO2), 324 IRQ_ENTRY(GPIO3), 325 IRQ_ENTRY(GPIO4), 326 IRQ_ENTRY(GPIO5), 327 IRQ_ENTRY(GPIO6), 328 IRQ_ENTRY(GPIO7), 329 IRQ_ENTRY(GPIO8) 330 }; 331 332 #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1) 333 #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name) 334 static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = { 335 WAKEUP_ENTRY(RTC), 336 WAKEUP_ENTRY(RTT0), 337 WAKEUP_ENTRY(RTT1), 338 WAKEUP_ENTRY(HSI0), 339 WAKEUP_ENTRY(HSI1), 340 WAKEUP_ENTRY(USB), 341 WAKEUP_ENTRY(ABB), 342 WAKEUP_ENTRY(ABB_FIFO), 343 WAKEUP_ENTRY(ARM) 344 }; 345 346 /* 347 * mb0_transfer - state needed for mailbox 0 communication. 348 * @lock: The transaction lock. 349 * @dbb_events_lock: A lock used to handle concurrent access to (parts of) 350 * the request data. 351 * @mask_work: Work structure used for (un)masking wakeup interrupts. 352 * @req: Request data that need to persist between requests. 353 */ 354 static struct { 355 spinlock_t lock; 356 spinlock_t dbb_irqs_lock; 357 struct work_struct mask_work; 358 struct mutex ac_wake_lock; 359 struct completion ac_wake_work; 360 struct { 361 u32 dbb_irqs; 362 u32 dbb_wakeups; 363 u32 abb_events; 364 } req; 365 } mb0_transfer; 366 367 /* 368 * mb1_transfer - state needed for mailbox 1 communication. 369 * @lock: The transaction lock. 370 * @work: The transaction completion structure. 371 * @ape_opp: The current APE OPP. 372 * @ack: Reply ("acknowledge") data. 373 */ 374 static struct { 375 struct mutex lock; 376 struct completion work; 377 u8 ape_opp; 378 struct { 379 u8 header; 380 u8 arm_opp; 381 u8 ape_opp; 382 u8 ape_voltage_status; 383 } ack; 384 } mb1_transfer; 385 386 /* 387 * mb2_transfer - state needed for mailbox 2 communication. 388 * @lock: The transaction lock. 389 * @work: The transaction completion structure. 390 * @auto_pm_lock: The autonomous power management configuration lock. 391 * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled. 392 * @req: Request data that need to persist between requests. 393 * @ack: Reply ("acknowledge") data. 394 */ 395 static struct { 396 struct mutex lock; 397 struct completion work; 398 spinlock_t auto_pm_lock; 399 bool auto_pm_enabled; 400 struct { 401 u8 status; 402 } ack; 403 } mb2_transfer; 404 405 /* 406 * mb3_transfer - state needed for mailbox 3 communication. 407 * @lock: The request lock. 408 * @sysclk_lock: A lock used to handle concurrent sysclk requests. 409 * @sysclk_work: Work structure used for sysclk requests. 410 */ 411 static struct { 412 spinlock_t lock; 413 struct mutex sysclk_lock; 414 struct completion sysclk_work; 415 } mb3_transfer; 416 417 /* 418 * mb4_transfer - state needed for mailbox 4 communication. 419 * @lock: The transaction lock. 420 * @work: The transaction completion structure. 421 */ 422 static struct { 423 struct mutex lock; 424 struct completion work; 425 } mb4_transfer; 426 427 /* 428 * mb5_transfer - state needed for mailbox 5 communication. 429 * @lock: The transaction lock. 430 * @work: The transaction completion structure. 431 * @ack: Reply ("acknowledge") data. 432 */ 433 static struct { 434 struct mutex lock; 435 struct completion work; 436 struct { 437 u8 status; 438 u8 value; 439 } ack; 440 } mb5_transfer; 441 442 static atomic_t ac_wake_req_state = ATOMIC_INIT(0); 443 444 /* Spinlocks */ 445 static DEFINE_SPINLOCK(prcmu_lock); 446 static DEFINE_SPINLOCK(clkout_lock); 447 448 /* Global var to runtime determine TCDM base for v2 or v1 */ 449 static __iomem void *tcdm_base; 450 static __iomem void *prcmu_base; 451 452 struct clk_mgt { 453 u32 offset; 454 u32 pllsw; 455 int branch; 456 bool clk38div; 457 }; 458 459 enum { 460 PLL_RAW, 461 PLL_FIX, 462 PLL_DIV 463 }; 464 465 static DEFINE_SPINLOCK(clk_mgt_lock); 466 467 #define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \ 468 { (PRCM_##_name##_MGT), 0 , _branch, _clk38div} 469 static struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = { 470 CLK_MGT_ENTRY(SGACLK, PLL_DIV, false), 471 CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true), 472 CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true), 473 CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true), 474 CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true), 475 CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true), 476 CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true), 477 CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true), 478 CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true), 479 CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true), 480 CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true), 481 CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true), 482 CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true), 483 CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true), 484 CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true), 485 CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true), 486 CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true), 487 CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false), 488 CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true), 489 CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true), 490 CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true), 491 CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true), 492 CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false), 493 CLK_MGT_ENTRY(DMACLK, PLL_DIV, true), 494 CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true), 495 CLK_MGT_ENTRY(TVCLK, PLL_FIX, true), 496 CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true), 497 CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true), 498 CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false), 499 }; 500 501 struct dsiclk { 502 u32 divsel_mask; 503 u32 divsel_shift; 504 u32 divsel; 505 }; 506 507 static struct dsiclk dsiclk[2] = { 508 { 509 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK, 510 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT, 511 .divsel = PRCM_DSI_PLLOUT_SEL_PHI, 512 }, 513 { 514 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK, 515 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT, 516 .divsel = PRCM_DSI_PLLOUT_SEL_PHI, 517 } 518 }; 519 520 struct dsiescclk { 521 u32 en; 522 u32 div_mask; 523 u32 div_shift; 524 }; 525 526 static struct dsiescclk dsiescclk[3] = { 527 { 528 .en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN, 529 .div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK, 530 .div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT, 531 }, 532 { 533 .en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN, 534 .div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK, 535 .div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT, 536 }, 537 { 538 .en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN, 539 .div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK, 540 .div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT, 541 } 542 }; 543 544 545 /* 546 * Used by MCDE to setup all necessary PRCMU registers 547 */ 548 #define PRCMU_RESET_DSIPLL 0x00004000 549 #define PRCMU_UNCLAMP_DSIPLL 0x00400800 550 551 #define PRCMU_CLK_PLL_DIV_SHIFT 0 552 #define PRCMU_CLK_PLL_SW_SHIFT 5 553 #define PRCMU_CLK_38 (1 << 9) 554 #define PRCMU_CLK_38_SRC (1 << 10) 555 #define PRCMU_CLK_38_DIV (1 << 11) 556 557 /* PLLDIV=12, PLLSW=4 (PLLDDR) */ 558 #define PRCMU_DSI_CLOCK_SETTING 0x0000008C 559 560 /* DPI 50000000 Hz */ 561 #define PRCMU_DPI_CLOCK_SETTING ((1 << PRCMU_CLK_PLL_SW_SHIFT) | \ 562 (16 << PRCMU_CLK_PLL_DIV_SHIFT)) 563 #define PRCMU_DSI_LP_CLOCK_SETTING 0x00000E00 564 565 /* D=101, N=1, R=4, SELDIV2=0 */ 566 #define PRCMU_PLLDSI_FREQ_SETTING 0x00040165 567 568 #define PRCMU_ENABLE_PLLDSI 0x00000001 569 #define PRCMU_DISABLE_PLLDSI 0x00000000 570 #define PRCMU_RELEASE_RESET_DSS 0x0000400C 571 #define PRCMU_DSI_PLLOUT_SEL_SETTING 0x00000202 572 /* ESC clk, div0=1, div1=1, div2=3 */ 573 #define PRCMU_ENABLE_ESCAPE_CLOCK_DIV 0x07030101 574 #define PRCMU_DISABLE_ESCAPE_CLOCK_DIV 0x00030101 575 #define PRCMU_DSI_RESET_SW 0x00000007 576 577 #define PRCMU_PLLDSI_LOCKP_LOCKED 0x3 578 579 int db8500_prcmu_enable_dsipll(void) 580 { 581 int i; 582 583 /* Clear DSIPLL_RESETN */ 584 writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR); 585 /* Unclamp DSIPLL in/out */ 586 writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR); 587 588 /* Set DSI PLL FREQ */ 589 writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ); 590 writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL); 591 /* Enable Escape clocks */ 592 writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV); 593 594 /* Start DSI PLL */ 595 writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE); 596 /* Reset DSI PLL */ 597 writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET); 598 for (i = 0; i < 10; i++) { 599 if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED) 600 == PRCMU_PLLDSI_LOCKP_LOCKED) 601 break; 602 udelay(100); 603 } 604 /* Set DSIPLL_RESETN */ 605 writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET); 606 return 0; 607 } 608 609 int db8500_prcmu_disable_dsipll(void) 610 { 611 /* Disable dsi pll */ 612 writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE); 613 /* Disable escapeclock */ 614 writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV); 615 return 0; 616 } 617 618 int db8500_prcmu_set_display_clocks(void) 619 { 620 unsigned long flags; 621 622 spin_lock_irqsave(&clk_mgt_lock, flags); 623 624 /* Grab the HW semaphore. */ 625 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0) 626 cpu_relax(); 627 628 writel(PRCMU_DSI_CLOCK_SETTING, prcmu_base + PRCM_HDMICLK_MGT); 629 writel(PRCMU_DSI_LP_CLOCK_SETTING, prcmu_base + PRCM_TVCLK_MGT); 630 writel(PRCMU_DPI_CLOCK_SETTING, prcmu_base + PRCM_LCDCLK_MGT); 631 632 /* Release the HW semaphore. */ 633 writel(0, PRCM_SEM); 634 635 spin_unlock_irqrestore(&clk_mgt_lock, flags); 636 637 return 0; 638 } 639 640 u32 db8500_prcmu_read(unsigned int reg) 641 { 642 return readl(prcmu_base + reg); 643 } 644 645 void db8500_prcmu_write(unsigned int reg, u32 value) 646 { 647 unsigned long flags; 648 649 spin_lock_irqsave(&prcmu_lock, flags); 650 writel(value, (prcmu_base + reg)); 651 spin_unlock_irqrestore(&prcmu_lock, flags); 652 } 653 654 void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value) 655 { 656 u32 val; 657 unsigned long flags; 658 659 spin_lock_irqsave(&prcmu_lock, flags); 660 val = readl(prcmu_base + reg); 661 val = ((val & ~mask) | (value & mask)); 662 writel(val, (prcmu_base + reg)); 663 spin_unlock_irqrestore(&prcmu_lock, flags); 664 } 665 666 struct prcmu_fw_version *prcmu_get_fw_version(void) 667 { 668 return fw_info.valid ? &fw_info.version : NULL; 669 } 670 671 bool prcmu_has_arm_maxopp(void) 672 { 673 return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) & 