1 /* 2 * DB8500 PRCM Unit driver 3 * 4 * Copyright (C) STMicroelectronics 2009 5 * Copyright (C) ST-Ericsson SA 2010 6 * 7 * License Terms: GNU General Public License v2 8 * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com> 9 * Author: Sundar Iyer <sundar.iyer@stericsson.com> 10 * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com> 11 * 12 * U8500 PRCM Unit interface driver 13 * 14 */ 15 #include <linux/init.h> 16 #include <linux/export.h> 17 #include <linux/kernel.h> 18 #include <linux/delay.h> 19 #include <linux/errno.h> 20 #include <linux/err.h> 21 #include <linux/spinlock.h> 22 #include <linux/io.h> 23 #include <linux/slab.h> 24 #include <linux/mutex.h> 25 #include <linux/completion.h> 26 #include <linux/irq.h> 27 #include <linux/jiffies.h> 28 #include <linux/bitops.h> 29 #include <linux/fs.h> 30 #include <linux/of.h> 31 #include <linux/of_irq.h> 32 #include <linux/platform_device.h> 33 #include <linux/uaccess.h> 34 #include <linux/mfd/core.h> 35 #include <linux/mfd/dbx500-prcmu.h> 36 #include <linux/mfd/abx500/ab8500.h> 37 #include <linux/regulator/db8500-prcmu.h> 38 #include <linux/regulator/machine.h> 39 #include <linux/platform_data/ux500_wdt.h> 40 #include <linux/platform_data/db8500_thermal.h> 41 #include "dbx500-prcmu-regs.h" 42 43 /* Index of different voltages to be used when accessing AVSData */ 44 #define PRCM_AVS_BASE 0x2FC 45 #define PRCM_AVS_VBB_RET (PRCM_AVS_BASE + 0x0) 46 #define PRCM_AVS_VBB_MAX_OPP (PRCM_AVS_BASE + 0x1) 47 #define PRCM_AVS_VBB_100_OPP (PRCM_AVS_BASE + 0x2) 48 #define PRCM_AVS_VBB_50_OPP (PRCM_AVS_BASE + 0x3) 49 #define PRCM_AVS_VARM_MAX_OPP (PRCM_AVS_BASE + 0x4) 50 #define PRCM_AVS_VARM_100_OPP (PRCM_AVS_BASE + 0x5) 51 #define PRCM_AVS_VARM_50_OPP (PRCM_AVS_BASE + 0x6) 52 #define PRCM_AVS_VARM_RET (PRCM_AVS_BASE + 0x7) 53 #define PRCM_AVS_VAPE_100_OPP (PRCM_AVS_BASE + 0x8) 54 #define PRCM_AVS_VAPE_50_OPP (PRCM_AVS_BASE + 0x9) 55 #define PRCM_AVS_VMOD_100_OPP (PRCM_AVS_BASE + 0xA) 56 #define PRCM_AVS_VMOD_50_OPP (PRCM_AVS_BASE + 0xB) 57 #define PRCM_AVS_VSAFE (PRCM_AVS_BASE + 0xC) 58 59 #define PRCM_AVS_VOLTAGE 0 60 #define PRCM_AVS_VOLTAGE_MASK 0x3f 61 #define PRCM_AVS_ISSLOWSTARTUP 6 62 #define PRCM_AVS_ISSLOWSTARTUP_MASK (1 << PRCM_AVS_ISSLOWSTARTUP) 63 #define PRCM_AVS_ISMODEENABLE 7 64 #define PRCM_AVS_ISMODEENABLE_MASK (1 << PRCM_AVS_ISMODEENABLE) 65 66 #define PRCM_BOOT_STATUS 0xFFF 67 #define PRCM_ROMCODE_A2P 0xFFE 68 #define PRCM_ROMCODE_P2A 0xFFD 69 #define PRCM_XP70_CUR_PWR_STATE 0xFFC /* 4 BYTES */ 70 71 #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */ 72 73 #define _PRCM_MBOX_HEADER 0xFE8 /* 16 bytes */ 74 #define PRCM_MBOX_HEADER_REQ_MB0 (_PRCM_MBOX_HEADER + 0x0) 75 #define PRCM_MBOX_HEADER_REQ_MB1 (_PRCM_MBOX_HEADER + 0x1) 76 #define PRCM_MBOX_HEADER_REQ_MB2 (_PRCM_MBOX_HEADER + 0x2) 77 #define PRCM_MBOX_HEADER_REQ_MB3 (_PRCM_MBOX_HEADER + 0x3) 78 #define PRCM_MBOX_HEADER_REQ_MB4 (_PRCM_MBOX_HEADER + 0x4) 79 #define PRCM_MBOX_HEADER_REQ_MB5 (_PRCM_MBOX_HEADER + 0x5) 80 #define PRCM_MBOX_HEADER_ACK_MB0 (_PRCM_MBOX_HEADER + 0x8) 81 82 /* Req Mailboxes */ 83 #define PRCM_REQ_MB0 0xFDC /* 12 bytes */ 84 #define PRCM_REQ_MB1 0xFD0 /* 12 bytes */ 85 #define PRCM_REQ_MB2 0xFC0 /* 16 bytes */ 86 #define PRCM_REQ_MB3 0xE4C /* 372 bytes */ 87 #define PRCM_REQ_MB4 0xE48 /* 4 bytes */ 88 #define PRCM_REQ_MB5 0xE44 /* 4 bytes */ 89 90 /* Ack Mailboxes */ 91 #define PRCM_ACK_MB0 0xE08 /* 52 bytes */ 92 #define PRCM_ACK_MB1 0xE04 /* 4 bytes */ 93 #define PRCM_ACK_MB2 0xE00 /* 4 bytes */ 94 #define PRCM_ACK_MB3 0xDFC /* 4 bytes */ 95 #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */ 96 #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */ 97 98 /* Mailbox 0 headers */ 99 #define MB0H_POWER_STATE_TRANS 0 100 #define MB0H_CONFIG_WAKEUPS_EXE 1 101 #define MB0H_READ_WAKEUP_ACK 3 102 #define MB0H_CONFIG_WAKEUPS_SLEEP 4 103 104 #define MB0H_WAKEUP_EXE 2 105 #define MB0H_WAKEUP_SLEEP 5 106 107 /* Mailbox 0 REQs */ 108 #define PRCM_REQ_MB0_AP_POWER_STATE (PRCM_REQ_MB0 + 0x0) 109 #define PRCM_REQ_MB0_AP_PLL_STATE (PRCM_REQ_MB0 + 0x1) 110 #define PRCM_REQ_MB0_ULP_CLOCK_STATE (PRCM_REQ_MB0 + 0x2) 111 #define PRCM_REQ_MB0_DO_NOT_WFI (PRCM_REQ_MB0 + 0x3) 112 #define PRCM_REQ_MB0_WAKEUP_8500 (PRCM_REQ_MB0 + 0x4) 113 #define PRCM_REQ_MB0_WAKEUP_4500 (PRCM_REQ_MB0 + 0x8) 114 115 /* Mailbox 0 ACKs */ 116 #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS (PRCM_ACK_MB0 + 0x0) 117 #define PRCM_ACK_MB0_READ_POINTER (PRCM_ACK_MB0 + 0x1) 118 #define PRCM_ACK_MB0_WAKEUP_0_8500 (PRCM_ACK_MB0 + 0x4) 119 #define PRCM_ACK_MB0_WAKEUP_0_4500 (PRCM_ACK_MB0 + 0x8) 120 #define PRCM_ACK_MB0_WAKEUP_1_8500 (PRCM_ACK_MB0 + 0x1C) 121 #define PRCM_ACK_MB0_WAKEUP_1_4500 (PRCM_ACK_MB0 + 0x20) 122 #define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20 123 124 /* Mailbox 1 headers */ 125 #define MB1H_ARM_APE_OPP 0x0 126 #define MB1H_RESET_MODEM 0x2 127 #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3 128 #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4 129 #define MB1H_RELEASE_USB_WAKEUP 0x5 130 #define MB1H_PLL_ON_OFF 0x6 131 132 /* Mailbox 1 Requests */ 133 #define PRCM_REQ_MB1_ARM_OPP (PRCM_REQ_MB1 + 0x0) 134 #define PRCM_REQ_MB1_APE_OPP (PRCM_REQ_MB1 + 0x1) 135 #define PRCM_REQ_MB1_PLL_ON_OFF (PRCM_REQ_MB1 + 0x4) 136 #define PLL_SOC0_OFF 0x1 137 #define PLL_SOC0_ON 0x2 138 #define PLL_SOC1_OFF 0x4 139 #define PLL_SOC1_ON 0x8 140 141 /* Mailbox 1 ACKs */ 142 #define PRCM_ACK_MB1_CURRENT_ARM_OPP (PRCM_ACK_MB1 + 0x0) 143 #define PRCM_ACK_MB1_CURRENT_APE_OPP (PRCM_ACK_MB1 + 0x1) 144 #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2) 145 #define PRCM_ACK_MB1_DVFS_STATUS (PRCM_ACK_MB1 + 0x3) 146 147 /* Mailbox 2 headers */ 148 #define MB2H_DPS 0x0 149 #define MB2H_AUTO_PWR 0x1 150 151 /* Mailbox 2 REQs */ 152 #define PRCM_REQ_MB2_SVA_MMDSP (PRCM_REQ_MB2 + 0x0) 153 #define PRCM_REQ_MB2_SVA_PIPE (PRCM_REQ_MB2 + 0x1) 154 #define PRCM_REQ_MB2_SIA_MMDSP (PRCM_REQ_MB2 + 0x2) 155 #define PRCM_REQ_MB2_SIA_PIPE (PRCM_REQ_MB2 + 0x3) 156 #define PRCM_REQ_MB2_SGA (PRCM_REQ_MB2 + 0x4) 157 #define PRCM_REQ_MB2_B2R2_MCDE (PRCM_REQ_MB2 + 0x5) 158 #define PRCM_REQ_MB2_ESRAM12 (PRCM_REQ_MB2 + 0x6) 159 #define PRCM_REQ_MB2_ESRAM34 (PRCM_REQ_MB2 + 0x7) 160 #define PRCM_REQ_MB2_AUTO_PM_SLEEP (PRCM_REQ_MB2 + 0x8) 161 #define PRCM_REQ_MB2_AUTO_PM_IDLE (PRCM_REQ_MB2 + 0xC) 162 163 /* Mailbox 2 ACKs */ 164 #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0) 165 #define HWACC_PWR_ST_OK 0xFE 166 167 /* Mailbox 3 headers */ 168 #define MB3H_ANC 0x0 169 #define MB3H_SIDETONE 0x1 170 #define MB3H_SYSCLK 0xE 171 172 /* Mailbox 3 Requests */ 173 #define PRCM_REQ_MB3_ANC_FIR_COEFF (PRCM_REQ_MB3 + 0x0) 174 #define PRCM_REQ_MB3_ANC_IIR_COEFF (PRCM_REQ_MB3 + 0x20) 175 #define PRCM_REQ_MB3_ANC_SHIFTER (PRCM_REQ_MB3 + 0x60) 176 #define PRCM_REQ_MB3_ANC_WARP (PRCM_REQ_MB3 + 0x64) 177 #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN (PRCM_REQ_MB3 + 0x68) 178 #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C) 179 #define PRCM_REQ_MB3_SYSCLK_MGT (PRCM_REQ_MB3 + 0x16C) 180 181 /* Mailbox 4 headers */ 182 #define MB4H_DDR_INIT 0x0 183 #define MB4H_MEM_ST 0x1 184 #define MB4H_HOTDOG 0x12 185 #define MB4H_HOTMON 0x13 186 #define MB4H_HOT_PERIOD 0x14 187 #define MB4H_A9WDOG_CONF 0x16 188 #define MB4H_A9WDOG_EN 0x17 189 #define MB4H_A9WDOG_DIS 0x18 190 #define MB4H_A9WDOG_LOAD 0x19 191 #define MB4H_A9WDOG_KICK 0x20 192 193 /* Mailbox 4 Requests */ 194 #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE (PRCM_REQ_MB4 + 0x0) 195 #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE (PRCM_REQ_MB4 + 0x1) 196 #define PRCM_REQ_MB4_ESRAM0_ST (PRCM_REQ_MB4 + 0x3) 197 #define PRCM_REQ_MB4_HOTDOG_THRESHOLD (PRCM_REQ_MB4 + 0x0) 198 #define PRCM_REQ_MB4_HOTMON_LOW (PRCM_REQ_MB4 + 0x0) 199 #define PRCM_REQ_MB4_HOTMON_HIGH (PRCM_REQ_MB4 + 0x1) 200 #define PRCM_REQ_MB4_HOTMON_CONFIG (PRCM_REQ_MB4 + 0x2) 201 #define PRCM_REQ_MB4_HOT_PERIOD (PRCM_REQ_MB4 + 0x0) 202 #define HOTMON_CONFIG_LOW BIT(0) 203 #define HOTMON_CONFIG_HIGH BIT(1) 204 #define PRCM_REQ_MB4_A9WDOG_0 (PRCM_REQ_MB4 + 0x0) 205 #define PRCM_REQ_MB4_A9WDOG_1 (PRCM_REQ_MB4 + 0x1) 206 #define PRCM_REQ_MB4_A9WDOG_2 (PRCM_REQ_MB4 + 0x2) 207 #define PRCM_REQ_MB4_A9WDOG_3 (PRCM_REQ_MB4 + 0x3) 208 #define A9WDOG_AUTO_OFF_EN BIT(7) 209 #define A9WDOG_AUTO_OFF_DIS 0 210 #define A9WDOG_ID_MASK 0xf 211 212 /* Mailbox 5 Requests */ 213 #define PRCM_REQ_MB5_I2C_SLAVE_OP (PRCM_REQ_MB5 + 0x0) 214 #define PRCM_REQ_MB5_I2C_HW_BITS (PRCM_REQ_MB5 + 0x1) 215 #define PRCM_REQ_MB5_I2C_REG (PRCM_REQ_MB5 + 0x2) 216 #define PRCM_REQ_MB5_I2C_VAL (PRCM_REQ_MB5 + 0x3) 217 #define PRCMU_I2C_WRITE(slave) (((slave) << 1) | BIT(6)) 218 #define PRCMU_I2C_READ(slave) (((slave) << 1) | BIT(0) | BIT(6)) 219 #define PRCMU_I2C_STOP_EN BIT(3) 220 221 /* Mailbox 5 ACKs */ 222 #define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1) 223 #define PRCM_ACK_MB5_I2C_VAL (PRCM_ACK_MB5 + 0x3) 224 #define I2C_WR_OK 0x1 225 #define I2C_RD_OK 0x2 226 227 #define NUM_MB 8 228 #define MBOX_BIT BIT 229 #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1) 230 231 /* 232 * Wakeups/IRQs 233 */ 234 235 #define WAKEUP_BIT_RTC BIT(0) 236 #define WAKEUP_BIT_RTT0 BIT(1) 237 #define WAKEUP_BIT_RTT1 BIT(2) 238 #define WAKEUP_BIT_HSI0 BIT(3) 239 #define WAKEUP_BIT_HSI1 BIT(4) 240 #define WAKEUP_BIT_CA_WAKE BIT(5) 241 #define WAKEUP_BIT_USB BIT(6) 242 #define WAKEUP_BIT_ABB BIT(7) 243 #define WAKEUP_BIT_ABB_FIFO BIT(8) 244 #define WAKEUP_BIT_SYSCLK_OK BIT(9) 245 #define WAKEUP_BIT_CA_SLEEP BIT(10) 246 #define WAKEUP_BIT_AC_WAKE_ACK BIT(11) 247 #define WAKEUP_BIT_SIDE_TONE_OK BIT(12) 248 #define WAKEUP_BIT_ANC_OK BIT(13) 249 #define WAKEUP_BIT_SW_ERROR BIT(14) 250 #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15) 251 #define WAKEUP_BIT_ARM BIT(17) 252 #define WAKEUP_BIT_HOTMON_LOW BIT(18) 253 #define WAKEUP_BIT_HOTMON_HIGH BIT(19) 254 #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20) 255 #define WAKEUP_BIT_GPIO0 BIT(23) 256 #define WAKEUP_BIT_GPIO1 BIT(24) 257 #define WAKEUP_BIT_GPIO2 BIT(25) 258 #define WAKEUP_BIT_GPIO3 BIT(26) 259 #define WAKEUP_BIT_GPIO4 BIT(27) 260 #define WAKEUP_BIT_GPIO5 BIT(28) 261 #define WAKEUP_BIT_GPIO6 BIT(29) 262 #define WAKEUP_BIT_GPIO7 BIT(30) 263 #define WAKEUP_BIT_GPIO8 BIT(31) 264 265 static struct { 266 bool valid; 267 struct prcmu_fw_version version; 268 } fw_info; 269 270 static struct irq_domain *db8500_irq_domain; 271 272 /* 273 * This vector maps irq numbers to the bits in the bit field used in 274 * communication with the PRCMU firmware. 275 * 276 * The reason for having this is to keep the irq numbers contiguous even though 277 * the bits in the bit field are not. (The bits also have a tendency to move 278 * around, to further complicate matters.) 279 */ 280 #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name)) 281 #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name) 282 283 #define IRQ_PRCMU_RTC 0 284 #define IRQ_PRCMU_RTT0 1 285 #define IRQ_PRCMU_RTT1 2 286 #define IRQ_PRCMU_HSI0 3 287 #define IRQ_PRCMU_HSI1 4 288 #define IRQ_PRCMU_CA_WAKE 5 289 #define IRQ_PRCMU_USB 6 290 #define IRQ_PRCMU_ABB 7 291 #define IRQ_PRCMU_ABB_FIFO 8 292 #define IRQ_PRCMU_ARM 9 293 #define IRQ_PRCMU_MODEM_SW_RESET_REQ 10 294 #define IRQ_PRCMU_GPIO0 11 295 #define IRQ_PRCMU_GPIO1 12 296 #define IRQ_PRCMU_GPIO2 13 297 #define IRQ_PRCMU_GPIO3 14 298 #define IRQ_PRCMU_GPIO4 15 299 #define IRQ_PRCMU_GPIO5 16 300 #define IRQ_PRCMU_GPIO6 17 301 #define IRQ_PRCMU_GPIO7 18 302 #define IRQ_PRCMU_GPIO8 19 303 #define IRQ_PRCMU_CA_SLEEP 20 304 #define IRQ_PRCMU_HOTMON_LOW 21 305 #define IRQ_PRCMU_HOTMON_HIGH 22 306 #define NUM_PRCMU_WAKEUPS 23 307 308 static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = { 309 IRQ_ENTRY(RTC), 310 IRQ_ENTRY(RTT0), 311 IRQ_ENTRY(RTT1), 312 IRQ_ENTRY(HSI0), 313 IRQ_ENTRY(HSI1), 314 IRQ_ENTRY(CA_WAKE), 315 IRQ_ENTRY(USB), 316 IRQ_ENTRY(ABB), 317 IRQ_ENTRY(ABB_FIFO), 318 IRQ_ENTRY(CA_SLEEP), 319 IRQ_ENTRY(ARM), 320 IRQ_ENTRY(HOTMON_LOW), 321 IRQ_ENTRY(HOTMON_HIGH), 322 IRQ_ENTRY(MODEM_SW_RESET_REQ), 323 IRQ_ENTRY(GPIO0), 324 IRQ_ENTRY(GPIO1), 325 IRQ_ENTRY(GPIO2), 326 IRQ_ENTRY(GPIO3), 327 IRQ_ENTRY(GPIO4), 328 IRQ_ENTRY(GPIO5), 329 IRQ_ENTRY(GPIO6), 330 IRQ_ENTRY(GPIO7), 331 IRQ_ENTRY(GPIO8) 332 }; 333 334 #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1) 335 #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name) 336 static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = { 337 WAKEUP_ENTRY(RTC), 338 WAKEUP_ENTRY(RTT0), 339 WAKEUP_ENTRY(RTT1), 340 WAKEUP_ENTRY(HSI0), 341 WAKEUP_ENTRY(HSI1), 342 WAKEUP_ENTRY(USB), 343 WAKEUP_ENTRY(ABB), 344 WAKEUP_ENTRY(ABB_FIFO), 345 WAKEUP_ENTRY(ARM) 346 }; 347 348 /* 349 * mb0_transfer - state needed for mailbox 0 communication. 