xref: /openbmc/linux/drivers/mfd/db8500-prcmu.c (revision a1c7c49c2091926962f8c1c866d386febffec5d8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * DB8500 PRCM Unit driver
4  *
5  * Copyright (C) STMicroelectronics 2009
6  * Copyright (C) ST-Ericsson SA 2010
7  *
8  * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
9  * Author: Sundar Iyer <sundar.iyer@stericsson.com>
10  * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
11  *
12  * U8500 PRCM Unit interface driver
13  */
14 #include <linux/init.h>
15 #include <linux/export.h>
16 #include <linux/kernel.h>
17 #include <linux/delay.h>
18 #include <linux/errno.h>
19 #include <linux/err.h>
20 #include <linux/spinlock.h>
21 #include <linux/io.h>
22 #include <linux/slab.h>
23 #include <linux/mutex.h>
24 #include <linux/completion.h>
25 #include <linux/irq.h>
26 #include <linux/jiffies.h>
27 #include <linux/bitops.h>
28 #include <linux/fs.h>
29 #include <linux/of.h>
30 #include <linux/of_address.h>
31 #include <linux/of_irq.h>
32 #include <linux/platform_device.h>
33 #include <linux/uaccess.h>
34 #include <linux/mfd/core.h>
35 #include <linux/mfd/dbx500-prcmu.h>
36 #include <linux/mfd/abx500/ab8500.h>
37 #include <linux/regulator/db8500-prcmu.h>
38 #include <linux/regulator/machine.h>
39 #include "db8500-prcmu-regs.h"
40 
41 /* Index of different voltages to be used when accessing AVSData */
42 #define PRCM_AVS_BASE		0x2FC
43 #define PRCM_AVS_VBB_RET	(PRCM_AVS_BASE + 0x0)
44 #define PRCM_AVS_VBB_MAX_OPP	(PRCM_AVS_BASE + 0x1)
45 #define PRCM_AVS_VBB_100_OPP	(PRCM_AVS_BASE + 0x2)
46 #define PRCM_AVS_VBB_50_OPP	(PRCM_AVS_BASE + 0x3)
47 #define PRCM_AVS_VARM_MAX_OPP	(PRCM_AVS_BASE + 0x4)
48 #define PRCM_AVS_VARM_100_OPP	(PRCM_AVS_BASE + 0x5)
49 #define PRCM_AVS_VARM_50_OPP	(PRCM_AVS_BASE + 0x6)
50 #define PRCM_AVS_VARM_RET	(PRCM_AVS_BASE + 0x7)
51 #define PRCM_AVS_VAPE_100_OPP	(PRCM_AVS_BASE + 0x8)
52 #define PRCM_AVS_VAPE_50_OPP	(PRCM_AVS_BASE + 0x9)
53 #define PRCM_AVS_VMOD_100_OPP	(PRCM_AVS_BASE + 0xA)
54 #define PRCM_AVS_VMOD_50_OPP	(PRCM_AVS_BASE + 0xB)
55 #define PRCM_AVS_VSAFE		(PRCM_AVS_BASE + 0xC)
56 
57 #define PRCM_AVS_VOLTAGE		0
58 #define PRCM_AVS_VOLTAGE_MASK		0x3f
59 #define PRCM_AVS_ISSLOWSTARTUP		6
60 #define PRCM_AVS_ISSLOWSTARTUP_MASK	(1 << PRCM_AVS_ISSLOWSTARTUP)
61 #define PRCM_AVS_ISMODEENABLE		7
62 #define PRCM_AVS_ISMODEENABLE_MASK	(1 << PRCM_AVS_ISMODEENABLE)
63 
64 #define PRCM_BOOT_STATUS	0xFFF
65 #define PRCM_ROMCODE_A2P	0xFFE
66 #define PRCM_ROMCODE_P2A	0xFFD
67 #define PRCM_XP70_CUR_PWR_STATE 0xFFC      /* 4 BYTES */
68 