674 PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK; 675 } 676 677 /** 678 * prcmu_get_boot_status - PRCMU boot status checking 679 * Returns: the current PRCMU boot status 680 */ 681 int prcmu_get_boot_status(void) 682 { 683 return readb(tcdm_base + PRCM_BOOT_STATUS); 684 } 685 686 /** 687 * prcmu_set_rc_a2p - This function is used to run few power state sequences 688 * @val: Value to be set, i.e. transition requested 689 * Returns: 0 on success, -EINVAL on invalid argument 690 * 691 * This function is used to run the following power state sequences - 692 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep 693 */ 694 int prcmu_set_rc_a2p(enum romcode_write val) 695 { 696 if (val < RDY_2_DS || val > RDY_2_XP70_RST) 697 return -EINVAL; 698 writeb(val, (tcdm_base + PRCM_ROMCODE_A2P)); 699 return 0; 700 } 701 702 /** 703 * prcmu_get_rc_p2a - This function is used to get power state sequences 704 * Returns: the power transition that has last happened 705 * 706 * This function can return the following transitions- 707 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep 708 */ 709 enum romcode_read prcmu_get_rc_p2a(void) 710 { 711 return readb(tcdm_base + PRCM_ROMCODE_P2A); 712 } 713 714 /** 715 * prcmu_get_current_mode - Return the current XP70 power mode 716 * Returns: Returns the current AP(ARM) power mode: init, 717 * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset 718 */ 719 enum ap_pwrst prcmu_get_xp70_current_state(void) 720 { 721 return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE); 722 } 723 724 /** 725 * prcmu_config_clkout - Configure one of the programmable clock outputs. 726 * @clkout: The CLKOUT number (0 or 1). 727 * @source: The clock to be used (one of the PRCMU_CLKSRC_*). 728 * @div: The divider to be applied. 729 * 730 * Configures one of the programmable clock outputs (CLKOUTs). 731 * @div should be in the range [1,63] to request a configuration, or 0 to 732 * inform that the configuration is no longer requested. 733 */ 734 int prcmu_config_clkout(u8 clkout, u8 source, u8 div) 735 { 736 static int requests[2]; 737 int r = 0; 738 unsigned long flags; 739 u32 val; 740 u32 bits; 741 u32 mask; 742 u32 div_mask; 743 744 BUG_ON(clkout > 1); 745 BUG_ON(div > 63); 746 BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009)); 747 748 if (!div && !requests[clkout]) 749 return -EINVAL; 750 751 switch (clkout) { 752 case 0: 753 div_mask = PRCM_CLKOCR_CLKODIV0_MASK; 754 mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK); 755 bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) | 756 (div << PRCM_CLKOCR_CLKODIV0_SHIFT)); 757 break; 758 case 1: 759 div_mask = PRCM_CLKOCR_CLKODIV1_MASK; 760 mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK | 761 PRCM_CLKOCR_CLK1TYPE); 762 bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) | 763 (div << PRCM_CLKOCR_CLKODIV1_SHIFT)); 764 break; 765 } 766 bits &= mask; 767 768 spin_lock_irqsave(&clkout_lock, flags); 769 770 val = readl(PRCM_CLKOCR); 771 if (val & div_mask) { 772 if (div) { 773 if ((val & mask) != bits) { 774 r = -EBUSY; 775 goto unlock_and_return; 776 } 777 } else { 778 if ((val & mask & ~div_mask) != bits) { 779 r = -EINVAL; 780 goto unlock_and_return; 781 } 782 } 783 } 784 writel((bits | (val & ~mask)), PRCM_CLKOCR); 785 requests[clkout] += (div ? 1 : -1); 786 787 unlock_and_return: 788 spin_unlock_irqrestore(&clkout_lock, flags); 789 790 return r; 791 } 792 793 int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll) 794 { 795 unsigned long flags; 796 797 BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state)); 798 799 spin_lock_irqsave(&mb0_transfer.lock, flags); 800 801 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0)) 802 cpu_relax(); 803 804 writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0)); 805 writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE)); 806 writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE)); 807 writeb((keep_ulp_clk ? 1 : 0), 808 (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE)); 809 writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI)); 810 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET); 811 812 spin_unlock_irqrestore(&mb0_transfer.lock, flags); 813 814 return 0; 815 } 816 817 u8 db8500_prcmu_get_power_state_result(void) 818 { 819 return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS); 820 } 821 822 /* This function should only be called while mb0_transfer.lock is held. */ 823 static void config_wakeups(void) 824 { 825 const u8 header[2] = { 826 MB0H_CONFIG_WAKEUPS_EXE, 827 MB0H_CONFIG_WAKEUPS_SLEEP 828 }; 829 static u32 last_dbb_events; 830 static u32 last_abb_events; 831 u32 dbb_events; 832 u32 abb_events; 833 unsigned int i; 834 835 dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups; 836 dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK); 837 838 abb_events = mb0_transfer.req.abb_events; 839 840 if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events)) 841 return; 842 843 for (i = 0; i < 2; i++) { 844 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0)) 845 cpu_relax(); 846 writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500)); 847 writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500)); 848 writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0)); 849 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET); 850 } 851 last_dbb_events = dbb_events; 852 last_abb_events = abb_events; 853 } 854 855 void db8500_prcmu_enable_wakeups(u32 wakeups) 856 { 857 unsigned long flags; 858 u32 bits; 859 int i; 860 861 BUG_ON(wakeups != (wakeups & VALID_WAKEUPS)); 862 863 for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) { 864 if (wakeups & BIT(i)) 865 bits |= prcmu_wakeup_bit[i]; 866 } 867 868 spin_lock_irqsave(&mb0_transfer.lock, flags); 869 870 mb0_transfer.req.dbb_wakeups = bits; 871 config_wakeups(); 872 873 spin_unlock_irqrestore(&mb0_transfer.lock, flags); 874 } 875 876 void db8500_prcmu_config_abb_event_readout(u32 abb_events) 877 { 878 unsigned long flags; 879 880 spin_lock_irqsave(&mb0_transfer.lock, flags); 881 882 mb0_transfer.req.abb_events = abb_events; 883 config_wakeups(); 884 885 spin_unlock_irqrestore(&mb0_transfer.lock, flags); 886 } 887 888 void db8500_prcmu_get_abb_event_buffer(void __iomem **buf) 889 { 890 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1) 891 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500); 892 else 893 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500); 894 } 895 896 /** 897 * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP 898 * @opp: The new ARM operating point to which transition is to be made 899 * Returns: 0 on success, non-zero on failure 900 * 901 * This function sets the the operating point of the ARM. 902 */ 903 int db8500_prcmu_set_arm_opp(u8 opp) 904 { 905 int r; 906 907 if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK) 908 return -EINVAL; 909 910 r = 0; 911 912 mutex_lock(&mb1_transfer.lock); 913 914 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1)) 915 cpu_relax(); 916 917 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1)); 918 writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP)); 919 writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP)); 920 921 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET); 922 wait_for_completion(&mb1_transfer.work); 923 924 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) || 925 (mb1_transfer.ack.arm_opp != opp)) 926 r = -EIO; 927 928 mutex_unlock(&mb1_transfer.lock); 929 930 return r; 931 } 932 933 /** 934 * db8500_prcmu_get_arm_opp - get the current ARM OPP 935 * 936 * Returns: the current ARM OPP 937 */ 938 int db8500_prcmu_get_arm_opp(void) 939 { 940 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP); 941 } 942 943 /** 944 * db8500_prcmu_get_ddr_opp - get the current DDR OPP 945 * 946 * Returns: the current DDR OPP 947 */ 948 int db8500_prcmu_get_ddr_opp(void) 949 { 950 return readb(PRCM_DDR_SUBSYS_APE_MINBW); 951 } 952 953 /** 954 * db8500_set_ddr_opp - set the appropriate DDR OPP 955 * @opp: The new DDR operating point to which transition is to be made 956 * Returns: 0 on success, non-zero on failure 957 * 958 * This function sets the operating point of the DDR. 959 */ 960 static bool enable_set_ddr_opp; 961 int db8500_prcmu_set_ddr_opp(u8 opp) 962 { 963 if (opp < DDR_100_OPP || opp > DDR_25_OPP) 964 return -EINVAL; 965 /* Changing the DDR OPP can hang the hardware pre-v21 */ 966 if (enable_set_ddr_opp) 967 writeb(opp, PRCM_DDR_SUBSYS_APE_MINBW); 968 969 return 0; 970 } 971 972 /* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */ 973 static void request_even_slower_clocks(bool enable) 974 { 975 u32 clock_reg[] = { 976 PRCM_ACLK_MGT, 977 PRCM_DMACLK_MGT 978 }; 979 unsigned long flags; 980 unsigned int i; 981 982 spin_lock_irqsave(&clk_mgt_lock, flags); 983 984 /* Grab the HW semaphore. */ 985 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0) 986 cpu_relax(); 987 988 for (i = 0; i < ARRAY_SIZE(clock_reg); i++) { 989 u32 val; 990 u32 div; 991 992 val = readl(prcmu_base + clock_reg[i]); 993 div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK); 994 if (enable) { 995 if ((div <= 1) || (div > 15)) { 996 pr_err("prcmu: Bad clock divider %d in %s\n", 997 div, __func__); 998 goto unlock_and_return; 999 } 1000 div <<= 1; 1001 } else { 1002 if (div <= 2) 1003 goto unlock_and_return; 1004 div >>= 1; 1005 } 1006 val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) | 1007 (div & PRCM_CLK_MGT_CLKPLLDIV_MASK)); 1008 writel(val, prcmu_base + clock_reg[i]); 1009 } 1010 1011 unlock_and_return: 1012 /* Release the HW semaphore. */ 1013 writel(0, PRCM_SEM); 1014 1015 spin_unlock_irqrestore(&clk_mgt_lock, flags); 1016 } 1017 1018 /** 1019 * db8500_set_ape_opp - set the appropriate APE OPP 1020 * @opp: The new APE operating point to which transition is to be made 1021 * Returns: 0 on success, non-zero on failure 1022 * 1023 * This function sets the operating point of the APE. 1024 */ 1025 int db8500_prcmu_set_ape_opp(u8 opp) 1026 { 1027 int r = 0; 1028 1029 if (opp == mb1_transfer.ape_opp) 1030 return 0; 1031 1032 mutex_lock(&mb1_transfer.lock); 1033 1034 if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP) 1035 request_even_slower_clocks(false); 1036 1037 if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP)) 1038 goto skip_message; 1039 1040 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1)) 1041 cpu_relax(); 1042 1043 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1)); 1044 writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP)); 1045 writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp), 1046 (tcdm_base + PRCM_REQ_MB1_APE_OPP)); 1047 1048 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET); 1049 wait_for_completion(&mb1_transfer.work); 1050 1051 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) || 1052 (mb1_transfer.ack.ape_opp != opp)) 1053 r = -EIO; 1054 1055 skip_message: 1056 if ((!r && (opp == APE_50_PARTLY_25_OPP)) || 1057 (r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP))) 1058 request_even_slower_clocks(true); 1059 if (!r) 1060 mb1_transfer.ape_opp = opp; 1061 1062 mutex_unlock(&mb1_transfer.lock); 1063 1064 return r; 1065 } 1066 1067 /** 1068 * db8500_prcmu_get_ape_opp - get the current APE OPP 1069 * 1070 * Returns: the current APE OPP 1071 */ 1072 int db8500_prcmu_get_ape_opp(void) 1073 { 1074 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP); 1075 } 1076 1077 /** 1078 * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage 1079 * @enable: true to request the higher voltage, false to drop a request. 