350 * @lock: The transaction lock. 351 * @dbb_events_lock: A lock used to handle concurrent access to (parts of) 352 * the request data. 353 * @mask_work: Work structure used for (un)masking wakeup interrupts. 354 * @req: Request data that need to persist between requests. 355 */ 356 static struct { 357 spinlock_t lock; 358 spinlock_t dbb_irqs_lock; 359 struct work_struct mask_work; 360 struct mutex ac_wake_lock; 361 struct completion ac_wake_work; 362 struct { 363 u32 dbb_irqs; 364 u32 dbb_wakeups; 365 u32 abb_events; 366 } req; 367 } mb0_transfer; 368 369 /* 370 * mb1_transfer - state needed for mailbox 1 communication. 371 * @lock: The transaction lock. 372 * @work: The transaction completion structure. 373 * @ape_opp: The current APE OPP. 374 * @ack: Reply ("acknowledge") data. 375 */ 376 static struct { 377 struct mutex lock; 378 struct completion work; 379 u8 ape_opp; 380 struct { 381 u8 header; 382 u8 arm_opp; 383 u8 ape_opp; 384 u8 ape_voltage_status; 385 } ack; 386 } mb1_transfer; 387 388 /* 389 * mb2_transfer - state needed for mailbox 2 communication. 390 * @lock: The transaction lock. 391 * @work: The transaction completion structure. 392 * @auto_pm_lock: The autonomous power management configuration lock. 393 * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled. 394 * @req: Request data that need to persist between requests. 395 * @ack: Reply ("acknowledge") data. 396 */ 397 static struct { 398 struct mutex lock; 399 struct completion work; 400 spinlock_t auto_pm_lock; 401 bool auto_pm_enabled; 402 struct { 403 u8 status; 404 } ack; 405 } mb2_transfer; 406 407 /* 408 * mb3_transfer - state needed for mailbox 3 communication. 409 * @lock: The request lock. 410 * @sysclk_lock: A lock used to handle concurrent sysclk requests. 411 * @sysclk_work: Work structure used for sysclk requests. 412 */ 413 static struct { 414 spinlock_t lock; 415 struct mutex sysclk_lock; 416 struct completion sysclk_work; 417 } mb3_transfer; 418 419 /* 420 * mb4_transfer - state needed for mailbox 4 communication. 421 * @lock: The transaction lock. 422 * @work: The transaction completion structure. 423 */ 424 static struct { 425 struct mutex lock; 426 struct completion work; 427 } mb4_transfer; 428 429 /* 430 * mb5_transfer - state needed for mailbox 5 communication. 431 * @lock: The transaction lock. 432 * @work: The transaction completion structure. 433 * @ack: Reply ("acknowledge") data. 434 */ 435 static struct { 436 struct mutex lock; 437 struct completion work; 438 struct { 439 u8 status; 440 u8 value; 441 } ack; 442 } mb5_transfer; 443 444 static atomic_t ac_wake_req_state = ATOMIC_INIT(0); 445 446 /* Spinlocks */ 447 static DEFINE_SPINLOCK(prcmu_lock); 448 static DEFINE_SPINLOCK(clkout_lock); 449 450 /* Global var to runtime determine TCDM base for v2 or v1 */ 451 static __iomem void *tcdm_base; 452 static __iomem void *prcmu_base; 453 454 struct clk_mgt { 455 u32 offset; 456 u32 pllsw; 457 int branch; 458 bool clk38div; 459 }; 460 461 enum { 462 PLL_RAW, 463 PLL_FIX, 464 PLL_DIV 465 }; 466 467 static DEFINE_SPINLOCK(clk_mgt_lock); 468 469 #define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \ 470 { (PRCM_##_name##_MGT), 0 , _branch, _clk38div} 471 static struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = { 472 CLK_MGT_ENTRY(SGACLK, PLL_DIV, false), 473 CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true), 474 CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true), 475 CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true), 476 CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true), 477 CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true), 478 CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true), 479 CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true), 480 CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true), 481 CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true), 482 CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true), 483 CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true), 484 CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true), 485 CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true), 486 CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true), 487 CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true), 488 CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true), 489 CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false), 490 CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true), 491 CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true), 492 CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true), 493 CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true), 494 CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false), 495 CLK_MGT_ENTRY(DMACLK, PLL_DIV, true), 496 CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true), 497 CLK_MGT_ENTRY(TVCLK, PLL_FIX, true), 498 CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true), 499 CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true), 500 CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false), 501 }; 502 503 struct dsiclk { 504 u32 divsel_mask; 505 u32 divsel_shift; 506 u32 divsel; 507 }; 508 509 static struct dsiclk dsiclk[2] = { 510 { 511 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK, 512 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT, 513 .divsel = PRCM_DSI_PLLOUT_SEL_PHI, 514 }, 515 { 516 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK, 517 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT, 518 .divsel = PRCM_DSI_PLLOUT_SEL_PHI, 519 } 520 }; 521 522 struct dsiescclk { 523 u32 en; 524 u32 div_mask; 525 u32 div_shift; 526 }; 527 528 static struct dsiescclk dsiescclk[3] = { 529 { 530 .en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN, 531 .div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK, 532 .div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT, 533 }, 534 { 535 .en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN, 536 .div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK, 537 .div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT, 538 }, 539 { 540 .en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN, 541 .div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK, 542 .div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT, 543 } 544 }; 545 546 547 /* 548 * Used by MCDE to setup all necessary PRCMU registers 549 */ 550 #define PRCMU_RESET_DSIPLL 0x00004000 551 #define PRCMU_UNCLAMP_DSIPLL 0x00400800 552 553 #define PRCMU_CLK_PLL_DIV_SHIFT 0 554 #define PRCMU_CLK_PLL_SW_SHIFT 5 555 #define PRCMU_CLK_38 (1 << 9) 556 #define PRCMU_CLK_38_SRC (1 << 10) 557 #define PRCMU_CLK_38_DIV (1 << 11) 558 559 /* PLLDIV=12, PLLSW=4 (PLLDDR) */ 560 #define PRCMU_DSI_CLOCK_SETTING 0x0000008C 561 562 /* DPI 50000000 Hz */ 563 #define PRCMU_DPI_CLOCK_SETTING ((1 << PRCMU_CLK_PLL_SW_SHIFT) | \ 564 (16 << PRCMU_CLK_PLL_DIV_SHIFT)) 565 #define PRCMU_DSI_LP_CLOCK_SETTING 0x00000E00 566 567 /* D=101, N=1, R=4, SELDIV2=0 */ 568 #define PRCMU_PLLDSI_FREQ_SETTING 0x00040165 569 570 #define PRCMU_ENABLE_PLLDSI 0x00000001 571 #define PRCMU_DISABLE_PLLDSI 0x00000000 572 #define PRCMU_RELEASE_RESET_DSS 0x0000400C 573 #define PRCMU_DSI_PLLOUT_SEL_SETTING 0x00000202 574 /* ESC clk, div0=1, div1=1, div2=3 */ 575 #define PRCMU_ENABLE_ESCAPE_CLOCK_DIV 0x07030101 576 #define PRCMU_DISABLE_ESCAPE_CLOCK_DIV 0x00030101 577 #define PRCMU_DSI_RESET_SW 0x00000007 578 579 #define PRCMU_PLLDSI_LOCKP_LOCKED 0x3 580 581 int db8500_prcmu_enable_dsipll(void) 582 { 583 int i; 584 585 /* Clear DSIPLL_RESETN */ 586 writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR); 587 /* Unclamp DSIPLL in/out */ 588 writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR); 589 590 /* Set DSI PLL FREQ */ 591 writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ); 592 writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL); 593 /* Enable Escape clocks */ 594 writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV); 595 596 /* Start DSI PLL */ 597 writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE); 598 /* Reset DSI PLL */ 599 writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET); 600 for (i = 0; i < 10; i++) { 601 if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED) 602 == PRCMU_PLLDSI_LOCKP_LOCKED) 603 break; 604 udelay(100); 605 } 606 /* Set DSIPLL_RESETN */ 607 writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET); 608 return 0; 609 } 610 611 int db8500_prcmu_disable_dsipll(void) 612 { 613 /* Disable dsi pll */ 614 writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE); 615 /* Disable escapeclock */ 616 writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV); 617 return 0; 618 } 619 620 int db8500_prcmu_set_display_clocks(void) 621 { 622 unsigned long flags; 623 624 spin_lock_irqsave(&clk_mgt_lock, flags); 625 626 /* Grab the HW semaphore. */ 627 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0) 628 cpu_relax(); 629 630 writel(PRCMU_DSI_CLOCK_SETTING, prcmu_base + PRCM_HDMICLK_MGT); 631 writel(PRCMU_DSI_LP_CLOCK_SETTING, prcmu_base + PRCM_TVCLK_MGT); 632 writel(PRCMU_DPI_CLOCK_SETTING, prcmu_base + PRCM_LCDCLK_MGT); 633 634 /* Release the HW semaphore. */ 635 writel(0, PRCM_SEM); 636 637 spin_unlock_irqrestore(&clk_mgt_lock, flags); 638 639 return 0; 640 } 641 642 u32 db8500_prcmu_read(unsigned int reg) 643 { 644 return readl(prcmu_base + reg); 645 } 646 647 void db8500_prcmu_write(unsigned int reg, u32 value) 648 { 649 unsigned long flags; 650 651 spin_lock_irqsave(&prcmu_lock, flags); 652 writel(value, (prcmu_base + reg)); 653 spin_unlock_irqrestore(&prcmu_lock, flags); 654 } 655 656 void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value) 657 { 658 u32 val; 659 unsigned long flags; 660 661 spin_lock_irqsave(&prcmu_lock, flags); 662 val = readl(prcmu_base + reg); 663 val = ((val & ~mask) | (value & mask)); 664 writel(val, (prcmu_base + reg)); 665 spin_unlock_irqrestore(&prcmu_lock, flags); 666 } 667 668 struct prcmu_fw_version *prcmu_get_fw_version(void) 669 { 670 return fw_info.valid ? &fw_info.version : NULL; 671 } 672 673 bool prcmu_has_arm_maxopp(void) 674 { 675 return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) & 676 PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK; 677 } 678 679 /** 680 * prcmu_set_rc_a2p - This function is used to run few power state sequences 681 * @val: Value to be set, i.e. transition requested 682 * Returns: 0 on success, -EINVAL on invalid argument 683 * 684 * This function is used to run the following power state sequences - 685 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep 686 */ 687 int prcmu_set_rc_a2p(enum romcode_write val) 688 { 689 if (val < RDY_2_DS || val > RDY_2_XP70_RST) 690 return -EINVAL; 691 writeb(val, (tcdm_base + PRCM_ROMCODE_A2P)); 692 return 0; 693 } 694 695 /** 696 * prcmu_get_rc_p2a - This function is used to get power state sequences 697 * Returns: the power transition that has last happened 698 * 699 * This function can return the following transitions- 700 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep 701 */ 702 enum romcode_read prcmu_get_rc_p2a(void) 703 { 704 return readb(tcdm_base + PRCM_ROMCODE_P2A); 705 } 706 707 /** 708 * prcmu_get_current_mode - Return the current XP70 power mode 709 * Returns: Returns the current AP(ARM) power mode: init, 710 * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset 711 */ 712 enum ap_pwrst prcmu_get_xp70_current_state(void) 713 { 714 return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE); 715 } 716 717 /** 718 * prcmu_config_clkout - Configure one of the programmable clock outputs. 