69 #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
70 
71 #define _PRCM_MBOX_HEADER		0xFE8 /* 16 bytes */
72 #define PRCM_MBOX_HEADER_REQ_MB0	(_PRCM_MBOX_HEADER + 0x0)
73 #define PRCM_MBOX_HEADER_REQ_MB1	(_PRCM_MBOX_HEADER + 0x1)
74 #define PRCM_MBOX_HEADER_REQ_MB2	(_PRCM_MBOX_HEADER + 0x2)
75 #define PRCM_MBOX_HEADER_REQ_MB3	(_PRCM_MBOX_HEADER + 0x3)
76 #define PRCM_MBOX_HEADER_REQ_MB4	(_PRCM_MBOX_HEADER + 0x4)
77 #define PRCM_MBOX_HEADER_REQ_MB5	(_PRCM_MBOX_HEADER + 0x5)
78 #define PRCM_MBOX_HEADER_ACK_MB0	(_PRCM_MBOX_HEADER + 0x8)
79 
80 /* Req Mailboxes */
81 #define PRCM_REQ_MB0 0xFDC /* 12 bytes  */
82 #define PRCM_REQ_MB1 0xFD0 /* 12 bytes  */
83 #define PRCM_REQ_MB2 0xFC0 /* 16 bytes  */
84 #define PRCM_REQ_MB3 0xE4C /* 372 bytes  */
85 #define PRCM_REQ_MB4 0xE48 /* 4 bytes  */
86 #define PRCM_REQ_MB5 0xE44 /* 4 bytes  */
87 
88 /* Ack Mailboxes */
89 #define PRCM_ACK_MB0 0xE08 /* 52 bytes  */
90 #define PRCM_ACK_MB1 0xE04 /* 4 bytes */
91 #define PRCM_ACK_MB2 0xE00 /* 4 bytes */
92 #define PRCM_ACK_MB3 0xDFC /* 4 bytes */
93 #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
94 #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
95 
96 /* Mailbox 0 headers */
97 #define MB0H_POWER_STATE_TRANS		0
98 #define MB0H_CONFIG_WAKEUPS_EXE		1
99 #define MB0H_READ_WAKEUP_ACK		3
100 #define MB0H_CONFIG_WAKEUPS_SLEEP	4
101 
102 #define MB0H_WAKEUP_EXE 2
103 #define MB0H_WAKEUP_SLEEP 5
104 
105 /* Mailbox 0 REQs */
106 #define PRCM_REQ_MB0_AP_POWER_STATE	(PRCM_REQ_MB0 + 0x0)
107 #define PRCM_REQ_MB0_AP_PLL_STATE	(PRCM_REQ_MB0 + 0x1)
108 #define PRCM_REQ_MB0_ULP_CLOCK_STATE	(PRCM_REQ_MB0 + 0x2)
109 #define PRCM_REQ_MB0_DO_NOT_WFI		(PRCM_REQ_MB0 + 0x3)
110 #define PRCM_REQ_MB0_WAKEUP_8500	(PRCM_REQ_MB0 + 0x4)
111 #define PRCM_REQ_MB0_WAKEUP_4500	(PRCM_REQ_MB0 + 0x8)
112 
113 /* Mailbox 0 ACKs */
114 #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS	(PRCM_ACK_MB0 + 0x0)
115 #define PRCM_ACK_MB0_READ_POINTER	(PRCM_ACK_MB0 + 0x1)
116 #define PRCM_ACK_MB0_WAKEUP_0_8500	(PRCM_ACK_MB0 + 0x4)
117 #define PRCM_ACK_MB0_WAKEUP_0_4500	(PRCM_ACK_MB0 + 0x8)
118 #define PRCM_ACK_MB0_WAKEUP_1_8500	(PRCM_ACK_MB0 + 0x1C)
119 #define PRCM_ACK_MB0_WAKEUP_1_4500	(PRCM_ACK_MB0 + 0x20)
120 #define PRCM_ACK_MB0_EVENT_4500_NUMBERS	20
121 
122 /* Mailbox 1 headers */
123 #define MB1H_ARM_APE_OPP 0x0
124 #define MB1H_RESET_MODEM 0x2
125 #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
126 #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
127 #define MB1H_RELEASE_USB_WAKEUP 0x5
128 #define MB1H_PLL_ON_OFF 0x6
129 