1080 * 1081 * Calls to this function to enable and disable requests must be balanced. 1082 */ 1083 int db8500_prcmu_request_ape_opp_100_voltage(bool enable) 1084 { 1085 int r = 0; 1086 u8 header; 1087 static unsigned int requests; 1088 1089 mutex_lock(&mb1_transfer.lock); 1090 1091 if (enable) { 1092 if (0 != requests++) 1093 goto unlock_and_return; 1094 header = MB1H_REQUEST_APE_OPP_100_VOLT; 1095 } else { 1096 if (requests == 0) { 1097 r = -EIO; 1098 goto unlock_and_return; 1099 } else if (1 != requests--) { 1100 goto unlock_and_return; 1101 } 1102 header = MB1H_RELEASE_APE_OPP_100_VOLT; 1103 } 1104 1105 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1)) 1106 cpu_relax(); 1107 1108 writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1)); 1109 1110 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET); 1111 wait_for_completion(&mb1_transfer.work); 1112 1113 if ((mb1_transfer.ack.header != header) || 1114 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0)) 1115 r = -EIO; 1116 1117 unlock_and_return: 1118 mutex_unlock(&mb1_transfer.lock); 1119 1120 return r; 1121 } 1122 1123 /** 1124 * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup 1125 * 1126 * This function releases the power state requirements of a USB wakeup. 1127 */ 1128 int prcmu_release_usb_wakeup_state(void) 1129 { 1130 int r = 0; 1131 1132 mutex_lock(&mb1_transfer.lock); 1133 1134 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1)) 1135 cpu_relax(); 1136 1137 writeb(MB1H_RELEASE_USB_WAKEUP, 1138 (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1)); 1139 1140 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET); 1141 wait_for_completion(&mb1_transfer.work); 1142 1143 if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) || 1144 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0)) 1145 r = -EIO; 1146 1147 mutex_unlock(&mb1_transfer.lock); 1148 1149 return r; 1150 } 1151 1152 static int request_pll(u8 clock, bool enable) 1153 { 1154 int r = 0; 1155 1156 if (clock == PRCMU_PLLSOC0) 1157 clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF); 1158 else if (clock == PRCMU_PLLSOC1) 1159 clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF); 1160 else 1161 return -EINVAL; 1162 1163 mutex_lock(&mb1_transfer.lock); 1164 1165 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1)) 1166 cpu_relax(); 1167 1168 writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1)); 1169 writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF)); 1170 1171 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET); 1172 wait_for_completion(&mb1_transfer.work); 1173 1174 if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF) 1175 r = -EIO; 1176 1177 mutex_unlock(&mb1_transfer.lock); 1178 1179 return r; 1180 } 1181 1182 /** 1183 * db8500_prcmu_set_epod - set the state of a EPOD (power domain) 1184 * @epod_id: The EPOD to set 1185 * @epod_state: The new EPOD state 1186 * 1187 * This function sets the state of a EPOD (power domain). It may not be called 1188 * from interrupt context. 1189 */ 1190 int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state) 1191 { 1192 int r = 0; 1193 bool ram_retention = false; 1194 int i; 1195 1196 /* check argument */ 1197 BUG_ON(epod_id >= NUM_EPOD_ID); 1198 1199 /* set flag if retention is possible */ 1200 switch (epod_id) { 1201 case EPOD_ID_SVAMMDSP: 1202 case EPOD_ID_SIAMMDSP: 1203 case EPOD_ID_ESRAM12: 1204 case EPOD_ID_ESRAM34: 1205 ram_retention = true; 1206 break; 1207 } 1208 1209 /* check argument */ 1210 BUG_ON(epod_state > EPOD_STATE_ON); 1211 BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention); 1212 1213 /* get lock */ 1214 mutex_lock(&mb2_transfer.lock); 1215 1216 /* wait for mailbox */ 1217 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2)) 1218 cpu_relax(); 1219 1220 /* fill in mailbox */ 1221 for (i = 0; i < NUM_EPOD_ID; i++) 1222 writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i)); 1223 writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id)); 1224 1225 writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2)); 1226 1227 writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET); 1228 1229 /* 1230 * The current firmware version does not handle errors correctly, 1231 * and we cannot recover if there is an error. 1232 * This is expected to change when the firmware is updated. 1233 */ 1234 if (!wait_for_completion_timeout(&mb2_transfer.work, 1235 msecs_to_jiffies(20000))) { 1236 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n", 1237 __func__); 1238 r = -EIO; 1239 goto unlock_and_return; 1240 } 1241 1242 if (mb2_transfer.ack.status != HWACC_PWR_ST_OK) 1243 r = -EIO; 1244 1245 unlock_and_return: 1246 mutex_unlock(&mb2_transfer.lock); 1247 return r; 1248 } 1249 1250 /** 1251 * prcmu_configure_auto_pm - Configure autonomous power management. 1252 * @sleep: Configuration for ApSleep. 1253 * @idle: Configuration for ApIdle. 1254 */ 1255 void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep, 1256 struct prcmu_auto_pm_config *idle) 1257 { 1258 u32 sleep_cfg; 1259 u32 idle_cfg; 1260 unsigned long flags; 1261 1262 BUG_ON((sleep == NULL) || (idle == NULL)); 1263 1264 sleep_cfg = (sleep->sva_auto_pm_enable & 0xF); 1265 sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF)); 1266 sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF)); 1267 sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF)); 1268 sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF)); 1269 sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF)); 1270 1271 idle_cfg = (idle->sva_auto_pm_enable & 0xF); 1272 idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF)); 1273 idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF)); 1274 idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF)); 1275 idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF)); 1276 idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF)); 1277 1278 spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags); 1279 1280 /* 1281 * The autonomous power management configuration is done through 1282 * fields in mailbox 2, but these fields are only used as shared 1283 * variables - i.e. there is no need to send a message. 1284 */ 1285 writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP)); 1286 writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE)); 1287 1288 mb2_transfer.auto_pm_enabled = 1289 ((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) || 1290 (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) || 1291 (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) || 1292 (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON)); 1293 1294 spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags); 1295 } 1296 EXPORT_SYMBOL(prcmu_configure_auto_pm); 1297 1298 bool prcmu_is_auto_pm_enabled(void) 1299 { 1300 return mb2_transfer.auto_pm_enabled; 1301 } 1302 1303 static int request_sysclk(bool enable) 1304 { 1305 int r; 1306 unsigned long flags; 1307 1308 r = 0; 1309 1310 mutex_lock(&mb3_transfer.sysclk_lock); 1311 1312 spin_lock_irqsave(&mb3_transfer.lock, flags); 1313 1314 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3)) 1315 cpu_relax(); 1316 1317 writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT)); 1318 1319 writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3)); 1320 writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET); 1321 1322 spin_unlock_irqrestore(&mb3_transfer.lock, flags); 1323 1324 /* 1325 * The firmware only sends an ACK if we want to enable the 1326 * SysClk, and it succeeds. 1327 */ 1328 if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work, 1329 msecs_to_jiffies(20000))) { 1330 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n", 1331 __func__); 1332 r = -EIO; 1333 } 1334 1335 mutex_unlock(&mb3_transfer.sysclk_lock); 1336 1337 return r; 1338 } 1339 1340 static int request_timclk(bool enable) 1341 { 1342 u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK); 1343 1344 if (!enable) 1345 val |= PRCM_TCR_STOP_TIMERS; 1346 writel(val, PRCM_TCR); 1347 1348 return 0; 1349 } 1350 1351 static int request_clock(u8 clock, bool enable) 1352 { 1353 u32 val; 1354 unsigned long flags; 1355 1356 spin_lock_irqsave(&clk_mgt_lock, flags); 1357 1358 /* Grab the HW semaphore. */ 1359 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0) 1360 cpu_relax(); 1361 1362 val = readl(prcmu_base + clk_mgt[clock].offset); 1363 if (enable) { 1364 val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw); 1365 } else { 1366 clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK); 1367 val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK); 1368 } 1369 writel(val, prcmu_base + clk_mgt[clock].offset); 1370 1371 /* Release the HW semaphore. */ 1372 writel(0, PRCM_SEM); 1373 1374 spin_unlock_irqrestore(&clk_mgt_lock, flags); 1375 1376 return 0; 1377 } 1378 1379 static int request_sga_clock(u8 clock, bool enable) 1380 { 1381 u32 val; 1382 int ret; 1383 1384 if (enable) { 1385 val = readl(PRCM_CGATING_BYPASS); 1386 writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS); 1387 } 1388 1389 ret = request_clock(clock, enable); 1390 1391 if (!ret && !enable) { 1392 val = readl(PRCM_CGATING_BYPASS); 1393 writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS); 1394 } 1395 1396 return ret; 1397 } 1398 1399 static inline bool plldsi_locked(void) 1400 { 1401 return (readl(PRCM_PLLDSI_LOCKP) & 1402 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 | 1403 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) == 1404 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 | 1405 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3); 1406 } 1407 1408 static int request_plldsi(bool enable) 1409 { 1410 int r = 0; 1411 u32 val; 1412 1413 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP | 1414 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ? 