719 * @clkout: The CLKOUT number (0 or 1). 720 * @source: The clock to be used (one of the PRCMU_CLKSRC_*). 721 * @div: The divider to be applied. 722 * 723 * Configures one of the programmable clock outputs (CLKOUTs). 724 * @div should be in the range [1,63] to request a configuration, or 0 to 725 * inform that the configuration is no longer requested. 726 */ 727 int prcmu_config_clkout(u8 clkout, u8 source, u8 div) 728 { 729 static int requests[2]; 730 int r = 0; 731 unsigned long flags; 732 u32 val; 733 u32 bits; 734 u32 mask; 735 u32 div_mask; 736 737 BUG_ON(clkout > 1); 738 BUG_ON(div > 63); 739 BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009)); 740 741 if (!div && !requests[clkout]) 742 return -EINVAL; 743 744 if (clkout == 0) { 745 div_mask = PRCM_CLKOCR_CLKODIV0_MASK; 746 mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK); 747 bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) | 748 (div << PRCM_CLKOCR_CLKODIV0_SHIFT)); 749 } else { 750 div_mask = PRCM_CLKOCR_CLKODIV1_MASK; 751 mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK | 752 PRCM_CLKOCR_CLK1TYPE); 753 bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) | 754 (div << PRCM_CLKOCR_CLKODIV1_SHIFT)); 755 } 756 bits &= mask; 757 758 spin_lock_irqsave(&clkout_lock, flags); 759 760 val = readl(PRCM_CLKOCR); 761 if (val & div_mask) { 762 if (div) { 763 if ((val & mask) != bits) { 764 r = -EBUSY; 765 goto unlock_and_return; 766 } 767 } else { 768 if ((val & mask & ~div_mask) != bits) { 769 r = -EINVAL; 770 goto unlock_and_return; 771 } 772 } 773 } 774 writel((bits | (val & ~mask)), PRCM_CLKOCR); 775 requests[clkout] += (div ? 1 : -1); 776 777 unlock_and_return: 778 spin_unlock_irqrestore(&clkout_lock, flags); 779 780 return r; 781 } 782 783 int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll) 784 { 785 unsigned long flags; 786 787 BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state)); 788 789 spin_lock_irqsave(&mb0_transfer.lock, flags); 790 791 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0)) 792 cpu_relax(); 793 794 writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0)); 795 writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE)); 796 writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE)); 797 writeb((keep_ulp_clk ? 1 : 0), 798 (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE)); 799 writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI)); 800 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET); 801 802 spin_unlock_irqrestore(&mb0_transfer.lock, flags); 803 804 return 0; 805 } 806 807 u8 db8500_prcmu_get_power_state_result(void) 808 { 809 return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS); 810 } 811 812 /* This function should only be called while mb0_transfer.lock is held. */ 813 static void config_wakeups(void) 814 { 815 const u8 header[2] = { 816 MB0H_CONFIG_WAKEUPS_EXE, 817 MB0H_CONFIG_WAKEUPS_SLEEP 818 }; 819 static u32 last_dbb_events; 820 static u32 last_abb_events; 821 u32 dbb_events; 822 u32 abb_events; 823 unsigned int i; 824 825 dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups; 826 dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK); 827 828 abb_events = mb0_transfer.req.abb_events; 829 830 if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events)) 831 return; 832 833 for (i = 0; i < 2; i++) { 834 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0)) 835 cpu_relax(); 836 writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500)); 837 writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500)); 838 writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0)); 839 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET); 840 } 841 last_dbb_events = dbb_events; 842 last_abb_events = abb_events; 843 } 844 845 void db8500_prcmu_enable_wakeups(u32 wakeups) 846 { 847 unsigned long flags; 848 u32 bits; 849 int i; 850 851 BUG_ON(wakeups != (wakeups & VALID_WAKEUPS)); 852 853 for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) { 854 if (wakeups & BIT(i)) 855 bits |= prcmu_wakeup_bit[i]; 856 } 857 858 spin_lock_irqsave(&mb0_transfer.lock, flags); 859 860 mb0_transfer.req.dbb_wakeups = bits; 861 config_wakeups(); 862 863 spin_unlock_irqrestore(&mb0_transfer.lock, flags); 864 } 865 866 void db8500_prcmu_config_abb_event_readout(u32 abb_events) 867 { 868 unsigned long flags; 869 870 spin_lock_irqsave(&mb0_transfer.lock, flags); 871 872 mb0_transfer.req.abb_events = abb_events; 873 config_wakeups(); 874 875 spin_unlock_irqrestore(&mb0_transfer.lock, flags); 876 } 877 878 void db8500_prcmu_get_abb_event_buffer(void __iomem **buf) 879 { 880 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1) 881 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500); 882 else 883 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500); 884 } 885 886 /** 887 * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP 888 * @opp: The new ARM operating point to which transition is to be made 889 * Returns: 0 on success, non-zero on failure 890 * 891 * This function sets the the operating point of the ARM. 892 */ 893 int db8500_prcmu_set_arm_opp(u8 opp) 894 { 895 int r; 896 897 if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK) 898 return -EINVAL; 899 900 r = 0; 901 902 mutex_lock(&mb1_transfer.lock); 903 904 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1)) 905 cpu_relax(); 906 907 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1)); 908 writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP)); 909 writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP)); 910 911 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET); 912 wait_for_completion(&mb1_transfer.work); 913 914 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) || 915 (mb1_transfer.ack.arm_opp != opp)) 916 r = -EIO; 917 918 mutex_unlock(&mb1_transfer.lock); 919 920 return r; 921 } 922 923 /** 924 * db8500_prcmu_get_arm_opp - get the current ARM OPP 925 * 926 * Returns: the current ARM OPP 927 */ 928 int db8500_prcmu_get_arm_opp(void) 929 { 930 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP); 931 } 932 933 /** 934 * db8500_prcmu_get_ddr_opp - get the current DDR OPP 935 * 936 * Returns: the current DDR OPP 937 */ 938 int db8500_prcmu_get_ddr_opp(void) 939 { 940 return readb(PRCM_DDR_SUBSYS_APE_MINBW); 941 } 942 943 /* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */ 944 static void request_even_slower_clocks(bool enable) 945 { 946 u32 clock_reg[] = { 947 PRCM_ACLK_MGT, 948 PRCM_DMACLK_MGT 949 }; 950 unsigned long flags; 951 unsigned int i; 952 953 spin_lock_irqsave(&clk_mgt_lock, flags); 954 955 /* Grab the HW semaphore. */ 956 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0) 957 cpu_relax(); 958 959 for (i = 0; i < ARRAY_SIZE(clock_reg); i++) { 960 u32 val; 961 u32 div; 962 963 val = readl(prcmu_base + clock_reg[i]); 964 div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK); 965 if (enable) { 966 if ((div <= 1) || (div > 15)) { 967 pr_err("prcmu: Bad clock divider %d in %s\n", 968 div, __func__); 969 goto unlock_and_return; 970 } 971 div <<= 1; 972 } else { 973 if (div <= 2) 974 goto unlock_and_return; 975 div >>= 1; 976 } 977 val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) | 978 (div & PRCM_CLK_MGT_CLKPLLDIV_MASK)); 979 writel(val, prcmu_base + clock_reg[i]); 980 } 981 982 unlock_and_return: 983 /* Release the HW semaphore. */ 984 writel(0, PRCM_SEM); 985 986 spin_unlock_irqrestore(&clk_mgt_lock, flags); 987 } 988 989 /** 990 * db8500_set_ape_opp - set the appropriate APE OPP 991 * @opp: The new APE operating point to which transition is to be made 992 * Returns: 0 on success, non-zero on failure 993 * 994 * This function sets the operating point of the APE. 995 */ 996 int db8500_prcmu_set_ape_opp(u8 opp) 997 { 998 int r = 0; 999 1000 if (opp == mb1_transfer.ape_opp) 1001 return 0; 1002 1003 mutex_lock(&mb1_transfer.lock); 1004 1005 if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP) 1006 request_even_slower_clocks(false); 1007 1008 if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP)) 1009 goto skip_message; 1010 1011 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1)) 1012 cpu_relax(); 1013 1014 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1)); 1015 writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP)); 1016 writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp), 1017 (tcdm_base + PRCM_REQ_MB1_APE_OPP)); 1018 1019 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET); 1020 wait_for_completion(&mb1_transfer.work); 1021 1022 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) || 1023 (mb1_transfer.ack.ape_opp != opp)) 1024 r = -EIO; 1025 1026 skip_message: 1027 if ((!r && (opp == APE_50_PARTLY_25_OPP)) || 1028 (r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP))) 1029 request_even_slower_clocks(true); 1030 if (!r) 1031 mb1_transfer.ape_opp = opp; 1032 1033 mutex_unlock(&mb1_transfer.lock); 1034 1035 return r; 1036 } 1037 1038 /** 1039 * db8500_prcmu_get_ape_opp - get the current APE OPP 1040 * 1041 * Returns: the current APE OPP 1042 */ 1043 int db8500_prcmu_get_ape_opp(void) 1044 { 1045 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP); 1046 } 1047 1048 /** 1049 * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage 1050 * @enable: true to request the higher voltage, false to drop a request. 1051 * 1052 * Calls to this function to enable and disable requests must be balanced. 1053 */ 1054 int db8500_prcmu_request_ape_opp_100_voltage(bool enable) 1055 { 1056 int r = 0; 1057 u8 header; 1058 static unsigned int requests; 1059 1060 mutex_lock(&mb1_transfer.lock); 1061 1062 if (enable) { 1063 if (0 != requests++) 1064 goto unlock_and_return; 1065 header = MB1H_REQUEST_APE_OPP_100_VOLT; 1066 } else { 1067 if (requests == 0) { 1068 r = -EIO; 1069 goto unlock_and_return; 1070 } else if (1 != requests--) { 1071 goto unlock_and_return; 1072 } 1073 header = MB1H_RELEASE_APE_OPP_100_VOLT; 1074 } 1075 1076 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1)) 1077 cpu_relax(); 1078 1079 writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1)); 1080 1081 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET); 1082 wait_for_completion(&mb1_transfer.work); 1083 1084 if ((mb1_transfer.ack.header != header) || 1085 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0)) 1086 r = -EIO; 1087 1088 unlock_and_return: 1089 mutex_unlock(&mb1_transfer.lock); 1090 1091 return r; 1092 } 1093 1094 /** 1095 * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup 1096 * 1097 * This function releases the power state requirements of a USB wakeup. 1098 */ 1099 int prcmu_release_usb_wakeup_state(void) 1100 { 1101 int r = 0; 1102 1103 mutex_lock(&mb1_transfer.lock); 1104 1105 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1)) 1106 cpu_relax(); 1107 1108 writeb(MB1H_RELEASE_USB_WAKEUP, 1109 (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1)); 1110 1111 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET); 1112 wait_for_completion(&mb1_transfer.work); 1113 1114 if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) || 1115 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0)) 1116 r = -EIO; 1117 1118 mutex_unlock(&mb1_transfer.lock); 1119 1120 return r; 1121 } 1122 1123 static int request_pll(u8 clock, bool enable) 1124 { 1125 int r = 0; 1126 1127 if (clock == PRCMU_PLLSOC0) 1128 clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF); 1129 else if (clock == PRCMU_PLLSOC1) 1130 clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF); 1131 else 1132 return -EINVAL; 1133 1134 mutex_lock(&mb1_transfer.lock); 1135 1136 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1)) 1137 cpu_relax(); 1138 1139 writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1)); 1140 writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF)); 1141 1142 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET); 1143 wait_for_completion(&mb1_transfer.work); 1144 1145 if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF) 1146 r = -EIO; 1147 1148 mutex_unlock(&mb1_transfer.lock); 1149 1150 return r; 1151 } 1152 1153 /** 1154 * db8500_prcmu_set_epod - set the state of a EPOD (power domain) 1155 * @epod_id: The EPOD to set 1156 * @epod_state: The new EPOD state 1157 * 1158 * This function sets the state of a EPOD (power domain). It may not be called 1159 * from interrupt context. 