130 /* Mailbox 1 Requests */
131 #define PRCM_REQ_MB1_ARM_OPP			(PRCM_REQ_MB1 + 0x0)
132 #define PRCM_REQ_MB1_APE_OPP			(PRCM_REQ_MB1 + 0x1)
133 #define PRCM_REQ_MB1_PLL_ON_OFF			(PRCM_REQ_MB1 + 0x4)
134 #define PLL_SOC0_OFF	0x1
135 #define PLL_SOC0_ON	0x2
136 #define PLL_SOC1_OFF	0x4
137 #define PLL_SOC1_ON	0x8
138 
139 /* Mailbox 1 ACKs */
140 #define PRCM_ACK_MB1_CURRENT_ARM_OPP	(PRCM_ACK_MB1 + 0x0)
141 #define PRCM_ACK_MB1_CURRENT_APE_OPP	(PRCM_ACK_MB1 + 0x1)
142 #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS	(PRCM_ACK_MB1 + 0x2)
143 #define PRCM_ACK_MB1_DVFS_STATUS	(PRCM_ACK_MB1 + 0x3)
144 
145 /* Mailbox 2 headers */
146 #define MB2H_DPS	0x0
147 #define MB2H_AUTO_PWR	0x1
148 
149 /* Mailbox 2 REQs */
150 #define PRCM_REQ_MB2_SVA_MMDSP		(PRCM_REQ_MB2 + 0x0)
151 #define PRCM_REQ_MB2_SVA_PIPE		(PRCM_REQ_MB2 + 0x1)
152 #define PRCM_REQ_MB2_SIA_MMDSP		(PRCM_REQ_MB2 + 0x2)
153 #define PRCM_REQ_MB2_SIA_PIPE		(PRCM_REQ_MB2 + 0x3)
154 #define PRCM_REQ_MB2_SGA		(PRCM_REQ_MB2 + 0x4)
155 #define PRCM_REQ_MB2_B2R2_MCDE		(PRCM_REQ_MB2 + 0x5)
156 #define PRCM_REQ_MB2_ESRAM12		(PRCM_REQ_MB2 + 0x6)
157 #define PRCM_REQ_MB2_ESRAM34		(PRCM_REQ_MB2 + 0x7)
158 #define PRCM_REQ_MB2_AUTO_PM_SLEEP	(PRCM_REQ_MB2 + 0x8)
159 #define PRCM_REQ_MB2_AUTO_PM_IDLE	(PRCM_REQ_MB2 + 0xC)
160 
161 /* Mailbox 2 ACKs */
162 #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
163 #define HWACC_PWR_ST_OK 0xFE
164 
165 /* Mailbox 3 headers */
166 #define MB3H_ANC	0x0
167 #define MB3H_SIDETONE	0x1
168 #define MB3H_SYSCLK	0xE
169 
170 /* Mailbox 3 Requests */
171 #define PRCM_REQ_MB3_ANC_FIR_COEFF	(PRCM_REQ_MB3 + 0x0)
172 #define PRCM_REQ_MB3_ANC_IIR_COEFF	(PRCM_REQ_MB3 + 0x20)
173 #define PRCM_REQ_MB3_ANC_SHIFTER	(PRCM_REQ_MB3 + 0x60)
174 #define PRCM_REQ_MB3_ANC_WARP		(PRCM_REQ_MB3 + 0x64)
175 #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN	(PRCM_REQ_MB3 + 0x68)
176 #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF	(PRCM_REQ_MB3 + 0x6C)
177 #define PRCM_REQ_MB3_SYSCLK_MGT		(PRCM_REQ_MB3 + 0x16C)
178 
179 /* Mailbox 4 headers */
180 #define MB4H_DDR_INIT	0x0
181 #define MB4H_MEM_ST	0x1
182 #define MB4H_HOTDOG	0x12
183 #define MB4H_HOTMON	0x13
184 #define MB4H_HOT_PERIOD	0x14
185 #define MB4H_A9WDOG_CONF 0x16
186 #define MB4H_A9WDOG_EN   0x17
187 #define MB4H_A9WDOG_DIS  0x18
188 #define MB4H_A9WDOG_LOAD 0x19
189 #define MB4H_A9WDOG_KICK 0x20
190 
191 /* Mailbox 4 Requests */
192 #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE	(PRCM_REQ_MB4 + 0x0)
193 #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE	(PRCM_REQ_MB4 + 0x1)