1415 PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET)); 1416 1417 val = readl(PRCM_PLLDSI_ENABLE); 1418 if (enable) 1419 val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE; 1420 else 1421 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE; 1422 writel(val, PRCM_PLLDSI_ENABLE); 1423 1424 if (enable) { 1425 unsigned int i; 1426 bool locked = plldsi_locked(); 1427 1428 for (i = 10; !locked && (i > 0); --i) { 1429 udelay(100); 1430 locked = plldsi_locked(); 1431 } 1432 if (locked) { 1433 writel(PRCM_APE_RESETN_DSIPLL_RESETN, 1434 PRCM_APE_RESETN_SET); 1435 } else { 1436 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP | 1437 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), 1438 PRCM_MMIP_LS_CLAMP_SET); 1439 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE; 1440 writel(val, PRCM_PLLDSI_ENABLE); 1441 r = -EAGAIN; 1442 } 1443 } else { 1444 writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR); 1445 } 1446 return r; 1447 } 1448 1449 static int request_dsiclk(u8 n, bool enable) 1450 { 1451 u32 val; 1452 1453 val = readl(PRCM_DSI_PLLOUT_SEL); 1454 val &= ~dsiclk[n].divsel_mask; 1455 val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) << 1456 dsiclk[n].divsel_shift); 1457 writel(val, PRCM_DSI_PLLOUT_SEL); 1458 return 0; 1459 } 1460 1461 static int request_dsiescclk(u8 n, bool enable) 1462 { 1463 u32 val; 1464 1465 val = readl(PRCM_DSITVCLK_DIV); 1466 enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en); 1467 writel(val, PRCM_DSITVCLK_DIV); 1468 return 0; 1469 } 1470 1471 /** 1472 * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled. 1473 * @clock: The clock for which the request is made. 1474 * @enable: Whether the clock should be enabled (true) or disabled (false). 1475 * 1476 * This function should only be used by the clock implementation. 1477 * Do not use it from any other place! 1478 */ 1479 int db8500_prcmu_request_clock(u8 clock, bool enable) 1480 { 1481 if (clock == PRCMU_SGACLK) 1482 return request_sga_clock(clock, enable); 1483 else if (clock < PRCMU_NUM_REG_CLOCKS) 1484 return request_clock(clock, enable); 1485 else if (clock == PRCMU_TIMCLK) 1486 return request_timclk(enable); 1487 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK)) 1488 return request_dsiclk((clock - PRCMU_DSI0CLK), enable); 1489 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK)) 1490 return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable); 1491 else if (clock == PRCMU_PLLDSI) 1492 return request_plldsi(enable); 1493 else if (clock == PRCMU_SYSCLK) 1494 return request_sysclk(enable); 1495 else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1)) 1496 return request_pll(clock, enable); 1497 else 1498 return -EINVAL; 1499 } 1500 1501 static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate, 1502 int branch) 1503 { 1504 u64 rate; 1505 u32 val; 1506 u32 d; 1507 u32 div = 1; 1508 1509 val = readl(reg); 1510 1511 rate = src_rate; 1512 rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT); 1513 1514 d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT); 1515 if (d > 1) 1516 div *= d; 1517 1518 d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT); 1519 if (d > 1) 1520 div *= d; 1521 1522 if (val & PRCM_PLL_FREQ_SELDIV2) 1523 div *= 2; 1524 1525 if ((branch == PLL_FIX) || ((branch == PLL_DIV) && 1526 (val & PRCM_PLL_FREQ_DIV2EN) && 1527 ((reg == PRCM_PLLSOC0_FREQ) || 1528 (reg == PRCM_PLLARM_FREQ) || 1529 (reg == PRCM_PLLDDR_FREQ)))) 1530 div *= 2; 1531 1532 (void)do_div(rate, div); 1533 1534 return (unsigned long)rate; 1535 } 1536 1537 #define ROOT_CLOCK_RATE 38400000 1538 1539 static unsigned long clock_rate(u8 clock) 1540 { 1541 u32 val; 1542 u32 pllsw; 1543 unsigned long rate = ROOT_CLOCK_RATE; 1544 1545 val = readl(prcmu_base + clk_mgt[clock].offset); 1546 1547 if (val & PRCM_CLK_MGT_CLK38) { 1548 if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV)) 1549 rate /= 2; 1550 return rate; 1551 } 1552 1553 val |= clk_mgt[clock].pllsw; 1554 pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK); 1555 1556 if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0) 1557 rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch); 1558 else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1) 1559 rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch); 1560 else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR) 1561 rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch); 1562 else 1563 return 0; 1564 1565 if ((clock == PRCMU_SGACLK) && 1566 (val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) { 1567 u64 r = (rate * 10); 1568 1569 (void)do_div(r, 25); 1570 return (unsigned long)r; 1571 } 1572 val &= PRCM_CLK_MGT_CLKPLLDIV_MASK; 1573 if (val) 1574 return rate / val; 1575 else 1576 return 0; 1577 } 1578 1579 static unsigned long armss_rate(void) 1580 { 1581 u32 r; 1582 unsigned long rate; 1583 1584 r = readl(PRCM_ARM_CHGCLKREQ); 1585 1586 if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) { 1587 /* External ARMCLKFIX clock */ 1588 1589 rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX); 1590 1591 /* Check PRCM_ARM_CHGCLKREQ divider */ 1592 if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL)) 1593 rate /= 2; 1594 1595 /* Check PRCM_ARMCLKFIX_MGT divider */ 1596 r = readl(PRCM_ARMCLKFIX_MGT); 1597 r &= PRCM_CLK_MGT_CLKPLLDIV_MASK; 1598 rate /= r; 1599 1600 } else {/* ARM PLL */ 1601 rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV); 1602 } 1603 1604 return rate; 1605 } 1606 1607 static unsigned long dsiclk_rate(u8 n) 1608 { 1609 u32 divsel; 1610 u32 div = 1; 1611 1612 divsel = readl(PRCM_DSI_PLLOUT_SEL); 1613 divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift); 1614 1615 if (divsel == PRCM_DSI_PLLOUT_SEL_OFF) 1616 divsel = dsiclk[n].divsel; 1617 else 1618 dsiclk[n].divsel = divsel; 1619 1620 switch (divsel) { 1621 case PRCM_DSI_PLLOUT_SEL_PHI_4: 1622 div *= 2; 1623 case PRCM_DSI_PLLOUT_SEL_PHI_2: 1624 div *= 2; 1625 case PRCM_DSI_PLLOUT_SEL_PHI: 1626 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK), 1627 PLL_RAW) / div; 1628 default: 1629 return 0; 1630 } 1631 } 1632 1633 static unsigned long dsiescclk_rate(u8 n) 1634 { 1635 u32 div; 1636 1637 div = readl(PRCM_DSITVCLK_DIV); 1638 div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift)); 1639 return clock_rate(PRCMU_TVCLK) / max((u32)1, div); 1640 } 1641 1642 unsigned long prcmu_clock_rate(u8 clock) 1643 { 1644 if (clock < PRCMU_NUM_REG_CLOCKS) 1645 return clock_rate(clock); 1646 else if (clock == PRCMU_TIMCLK) 1647 return ROOT_CLOCK_RATE / 16; 1648 else if (clock == PRCMU_SYSCLK) 1649 return ROOT_CLOCK_RATE; 1650 else if (clock == PRCMU_PLLSOC0) 1651 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW); 1652 else if (clock == PRCMU_PLLSOC1) 1653 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW); 1654 else if (clock == PRCMU_ARMSS) 1655 return armss_rate(); 1656 else if (clock == PRCMU_PLLDDR) 1657 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW); 1658 else if (clock == PRCMU_PLLDSI) 1659 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK), 1660 PLL_RAW); 1661 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK)) 1662 return dsiclk_rate(clock - PRCMU_DSI0CLK); 1663 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK)) 1664 return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK); 1665 else 1666 return 0; 1667 } 1668 1669 static unsigned long clock_source_rate(u32 clk_mgt_val, int branch) 1670 { 1671 if (clk_mgt_val & PRCM_CLK_MGT_CLK38) 1672 return ROOT_CLOCK_RATE; 1673 clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK; 1674 if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0) 1675 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch); 1676 else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1) 1677 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch); 1678 else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR) 1679 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch); 1680 else 1681 return 0; 1682 } 1683 1684 static u32 clock_divider(unsigned long src_rate, unsigned long rate) 1685 { 1686 u32 div; 1687 1688 div = (src_rate / rate); 1689 if (div == 0) 1690 return 1; 1691 if (rate < (src_rate / div)) 1692 div++; 1693 return div; 1694 } 1695 1696 static long round_clock_rate(u8 clock, unsigned long rate) 1697 { 1698 u32 val; 1699 u32 div; 1700 unsigned long src_rate; 1701 long rounded_rate; 1702 1703 val = readl(prcmu_base + clk_mgt[clock].offset); 1704 src_rate = clock_source_rate((val | clk_mgt[clock].pllsw), 1705 clk_mgt[clock].branch); 1706 div = clock_divider(src_rate, rate); 1707 if (val & PRCM_CLK_MGT_CLK38) { 1708 if (clk_mgt[clock].clk38div) { 1709 if (div > 2) 1710 div = 2; 1711 } else { 1712 div = 1; 1713 } 1714 } else if ((clock == PRCMU_SGACLK) && (div == 3)) { 1715 u64 r = (src_rate * 10); 1716 1717 (void)do_div(r, 25); 1718 if (r <= rate) 1719 return (unsigned long)r; 1720 } 1721 rounded_rate = (src_rate / min(div, (u32)31)); 1722 1723 return rounded_rate; 1724 } 1725 1726 /* CPU FREQ table, may be changed due to if MAX_OPP is supported. */ 1727 static struct cpufreq_frequency_table db8500_cpufreq_table[] = { 1728 { .frequency = 200000, .driver_data = ARM_EXTCLK,}, 1729 { .frequency = 400000, .driver_data = ARM_50_OPP,}, 1730 { .frequency = 800000, .driver_data = ARM_100_OPP,}, 1731 { .frequency = CPUFREQ_TABLE_END,}, /* To be used for MAX_OPP. */ 1732 { .frequency = CPUFREQ_TABLE_END,}, 1733 }; 1734 1735 static long round_armss_rate(unsigned long rate) 1736 { 1737 long freq = 0; 1738 int i = 0; 1739 1740 /* cpufreq table frequencies is in KHz. */ 1741 rate = rate / 1000; 1742 1743 /* Find the corresponding arm opp from the cpufreq table. */ 1744 while (db8500_cpufreq_table[i].frequency != CPUFREQ_TABLE_END) { 1745 freq = db8500_cpufreq_table[i].frequency; 1746 if (freq == rate) 1747 break; 1748 i++; 1749 } 1750 1751 /* Return the last valid value, even if a match was not found. */ 1752 return freq * 1000; 1753 } 1754 1755 #define MIN_PLL_VCO_RATE 600000000ULL 1756 #define MAX_PLL_VCO_RATE 1680640000ULL 1757 1758 static long round_plldsi_rate(unsigned long rate) 1759 { 1760 long rounded_rate = 0; 1761 unsigned long src_rate; 1762 unsigned long rem; 1763 u32 r; 1764 1765 src_rate = clock_rate(PRCMU_HDMICLK); 1766 rem = rate; 1767 1768 for (r = 7; (rem > 0) && (r > 0); r--) { 1769 u64 d; 1770 1771 d = (r * rate); 1772 (void)do_div(d, src_rate); 1773 if (d < 6) 1774 d = 6; 1775 else if (d > 255) 1776 d = 255; 1777 d *= src_rate; 1778 if (((2 * d) < (r * MIN_PLL_VCO_RATE)) || 1779 ((r * MAX_PLL_VCO_RATE) < (2 * d))) 1780 continue; 1781 (void)do_div(d, r); 1782 if (rate < d) { 1783 if (rounded_rate == 0) 1784 rounded_rate = (long)d; 1785 break; 1786 } 1787 if ((rate - d) < rem) { 1788 rem = (rate - d); 1789 rounded_rate = (long)d; 1790 } 1791 } 1792 return rounded_rate; 1793 } 1794 1795 static long round_dsiclk_rate(unsigned long rate) 1796 { 1797 u32 div; 1798 unsigned long src_rate; 1799 long rounded_rate; 1800 1801 src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK), 1802 PLL_RAW); 1803 div = clock_divider(src_rate, rate); 1804 rounded_rate = (src_rate / ((div > 2) ? 