1160 */ 1161 int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state) 1162 { 1163 int r = 0; 1164 bool ram_retention = false; 1165 int i; 1166 1167 /* check argument */ 1168 BUG_ON(epod_id >= NUM_EPOD_ID); 1169 1170 /* set flag if retention is possible */ 1171 switch (epod_id) { 1172 case EPOD_ID_SVAMMDSP: 1173 case EPOD_ID_SIAMMDSP: 1174 case EPOD_ID_ESRAM12: 1175 case EPOD_ID_ESRAM34: 1176 ram_retention = true; 1177 break; 1178 } 1179 1180 /* check argument */ 1181 BUG_ON(epod_state > EPOD_STATE_ON); 1182 BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention); 1183 1184 /* get lock */ 1185 mutex_lock(&mb2_transfer.lock); 1186 1187 /* wait for mailbox */ 1188 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2)) 1189 cpu_relax(); 1190 1191 /* fill in mailbox */ 1192 for (i = 0; i < NUM_EPOD_ID; i++) 1193 writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i)); 1194 writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id)); 1195 1196 writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2)); 1197 1198 writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET); 1199 1200 /* 1201 * The current firmware version does not handle errors correctly, 1202 * and we cannot recover if there is an error. 1203 * This is expected to change when the firmware is updated. 1204 */ 1205 if (!wait_for_completion_timeout(&mb2_transfer.work, 1206 msecs_to_jiffies(20000))) { 1207 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n", 1208 __func__); 1209 r = -EIO; 1210 goto unlock_and_return; 1211 } 1212 1213 if (mb2_transfer.ack.status != HWACC_PWR_ST_OK) 1214 r = -EIO; 1215 1216 unlock_and_return: 1217 mutex_unlock(&mb2_transfer.lock); 1218 return r; 1219 } 1220 1221 /** 1222 * prcmu_configure_auto_pm - Configure autonomous power management. 1223 * @sleep: Configuration for ApSleep. 1224 * @idle: Configuration for ApIdle. 1225 */ 1226 void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep, 1227 struct prcmu_auto_pm_config *idle) 1228 { 1229 u32 sleep_cfg; 1230 u32 idle_cfg; 1231 unsigned long flags; 1232 1233 BUG_ON((sleep == NULL) || (idle == NULL)); 1234 1235 sleep_cfg = (sleep->sva_auto_pm_enable & 0xF); 1236 sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF)); 1237 sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF)); 1238 sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF)); 1239 sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF)); 1240 sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF)); 1241 1242 idle_cfg = (idle->sva_auto_pm_enable & 0xF); 1243 idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF)); 1244 idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF)); 1245 idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF)); 1246 idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF)); 1247 idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF)); 1248 1249 spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags); 1250 1251 /* 1252 * The autonomous power management configuration is done through 1253 * fields in mailbox 2, but these fields are only used as shared 1254 * variables - i.e. there is no need to send a message. 1255 */ 1256 writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP)); 1257 writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE)); 1258 1259 mb2_transfer.auto_pm_enabled = 1260 ((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) || 1261 (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) || 1262 (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) || 1263 (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON)); 1264 1265 spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags); 1266 } 1267 EXPORT_SYMBOL(prcmu_configure_auto_pm); 1268 1269 bool prcmu_is_auto_pm_enabled(void) 1270 { 1271 return mb2_transfer.auto_pm_enabled; 1272 } 1273 1274 static int request_sysclk(bool enable) 1275 { 1276 int r; 1277 unsigned long flags; 1278 1279 r = 0; 1280 1281 mutex_lock(&mb3_transfer.sysclk_lock); 1282 1283 spin_lock_irqsave(&mb3_transfer.lock, flags); 1284 1285 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3)) 1286 cpu_relax(); 1287 1288 writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT)); 1289 1290 writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3)); 1291 writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET); 1292 1293 spin_unlock_irqrestore(&mb3_transfer.lock, flags); 1294 1295 /* 1296 * The firmware only sends an ACK if we want to enable the 1297 * SysClk, and it succeeds. 1298 */ 1299 if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work, 1300 msecs_to_jiffies(20000))) { 1301 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n", 1302 __func__); 1303 r = -EIO; 1304 } 1305 1306 mutex_unlock(&mb3_transfer.sysclk_lock); 1307 1308 return r; 1309 } 1310 1311 static int request_timclk(bool enable) 1312 { 1313 u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK); 1314 1315 if (!enable) 1316 val |= PRCM_TCR_STOP_TIMERS; 1317 writel(val, PRCM_TCR); 1318 1319 return 0; 1320 } 1321 1322 static int request_clock(u8 clock, bool enable) 1323 { 1324 u32 val; 1325 unsigned long flags; 1326 1327 spin_lock_irqsave(&clk_mgt_lock, flags); 1328 1329 /* Grab the HW semaphore. */ 1330 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0) 1331 cpu_relax(); 1332 1333 val = readl(prcmu_base + clk_mgt[clock].offset); 1334 if (enable) { 1335 val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw); 1336 } else { 1337 clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK); 1338 val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK); 1339 } 1340 writel(val, prcmu_base + clk_mgt[clock].offset); 1341 1342 /* Release the HW semaphore. */ 1343 writel(0, PRCM_SEM); 1344 1345 spin_unlock_irqrestore(&clk_mgt_lock, flags); 1346 1347 return 0; 1348 } 1349 1350 static int request_sga_clock(u8 clock, bool enable) 1351 { 1352 u32 val; 1353 int ret; 1354 1355 if (enable) { 1356 val = readl(PRCM_CGATING_BYPASS); 1357 writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS); 1358 } 1359 1360 ret = request_clock(clock, enable); 1361 1362 if (!ret && !enable) { 1363 val = readl(PRCM_CGATING_BYPASS); 1364 writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS); 1365 } 1366 1367 return ret; 1368 } 1369 1370 static inline bool plldsi_locked(void) 1371 { 1372 return (readl(PRCM_PLLDSI_LOCKP) & 1373 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 | 1374 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) == 1375 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 | 1376 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3); 1377 } 1378 1379 static int request_plldsi(bool enable) 1380 { 1381 int r = 0; 1382 u32 val; 1383 1384 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP | 1385 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ? 1386 PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET)); 1387 1388 val = readl(PRCM_PLLDSI_ENABLE); 1389 if (enable) 1390 val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE; 1391 else 1392 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE; 1393 writel(val, PRCM_PLLDSI_ENABLE); 1394 1395 if (enable) { 1396 unsigned int i; 1397 bool locked = plldsi_locked(); 1398 1399 for (i = 10; !locked && (i > 0); --i) { 1400 udelay(100); 1401 locked = plldsi_locked(); 1402 } 1403 if (locked) { 1404 writel(PRCM_APE_RESETN_DSIPLL_RESETN, 1405 PRCM_APE_RESETN_SET); 1406 } else { 1407 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP | 1408 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), 1409 PRCM_MMIP_LS_CLAMP_SET); 1410 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE; 1411 writel(val, PRCM_PLLDSI_ENABLE); 1412 r = -EAGAIN; 1413 } 1414 } else { 1415 writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR); 1416 } 1417 return r; 1418 } 1419 1420 static int request_dsiclk(u8 n, bool enable) 1421 { 1422 u32 val; 1423 1424 val = readl(PRCM_DSI_PLLOUT_SEL); 1425 val &= ~dsiclk[n].divsel_mask; 1426 val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) << 1427 dsiclk[n].divsel_shift); 1428 writel(val, PRCM_DSI_PLLOUT_SEL); 1429 return 0; 1430 } 1431 1432 static int request_dsiescclk(u8 n, bool enable) 1433 { 1434 u32 val; 1435 1436 val = readl(PRCM_DSITVCLK_DIV); 1437 enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en); 1438 writel(val, PRCM_DSITVCLK_DIV); 1439 return 0; 1440 } 1441 1442 /** 1443 * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled. 1444 * @clock: The clock for which the request is made. 1445 * @enable: Whether the clock should be enabled (true) or disabled (false). 1446 * 1447 * This function should only be used by the clock implementation. 1448 * Do not use it from any other place! 1449 */ 1450 int db8500_prcmu_request_clock(u8 clock, bool enable) 1451 { 1452 if (clock == PRCMU_SGACLK) 1453 return request_sga_clock(clock, enable); 1454 else if (clock < PRCMU_NUM_REG_CLOCKS) 1455 return request_clock(clock, enable); 1456 else if (clock == PRCMU_TIMCLK) 1457 return request_timclk(enable); 1458 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK)) 1459 return request_dsiclk((clock - PRCMU_DSI0CLK), enable); 1460 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK)) 1461 return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable); 1462 else if (clock == PRCMU_PLLDSI) 1463 return request_plldsi(enable); 1464 else if (clock == PRCMU_SYSCLK) 1465 return request_sysclk(enable); 1466 else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1)) 1467 return request_pll(clock, enable); 1468 else 1469 return -EINVAL; 1470 } 1471 1472 static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate, 1473 int branch) 1474 { 1475 u64 rate; 1476 u32 val; 1477 u32 d; 1478 u32 div = 1; 1479 1480 val = readl(reg); 1481 1482 rate = src_rate; 1483 rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT); 1484 1485 d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT); 1486 if (d > 1) 1487 div *= d; 1488 1489 d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT); 1490 if (d > 1) 1491 div *= d; 1492 1493 if (val & PRCM_PLL_FREQ_SELDIV2) 1494 div *= 2; 1495 1496 if ((branch == PLL_FIX) || ((branch == PLL_DIV) && 1497 (val & PRCM_PLL_FREQ_DIV2EN) && 1498 ((reg == PRCM_PLLSOC0_FREQ) || 1499 (reg == PRCM_PLLARM_FREQ) || 1500 (reg == PRCM_PLLDDR_FREQ)))) 1501 div *= 2; 1502 1503 (void)do_div(rate, div); 1504 1505 return (unsigned long)rate; 1506 } 1507 1508 #define ROOT_CLOCK_RATE 38400000 1509 1510 static unsigned long clock_rate(u8 clock) 1511 { 1512 u32 val; 1513 u32 pllsw; 1514 unsigned long rate = ROOT_CLOCK_RATE; 1515 1516 val = readl(prcmu_base + clk_mgt[clock].offset); 1517 1518 if (val & PRCM_CLK_MGT_CLK38) { 1519 if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV)) 1520 rate /= 2; 1521 return rate; 1522 } 1523 1524 val |= clk_mgt[clock].pllsw; 1525 pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK); 1526 1527 if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0) 1528 rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch); 1529 else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1) 1530 rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch); 1531 else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR) 1532 rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch); 1533 else 1534 return 0; 1535 1536 if ((clock == PRCMU_SGACLK) && 1537 (val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) { 1538 u64 r = (rate * 10); 1539 1540 (void)do_div(r, 25); 1541 return (unsigned long)r; 1542 } 1543 val &= PRCM_CLK_MGT_CLKPLLDIV_MASK; 1544 if (val) 1545 return rate / val; 1546 else 1547 return 0; 1548 } 1549 1550 static unsigned long armss_rate(void) 1551 { 1552 u32 r; 1553 unsigned