194 #define PRCM_REQ_MB4_ESRAM0_ST			(PRCM_REQ_MB4 + 0x3)
195 #define PRCM_REQ_MB4_HOTDOG_THRESHOLD		(PRCM_REQ_MB4 + 0x0)
196 #define PRCM_REQ_MB4_HOTMON_LOW			(PRCM_REQ_MB4 + 0x0)
197 #define PRCM_REQ_MB4_HOTMON_HIGH		(PRCM_REQ_MB4 + 0x1)
198 #define PRCM_REQ_MB4_HOTMON_CONFIG		(PRCM_REQ_MB4 + 0x2)
199 #define PRCM_REQ_MB4_HOT_PERIOD			(PRCM_REQ_MB4 + 0x0)
200 #define HOTMON_CONFIG_LOW			BIT(0)
201 #define HOTMON_CONFIG_HIGH			BIT(1)
202 #define PRCM_REQ_MB4_A9WDOG_0			(PRCM_REQ_MB4 + 0x0)
203 #define PRCM_REQ_MB4_A9WDOG_1			(PRCM_REQ_MB4 + 0x1)
204 #define PRCM_REQ_MB4_A9WDOG_2			(PRCM_REQ_MB4 + 0x2)
205 #define PRCM_REQ_MB4_A9WDOG_3			(PRCM_REQ_MB4 + 0x3)
206 #define A9WDOG_AUTO_OFF_EN			BIT(7)
207 #define A9WDOG_AUTO_OFF_DIS			0
208 #define A9WDOG_ID_MASK				0xf
209 
210 /* Mailbox 5 Requests */
211 #define PRCM_REQ_MB5_I2C_SLAVE_OP	(PRCM_REQ_MB5 + 0x0)
212 #define PRCM_REQ_MB5_I2C_HW_BITS	(PRCM_REQ_MB5 + 0x1)
213 #define PRCM_REQ_MB5_I2C_REG		(PRCM_REQ_MB5 + 0x2)
214 #define PRCM_REQ_MB5_I2C_VAL		(PRCM_REQ_MB5 + 0x3)
215 #define PRCMU_I2C_WRITE(slave) (((slave) << 1) | BIT(6))
216 #define PRCMU_I2C_READ(slave) (((slave) << 1) | BIT(0) | BIT(6))
217 #define PRCMU_I2C_STOP_EN		BIT(3)
218 
219 /* Mailbox 5 ACKs */
220 #define PRCM_ACK_MB5_I2C_STATUS	(PRCM_ACK_MB5 + 0x1)
221 #define PRCM_ACK_MB5_I2C_VAL	(PRCM_ACK_MB5 + 0x3)
222 #define I2C_WR_OK 0x1
223 #define I2C_RD_OK 0x2
224 
225 #define NUM_MB 8
226 #define MBOX_BIT BIT
227 #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
228 
229 /*
230  * Wakeups/IRQs
231  */
232 
233 #define WAKEUP_BIT_RTC BIT(0)
234 #define WAKEUP_BIT_RTT0 BIT(1)
235 #define WAKEUP_BIT_RTT1 BIT(2)
236 #define WAKEUP_BIT_HSI0 BIT(3)
237 #define WAKEUP_BIT_HSI1 BIT(4)
238 #define WAKEUP_BIT_CA_WAKE BIT(5)
239 #define WAKEUP_BIT_USB BIT(6)
240 #define WAKEUP_BIT_ABB BIT(7)
241 #define WAKEUP_BIT_ABB_FIFO BIT(8)
242 #define WAKEUP_BIT_SYSCLK_OK BIT(9)
243 #define WAKEUP_BIT_CA_SLEEP BIT(10)
244 #define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
245 #define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
246 #define WAKEUP_BIT_ANC_OK BIT(13)
247 #define WAKEUP_BIT_SW_ERROR BIT(14)
248 #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
249 #define WAKEUP_BIT_ARM BIT(17)
250 #define WAKEUP_BIT_HOTMON_LOW BIT(18)
251 #define WAKEUP_BIT_HOTMON_HIGH BIT(19)
252 #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
253 #define WAKEUP_BIT_GPIO0 BIT(23)
254 #define WAKEUP_BIT_GPIO1 BIT(24)
255 #define WAKEUP_BIT_GPIO2 BIT(25)
256 #define WAKEUP_BIT_GPIO3 BIT(26)