4 : div)); 1805 1806 return rounded_rate; 1807 } 1808 1809 static long round_dsiescclk_rate(unsigned long rate) 1810 { 1811 u32 div; 1812 unsigned long src_rate; 1813 long rounded_rate; 1814 1815 src_rate = clock_rate(PRCMU_TVCLK); 1816 div = clock_divider(src_rate, rate); 1817 rounded_rate = (src_rate / min(div, (u32)255)); 1818 1819 return rounded_rate; 1820 } 1821 1822 long prcmu_round_clock_rate(u8 clock, unsigned long rate) 1823 { 1824 if (clock < PRCMU_NUM_REG_CLOCKS) 1825 return round_clock_rate(clock, rate); 1826 else if (clock == PRCMU_ARMSS) 1827 return round_armss_rate(rate); 1828 else if (clock == PRCMU_PLLDSI) 1829 return round_plldsi_rate(rate); 1830 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK)) 1831 return round_dsiclk_rate(rate); 1832 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK)) 1833 return round_dsiescclk_rate(rate); 1834 else 1835 return (long)prcmu_clock_rate(clock); 1836 } 1837 1838 static void set_clock_rate(u8 clock, unsigned long rate) 1839 { 1840 u32 val; 1841 u32 div; 1842 unsigned long src_rate; 1843 unsigned long flags; 1844 1845 spin_lock_irqsave(&clk_mgt_lock, flags); 1846 1847 /* Grab the HW semaphore. */ 1848 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0) 1849 cpu_relax(); 1850 1851 val = readl(prcmu_base + clk_mgt[clock].offset); 1852 src_rate = clock_source_rate((val | clk_mgt[clock].pllsw), 1853 clk_mgt[clock].branch); 1854 div = clock_divider(src_rate, rate); 1855 if (val & PRCM_CLK_MGT_CLK38) { 1856 if (clk_mgt[clock].clk38div) { 1857 if (div > 1) 1858 val |= PRCM_CLK_MGT_CLK38DIV; 1859 else 1860 val &= ~PRCM_CLK_MGT_CLK38DIV; 1861 } 1862 } else if (clock == PRCMU_SGACLK) { 1863 val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK | 1864 PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN); 1865 if (div == 3) { 1866 u64 r = (src_rate * 10); 1867 1868 (void)do_div(r, 25); 1869 if (r <= rate) { 1870 val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN; 1871 div = 0; 1872 } 1873 } 1874 val |= min(div, (u32)31); 1875 } else { 1876 val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK; 1877 val |= min(div, (u32)31); 1878 } 1879 writel(val, prcmu_base + clk_mgt[clock].offset); 1880 1881 /* Release the HW semaphore. */ 1882 writel(0, PRCM_SEM); 1883 1884 spin_unlock_irqrestore(&clk_mgt_lock, flags); 1885 } 1886 1887 static int set_armss_rate(unsigned long rate) 1888 { 1889 int i = 0; 1890 1891 /* cpufreq table frequencies is in KHz. */ 1892 rate = rate / 1000; 1893 1894 /* Find the corresponding arm opp from the cpufreq table. */ 1895 while (db8500_cpufreq_table[i].frequency != CPUFREQ_TABLE_END) { 1896 if (db8500_cpufreq_table[i].frequency == rate) 1897 break; 1898 i++; 1899 } 1900 1901 if (db8500_cpufreq_table[i].frequency != rate) 1902 return -EINVAL; 1903 1904 /* Set the new arm opp. */ 1905 return db8500_prcmu_set_arm_opp(db8500_cpufreq_table[i].driver_data); 1906 } 1907 1908 static int set_plldsi_rate(unsigned long rate) 1909 { 1910 unsigned long src_rate; 1911 unsigned long rem; 1912 u32 pll_freq = 0; 1913 u32 r; 1914 1915 src_rate = clock_rate(PRCMU_HDMICLK); 1916 rem = rate; 1917 1918 for (r = 7; (rem > 0) && (r > 0); r--) { 1919 u64 d; 1920 u64 hwrate; 1921 1922 d = (r * rate); 1923 (void)do_div(d, src_rate); 1924 if (d < 6) 1925 d = 6; 1926 else if (d > 255) 1927 d = 255; 1928 hwrate = (d * src_rate); 1929 if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) || 1930 ((r * MAX_PLL_VCO_RATE) < (2 * hwrate))) 1931 continue; 1932 (void)do_div(hwrate, r); 1933 if (rate < hwrate) { 1934 if (pll_freq == 0) 1935 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) | 1936 (r << PRCM_PLL_FREQ_R_SHIFT)); 1937 break; 1938 } 1939 if ((rate - hwrate) < rem) { 1940 rem = (rate - hwrate); 1941 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) | 1942 (r << PRCM_PLL_FREQ_R_SHIFT)); 1943 } 1944 } 1945 if (pll_freq == 0) 1946 return -EINVAL; 1947 1948 pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT); 1949 writel(pll_freq, PRCM_PLLDSI_FREQ); 1950 1951 return 0; 1952 } 1953 1954 static void set_dsiclk_rate(u8 n, unsigned long rate) 1955 { 1956 u32 val; 1957 u32 div; 1958 1959 div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ, 1960 clock_rate(PRCMU_HDMICLK), PLL_RAW), rate); 1961 1962 dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI : 1963 (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 : 1964 /* else */ PRCM_DSI_PLLOUT_SEL_PHI_4; 1965 1966 val = readl(PRCM_DSI_PLLOUT_SEL); 1967 val &= ~dsiclk[n].divsel_mask; 1968 val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift); 1969 writel(val, PRCM_DSI_PLLOUT_SEL); 1970 } 1971 1972 static void set_dsiescclk_rate(u8 n, unsigned long rate) 1973 { 1974 u32 val; 1975 u32 div; 1976 1977 div = clock_divider(clock_rate(PRCMU_TVCLK), rate); 1978 val = readl(PRCM_DSITVCLK_DIV); 1979 val &= ~dsiescclk[n].div_mask; 1980 val |= (min(div, (u32)255) << dsiescclk[n].div_shift); 1981 writel(val, PRCM_DSITVCLK_DIV); 1982 } 1983 1984 int prcmu_set_clock_rate(u8 clock, unsigned long rate) 1985 { 1986 if (clock < PRCMU_NUM_REG_CLOCKS) 1987 set_clock_rate(clock, rate); 1988 else if (clock == PRCMU_ARMSS) 1989 return set_armss_rate(rate); 1990 else if (clock == PRCMU_PLLDSI) 1991 return set_plldsi_rate(rate); 1992 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK)) 1993 set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate); 1994 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK)) 1995 set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate); 1996 return 0; 1997 } 1998 1999 int db8500_prcmu_config_esram0_deep_sleep(u8 state) 2000 { 2001 if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) || 2002 (state < ESRAM0_DEEP_SLEEP_STATE_OFF)) 2003 return -EINVAL; 2004 2005 mutex_lock(&mb4_transfer.lock); 2006 2007 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4)) 2008 cpu_relax(); 2009 2010 writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4)); 2011 writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON), 2012 (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE)); 2013 writeb(DDR_PWR_STATE_ON, 2014 (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE)); 2015 writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST)); 2016 2017 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET); 2018 wait_for_completion(&mb4_transfer.work); 2019 2020 mutex_unlock(&mb4_transfer.lock); 2021 2022 return 0; 2023 } 2024 2025 int db8500_prcmu_config_hotdog(u8 threshold) 2026 { 2027 mutex_lock(&mb4_transfer.lock); 2028 2029 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4)) 2030 cpu_relax(); 2031 2032 writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD)); 2033 writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4)); 2034 2035 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET); 2036 wait_for_completion(&mb4_transfer.work); 2037 2038 mutex_unlock(&mb4_transfer.lock); 2039 2040 return 0; 2041 } 2042 2043 int db8500_prcmu_config_hotmon(u8 low, u8 high) 2044 { 2045 mutex_lock(&mb4_transfer.lock); 2046 2047 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4)) 2048 cpu_relax(); 2049 2050 writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW)); 2051 writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH)); 2052 writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH), 2053 (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG)); 2054 writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4)); 2055 2056 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET); 2057 wait_for_completion(&mb4_transfer.work); 2058 2059 mutex_unlock(&mb4_transfer.lock); 2060 2061 return 0; 2062 } 2063 2064 static int config_hot_period(u16 val) 2065 { 2066 mutex_lock(&mb4_transfer.lock); 2067 2068 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4)) 2069 cpu_relax(); 2070 2071 writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD)); 2072 writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4)); 2073 2074 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET); 2075 wait_for_completion(&mb4_transfer.work); 2076 2077 mutex_unlock(&mb4_transfer.lock); 2078 2079 return 0; 2080 } 2081 2082 int db8500_prcmu_start_temp_sense(u16 cycles32k) 2083 { 2084 if (cycles32k == 0xFFFF) 2085 return -EINVAL; 2086 2087 return config_hot_period(cycles32k); 2088 } 2089 2090 int db8500_prcmu_stop_temp_sense(void) 2091 { 2092 return config_hot_period(0xFFFF); 2093 } 2094 2095 static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3) 2096 { 2097 2098 mutex_lock(&mb4_transfer.lock); 2099 2100 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4)) 2101 cpu_relax(); 2102 2103 writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0)); 2104 writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1)); 2105 writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2)); 2106 writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3)); 2107 2108 writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4)); 2109 2110 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET); 2111 wait_for_completion(&mb4_transfer.work); 2112 2113 mutex_unlock(&mb4_transfer.lock); 2114 2115 return 0; 2116 2117 } 2118 2119 int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off) 2120 { 2121 BUG_ON(num == 0 || num > 0xf); 2122 return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0, 2123 sleep_auto_off ? A9WDOG_AUTO_OFF_EN : 2124 A9WDOG_AUTO_OFF_DIS); 2125 } 2126 EXPORT_SYMBOL(db8500_prcmu_config_a9wdog); 2127 2128 int db8500_prcmu_enable_a9wdog(u8 id) 2129 { 2130 return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0); 2131 } 2132 EXPORT_SYMBOL(db8500_prcmu_enable_a9wdog); 2133 2134 int db8500_prcmu_disable_a9wdog(u8 id) 2135 { 2136 return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0); 2137 } 2138 EXPORT_SYMBOL(db8500_prcmu_disable_a9wdog); 2139 2140 int db8500_prcmu_kick_a9wdog(u8 id) 2141 { 2142 return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0); 2143 } 2144 EXPORT_SYMBOL(db8500_prcmu_kick_a9wdog); 2145 2146 /* 2147 * timeout is 28 bit, in ms. 2148 */ 2149 int db8500_prcmu_load_a9wdog(u8 id, u32 timeout) 2150 { 2151 return prcmu_a9wdog(MB4H_A9WDOG_LOAD, 2152 (id & A9WDOG_ID_MASK) | 2153 /* 2154 * Put the lowest 28 bits of timeout at 2155 * offset 4. Four first bits are used for id. 2156 */ 2157 (u8)((timeout << 4) & 0xf0), 2158 (u8)((timeout >> 4) & 0xff), 2159 (u8)((timeout >> 12) & 0xff), 2160 (u8)((timeout >> 20) & 0xff)); 2161 } 2162 EXPORT_SYMBOL(db8500_prcmu_load_a9wdog); 2163 2164 /** 2165 * prcmu_abb_read() - Read register value(s) from the ABB. 2166 * @slave: The I2C slave address. 2167 * @reg: The (start) register address. 2168 * @value: The read out value(s). 2169 * @size: The number of registers to read. 2170 * 2171 * Reads register value(s) from the ABB. 2172 * @size has to be 1 for the current firmware version. 