long rate; 1554 1555 r = readl(PRCM_ARM_CHGCLKREQ); 1556 1557 if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) { 1558 /* External ARMCLKFIX clock */ 1559 1560 rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX); 1561 1562 /* Check PRCM_ARM_CHGCLKREQ divider */ 1563 if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL)) 1564 rate /= 2; 1565 1566 /* Check PRCM_ARMCLKFIX_MGT divider */ 1567 r = readl(PRCM_ARMCLKFIX_MGT); 1568 r &= PRCM_CLK_MGT_CLKPLLDIV_MASK; 1569 rate /= r; 1570 1571 } else {/* ARM PLL */ 1572 rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV); 1573 } 1574 1575 return rate; 1576 } 1577 1578 static unsigned long dsiclk_rate(u8 n) 1579 { 1580 u32 divsel; 1581 u32 div = 1; 1582 1583 divsel = readl(PRCM_DSI_PLLOUT_SEL); 1584 divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift); 1585 1586 if (divsel == PRCM_DSI_PLLOUT_SEL_OFF) 1587 divsel = dsiclk[n].divsel; 1588 else 1589 dsiclk[n].divsel = divsel; 1590 1591 switch (divsel) { 1592 case PRCM_DSI_PLLOUT_SEL_PHI_4: 1593 div *= 2; 1594 case PRCM_DSI_PLLOUT_SEL_PHI_2: 1595 div *= 2; 1596 case PRCM_DSI_PLLOUT_SEL_PHI: 1597 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK), 1598 PLL_RAW) / div; 1599 default: 1600 return 0; 1601 } 1602 } 1603 1604 static unsigned long dsiescclk_rate(u8 n) 1605 { 1606 u32 div; 1607 1608 div = readl(PRCM_DSITVCLK_DIV); 1609 div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift)); 1610 return clock_rate(PRCMU_TVCLK) / max((u32)1, div); 1611 } 1612 1613 unsigned long prcmu_clock_rate(u8 clock) 1614 { 1615 if (clock < PRCMU_NUM_REG_CLOCKS) 1616 return clock_rate(clock); 1617 else if (clock == PRCMU_TIMCLK) 1618 return ROOT_CLOCK_RATE / 16; 1619 else if (clock == PRCMU_SYSCLK) 1620 return ROOT_CLOCK_RATE; 1621 else if (clock == PRCMU_PLLSOC0) 1622 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW); 1623 else if (clock == PRCMU_PLLSOC1) 1624 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW); 1625 else if (clock == PRCMU_ARMSS) 1626 return armss_rate(); 1627 else if (clock == PRCMU_PLLDDR) 1628 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW); 1629 else if (clock == PRCMU_PLLDSI) 1630 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK), 1631 PLL_RAW); 1632 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK)) 1633 return dsiclk_rate(clock - PRCMU_DSI0CLK); 1634 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK)) 1635 return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK); 1636 else 1637 return 0; 1638 } 1639 1640 static unsigned long clock_source_rate(u32 clk_mgt_val, int branch) 1641 { 1642 if (clk_mgt_val & PRCM_CLK_MGT_CLK38) 1643 return ROOT_CLOCK_RATE; 1644 clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK; 1645 if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0) 1646 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch); 1647 else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1) 1648 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch); 1649 else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR) 1650 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch); 1651 else 1652 return 0; 1653 } 1654 1655 static u32 clock_divider(unsigned long src_rate, unsigned long rate) 1656 { 1657 u32 div; 1658 1659 div = (src_rate / rate); 1660 if (div == 0) 1661 return 1; 1662 if (rate < (src_rate / div)) 1663 div++; 1664 return div; 1665 } 1666 1667 static long round_clock_rate(u8 clock, unsigned long rate) 1668 { 1669 u32 val; 1670 u32 div; 1671 unsigned long src_rate; 1672 long rounded_rate; 1673 1674 val = readl(prcmu_base + clk_mgt[clock].offset); 1675 src_rate = clock_source_rate((val | clk_mgt[clock].pllsw), 1676 clk_mgt[clock].branch); 1677 div = clock_divider(src_rate, rate); 1678 if (val & PRCM_CLK_MGT_CLK38) { 1679 if (clk_mgt[clock].clk38div) { 1680 if (div > 2) 1681 div = 2; 1682 } else { 1683 div = 1; 1684 } 1685 } else if ((clock == PRCMU_SGACLK) && (div == 3)) { 1686 u64 r = (src_rate * 10); 1687 1688 (void)do_div(r, 25); 1689 if (r <= rate) 1690 return (unsigned long)r; 1691 } 1692 rounded_rate = (src_rate / min(div, (u32)31)); 1693 1694 return rounded_rate; 1695 } 1696 1697 static const unsigned long armss_freqs[] = { 1698 200000000, 1699 400000000, 1700 800000000, 1701 998400000 1702 }; 1703 1704 static long round_armss_rate(unsigned long rate) 1705 { 1706 unsigned long freq = 0; 1707 int i; 1708 1709 /* Find the corresponding arm opp from the cpufreq table. */ 1710 for (i = 0; i < ARRAY_SIZE(armss_freqs); i++) { 1711 freq = armss_freqs[i]; 1712 if (rate <= freq) 1713 break; 1714 } 1715 1716 /* Return the last valid value, even if a match was not found. */ 1717 return freq; 1718 } 1719 1720 #define MIN_PLL_VCO_RATE 600000000ULL 1721 #define MAX_PLL_VCO_RATE 1680640000ULL 1722 1723 static long round_plldsi_rate(unsigned long rate) 1724 { 1725 long rounded_rate = 0; 1726 unsigned long src_rate; 1727 unsigned long rem; 1728 u32 r; 1729 1730 src_rate = clock_rate(PRCMU_HDMICLK); 1731 rem = rate; 1732 1733 for (r = 7; (rem > 0) && (r > 0); r--) { 1734 u64 d; 1735 1736 d = (r * rate); 1737 (void)do_div(d, src_rate); 1738 if (d < 6) 1739 d = 6; 1740 else if (d > 255) 1741 d = 255; 1742 d *= src_rate; 1743 if (((2 * d) < (r * MIN_PLL_VCO_RATE)) || 1744 ((r * MAX_PLL_VCO_RATE) < (2 * d))) 1745 continue; 1746 (void)do_div(d, r); 1747 if (rate < d) { 1748 if (rounded_rate == 0) 1749 rounded_rate = (long)d; 1750 break; 1751 } 1752 if ((rate - d) < rem) { 1753 rem = (rate - d); 1754 rounded_rate = (long)d; 1755 } 1756 } 1757 return rounded_rate; 1758 } 1759 1760 static long round_dsiclk_rate(unsigned long rate) 1761 { 1762 u32 div; 1763 unsigned long src_rate; 1764 long rounded_rate; 1765 1766 src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK), 1767 PLL_RAW); 1768 div = clock_divider(src_rate, rate); 1769 rounded_rate = (src_rate / ((div > 2) ? 4 : div)); 1770 1771 return rounded_rate; 1772 } 1773 1774 static long round_dsiescclk_rate(unsigned long rate) 1775 { 1776 u32 div; 1777 unsigned long src_rate; 1778 long rounded_rate; 1779 1780 src_rate = clock_rate(PRCMU_TVCLK); 1781 div = clock_divider(src_rate, rate); 1782 rounded_rate = (src_rate / min(div, (u32)255)); 1783 1784 return rounded_rate; 1785 } 1786 1787 long prcmu_round_clock_rate(u8 clock, unsigned long rate) 1788 { 1789 if (clock < PRCMU_NUM_REG_CLOCKS) 1790 return round_clock_rate(clock, rate); 1791 else if (clock == PRCMU_ARMSS) 1792 return round_armss_rate(rate); 1793 else if (clock == PRCMU_PLLDSI) 1794 return round_plldsi_rate(rate); 1795 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK)) 1796 return round_dsiclk_rate(rate); 1797 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK)) 1798 return round_dsiescclk_rate(rate); 1799 else 1800 return (long)prcmu_clock_rate(clock); 1801 } 1802 1803 static void set_clock_rate(u8 clock, unsigned long rate) 1804 { 1805 u32 val; 1806 u32 div; 1807 unsigned long src_rate; 1808 unsigned long flags; 1809 1810 spin_lock_irqsave(&clk_mgt_lock, flags); 1811 1812 /* Grab the HW semaphore. */ 1813 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0) 1814 cpu_relax(); 1815 1816 val = readl(prcmu_base + clk_mgt[clock].offset); 1817 src_rate = clock_source_rate((val | clk_mgt[clock].pllsw), 1818 clk_mgt[clock].branch); 1819 div = clock_divider(src_rate, rate); 1820 if (val & PRCM_CLK_MGT_CLK38) { 1821 if (clk_mgt[clock].clk38div) { 1822 if (div > 1) 1823 val |= PRCM_CLK_MGT_CLK38DIV; 1824 else 1825 val &= ~PRCM_CLK_MGT_CLK38DIV; 1826 } 1827 } else if (clock == PRCMU_SGACLK) { 1828 val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK | 1829 PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN); 1830 if (div == 3) { 1831 u64 r = (src_rate * 10); 1832 1833 (void)do_div(r, 25); 1834 if (r <= rate) { 1835 val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN; 1836 div = 0; 1837 } 1838 } 1839 val |= min(div, (u32)31); 1840 } else { 1841 val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK; 1842 val |= min(div, (u32)31); 1843 } 1844 writel(val, prcmu_base + clk_mgt[clock].offset); 1845 1846 /* Release the HW semaphore. */ 1847 writel(0, PRCM_SEM); 1848 1849 spin_unlock_irqrestore(&clk_mgt_lock, flags); 1850 } 1851 1852 static int set_armss_rate(unsigned long rate) 1853 { 1854 unsigned long freq; 1855 u8 opps[] = { ARM_EXTCLK, ARM_50_OPP, ARM_100_OPP, ARM_MAX_OPP }; 1856 int i; 1857 1858 /* Find the corresponding arm opp from the cpufreq table. */ 1859 for (i = 0; i < ARRAY_SIZE(armss_freqs); i++) { 1860 freq = armss_freqs[i]; 1861 if (rate == freq) 1862 break; 1863 } 1864 1865 if (rate != freq) 1866 return -EINVAL; 1867 1868 /* Set the new arm opp. */ 1869 pr_debug("SET ARM OPP 0x%02x\n", opps[i]); 1870 return db8500_prcmu_set_arm_opp(opps[i]); 1871 } 1872 1873 static int set_plldsi_rate(unsigned long rate) 1874 { 1875 unsigned long src_rate; 1876 unsigned long rem; 1877 u32 pll_freq = 0; 1878 u32 r; 1879 1880 src_rate = clock_rate(PRCMU_HDMICLK); 1881 rem = rate; 1882 1883 for (r = 7; (rem > 0) && (r > 0); r--) { 1884 u64 d; 1885 u64 hwrate; 1886 1887 d = (r * rate); 1888 (void)do_div(d, src_rate); 1889 if (d < 6) 1890 d = 6; 1891 else if (d > 255) 1892 d = 255; 1893 hwrate = (d * src_rate); 1894 if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) || 1895 ((r * MAX_PLL_VCO_RATE) < (2 * hwrate))) 1896 continue; 1897 (void)do_div(hwrate, r); 1898 if (rate < hwrate) { 1899 if (pll_freq == 0) 1900 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) | 1901 (r << PRCM_PLL_FREQ_R_SHIFT)); 1902 break; 1903 } 1904 if ((rate - hwrate) < rem) { 1905 rem = (rate - hwrate); 1906 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) | 1907 (r << PRCM_PLL_FREQ_R_SHIFT)); 1908 } 1909 } 1910 if (pll_freq == 0) 1911 return -EINVAL; 1912 1913 pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT); 1914 writel(pll_freq, PRCM_PLLDSI_FREQ); 1915 1916 return 0; 1917 } 1918 1919 static void set_dsiclk_rate(u8 n, unsigned long rate) 1920 { 1921 u32 val; 1922 u32 div; 1923 1924 div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ, 1925 clock_rate(PRCMU_HDMICLK), PLL_RAW), rate); 1926 1927 dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI : 1928 (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 : 1929 /* else */ PRCM_DSI_PLLOUT_SEL_PHI_4; 1930 1931 val = readl(PRCM_DSI_PLLOUT_SEL); 1932 val &= ~dsiclk[n].divsel_mask; 1933 val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift); 1934 writel(val, PRCM_DSI_PLLOUT_SEL); 1935 } 1936 1937 static void set_dsiescclk_rate(u8 n, unsigned long rate) 1938 { 1939 u32 val; 1940 u32 div; 1941 1942 div = clock_divider(clock_rate(PRCMU_TVCLK), rate); 1943 val = readl(PRCM_DSITVCLK_DIV); 1944 val &= ~dsiescclk[n].div_mask; 1945 val |= (min(div, (u32)255) << dsiescclk[n].div_shift); 1946 writel(val, PRCM_DSITVCLK_DIV); 1947 } 1948 1949 int prcmu_set_clock_rate(u8 clock, unsigned long rate) 1950 { 1951 if (clock < PRCMU_NUM_REG_CLOCKS) 1952 set_clock_rate(clock, rate); 1953 else if (clock == PRCMU_ARMSS) 1954 return set_armss_rate(rate); 1955 else if (clock == PRCMU_PLLDSI) 1956 return set_plldsi_rate(rate); 1957 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK)) 1958 set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate); 1959 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK)) 1960 set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate); 1961 return 0; 1962 } 1963 1964 int db8500_prcmu_config_esram0_deep_sleep(u8 state) 1965 { 1966 if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) || 1967 (state < ESRAM0_DEEP_SLEEP_STATE_OFF)) 1968 return -EINVAL; 1969 1970 mutex_lock(&mb4_transfer.lock); 1971 1972 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4)) 1973 cpu_relax(); 1974 1975 writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4)); 1976 writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON), 1977 (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE)); 1978 writeb(DDR_PWR_STATE_ON, 1979 (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE)); 1980 writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST)); 1981 1982 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET); 