257 #define WAKEUP_BIT_GPIO4 BIT(27)
258 #define WAKEUP_BIT_GPIO5 BIT(28)
259 #define WAKEUP_BIT_GPIO6 BIT(29)
260 #define WAKEUP_BIT_GPIO7 BIT(30)
261 #define WAKEUP_BIT_GPIO8 BIT(31)
262 
263 static struct {
264 	bool valid;
265 	struct prcmu_fw_version version;
266 } fw_info;
267 
268 static struct irq_domain *db8500_irq_domain;
269 
270 /*
271  * This vector maps irq numbers to the bits in the bit field used in
272  * communication with the PRCMU firmware.
273  *
274  * The reason for having this is to keep the irq numbers contiguous even though
275  * the bits in the bit field are not. (The bits also have a tendency to move
276  * around, to further complicate matters.)
277  */
278 #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name))
279 #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
280 
281 #define IRQ_PRCMU_RTC 0
282 #define IRQ_PRCMU_RTT0 1
283 #define IRQ_PRCMU_RTT1 2
284 #define IRQ_PRCMU_HSI0 3
285 #define IRQ_PRCMU_HSI1 4
286 #define IRQ_PRCMU_CA_WAKE 5
287 #define IRQ_PRCMU_USB 6
288 #define IRQ_PRCMU_ABB 7
289 #define IRQ_PRCMU_ABB_FIFO 8
290 #define IRQ_PRCMU_ARM 9
291 #define IRQ_PRCMU_MODEM_SW_RESET_REQ 10
292 #define IRQ_PRCMU_GPIO0 11
293 #define IRQ_PRCMU_GPIO1 12
294 #define IRQ_PRCMU_GPIO2 13
295 #define IRQ_PRCMU_GPIO3 14
296 #define IRQ_PRCMU_GPIO4 15
297 #define IRQ_PRCMU_GPIO5 16
298 #define IRQ_PRCMU_GPIO6 17
299 #define IRQ_PRCMU_GPIO7 18
300 #define IRQ_PRCMU_GPIO8 19
301 #define IRQ_PRCMU_CA_SLEEP 20
302 #define IRQ_PRCMU_HOTMON_LOW 21
303 #define IRQ_PRCMU_HOTMON_HIGH 22
304 #define NUM_PRCMU_WAKEUPS 23
305 
306 static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
307 	IRQ_ENTRY(RTC),
308 	IRQ_ENTRY(RTT0),
309 	IRQ_ENTRY(RTT1),
310 	IRQ_ENTRY(HSI0),
311 	IRQ_ENTRY(HSI1),
312 	IRQ_ENTRY(CA_WAKE),
313 	IRQ_ENTRY(USB),
314 	IRQ_ENTRY(ABB),
315 	IRQ_ENTRY(ABB_FIFO),
316 	IRQ_ENTRY(CA_SLEEP),
317 	IRQ_ENTRY(ARM),
318 	IRQ_ENTRY(HOTMON_LOW),
319 	IRQ_ENTRY(HOTMON_HIGH),
320 	IRQ_ENTRY(MODEM_SW_RESET_REQ),
321 	IRQ_ENTRY(GPIO0),
322 	IRQ_ENTRY(GPIO1),
323 	IRQ_ENTRY(GPIO2),
324 	IRQ_ENTRY(GPIO3),
325 	IRQ_ENTRY(GPIO4),
326 	IRQ_ENTRY(GPIO5),
327 	IRQ_ENTRY(GPIO6),
328 	IRQ_ENTRY(GPIO7),
329 	IRQ_ENTRY(GPIO8)
330 };
331 
332 #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
333 #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
334 static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
335 	WAKEUP_ENTRY(RTC),
336 	WAKEUP_ENTRY(RTT0),
337 	WAKEUP_ENTRY(RTT1),
338 	WAKEUP_ENTRY(HSI0),
339 	WAKEUP_ENTRY(HSI1),
340 	WAKEUP_ENTRY(USB),
341 	WAKEUP_ENTRY(ABB),