2173 */ 2174 int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size) 2175 { 2176 int r; 2177 2178 if (size != 1) 2179 return -EINVAL; 2180 2181 mutex_lock(&mb5_transfer.lock); 2182 2183 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5)) 2184 cpu_relax(); 2185 2186 writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5)); 2187 writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP)); 2188 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS)); 2189 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG)); 2190 writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL)); 2191 2192 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET); 2193 2194 if (!wait_for_completion_timeout(&mb5_transfer.work, 2195 msecs_to_jiffies(20000))) { 2196 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n", 2197 __func__); 2198 r = -EIO; 2199 } else { 2200 r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO); 2201 } 2202 2203 if (!r) 2204 *value = mb5_transfer.ack.value; 2205 2206 mutex_unlock(&mb5_transfer.lock); 2207 2208 return r; 2209 } 2210 2211 /** 2212 * prcmu_abb_write_masked() - Write masked register value(s) to the ABB. 2213 * @slave: The I2C slave address. 2214 * @reg: The (start) register address. 2215 * @value: The value(s) to write. 2216 * @mask: The mask(s) to use. 2217 * @size: The number of registers to write. 2218 * 2219 * Writes masked register value(s) to the ABB. 2220 * For each @value, only the bits set to 1 in the corresponding @mask 2221 * will be written. The other bits are not changed. 2222 * @size has to be 1 for the current firmware version. 2223 */ 2224 int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size) 2225 { 2226 int r; 2227 2228 if (size != 1) 2229 return -EINVAL; 2230 2231 mutex_lock(&mb5_transfer.lock); 2232 2233 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5)) 2234 cpu_relax(); 2235 2236 writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5)); 2237 writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP)); 2238 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS)); 2239 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG)); 2240 writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL)); 2241 2242 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET); 2243 2244 if (!wait_for_completion_timeout(&mb5_transfer.work, 2245 msecs_to_jiffies(20000))) { 2246 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n", 2247 __func__); 2248 r = -EIO; 2249 } else { 2250 r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO); 2251 } 2252 2253 mutex_unlock(&mb5_transfer.lock); 2254 2255 return r; 2256 } 2257 2258 /** 2259 * prcmu_abb_write() - Write register value(s) to the ABB. 2260 * @slave: The I2C slave address. 2261 * @reg: The (start) register address. 2262 * @value: The value(s) to write. 2263 * @size: The number of registers to write. 2264 * 2265 * Writes register value(s) to the ABB. 2266 * @size has to be 1 for the current firmware version. 2267 */ 2268 int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size) 2269 { 2270 u8 mask = ~0; 2271 2272 return prcmu_abb_write_masked(slave, reg, value, &mask, size); 2273 } 2274 2275 /** 2276 * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem 2277 */ 2278 int prcmu_ac_wake_req(void) 2279 { 2280 u32 val; 2281 int ret = 0; 2282 2283 mutex_lock(&mb0_transfer.ac_wake_lock); 2284 2285 val = readl(PRCM_HOSTACCESS_REQ); 2286 if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ) 2287 goto unlock_and_return; 2288 2289 atomic_set(&ac_wake_req_state, 1); 2290 2291 /* 2292 * Force Modem Wake-up before hostaccess_req ping-pong. 2293 * It prevents Modem to enter in Sleep while acking the hostaccess 2294 * request. The 31us delay has been calculated by HWI. 2295 */ 2296 val |= PRCM_HOSTACCESS_REQ_WAKE_REQ; 2297 writel(val, PRCM_HOSTACCESS_REQ); 2298 2299 udelay(31); 2300 2301 val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ; 2302 writel(val, PRCM_HOSTACCESS_REQ); 2303 2304 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work, 2305 msecs_to_jiffies(5000))) { 2306 #if defined(CONFIG_DBX500_PRCMU_DEBUG) 2307 db8500_prcmu_debug_dump(__func__, true, true); 2308 #endif 2309 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n", 2310 __func__); 2311 ret = -EFAULT; 2312 } 2313 2314 unlock_and_return: 2315 mutex_unlock(&mb0_transfer.ac_wake_lock); 2316 return ret; 2317 } 2318 2319 /** 2320 * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem 2321 */ 2322 void prcmu_ac_sleep_req(void) 2323 { 2324 u32 val; 2325 2326 mutex_lock(&mb0_transfer.ac_wake_lock); 2327 2328 val = readl(PRCM_HOSTACCESS_REQ); 2329 if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)) 2330 goto unlock_and_return; 2331 2332 writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ), 2333 PRCM_HOSTACCESS_REQ); 2334 2335 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work, 2336 msecs_to_jiffies(5000))) { 2337 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n", 2338 __func__); 2339 } 2340 2341 atomic_set(&ac_wake_req_state, 0); 2342 2343 unlock_and_return: 2344 mutex_unlock(&mb0_transfer.ac_wake_lock); 2345 } 2346 2347 bool db8500_prcmu_is_ac_wake_requested(void) 2348 { 2349 return (atomic_read(&ac_wake_req_state) != 0); 2350 } 2351 2352 /** 2353 * db8500_prcmu_system_reset - System reset 2354 * 2355 * Saves the reset reason code and then sets the APE_SOFTRST register which 2356 * fires interrupt to fw 2357 */ 2358 void db8500_prcmu_system_reset(u16 reset_code) 2359 { 2360 writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON)); 2361 writel(1, PRCM_APE_SOFTRST); 2362 } 2363 2364 /** 2365 * db8500_prcmu_get_reset_code - Retrieve SW reset reason code 2366 * 2367 * Retrieves the reset reason code stored by prcmu_system_reset() before 2368 * last restart. 2369 */ 2370 u16 db8500_prcmu_get_reset_code(void) 2371 { 2372 return readw(tcdm_base + PRCM_SW_RST_REASON); 2373 } 2374 2375 /** 2376 * db8500_prcmu_reset_modem - ask the PRCMU to reset modem 2377 */ 2378 void db8500_prcmu_modem_reset(void) 2379 { 2380 mutex_lock(&mb1_transfer.lock); 2381 2382 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1)) 2383 cpu_relax(); 2384 2385 writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1)); 2386 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET); 2387 wait_for_completion(&mb1_transfer.work); 2388 2389 /* 2390 * No need to check return from PRCMU as modem should go in reset state 2391 * This state is already managed by upper layer 2392 */ 2393 2394 mutex_unlock(&mb1_transfer.lock); 2395 } 2396 2397 static void ack_dbb_wakeup(void) 2398 { 2399 unsigned long flags; 2400 2401 spin_lock_irqsave(&mb0_transfer.lock, flags); 2402 2403 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0)) 2404 cpu_relax(); 2405 2406 writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0)); 2407 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET); 2408 2409 spin_unlock_irqrestore(&mb0_transfer.lock, flags); 2410 } 2411 2412 static inline void print_unknown_header_warning(u8 n, u8 header) 2413 { 2414 pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n", 2415 header, n); 2416 } 2417 2418 static bool read_mailbox_0(void) 2419 { 2420 bool r; 2421 u32 ev; 2422 unsigned int n; 2423 u8 header; 2424 2425 header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0); 2426 switch (header) { 2427 case MB0H_WAKEUP_EXE: 2428 case MB0H_WAKEUP_SLEEP: 2429 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1) 2430 ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500); 2431 else 2432 ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500); 2433 2434 if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK)) 2435 complete(&mb0_transfer.ac_wake_work); 2436 if (ev & WAKEUP_BIT_SYSCLK_OK) 2437 complete(&mb3_transfer.sysclk_work); 2438 2439 ev &= mb0_transfer.req.dbb_irqs; 2440 2441 for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) { 2442 if (ev & prcmu_irq_bit[n]) 2443 generic_handle_irq(irq_find_mapping(db8500_irq_domain, n)); 2444 } 2445 r = true; 2446 break; 2447 default: 2448 print_unknown_header_warning(0, header); 2449 r = false; 2450 break; 2451 } 2452 writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR); 2453 return r; 2454 } 2455 2456 static bool read_mailbox_1(void) 2457 { 2458 mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1); 2459 mb1_transfer.ack.arm_opp = readb(tcdm_base + 2460 PRCM_ACK_MB1_CURRENT_ARM_OPP); 2461 mb1_transfer.ack.ape_opp = readb(tcdm_base + 2462 PRCM_ACK_MB1_CURRENT_APE_OPP); 2463 mb1_transfer.ack.ape_voltage_status = readb(tcdm_base + 2464 PRCM_ACK_MB1_APE_VOLTAGE_STATUS); 2465 writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR); 2466 complete(&mb1_transfer.work); 2467 return false; 2468 } 2469 2470 static bool read_mailbox_2(void) 2471 { 2472 mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS); 2473 writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR); 2474 complete(&mb2_transfer.work); 2475 return false; 2476 } 2477 2478 static bool read_mailbox_3(void) 2479 { 2480 writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR); 2481 return false; 2482 } 2483 2484 static bool read_mailbox_4(void) 2485 { 2486 u8 header; 2487 bool do_complete = true; 2488 2489 header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4); 2490 switch (header) { 2491 case MB4H_MEM_ST: 2492 case MB4H_HOTDOG: 2493 case MB4H_HOTMON: 2494 case MB4H_HOT_PERIOD: 2495 case MB4H_A9WDOG_CONF: 2496 case MB4H_A9WDOG_EN: 2497 case MB4H_A9WDOG_DIS: 2498 case MB4H_A9WDOG_LOAD: 2499 case MB4H_A9WDOG_KICK: 2500 break; 2501 default: 2502 print_unknown_header_warning(4, header); 2503 do_complete = false; 2504 break; 2505 } 2506 2507 writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR); 2508 2509 if (do_complete) 2510 complete(&mb4_transfer.work); 2511 2512 return false; 2513 } 2514 2515 static bool read_mailbox_5(void) 2516 { 2517 mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS); 2518 mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL); 2519 writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR); 2520 complete(&mb5_transfer.work); 2521 return false; 2522 } 2523 2524 static bool read_mailbox_6(void) 2525 { 2526 writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR); 2527 return false; 2528 } 2529 2530 static bool read_mailbox_7(void) 2531 { 2532 writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR); 2533 return false; 2534 } 2535 2536 static bool (* const read_mailbox[NUM_MB])(void) = { 2537 read_mailbox_0, 2538 read_mailbox_1, 2539 read_mailbox_2, 2540 read_mailbox_3, 2541 read_mailbox_4, 2542 read_mailbox_5, 2543 read_mailbox_6, 2544 read_mailbox_7 2545 }; 2546 2547 static irqreturn_t prcmu_irq_handler(int irq, void *data) 2548 { 2549 u32 bits; 2550 u8 n; 2551 irqreturn_t r; 2552 2553 bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS); 