1983 wait_for_completion(&mb4_transfer.work); 1984 1985 mutex_unlock(&mb4_transfer.lock); 1986 1987 return 0; 1988 } 1989 1990 int db8500_prcmu_config_hotdog(u8 threshold) 1991 { 1992 mutex_lock(&mb4_transfer.lock); 1993 1994 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4)) 1995 cpu_relax(); 1996 1997 writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD)); 1998 writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4)); 1999 2000 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET); 2001 wait_for_completion(&mb4_transfer.work); 2002 2003 mutex_unlock(&mb4_transfer.lock); 2004 2005 return 0; 2006 } 2007 2008 int db8500_prcmu_config_hotmon(u8 low, u8 high) 2009 { 2010 mutex_lock(&mb4_transfer.lock); 2011 2012 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4)) 2013 cpu_relax(); 2014 2015 writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW)); 2016 writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH)); 2017 writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH), 2018 (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG)); 2019 writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4)); 2020 2021 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET); 2022 wait_for_completion(&mb4_transfer.work); 2023 2024 mutex_unlock(&mb4_transfer.lock); 2025 2026 return 0; 2027 } 2028 EXPORT_SYMBOL_GPL(db8500_prcmu_config_hotmon); 2029 2030 static int config_hot_period(u16 val) 2031 { 2032 mutex_lock(&mb4_transfer.lock); 2033 2034 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4)) 2035 cpu_relax(); 2036 2037 writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD)); 2038 writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4)); 2039 2040 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET); 2041 wait_for_completion(&mb4_transfer.work); 2042 2043 mutex_unlock(&mb4_transfer.lock); 2044 2045 return 0; 2046 } 2047 2048 int db8500_prcmu_start_temp_sense(u16 cycles32k) 2049 { 2050 if (cycles32k == 0xFFFF) 2051 return -EINVAL; 2052 2053 return config_hot_period(cycles32k); 2054 } 2055 EXPORT_SYMBOL_GPL(db8500_prcmu_start_temp_sense); 2056 2057 int db8500_prcmu_stop_temp_sense(void) 2058 { 2059 return config_hot_period(0xFFFF); 2060 } 2061 EXPORT_SYMBOL_GPL(db8500_prcmu_stop_temp_sense); 2062 2063 static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3) 2064 { 2065 2066 mutex_lock(&mb4_transfer.lock); 2067 2068 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4)) 2069 cpu_relax(); 2070 2071 writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0)); 2072 writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1)); 2073 writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2)); 2074 writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3)); 2075 2076 writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4)); 2077 2078 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET); 2079 wait_for_completion(&mb4_transfer.work); 2080 2081 mutex_unlock(&mb4_transfer.lock); 2082 2083 return 0; 2084 2085 } 2086 2087 int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off) 2088 { 2089 BUG_ON(num == 0 || num > 0xf); 2090 return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0, 2091 sleep_auto_off ? A9WDOG_AUTO_OFF_EN : 2092 A9WDOG_AUTO_OFF_DIS); 2093 } 2094 EXPORT_SYMBOL(db8500_prcmu_config_a9wdog); 2095 2096 int db8500_prcmu_enable_a9wdog(u8 id) 2097 { 2098 return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0); 2099 } 2100 EXPORT_SYMBOL(db8500_prcmu_enable_a9wdog); 2101 2102 int db8500_prcmu_disable_a9wdog(u8 id) 2103 { 2104 return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0); 2105 } 2106 EXPORT_SYMBOL(db8500_prcmu_disable_a9wdog); 2107 2108 int db8500_prcmu_kick_a9wdog(u8 id) 2109 { 2110 return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0); 2111 } 2112 EXPORT_SYMBOL(db8500_prcmu_kick_a9wdog); 2113 2114 /* 2115 * timeout is 28 bit, in ms. 2116 */ 2117 int db8500_prcmu_load_a9wdog(u8 id, u32 timeout) 2118 { 2119 return prcmu_a9wdog(MB4H_A9WDOG_LOAD, 2120 (id & A9WDOG_ID_MASK) | 2121 /* 2122 * Put the lowest 28 bits of timeout at 2123 * offset 4. Four first bits are used for id. 2124 */ 2125 (u8)((timeout << 4) & 0xf0), 2126 (u8)((timeout >> 4) & 0xff), 2127 (u8)((timeout >> 12) & 0xff), 2128 (u8)((timeout >> 20) & 0xff)); 2129 } 2130 EXPORT_SYMBOL(db8500_prcmu_load_a9wdog); 2131 2132 /** 2133 * prcmu_abb_read() - Read register value(s) from the ABB. 2134 * @slave: The I2C slave address. 2135 * @reg: The (start) register address. 2136 * @value: The read out value(s). 2137 * @size: The number of registers to read. 2138 * 2139 * Reads register value(s) from the ABB. 2140 * @size has to be 1 for the current firmware version. 2141 */ 2142 int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size) 2143 { 2144 int r; 2145 2146 if (size != 1) 2147 return -EINVAL; 2148 2149 mutex_lock(&mb5_transfer.lock); 2150 2151 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5)) 2152 cpu_relax(); 2153 2154 writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5)); 2155 writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP)); 2156 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS)); 2157 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG)); 2158 writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL)); 2159 2160 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET); 2161 2162 if (!wait_for_completion_timeout(&mb5_transfer.work, 2163 msecs_to_jiffies(20000))) { 2164 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n", 2165 __func__); 2166 r = -EIO; 2167 } else { 2168 r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO); 2169 } 2170 2171 if (!r) 2172 *value = mb5_transfer.ack.value; 2173 2174 mutex_unlock(&mb5_transfer.lock); 2175 2176 return r; 2177 } 2178 2179 /** 2180 * prcmu_abb_write_masked() - Write masked register value(s) to the ABB. 2181 * @slave: The I2C slave address. 2182 * @reg: The (start) register address. 2183 * @value: The value(s) to write. 2184 * @mask: The mask(s) to use. 2185 * @size: The number of registers to write. 2186 * 2187 * Writes masked register value(s) to the ABB. 2188 * For each @value, only the bits set to 1 in the corresponding @mask 2189 * will be written. The other bits are not changed. 2190 * @size has to be 1 for the current firmware version. 2191 */ 2192 int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size) 2193 { 2194 int r; 2195 2196 if (size != 1) 2197 return -EINVAL; 2198 2199 mutex_lock(&mb5_transfer.lock); 2200 2201 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5)) 2202 cpu_relax(); 2203 2204 writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5)); 2205 writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP)); 2206 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS)); 2207 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG)); 2208 writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL)); 2209 2210 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET); 2211 2212 if (!wait_for_completion_timeout(&mb5_transfer.work, 2213 msecs_to_jiffies(20000))) { 2214 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n", 2215 __func__); 2216 r = -EIO; 2217 } else { 2218 r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO); 2219 } 2220 2221 mutex_unlock(&mb5_transfer.lock); 2222 2223 return r; 2224 } 2225 2226 /** 2227 * prcmu_abb_write() - Write register value(s) to the ABB. 2228 * @slave: The I2C slave address. 2229 * @reg: The (start) register address. 2230 * @value: The value(s) to write. 2231 * @size: The number of registers to write. 2232 * 2233 * Writes register value(s) to the ABB. 2234 * @size has to be 1 for the current firmware version. 2235 */ 2236 int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size) 2237 { 2238 u8 mask = ~0; 2239 2240 return prcmu_abb_write_masked(slave, reg, value, &mask, size); 2241 } 2242 2243 /** 2244 * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem 2245 */ 2246 int prcmu_ac_wake_req(void) 2247 { 2248 u32 val; 2249 int ret = 0; 2250 2251 mutex_lock(&mb0_transfer.ac_wake_lock); 2252 2253 val = readl(PRCM_HOSTACCESS_REQ); 2254 if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ) 2255 goto unlock_and_return; 2256 2257 atomic_set(&ac_wake_req_state, 1); 2258 2259 /* 2260 * Force Modem Wake-up before hostaccess_req ping-pong. 2261 * It prevents Modem to enter in Sleep while acking the hostaccess 2262 * request. The 31us delay has been calculated by HWI. 2263 */ 2264 val |= PRCM_HOSTACCESS_REQ_WAKE_REQ; 2265 writel(val, PRCM_HOSTACCESS_REQ); 2266 2267 udelay(31); 2268 2269 val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ; 2270 writel(val, PRCM_HOSTACCESS_REQ); 2271 2272 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work, 2273 msecs_to_jiffies(5000))) { 2274 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n", 2275 __func__); 2276 ret = -EFAULT; 2277 } 2278 2279 unlock_and_return: 2280 mutex_unlock(&mb0_transfer.ac_wake_lock); 2281 return ret; 2282 } 2283 2284 /** 2285 * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem 2286 */ 2287 void prcmu_ac_sleep_req(void) 2288 { 2289 u32 val; 2290 2291 mutex_lock(&mb0_transfer.ac_wake_lock); 2292 2293 val = readl(PRCM_HOSTACCESS_REQ); 2294 if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)) 2295 goto unlock_and_return; 2296 2297 writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ), 2298 PRCM_HOSTACCESS_REQ); 2299 2300 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work, 2301 msecs_to_jiffies(5000))) { 2302 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n", 2303 __func__); 2304 } 2305 2306 atomic_set(&ac_wake_req_state, 0); 2307 2308 unlock_and_return: 2309 mutex_unlock(&mb0_transfer.ac_wake_lock); 2310 } 2311 2312 bool db8500_prcmu_is_ac_wake_requested(void) 2313 { 2314 return (atomic_read(&ac_wake_req_state) != 0); 2315 } 2316 2317 /** 2318 * db8500_prcmu_system_reset - System reset 2319 * 2320 * Saves the reset reason code and then sets the APE_SOFTRST register which 2321 * fires interrupt to fw 2322 */ 2323 void db8500_prcmu_system_reset(u16 reset_code) 2324 { 2325 writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON)); 2326 writel(1, PRCM_APE_SOFTRST); 2327 } 2328 2329 /** 2330 * db8500_prcmu_get_reset_code - Retrieve SW reset reason code 2331 * 2332 * Retrieves the reset reason code stored by prcmu_system_reset() before 2333 * last restart. 