342 	WAKEUP_ENTRY(ABB_FIFO),
343 	WAKEUP_ENTRY(ARM)
344 };
345 
346 /*
347  * mb0_transfer - state needed for mailbox 0 communication.
348  * @lock:		The transaction lock.
349  * @dbb_events_lock:	A lock used to handle concurrent access to (parts of)
350  *			the request data.
351  * @mask_work:		Work structure used for (un)masking wakeup interrupts.
352  * @req:		Request data that need to persist between requests.
353  */
354 static struct {
355 	spinlock_t lock;
356 	spinlock_t dbb_irqs_lock;
357 	struct work_struct mask_work;
358 	struct mutex ac_wake_lock;
359 	struct completion ac_wake_work;
360 	struct {
361 		u32 dbb_irqs;
362 		u32 dbb_wakeups;
363 		u32 abb_events;
364 	} req;
365 } mb0_transfer;
366 
367 /*
368  * mb1_transfer - state needed for mailbox 1 communication.
369  * @lock:	The transaction lock.
370  * @work:	The transaction completion structure.
371  * @ape_opp:	The current APE OPP.
372  * @ack:	Reply ("acknowledge") data.
373  */
374 static struct {
375 	struct mutex lock;
376 	struct completion work;
377 	u8 ape_opp;
378 	struct {
379 		u8 header;
380 		u8 arm_opp;
381 		u8 ape_opp;
382 		u8 ape_voltage_status;
383 	} ack;
384 } mb1_transfer;
385 
386 /*
387  * mb2_transfer - state needed for mailbox 2 communication.
388  * @lock:            The transaction lock.
389  * @work:            The transaction completion structure.
390  * @auto_pm_lock:    The autonomous power management configuration lock.
391  * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
392  * @req:             Request data that need to persist between requests.
393  * @ack:             Reply ("acknowledge") data.
394  */
395 static struct {
396 	struct mutex lock;
397 	struct completion work;
398 	spinlock_t auto_pm_lock;
399 	bool auto_pm_enabled;
400 	struct {
401 		u8 status;
402 	} ack;
403 } mb2_transfer;
404 
405 /*
406  * mb3_transfer - state needed for mailbox 3 communication.
407  * @lock:		The request lock.
408  * @sysclk_lock:	A lock used to handle concurrent sysclk requests.
409  * @sysclk_work:	Work structure used for sysclk requests.
410  */
411 static struct {
412 	spinlock_t lock;
413 	struct mutex sysclk_lock;
414 	struct completion sysclk_work;
415 } mb3_transfer;
416 
417 /*
418  * mb4_transfer - state needed for mailbox 4 communication.
419  * @lock:	The transaction lock.
420  * @work:	The transaction completion structure.
421  */
422 static struct {
423 	struct mutex lock;
424 	struct completion work;
425 } mb4_transfer;
426 
427 /*
428  * mb5_transfer - state needed for mailbox 5 communication.