2554 if (unlikely(!bits)) 2555 return IRQ_NONE; 2556 2557 r = IRQ_HANDLED; 2558 for (n = 0; bits; n++) { 2559 if (bits & MBOX_BIT(n)) { 2560 bits -= MBOX_BIT(n); 2561 if (read_mailbox[n]()) 2562 r = IRQ_WAKE_THREAD; 2563 } 2564 } 2565 return r; 2566 } 2567 2568 static irqreturn_t prcmu_irq_thread_fn(int irq, void *data) 2569 { 2570 ack_dbb_wakeup(); 2571 return IRQ_HANDLED; 2572 } 2573 2574 static void prcmu_mask_work(struct work_struct *work) 2575 { 2576 unsigned long flags; 2577 2578 spin_lock_irqsave(&mb0_transfer.lock, flags); 2579 2580 config_wakeups(); 2581 2582 spin_unlock_irqrestore(&mb0_transfer.lock, flags); 2583 } 2584 2585 static void prcmu_irq_mask(struct irq_data *d) 2586 { 2587 unsigned long flags; 2588 2589 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags); 2590 2591 mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq]; 2592 2593 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags); 2594 2595 if (d->irq != IRQ_PRCMU_CA_SLEEP) 2596 schedule_work(&mb0_transfer.mask_work); 2597 } 2598 2599 static void prcmu_irq_unmask(struct irq_data *d) 2600 { 2601 unsigned long flags; 2602 2603 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags); 2604 2605 mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq]; 2606 2607 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags); 2608 2609 if (d->irq != IRQ_PRCMU_CA_SLEEP) 2610 schedule_work(&mb0_transfer.mask_work); 2611 } 2612 2613 static void noop(struct irq_data *d) 2614 { 2615 } 2616 2617 static struct irq_chip prcmu_irq_chip = { 2618 .name = "prcmu", 2619 .irq_disable = prcmu_irq_mask, 2620 .irq_ack = noop, 2621 .irq_mask = prcmu_irq_mask, 2622 .irq_unmask = prcmu_irq_unmask, 2623 }; 2624 2625 static __init char *fw_project_name(u32 project) 2626 { 2627 switch (project) { 2628 case PRCMU_FW_PROJECT_U8500: 2629 return "U8500"; 2630 case PRCMU_FW_PROJECT_U8400: 2631 return "U8400"; 2632 case PRCMU_FW_PROJECT_U9500: 2633 return "U9500"; 2634 case PRCMU_FW_PROJECT_U8500_MBB: 2635 return "U8500 MBB"; 2636 case PRCMU_FW_PROJECT_U8500_C1: 2637 return "U8500 C1"; 2638 case PRCMU_FW_PROJECT_U8500_C2: 2639 return "U8500 C2"; 2640 case PRCMU_FW_PROJECT_U8500_C3: 2641 return "U8500 C3"; 2642 case PRCMU_FW_PROJECT_U8500_C4: 2643 return "U8500 C4"; 2644 case PRCMU_FW_PROJECT_U9500_MBL: 2645 return "U9500 MBL"; 2646 case PRCMU_FW_PROJECT_U8500_MBL: 2647 return "U8500 MBL"; 2648 case PRCMU_FW_PROJECT_U8500_MBL2: 2649 return "U8500 MBL2"; 2650 case PRCMU_FW_PROJECT_U8520: 2651 return "U8520 MBL"; 2652 case PRCMU_FW_PROJECT_U8420: 2653 return "U8420"; 2654 case PRCMU_FW_PROJECT_U9540: 2655 return "U9540"; 2656 case PRCMU_FW_PROJECT_A9420: 2657 return "A9420"; 2658 case PRCMU_FW_PROJECT_L8540: 2659 return "L8540"; 2660 case PRCMU_FW_PROJECT_L8580: 2661 return "L8580"; 2662 default: 2663 return "Unknown"; 2664 } 2665 } 2666 2667 static int db8500_irq_map(struct irq_domain *d, unsigned int virq, 2668 irq_hw_number_t hwirq) 2669 { 2670 irq_set_chip_and_handler(virq, &prcmu_irq_chip, 2671 handle_simple_irq); 2672 set_irq_flags(virq, IRQF_VALID); 2673 2674 return 0; 2675 } 2676 2677 static struct irq_domain_ops db8500_irq_ops = { 2678 .map = db8500_irq_map, 2679 .xlate = irq_domain_xlate_twocell, 2680 }; 2681 2682 static int db8500_irq_init(struct device_node *np) 2683 { 2684 int i; 2685 2686 db8500_irq_domain = irq_domain_add_simple( 2687 np, NUM_PRCMU_WAKEUPS, 0, 2688 &db8500_irq_ops, NULL); 2689 2690 if (!db8500_irq_domain) { 2691 pr_err("Failed to create irqdomain\n"); 2692 return -ENOSYS; 2693 } 2694 2695 /* All wakeups will be used, so create mappings for all */ 2696 for (i = 0; i < NUM_PRCMU_WAKEUPS; i++) 2697 irq_create_mapping(db8500_irq_domain, i); 2698 2699 return 0; 2700 } 2701 2702 static void dbx500_fw_version_init(struct platform_device *pdev, 2703 u32 version_offset) 2704 { 2705 struct resource *res; 2706 void __iomem *tcpm_base; 2707 u32 version; 2708 2709 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, 2710 "prcmu-tcpm"); 2711 if (!res) { 2712 dev_err(&pdev->dev, 2713 "Error: no prcmu tcpm memory region provided\n"); 2714 return; 2715 } 2716 tcpm_base = ioremap(res->start, resource_size(res)); 2717 if (!tcpm_base) { 2718 dev_err(&pdev->dev, "no prcmu tcpm mem region provided\n"); 2719 return; 2720 } 2721 2722 version = readl(tcpm_base + version_offset); 2723 fw_info.version.project = (version & 0xFF); 2724 fw_info.version.api_version = (version >> 8) & 0xFF; 2725 fw_info.version.func_version = (version >> 16) & 0xFF; 2726 fw_info.version.errata = (version >> 24) & 0xFF; 2727 strncpy(fw_info.version.project_name, 2728 fw_project_name(fw_info.version.project), 2729 PRCMU_FW_PROJECT_NAME_LEN); 2730 fw_info.valid = true; 2731 pr_info("PRCMU firmware: %s(%d), version %d.%d.%d\n", 2732 fw_info.version.project_name, 2733 fw_info.version.project, 2734 fw_info.version.api_version, 2735 fw_info.version.func_version, 2736 fw_info.version.errata); 2737 iounmap(tcpm_base); 2738 } 2739 2740 void __init db8500_prcmu_early_init(u32 phy_base, u32 size) 2741 { 2742 /* 2743 * This is a temporary remap to bring up the clocks. It is 2744 * subsequently replaces with a real remap. After the merge of 2745 * the mailbox subsystem all of this early code goes away, and the 2746 * clock driver can probe independently. An early initcall will 2747 * still be needed, but it can be diverted into drivers/clk/ux500. 2748 */ 2749 prcmu_base = ioremap(phy_base, size); 2750 if (!prcmu_base) 2751 pr_err("%s: ioremap() of prcmu registers failed!\n", __func__); 2752 2753 spin_lock_init(&mb0_transfer.lock); 2754 spin_lock_init(&mb0_transfer.dbb_irqs_lock); 2755 mutex_init(&mb0_transfer.ac_wake_lock); 2756 init_completion(&mb0_transfer.ac_wake_work); 2757 mutex_init(&mb1_transfer.lock); 2758 init_completion(&mb1_transfer.work); 2759 mb1_transfer.ape_opp = APE_NO_CHANGE; 2760 mutex_init(&mb2_transfer.lock); 2761 init_completion(&mb2_transfer.work); 2762 spin_lock_init(&mb2_transfer.auto_pm_lock); 2763 spin_lock_init(&mb3_transfer.lock); 2764 mutex_init(&mb3_transfer.sysclk_lock); 2765 init_completion(&mb3_transfer.sysclk_work); 2766 mutex_init(&mb4_transfer.lock); 2767 init_completion(&mb4_transfer.work); 2768 mutex_init(&mb5_transfer.lock); 2769 init_completion(&mb5_transfer.work); 2770 2771 INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work); 2772 } 2773 2774 static void __init init_prcm_registers(void) 2775 { 2776 u32 val; 2777 2778 val = readl(PRCM_A9PL_FORCE_CLKEN); 2779 val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN | 2780 PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN); 2781 writel(val, (PRCM_A9PL_FORCE_CLKEN)); 2782 } 2783 2784 /* 2785 * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC 2786 */ 2787 static struct regulator_consumer_supply db8500_vape_consumers[] = { 2788 REGULATOR_SUPPLY("v-ape", NULL), 2789 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"), 2790 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"), 2791 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"), 2792 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"), 2793 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"), 2794 /* "v-mmc" changed to "vcore" in the mainline kernel */ 2795 REGULATOR_SUPPLY("vcore", "sdi0"), 2796 REGULATOR_SUPPLY("vcore", "sdi1"), 2797 REGULATOR_SUPPLY("vcore", "sdi2"), 2798 REGULATOR_SUPPLY("vcore", "sdi3"), 2799 REGULATOR_SUPPLY("vcore", "sdi4"), 2800 REGULATOR_SUPPLY("v-dma", "dma40.0"), 2801 REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"), 2802 /* "v-uart" changed to "vcore" in the mainline kernel */ 2803 REGULATOR_SUPPLY("vcore", "uart0"), 2804 REGULATOR_SUPPLY("vcore", "uart1"), 2805 REGULATOR_SUPPLY("vcore", "uart2"), 2806 REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"), 2807 REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"), 2808 REGULATOR_SUPPLY("vddvario", "smsc911x.0"), 2809 }; 2810 2811 static struct regulator_consumer_supply db8500_vsmps2_consumers[] = { 2812 REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"), 2813 /* AV8100 regulator */ 2814 REGULATOR_SUPPLY("hdmi_1v8", "0-0070"), 2815 }; 2816 2817 static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = { 2818 REGULATOR_SUPPLY("vsupply", "b2r2_bus"), 2819 REGULATOR_SUPPLY("vsupply", "mcde"), 2820 }; 2821 2822 /* SVA MMDSP regulator switch */ 2823 static struct regulator_consumer_supply db8500_svammdsp_consumers[] = { 2824 REGULATOR_SUPPLY("sva-mmdsp", "cm_control"), 2825 }; 2826 2827 /* SVA pipe regulator switch */ 2828 static struct regulator_consumer_supply db8500_svapipe_consumers[] = { 2829 REGULATOR_SUPPLY("sva-pipe", "cm_control"), 2830 }; 2831 2832 /* SIA MMDSP regulator switch */ 2833 static struct regulator_consumer_supply db8500_siammdsp_consumers[] = { 2834 REGULATOR_SUPPLY("sia-mmdsp", "cm_control"), 2835 }; 2836 2837 /* SIA pipe regulator switch */ 2838 static struct regulator_consumer_supply db8500_siapipe_consumers[] = { 2839 REGULATOR_SUPPLY("sia-pipe", "cm_control"), 2840 }; 2841 2842 static struct regulator_consumer_supply db8500_sga_consumers[] = { 2843 REGULATOR_SUPPLY("v-mali", NULL), 2844 }; 2845 2846 /* ESRAM1 and 2 regulator switch */ 2847 static struct regulator_consumer_supply db8500_esram12_consumers[] = { 2848 REGULATOR_SUPPLY("esram12", "cm_control"), 2849 }; 2850 2851 /* ESRAM3 and 4 regulator switch */ 2852 static struct regulator_consumer_supply db8500_esram34_consumers[] = { 2853 REGULATOR_SUPPLY("v-esram34", "mcde"), 2854 REGULATOR_SUPPLY("esram34", "cm_control"), 2855 REGULATOR_SUPPLY("lcla_esram", "dma40.0"), 2856 }; 2857 2858 static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = { 2859 [DB8500_REGULATOR_VAPE] = { 2860 .constraints = { 2861 .name = "db8500-vape", 2862 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2863 .always_on = true, 2864 }, 2865 .consumer_supplies = db8500_vape_consumers, 2866 .