2334 */ 2335 u16 db8500_prcmu_get_reset_code(void) 2336 { 2337 return readw(tcdm_base + PRCM_SW_RST_REASON); 2338 } 2339 2340 /** 2341 * db8500_prcmu_reset_modem - ask the PRCMU to reset modem 2342 */ 2343 void db8500_prcmu_modem_reset(void) 2344 { 2345 mutex_lock(&mb1_transfer.lock); 2346 2347 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1)) 2348 cpu_relax(); 2349 2350 writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1)); 2351 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET); 2352 wait_for_completion(&mb1_transfer.work); 2353 2354 /* 2355 * No need to check return from PRCMU as modem should go in reset state 2356 * This state is already managed by upper layer 2357 */ 2358 2359 mutex_unlock(&mb1_transfer.lock); 2360 } 2361 2362 static void ack_dbb_wakeup(void) 2363 { 2364 unsigned long flags; 2365 2366 spin_lock_irqsave(&mb0_transfer.lock, flags); 2367 2368 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0)) 2369 cpu_relax(); 2370 2371 writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0)); 2372 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET); 2373 2374 spin_unlock_irqrestore(&mb0_transfer.lock, flags); 2375 } 2376 2377 static inline void print_unknown_header_warning(u8 n, u8 header) 2378 { 2379 pr_warn("prcmu: Unknown message header (%d) in mailbox %d\n", 2380 header, n); 2381 } 2382 2383 static bool read_mailbox_0(void) 2384 { 2385 bool r; 2386 u32 ev; 2387 unsigned int n; 2388 u8 header; 2389 2390 header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0); 2391 switch (header) { 2392 case MB0H_WAKEUP_EXE: 2393 case MB0H_WAKEUP_SLEEP: 2394 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1) 2395 ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500); 2396 else 2397 ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500); 2398 2399 if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK)) 2400 complete(&mb0_transfer.ac_wake_work); 2401 if (ev & WAKEUP_BIT_SYSCLK_OK) 2402 complete(&mb3_transfer.sysclk_work); 2403 2404 ev &= mb0_transfer.req.dbb_irqs; 2405 2406 for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) { 2407 if (ev & prcmu_irq_bit[n]) 2408 generic_handle_irq(irq_find_mapping(db8500_irq_domain, n)); 2409 } 2410 r = true; 2411 break; 2412 default: 2413 print_unknown_header_warning(0, header); 2414 r = false; 2415 break; 2416 } 2417 writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR); 2418 return r; 2419 } 2420 2421 static bool read_mailbox_1(void) 2422 { 2423 mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1); 2424 mb1_transfer.ack.arm_opp = readb(tcdm_base + 2425 PRCM_ACK_MB1_CURRENT_ARM_OPP); 2426 mb1_transfer.ack.ape_opp = readb(tcdm_base + 2427 PRCM_ACK_MB1_CURRENT_APE_OPP); 2428 mb1_transfer.ack.ape_voltage_status = readb(tcdm_base + 2429 PRCM_ACK_MB1_APE_VOLTAGE_STATUS); 2430 writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR); 2431 complete(&mb1_transfer.work); 2432 return false; 2433 } 2434 2435 static bool read_mailbox_2(void) 2436 { 2437 mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS); 2438 writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR); 2439 complete(&mb2_transfer.work); 2440 return false; 2441 } 2442 2443 static bool read_mailbox_3(void) 2444 { 2445 writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR); 2446 return false; 2447 } 2448 2449 static bool read_mailbox_4(void) 2450 { 2451 u8 header; 2452 bool do_complete = true; 2453 2454 header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4); 2455 switch (header) { 2456 case MB4H_MEM_ST: 2457 case MB4H_HOTDOG: 2458 case MB4H_HOTMON: 2459 case MB4H_HOT_PERIOD: 2460 case MB4H_A9WDOG_CONF: 2461 case MB4H_A9WDOG_EN: 2462 case MB4H_A9WDOG_DIS: 2463 case MB4H_A9WDOG_LOAD: 2464 case MB4H_A9WDOG_KICK: 2465 break; 2466 default: 2467 print_unknown_header_warning(4, header); 2468 do_complete = false; 2469 break; 2470 } 2471 2472 writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR); 2473 2474 if (do_complete) 2475 complete(&mb4_transfer.work); 2476 2477 return false; 2478 } 2479 2480 static bool read_mailbox_5(void) 2481 { 2482 mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS); 2483 mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL); 2484 writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR); 2485 complete(&mb5_transfer.work); 2486 return false; 2487 } 2488 2489 static bool read_mailbox_6(void) 2490 { 2491 writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR); 2492 return false; 2493 } 2494 2495 static bool read_mailbox_7(void) 2496 { 2497 writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR); 2498 return false; 2499 } 2500 2501 static bool (* const read_mailbox[NUM_MB])(void) = { 2502 read_mailbox_0, 2503 read_mailbox_1, 2504 read_mailbox_2, 2505 read_mailbox_3, 2506 read_mailbox_4, 2507 read_mailbox_5, 2508 read_mailbox_6, 2509 read_mailbox_7 2510 }; 2511 2512 static irqreturn_t prcmu_irq_handler(int irq, void *data) 2513 { 2514 u32 bits; 2515 u8 n; 2516 irqreturn_t r; 2517 2518 bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS); 2519 if (unlikely(!bits)) 2520 return IRQ_NONE; 2521 2522 r = IRQ_HANDLED; 2523 for (n = 0; bits; n++) { 2524 if (bits & MBOX_BIT(n)) { 2525 bits -= MBOX_BIT(n); 2526 if (read_mailbox[n]()) 2527 r = IRQ_WAKE_THREAD; 2528 } 2529 } 2530 return r; 2531 } 2532 2533 static irqreturn_t prcmu_irq_thread_fn(int irq, void *data) 2534 { 2535 ack_dbb_wakeup(); 2536 return IRQ_HANDLED; 2537 } 2538 2539 static void prcmu_mask_work(struct work_struct *work) 2540 { 2541 unsigned long flags; 2542 2543 spin_lock_irqsave(&mb0_transfer.lock, flags); 2544 2545 config_wakeups(); 2546 2547 spin_unlock_irqrestore(&mb0_transfer.lock, flags); 2548 } 2549 2550 static void prcmu_irq_mask(struct irq_data *d) 2551 { 2552 unsigned long flags; 2553 2554 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags); 2555 2556 mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq]; 2557 2558 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags); 2559 2560 if (d->irq != IRQ_PRCMU_CA_SLEEP) 2561 schedule_work(&mb0_transfer.mask_work); 2562 } 2563 2564 static void prcmu_irq_unmask(struct irq_data *d) 2565 { 2566 unsigned long flags; 2567 2568 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags); 2569 2570 mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq]; 2571 2572 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags); 2573 2574 if (d->irq != IRQ_PRCMU_CA_SLEEP) 2575 schedule_work(&mb0_transfer.mask_work); 2576 } 2577 2578 static void noop(struct irq_data *d) 2579 { 2580 } 2581 2582 static struct irq_chip prcmu_irq_chip = { 2583 .name = "prcmu", 2584 .irq_disable = prcmu_irq_mask, 2585 .irq_ack = noop, 2586 .irq_mask = prcmu_irq_mask, 2587 .irq_unmask = prcmu_irq_unmask, 2588 }; 2589 2590 static char *fw_project_name(u32 project) 2591 { 2592 switch (project) { 2593 case PRCMU_FW_PROJECT_U8500: 2594 return "U8500"; 2595 case PRCMU_FW_PROJECT_U8400: 2596 return "U8400"; 2597 case PRCMU_FW_PROJECT_U9500: 2598 return "U9500"; 2599 case PRCMU_FW_PROJECT_U8500_MBB: 2600 return "U8500 MBB"; 2601 case PRCMU_FW_PROJECT_U8500_C1: 2602 return "U8500 C1"; 2603 case PRCMU_FW_PROJECT_U8500_C2: 2604 return "U8500 C2"; 2605 case PRCMU_FW_PROJECT_U8500_C3: 2606 return "U8500 C3"; 2607 case PRCMU_FW_PROJECT_U8500_C4: 2608 return "U8500 C4"; 2609 case PRCMU_FW_PROJECT_U9500_MBL: 2610 return "U9500 MBL"; 2611 case PRCMU_FW_PROJECT_U8500_MBL: 2612 return "U8500 MBL"; 2613 case PRCMU_FW_PROJECT_U8500_MBL2: 2614 return "U8500 MBL2"; 2615 case PRCMU_FW_PROJECT_U8520: 2616 return "U8520 MBL"; 2617 case PRCMU_FW_PROJECT_U8420: 2618 return "U8420"; 2619 case PRCMU_FW_PROJECT_U9540: 2620 return "U9540"; 2621 case PRCMU_FW_PROJECT_A9420: 2622 return "A9420"; 2623 case PRCMU_FW_PROJECT_L8540: 2624 return "L8540"; 2625 case PRCMU_FW_PROJECT_L8580: 2626 return "L8580"; 2627 default: 2628 return "Unknown"; 2629 } 2630 } 2631 2632 static int db8500_irq_map(struct irq_domain *d, unsigned int virq, 2633 irq_hw_number_t hwirq) 2634 { 2635 irq_set_chip_and_handler(virq, &prcmu_irq_chip, 2636 handle_simple_irq); 2637 2638 return 0; 2639 } 2640 2641 static const struct irq_domain_ops db8500_irq_ops = { 2642 .map = db8500_irq_map, 2643 .xlate = irq_domain_xlate_twocell, 2644 }; 2645 2646 static int db8500_irq_init(struct device_node *np) 2647 { 2648 int i; 2649 2650 db8500_irq_domain = irq_domain_add_simple( 2651 np, NUM_PRCMU_WAKEUPS, 0, 2652 &db8500_irq_ops, NULL); 2653 2654 if (!db8500_irq_domain) { 2655 pr_err("Failed to create irqdomain\n"); 2656 return -ENOSYS; 2657 } 2658 2659 /* All wakeups will be used, so create mappings for all */ 2660 for (i = 0; i < NUM_PRCMU_WAKEUPS; i++) 2661 irq_create_mapping(db8500_irq_domain, i); 2662 2663 return 0; 2664 } 2665 2666 static void dbx500_fw_version_init(struct platform_device *pdev, 2667 u32 version_offset) 2668 { 2669 struct resource *res; 2670 void __iomem *tcpm_base; 2671 u32 version; 2672 2673 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, 2674 "prcmu-tcpm"); 2675 if (!res) { 2676 dev_err(&pdev->dev, 2677 "Error: no prcmu tcpm memory region provided\n"); 2678 return; 2679 } 2680 tcpm_base = ioremap(res->start, resource_size(res)); 2681 if (!tcpm_base) { 2682 dev_err(&pdev->dev, "no prcmu tcpm mem region provided\n"); 2683 return; 2684 } 2685 2686 version = readl(tcpm_base + version_offset); 2687 fw_info.version.project = (version & 0xFF); 2688 fw_info.version.api_version = (version >> 8) & 0xFF; 2689 fw_info.version.func_version = (version >> 16) & 0xFF; 2690 fw_info.version.errata = (version >> 24) & 0xFF; 2691 strncpy(fw_info.version.project_name, 2692 fw_project_name(fw_info.version.project), 2693 PRCMU_FW_PROJECT_NAME_LEN); 2694 fw_info.valid = true; 2695 pr_info("PRCMU firmware: %s(%d), version %d.%d.%d\n", 2696 fw_info.version.project_name, 2697 fw_info.version.project, 2698 fw_info.version.api_version, 2699 fw_info.version.func_version, 2700 fw_info.version.errata); 2701 iounmap(tcpm_base); 2702 } 2703 2704 void __init db8500_prcmu_early_init(u32 phy_base, u32 size) 2705 { 2706 /* 2707 * This is a temporary remap to bring up the clocks. It is 2708 * subsequently replaces with a real remap. After the merge of 2709 * the mailbox subsystem all of this early code goes away, and the 2710 * clock driver can probe independently. An early initcall will 2711 * still be needed, but it can be diverted into drivers/clk/ux500. 2712 */ 2713 prcmu_base = ioremap(phy_base, size); 2714 if (!prcmu_base) 2715 pr_err("%s: ioremap() of prcmu registers failed!\n", __func__); 2716 2717 spin_lock_init(&mb0_transfer.lock); 2718 spin_lock_init(&mb0_transfer.dbb_irqs_lock); 2719 mutex_init(&mb0_transfer.ac_wake_lock); 2720 init_completion(&mb0_transfer.ac_wake_work); 2721 mutex_init(&mb1_transfer.lock); 2722 init_completion(&mb1_transfer.work); 2723 mb1_transfer.ape_opp = APE_NO_CHANGE; 2724 mutex_init(&mb2_transfer.lock); 2725 init_completion(&mb2_transfer.work); 2726 spin_lock_init(&mb2_transfer.auto_pm_lock); 2727 spin_lock_init(&mb3_transfer.lock); 2728 mutex_init(&mb3_transfer.sysclk_lock); 2729 init_completion(&mb3_transfer.sysclk_work); 2730 mutex_init(&mb4_transfer.lock); 2731 init_completion(&mb4_transfer.work); 2732 mutex_init(&mb5_transfer.lock); 2733 init_completion(&mb5_transfer.work); 2734 2735 INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work); 2736 } 2737 2738 static void init_prcm_registers(void) 2739 { 2740 u32 val; 2741 2742 val = readl(PRCM_A9PL_FORCE_CLKEN); 2743 val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN | 2744 PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN); 2745 writel(val, (PRCM_A9PL_FORCE_CLKEN)); 2746 } 2747 2748 /* 2749 * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC 2750 */ 2751 static struct regulator_consumer_supply db8500_vape_consumers[] = { 2752 REGULATOR_SUPPLY("v-ape", NULL), 2753 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"), 2754 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"), 2755 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"), 2756 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"), 2757 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"), 2758 /* "v-mmc" changed to "vcore" in the mainline kernel */ 2759 REGULATOR_SUPPLY("vcore", "sdi0"), 2760 REGULATOR_SUPPLY("vcore", "sdi1"), 2761 REGULATOR_SUPPLY("vcore", "sdi2"), 2762 REGULATOR_SUPPLY("vcore", "sdi3"), 2763 REGULATOR_SUPPLY("vcore", "sdi4"), 2764 REGULATOR_SUPPLY("v-dma", "dma40.0"), 2765 REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"), 2766 /* "v-uart" changed to "vcore" in the mainline kernel */ 2767 REGULATOR_SUPPLY("vcore", "uart0"), 2768 REGULATOR_SUPPLY("vcore", "uart1"), 2769 REGULATOR_SUPPLY("vcore", "uart2"), 2770 REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"), 2771 REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"), 2772 REGULATOR_SUPPLY("vddvario", "smsc911x.0"), 2773 }; 2774 2775 static struct regulator_consumer_supply db8500_vsmps2_consumers[] = { 2776 REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"), 2777 /* AV8100 regulator */ 2778 REGULATOR_SUPPLY("hdmi_1v8", "0-0070"), 2779 }; 2780 2781 static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = { 2782 REGULATOR_SUPPLY("vsupply", "b2r2_bus"), 2783 REGULATOR_SUPPLY("vsupply", "mcde"), 2784 }; 2785 2786 /* SVA MMDSP regulator switch */ 2787 static struct regulator_consumer_supply db8500_svammdsp_consumers[] = { 2788 REGULATOR_SUPPLY("sva-mmdsp", "cm_control"), 2789 }; 2790 2791 /* SVA pipe regulator switch */ 2792 static struct regulator_consumer_supply db8500_svapipe_consumers[] = { 2793 REGULATOR_SUPPLY("sva-pipe", "cm_control"), 2794 }; 2795 2796 /* SIA MMDSP regulator switch */ 2797 static struct regulator_consumer_supply db8500_siammdsp_consumers[] = { 2798 REGULATOR_SUPPLY("sia-mmdsp", "cm_control"), 2799 }; 2800 2801 /* SIA pipe regulator switch */ 2802 static struct regulator_consumer_supply db8500_siapipe_consumers[] = { 2803 REGULATOR_SUPPLY("sia-pipe", "cm_control"), 2804 }; 2805 2806 static struct regulator_consumer_supply db8500_sga_consumers[] = { 2807 REGULATOR_SUPPLY("v-mali", NULL), 2808 }; 2809 2810 /* ESRAM1 and 2 regulator switch */ 2811 static struct regulator_consumer_supply db8500_esram12_consumers[] = { 2812 REGULATOR_SUPPLY("esram12", "cm_control"), 2813 }; 2814 2815 /* ESRAM3 and 4 regulator switch */ 2816 static struct regulator_consumer_supply db8500_esram34_consumers[] = { 2817 REGULATOR_SUPPLY("v-esram34", "mcde"), 2818 REGULATOR_SUPPLY("esram34", "cm_control"), 2819 REGULATOR_SUPPLY("lcla_esram", "dma40.0"), 2820 }; 2821 2822 static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = { 2823 [DB8500_REGULATOR_VAPE] = { 2824 .constraints = { 2825 .name = "db8500-vape", 2826 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2827 .always_on = true, 2828 }, 2829 .consumer_supplies = db8500_vape_consumers, 2830 .