429  * @lock:	The transaction lock.
430  * @work:	The transaction completion structure.
431  * @ack:	Reply ("acknowledge") data.
432  */
433 static struct {
434 	struct mutex lock;
435 	struct completion work;
436 	struct {
437 		u8 status;
438 		u8 value;
439 	} ack;
440 } mb5_transfer;
441 
442 static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
443 
444 /* Spinlocks */
445 static DEFINE_SPINLOCK(prcmu_lock);
446 static DEFINE_SPINLOCK(clkout_lock);
447 
448 /* Global var to runtime determine TCDM base for v2 or v1 */
449 static __iomem void *tcdm_base;
450 static __iomem void *prcmu_base;
451 
452 struct clk_mgt {
453 	u32 offset;
454 	u32 pllsw;
455 	int branch;
456 	bool clk38div;
457 };
458 
459 enum {
460 	PLL_RAW,
461 	PLL_FIX,
462 	PLL_DIV
463 };
464 
465 static DEFINE_SPINLOCK(clk_mgt_lock);
466 
467 #define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
468 	{ (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
469 static struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
470 	CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
471 	CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
472 	CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
473 	CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
474 	CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
475 	CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
476 	CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
477 	CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
478 	CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
479 	CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
480 	CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
481 	CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
482 	CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
483 	CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
484 	CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
485 	CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
486 	CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
487 	CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
488 	CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
489 	CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
490 	CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
491 	CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
492 	CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
493 	CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
494 	CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
495 	CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
496 	CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
497 	CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
498 	CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
499 };
500 
501 struct dsiclk {
502 	u32 divsel_mask;
503 	u32 divsel_shift;
504 	u32 divsel;
505 };
506 
507 static struct dsiclk dsiclk[2] = {
508 	{
509 		.divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
510 		.divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
511 		.divsel = PRCM_DSI_PLLOUT_SEL_PHI,
512 	},
513 	{
514 		.divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
515 		.divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
516 		.divsel = PRCM_DSI_PLLOUT_SEL_PHI,
517 	}
518 };
519 
520 struct dsiescclk {
521 	u32 en;
522 	u32 div_mask;
523 	u32 div_shift;
524 };
525 
526 static struct dsiescclk dsiescclk[3] = {
527 	{
528 		.en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
529 		.div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
530 		.div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
531 	},
532 	{
533 		.en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
534 		.div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
535 		.div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
536 	},
537 	{
538 		.en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
539 		.div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
540 		.div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
541 	}
542 };
543 
544 u32 db8500_prcmu_read(unsigned int reg)
545 {
546 	return readl(prcmu_base + reg);
547 }
548 
549 void db8500_prcmu_write(unsigned int reg, u32 value)
550 {
551 	unsigned long flags;
552 
553 	spin_lock_irqsave(&prcmu_lock, flags);
554 	writel(value, (prcmu_base + reg));
555 	spin_unlock_irqrestore(&prcmu_lock, flags);
556 }
557 
558 void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
559 {
560 	u32 val;
561 	unsigned long flags;
562 
563 	spin_lock_irqsave(&prcmu_lock, flags);
564 	val = readl(prcmu_base + reg);
565 	val = ((val & ~mask) | (value & mask));
566 	writel(val, (prcmu_base + reg));
567 	spin_unlock_irqrestore(&prcmu_lock, flags);
568 }
569 
570 struct prcmu_fw_version *prcmu_get_fw_version(void)
571 {