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers), 2867 }, 2868 [DB8500_REGULATOR_VARM] = { 2869 .constraints = { 2870 .name = "db8500-varm", 2871 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2872 }, 2873 }, 2874 [DB8500_REGULATOR_VMODEM] = { 2875 .constraints = { 2876 .name = "db8500-vmodem", 2877 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2878 }, 2879 }, 2880 [DB8500_REGULATOR_VPLL] = { 2881 .constraints = { 2882 .name = "db8500-vpll", 2883 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2884 }, 2885 }, 2886 [DB8500_REGULATOR_VSMPS1] = { 2887 .constraints = { 2888 .name = "db8500-vsmps1", 2889 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2890 }, 2891 }, 2892 [DB8500_REGULATOR_VSMPS2] = { 2893 .constraints = { 2894 .name = "db8500-vsmps2", 2895 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2896 }, 2897 .consumer_supplies = db8500_vsmps2_consumers, 2898 .num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers), 2899 }, 2900 [DB8500_REGULATOR_VSMPS3] = { 2901 .constraints = { 2902 .name = "db8500-vsmps3", 2903 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2904 }, 2905 }, 2906 [DB8500_REGULATOR_VRF1] = { 2907 .constraints = { 2908 .name = "db8500-vrf1", 2909 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2910 }, 2911 }, 2912 [DB8500_REGULATOR_SWITCH_SVAMMDSP] = { 2913 /* dependency to u8500-vape is handled outside regulator framework */ 2914 .constraints = { 2915 .name = "db8500-sva-mmdsp", 2916 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2917 }, 2918 .consumer_supplies = db8500_svammdsp_consumers, 2919 .num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers), 2920 }, 2921 [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = { 2922 .constraints = { 2923 /* "ret" means "retention" */ 2924 .name = "db8500-sva-mmdsp-ret", 2925 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2926 }, 2927 }, 2928 [DB8500_REGULATOR_SWITCH_SVAPIPE] = { 2929 /* dependency to u8500-vape is handled outside regulator framework */ 2930 .constraints = { 2931 .name = "db8500-sva-pipe", 2932 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2933 }, 2934 .consumer_supplies = db8500_svapipe_consumers, 2935 .num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers), 2936 }, 2937 [DB8500_REGULATOR_SWITCH_SIAMMDSP] = { 2938 /* dependency to u8500-vape is handled outside regulator framework */ 2939 .constraints = { 2940 .name = "db8500-sia-mmdsp", 2941 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2942 }, 2943 .consumer_supplies = db8500_siammdsp_consumers, 2944 .num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers), 2945 }, 2946 [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = { 2947 .constraints = { 2948 .name = "db8500-sia-mmdsp-ret", 2949 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2950 }, 2951 }, 2952 [DB8500_REGULATOR_SWITCH_SIAPIPE] = { 2953 /* dependency to u8500-vape is handled outside regulator framework */ 2954 .constraints = { 2955 .name = "db8500-sia-pipe", 2956 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2957 }, 2958 .consumer_supplies = db8500_siapipe_consumers, 2959 .num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers), 2960 }, 2961 [DB8500_REGULATOR_SWITCH_SGA] = { 2962 .supply_regulator = "db8500-vape", 2963 .constraints = { 2964 .name = "db8500-sga", 2965 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2966 }, 2967 .consumer_supplies = db8500_sga_consumers, 2968 .num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers), 2969 2970 }, 2971 [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = { 2972 .supply_regulator = "db8500-vape", 2973 .constraints = { 2974 .name = "db8500-b2r2-mcde", 2975 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2976 }, 2977 .consumer_supplies = db8500_b2r2_mcde_consumers, 2978 .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers), 2979 }, 2980 [DB8500_REGULATOR_SWITCH_ESRAM12] = { 2981 /* 2982 * esram12 is set in retention and supplied by Vsafe when Vape is off, 2983 * no need to hold Vape 2984 */ 2985 .constraints = { 2986 .name = "db8500-esram12", 2987 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2988 }, 2989 .consumer_supplies = db8500_esram12_consumers, 2990 .num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers), 2991 }, 2992 [DB8500_REGULATOR_SWITCH_ESRAM12RET] = { 2993 .constraints = { 2994 .name = "db8500-esram12-ret", 2995 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2996 }, 2997 }, 2998 [DB8500_REGULATOR_SWITCH_ESRAM34] = { 2999 /* 3000 * esram34 is set in retention and supplied by Vsafe when Vape is off, 3001 * no need to hold Vape 3002 */ 3003 .constraints = { 3004 .name = "db8500-esram34", 3005 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 3006 }, 3007 .consumer_supplies = db8500_esram34_consumers, 3008 .num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers), 3009 }, 3010 [DB8500_REGULATOR_SWITCH_ESRAM34RET] = { 3011 .constraints = { 3012 .name = "db8500-esram34-ret", 3013 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 3014 }, 3015 }, 3016 }; 3017 3018 static struct ux500_wdt_data db8500_wdt_pdata = { 3019 .timeout = 600, /* 10 minutes */ 3020 .has_28_bits_resolution = true, 3021 }; 3022 /* 3023 * Thermal Sensor 3024 */ 3025 3026 static struct resource db8500_thsens_resources[] = { 3027 { 3028 .name = "IRQ_HOTMON_LOW", 3029 .start = IRQ_PRCMU_HOTMON_LOW, 3030 .end = IRQ_PRCMU_HOTMON_LOW, 3031 .flags = IORESOURCE_IRQ, 3032 }, 3033 { 3034 .name = "IRQ_HOTMON_HIGH", 3035 .start = IRQ_PRCMU_HOTMON_HIGH, 3036 .end = IRQ_PRCMU_HOTMON_HIGH, 3037 .flags = IORESOURCE_IRQ, 3038 }, 3039 }; 3040 3041 static struct db8500_thsens_platform_data db8500_thsens_data = { 3042 .trip_points[0] = { 3043 .temp = 70000, 3044 .type = THERMAL_TRIP_ACTIVE, 3045 .cdev_name = { 3046 [0] = "thermal-cpufreq-0", 3047 }, 3048 }, 3049 .trip_points[1] = { 3050 .temp = 75000, 3051 .type = THERMAL_TRIP_ACTIVE, 3052 .cdev_name = { 3053 [0] = "thermal-cpufreq-0", 3054 }, 3055 }, 3056 .trip_points[2] = { 3057 .temp = 80000, 3058 .type = THERMAL_TRIP_ACTIVE, 3059 .cdev_name = { 3060 [0] = "thermal-cpufreq-0", 3061 }, 3062 }, 3063 .trip_points[3] = { 3064 .temp = 85000, 3065 .type = THERMAL_TRIP_CRITICAL, 3066 }, 3067 .num_trips = 4, 3068 }; 3069 3070 static const struct mfd_cell common_prcmu_devs[] = { 3071 { 3072 .name = "ux500_wdt", 3073 .platform_data = &db8500_wdt_pdata, 3074 .pdata_size = sizeof(db8500_wdt_pdata), 3075 .id = -1, 3076 }, 3077 }; 3078 3079 static const struct mfd_cell db8500_prcmu_devs[] = { 3080 { 3081 .name = "db8500-prcmu-regulators", 3082 .of_compatible = "stericsson,db8500-prcmu-regulator", 3083 .platform_data = &db8500_regulators, 3084 .pdata_size = sizeof(db8500_regulators), 3085 }, 3086 { 3087 .name = "cpufreq-ux500", 3088 .of_compatible = "stericsson,cpufreq-ux500", 3089 .platform_data = &db8500_cpufreq_table, 3090 .pdata_size = sizeof(db8500_cpufreq_table), 3091 }, 3092 { 3093 .name = "cpuidle-dbx500", 3094 .of_compatible = "stericsson,cpuidle-dbx500", 3095 }, 3096 { 3097 .name = "db8500-thermal", 3098 .num_resources = ARRAY_SIZE(db8500_thsens_resources), 3099 .resources = db8500_thsens_resources, 3100 .platform_data = &db8500_thsens_data, 3101 .pdata_size = sizeof(db8500_thsens_data), 3102 }, 3103 }; 3104 3105 static void db8500_prcmu_update_cpufreq(void) 3106 { 3107 if (prcmu_has_arm_maxopp()) { 3108 db8500_cpufreq_table[3].frequency = 1000000; 3109 db8500_cpufreq_table[3].driver_data = ARM_MAX_OPP; 3110 } 3111 } 3112 3113 static int db8500_prcmu_register_ab8500(struct device *parent, 3114 struct ab8500_platform_data *pdata) 3115 { 3116 struct device_node *np; 3117 struct resource ab8500_resource; 3118 struct mfd_cell ab8500_cell = { 3119 .name = "ab8500-core", 3120 .of_compatible = "stericsson,ab8500", 3121 .id = AB8500_VERSION_AB8500, 3122 .platform_data = pdata, 3123 .pdata_size = sizeof(struct ab8500_platform_data), 3124 .resources = &ab8500_resource, 3125 .num_resources = 1, 3126 }; 3127 3128 if (!parent->of_node) 3129 return -ENODEV; 3130 3131 /* Look up the device node, sneak the IRQ out of it */ 3132 for_each_child_of_node(parent->of_node, np) { 3133 if (of_device_is_compatible(np, ab8500_cell.of_compatible)) 3134 break; 3135 } 3136 if (!np) { 3137 dev_info(parent, "could not find AB8500 node in the device tree\n"); 3138 return -ENODEV; 3139 } 3140 of_irq_to_resource_table(np, &ab8500_resource, 1); 3141 3142 return mfd_add_devices(parent, 0, &ab8500_cell, 1, NULL, 0, NULL); 3143 } 3144 3145 /** 3146 * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic 3147 * 3148 */ 3149 static int db8500_prcmu_probe(struct platform_device *pdev) 3150 { 3151 struct device_node *np = pdev->dev.of_node; 3152 struct prcmu_pdata *pdata = dev_get_platdata(&pdev->dev); 3153 int irq = 0, err = 0; 3154 struct resource *res; 3155 3156 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu"); 3157 if (!res) { 3158 dev_err(&pdev->dev, "no prcmu memory region provided\n"); 3159 return -ENOENT; 3160 } 3161 prcmu_base = devm_ioremap(&pdev->dev, res->start, resource_size(res)); 3162 if (!prcmu_base) { 3163 dev_err(&pdev->dev, 3164 "failed to ioremap prcmu register memory\n"); 3165 return -ENOENT; 3166 } 3167 init_prcm_registers(); 3168 dbx500_fw_version_init(pdev, pdata->version_offset); 3169 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu-tcdm"); 3170 if (!res) { 3171 dev_err(&pdev->dev, "no prcmu tcdm region provided\n"); 3172 return -ENOENT; 3173 } 3174 tcdm_base = devm_ioremap(&pdev->dev, res->start, 3175 resource_size(res)); 3176 3177 /* Clean up the mailbox interrupts after pre-kernel code. */ 3178 writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR); 3179 3180 irq = platform_get_irq(pdev, 0); 3181 if (irq <= 0) { 3182 dev_err(&pdev->dev, "no prcmu irq provided\n"); 3183 return -ENOENT; 3184 } 3185 3186 err = request_threaded_irq(irq, prcmu_irq_handler, 3187 prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL); 3188 if (err < 0) { 3189 pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n"); 3190 err = -EBUSY; 3191 goto no_irq_return; 3192 } 3193 3194 db8500_irq_init(np); 3195 3196 prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET); 3197 3198 db8500_prcmu_update_cpufreq(); 3199 3200 err = mfd_add_devices(&pdev->dev, 0, common_prcmu_devs, 3201 ARRAY_SIZE(common_prcmu_devs), NULL, 0, db8500_irq_domain); 3202 if (err) { 3203 pr_err("prcmu: Failed to add subdevices\n"); 3204 return err; 3205 } 3206 3207 /* TODO: Remove restriction when clk definitions are available. */ 3208 if (!of_machine_is_compatible("st-ericsson,u8540")) { 3209 err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs, 3210 ARRAY_SIZE(db8500_prcmu_devs), NULL, 0, 3211 db8500_irq_domain); 3212 if (err) { 3213 mfd_remove_devices(&pdev->dev); 3214 pr_err("prcmu: Failed to add subdevices\n"); 3215 goto no_irq_return; 3216 } 3217 } 3218 3219 err = db8500_prcmu_register_ab8500(&pdev->dev, pdata->ab_platdata); 3220 if (err) { 3221 mfd_remove_devices(&pdev->dev); 3222 pr_err("prcmu: Failed to add ab8500 subdevice\n"); 3223 goto no_irq_return; 3224 } 3225 3226 pr_info("DB8500 PRCMU initialized\n"); 3227 3228 no_irq_return: 3229 return err; 3230 } 3231 static const struct of_device_id db8500_prcmu_match[] = { 3232 { .compatible = "stericsson,db8500-prcmu"}, 3233 { }, 3234 }; 3235 3236 static struct platform_driver db8500_prcmu_driver = { 3237 .driver = { 3238 .name = "db8500-prcmu", 3239 .owner = THIS_MODULE, 3240 .of_match_table = db8500_prcmu_match, 3241 }, 3242 .probe = db8500_prcmu_probe, 3243 }; 3244 3245 static int __init db8500_prcmu_init(void) 3246 { 3247 return platform_driver_register(&db8500_prcmu_driver); 3248 } 3249 3250 core_initcall(db8500_prcmu_init); 3251 3252 MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>"); 3253 MODULE_DESCRIPTION("DB8500 PRCM Unit driver"); 3254 MODULE_LICENSE("GPL v2"); 3255