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers), 2831 }, 2832 [DB8500_REGULATOR_VARM] = { 2833 .constraints = { 2834 .name = "db8500-varm", 2835 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2836 }, 2837 }, 2838 [DB8500_REGULATOR_VMODEM] = { 2839 .constraints = { 2840 .name = "db8500-vmodem", 2841 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2842 }, 2843 }, 2844 [DB8500_REGULATOR_VPLL] = { 2845 .constraints = { 2846 .name = "db8500-vpll", 2847 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2848 }, 2849 }, 2850 [DB8500_REGULATOR_VSMPS1] = { 2851 .constraints = { 2852 .name = "db8500-vsmps1", 2853 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2854 }, 2855 }, 2856 [DB8500_REGULATOR_VSMPS2] = { 2857 .constraints = { 2858 .name = "db8500-vsmps2", 2859 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2860 }, 2861 .consumer_supplies = db8500_vsmps2_consumers, 2862 .num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers), 2863 }, 2864 [DB8500_REGULATOR_VSMPS3] = { 2865 .constraints = { 2866 .name = "db8500-vsmps3", 2867 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2868 }, 2869 }, 2870 [DB8500_REGULATOR_VRF1] = { 2871 .constraints = { 2872 .name = "db8500-vrf1", 2873 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2874 }, 2875 }, 2876 [DB8500_REGULATOR_SWITCH_SVAMMDSP] = { 2877 /* dependency to u8500-vape is handled outside regulator framework */ 2878 .constraints = { 2879 .name = "db8500-sva-mmdsp", 2880 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2881 }, 2882 .consumer_supplies = db8500_svammdsp_consumers, 2883 .num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers), 2884 }, 2885 [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = { 2886 .constraints = { 2887 /* "ret" means "retention" */ 2888 .name = "db8500-sva-mmdsp-ret", 2889 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2890 }, 2891 }, 2892 [DB8500_REGULATOR_SWITCH_SVAPIPE] = { 2893 /* dependency to u8500-vape is handled outside regulator framework */ 2894 .constraints = { 2895 .name = "db8500-sva-pipe", 2896 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2897 }, 2898 .consumer_supplies = db8500_svapipe_consumers, 2899 .num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers), 2900 }, 2901 [DB8500_REGULATOR_SWITCH_SIAMMDSP] = { 2902 /* dependency to u8500-vape is handled outside regulator framework */ 2903 .constraints = { 2904 .name = "db8500-sia-mmdsp", 2905 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2906 }, 2907 .consumer_supplies = db8500_siammdsp_consumers, 2908 .num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers), 2909 }, 2910 [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = { 2911 .constraints = { 2912 .name = "db8500-sia-mmdsp-ret", 2913 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2914 }, 2915 }, 2916 [DB8500_REGULATOR_SWITCH_SIAPIPE] = { 2917 /* dependency to u8500-vape is handled outside regulator framework */ 2918 .constraints = { 2919 .name = "db8500-sia-pipe", 2920 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2921 }, 2922 .consumer_supplies = db8500_siapipe_consumers, 2923 .num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers), 2924 }, 2925 [DB8500_REGULATOR_SWITCH_SGA] = { 2926 .supply_regulator = "db8500-vape", 2927 .constraints = { 2928 .name = "db8500-sga", 2929 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2930 }, 2931 .consumer_supplies = db8500_sga_consumers, 2932 .num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers), 2933 2934 }, 2935 [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = { 2936 .supply_regulator = "db8500-vape", 2937 .constraints = { 2938 .name = "db8500-b2r2-mcde", 2939 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2940 }, 2941 .consumer_supplies = db8500_b2r2_mcde_consumers, 2942 .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers), 2943 }, 2944 [DB8500_REGULATOR_SWITCH_ESRAM12] = { 2945 /* 2946 * esram12 is set in retention and supplied by Vsafe when Vape is off, 2947 * no need to hold Vape 2948 */ 2949 .constraints = { 2950 .name = "db8500-esram12", 2951 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2952 }, 2953 .consumer_supplies = db8500_esram12_consumers, 2954 .num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers), 2955 }, 2956 [DB8500_REGULATOR_SWITCH_ESRAM12RET] = { 2957 .constraints = { 2958 .name = "db8500-esram12-ret", 2959 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2960 }, 2961 }, 2962 [DB8500_REGULATOR_SWITCH_ESRAM34] = { 2963 /* 2964 * esram34 is set in retention and supplied by Vsafe when Vape is off, 2965 * no need to hold Vape 2966 */ 2967 .constraints = { 2968 .name = "db8500-esram34", 2969 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2970 }, 2971 .consumer_supplies = db8500_esram34_consumers, 2972 .num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers), 2973 }, 2974 [DB8500_REGULATOR_SWITCH_ESRAM34RET] = { 2975 .constraints = { 2976 .name = "db8500-esram34-ret", 2977 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2978 }, 2979 }, 2980 }; 2981 2982 static struct ux500_wdt_data db8500_wdt_pdata = { 2983 .timeout = 600, /* 10 minutes */ 2984 .has_28_bits_resolution = true, 2985 }; 2986 /* 2987 * Thermal Sensor 2988 */ 2989 2990 static struct resource db8500_thsens_resources[] = { 2991 { 2992 .name = "IRQ_HOTMON_LOW", 2993 .start = IRQ_PRCMU_HOTMON_LOW, 2994 .end = IRQ_PRCMU_HOTMON_LOW, 2995 .flags = IORESOURCE_IRQ, 2996 }, 2997 { 2998 .name = "IRQ_HOTMON_HIGH", 2999 .start = IRQ_PRCMU_HOTMON_HIGH, 3000 .end = IRQ_PRCMU_HOTMON_HIGH, 3001 .flags = IORESOURCE_IRQ, 3002 }, 3003 }; 3004 3005 static struct db8500_thsens_platform_data db8500_thsens_data = { 3006 .trip_points[0] = { 3007 .temp = 70000, 3008 .type = THERMAL_TRIP_ACTIVE, 3009 .cdev_name = { 3010 [0] = "thermal-cpufreq-0", 3011 }, 3012 }, 3013 .trip_points[1] = { 3014 .temp = 75000, 3015 .type = THERMAL_TRIP_ACTIVE, 3016 .cdev_name = { 3017 [0] = "thermal-cpufreq-0", 3018 }, 3019 }, 3020 .trip_points[2] = { 3021 .temp = 80000, 3022 .type = THERMAL_TRIP_ACTIVE, 3023 .cdev_name = { 3024 [0] = "thermal-cpufreq-0", 3025 }, 3026 }, 3027 .trip_points[3] = { 3028 .temp = 85000, 3029 .type = THERMAL_TRIP_CRITICAL, 3030 }, 3031 .num_trips = 4, 3032 }; 3033 3034 static const struct mfd_cell common_prcmu_devs[] = { 3035 { 3036 .name = "ux500_wdt", 3037 .platform_data = &db8500_wdt_pdata, 3038 .pdata_size = sizeof(db8500_wdt_pdata), 3039 .id = -1, 3040 }, 3041 }; 3042 3043 static const struct mfd_cell db8500_prcmu_devs[] = { 3044 { 3045 .name = "db8500-prcmu-regulators", 3046 .of_compatible = "stericsson,db8500-prcmu-regulator", 3047 .platform_data = &db8500_regulators, 3048 .pdata_size = sizeof(db8500_regulators), 3049 }, 3050 { 3051 .name = "cpuidle-dbx500", 3052 .of_compatible = "stericsson,cpuidle-dbx500", 3053 }, 3054 { 3055 .name = "db8500-thermal", 3056 .num_resources = ARRAY_SIZE(db8500_thsens_resources), 3057 .resources = db8500_thsens_resources, 3058 .platform_data = &db8500_thsens_data, 3059 .pdata_size = sizeof(db8500_thsens_data), 3060 }, 3061 }; 3062 3063 static int db8500_prcmu_register_ab8500(struct device *parent) 3064 { 3065 struct device_node *np; 3066 struct resource ab8500_resource; 3067 const struct mfd_cell ab8500_cell = { 3068 .name = "ab8500-core", 3069 .of_compatible = "stericsson,ab8500", 3070 .id = AB8500_VERSION_AB8500, 3071 .resources = &ab8500_resource, 3072 .num_resources = 1, 3073 }; 3074 3075 if (!parent->of_node) 3076 return -ENODEV; 3077 3078 /* Look up the device node, sneak the IRQ out of it */ 3079 for_each_child_of_node(parent->of_node, np) { 3080 if (of_device_is_compatible(np, ab8500_cell.of_compatible)) 3081 break; 3082 } 3083 if (!np) { 3084 dev_info(parent, "could not find AB8500 node in the device tree\n"); 3085 return -ENODEV; 3086 } 3087 of_irq_to_resource_table(np, &ab8500_resource, 1); 3088 3089 return mfd_add_devices(parent, 0, &ab8500_cell, 1, NULL, 0, NULL); 3090 } 3091 3092 /** 3093 * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic 3094 * 3095 */ 3096 static int db8500_prcmu_probe(struct platform_device *pdev) 3097 { 3098 struct device_node *np = pdev->dev.of_node; 3099 int irq = 0, err = 0; 3100 struct resource *res; 3101 3102 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu"); 3103 if (!res) { 3104 dev_err(&pdev->dev, "no prcmu memory region provided\n"); 3105 return -EINVAL; 3106 } 3107 prcmu_base = devm_ioremap(&pdev->dev, res->start, resource_size(res)); 3108 if (!prcmu_base) { 3109 dev_err(&pdev->dev, 3110 "failed to ioremap prcmu register memory\n"); 3111 return -ENOMEM; 3112 } 3113 init_prcm_registers(); 3114 dbx500_fw_version_init(pdev, DB8500_PRCMU_FW_VERSION_OFFSET); 3115 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu-tcdm"); 3116 if (!res) { 3117 dev_err(&pdev->dev, "no prcmu tcdm region provided\n"); 3118 return -EINVAL; 3119 } 3120 tcdm_base = devm_ioremap(&pdev->dev, res->start, 3121 resource_size(res)); 3122 if (!tcdm_base) { 3123 dev_err(&pdev->dev, 3124 "failed to ioremap prcmu-tcdm register memory\n"); 3125 return -ENOMEM; 3126 } 3127 3128 /* Clean up the mailbox interrupts after pre-kernel code. */ 3129 writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR); 3130 3131 irq = platform_get_irq(pdev, 0); 3132 if (irq <= 0) { 3133 dev_err(&pdev->dev, "no prcmu irq provided\n"); 3134 return irq; 3135 } 3136 3137 err = request_threaded_irq(irq, prcmu_irq_handler, 3138 prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL); 3139 if (err < 0) { 3140 pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n"); 3141 return err; 3142 } 3143 3144 db8500_irq_init(np); 3145 3146 prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET); 3147 3148 err = mfd_add_devices(&pdev->dev, 0, common_prcmu_devs, 3149 ARRAY_SIZE(common_prcmu_devs), NULL, 0, db8500_irq_domain); 3150 if (err) { 3151 pr_err("prcmu: Failed to add subdevices\n"); 3152 return err; 3153 } 3154 3155 /* TODO: Remove restriction when clk definitions are available. */ 3156 if (!of_machine_is_compatible("st-ericsson,u8540")) { 3157 err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs, 3158 ARRAY_SIZE(db8500_prcmu_devs), NULL, 0, 3159 db8500_irq_domain); 3160 if (err) { 3161 mfd_remove_devices(&pdev->dev); 3162 pr_err("prcmu: Failed to add subdevices\n"); 3163 return err; 3164 } 3165 } 3166 3167 err = db8500_prcmu_register_ab8500(&pdev->dev); 3168 if (err) { 3169 mfd_remove_devices(&pdev->dev); 3170 pr_err("prcmu: Failed to add ab8500 subdevice\n"); 3171 return err; 3172 } 3173 3174 pr_info("DB8500 PRCMU initialized\n"); 3175 return err; 3176 } 3177 static const struct of_device_id db8500_prcmu_match[] = { 3178 { .compatible = "stericsson,db8500-prcmu"}, 3179 { }, 3180 }; 3181 3182 static struct platform_driver db8500_prcmu_driver = { 3183 .driver = { 3184 .name = "db8500-prcmu", 3185 .of_match_table = db8500_prcmu_match, 3186 }, 3187 .probe = db8500_prcmu_probe, 3188 }; 3189 3190 static int __init db8500_prcmu_init(void) 3191 { 3192 return platform_driver_register(&db8500_prcmu_driver); 3193 } 3194 core_initcall(db8500_prcmu_init); 3195