572 	return fw_info.valid ? &fw_info.version : NULL;
573 }
574 
575 static bool prcmu_is_ulppll_disabled(void)
576 {
577 	struct prcmu_fw_version *ver;
578 
579 	ver = prcmu_get_fw_version();
580 	return ver && ver->project == PRCMU_FW_PROJECT_U8420_SYSCLK;
581 }
582 
583 bool prcmu_has_arm_maxopp(void)
584 {
585 	return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
586 		PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
587 }
588 
589 /**
590  * prcmu_set_rc_a2p - This function is used to run few power state sequences
591  * @val: Value to be set, i.e. transition requested
592  * Returns: 0 on success, -EINVAL on invalid argument
593  *
594  * This function is used to run the following power state sequences -
595  * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
596  */
597 int prcmu_set_rc_a2p(enum romcode_write val)
598 {
599 	if (val < RDY_2_DS || val > RDY_2_XP70_RST)
600 		return -EINVAL;
601 	writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
602 	return 0;
603 }
604 
605 /**
606  * prcmu_get_rc_p2a - This function is used to get power state sequences
607  * Returns: the power transition that has last happened
608  *
609  * This function can return the following transitions-
610  * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
611  */
612 enum romcode_read prcmu_get_rc_p2a(void)
613 {
614 	return readb(tcdm_base + PRCM_ROMCODE_P2A);
615 }
616 
617 /**
618  * prcmu_get_xp70_current_state - Return the current XP70 power mode
619  * Returns: Returns the current AP(ARM) power mode: init,
620  * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
621  */
622 enum ap_pwrst prcmu_get_xp70_current_state(void)
623 {
624 	return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
625 }
626 
627 /**
628  * prcmu_config_clkout - Configure one of the programmable clock outputs.
629  * @clkout:	The CLKOUT number (0 or 1).
630  * @source:	The clock to be used (one of the PRCMU_CLKSRC_*).
631  * @div:	The divider to be applied.
632  *
633  * Configures one of the programmable clock outputs (CLKOUTs).
634  * @div should be in the range [1,63] to request a configuration, or 0 to
635  * inform that the configuration is no longer requested.
636  */
637 int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
638 {
639 	static int requests[2];
640 	int r = 0;
641 	unsigned long flags;
642 	u32 val;
643 	u32 bits;
644 	u32 mask;
645 	u32 div_mask;
646 
647 	BUG_ON(clkout > 1);
648 	BUG_ON(div > 63);
649 	BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
650 
651 	if (!div && !requests[clkout])
652 		return -EINVAL;
653 
654 	if (clkout == 0) {
655 		div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
656 		mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
657 		bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
658 			(div << PRCM_CLKOCR_CLKODIV0_SHIFT));
659 	} else {
660 		div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
661 		mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
662 			PRCM_CLKOCR_CLK1TYPE);
663 		bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
664 			(div << PRCM_CLKOCR_CLKODIV1_SHIFT));
665 	}
666 	bits &= mask;
667 
668 	spin_lock_irqsave(&clkout_lock, flags);
669 
670 	val = readl(PRCM_CLKOCR);
671 	if (val & div_mask) {
672 		if (div) {
673 			if ((val & mask) != bits) {
674 				r = -EBUSY;
675 				goto unlock_and_return;
676 			}
677 		} else {
678 			if ((val & mask & ~div_mask) != bits) {
679 				r = -EINVAL;
680 				goto unlock_and_return;
681 			}
682 		}
683 	}
684 	writel((bits | (val & ~mask)), PRCM_CLKOCR);
685 	requests[clkout] += (div ? 1 : -1);
686 
687 unlock_and_return:
688 	spin_unlock_irqrestore(&clkout_lock, flags);
689 
690 	return r;
691 }
692 
693 int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
694 {
695 	unsigned long flags;
696 
697 	BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
698 
699 	spin_lock_irqsave(&mb0_transfer.lock, flags);
700 
701 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
702 		cpu_relax();
703 
704 	writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
705 	writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
706 	writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
707 	writeb((keep_ulp_clk ? 1 : 0),
708 		(tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
709 	writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
710 	writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
711 
712 	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
713 
714 	return 0;
715 }
716 
717 u8 db8500_prcmu_get_power_state_result(void)
718 {
719 	return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
720 }
721 
722 /* This function should only be called while mb0_transfer.lock is held. */
723 static void config_wakeups(void)
724 {
725 	const u8 header[2] = {
726 		MB0H_CONFIG_WAKEUPS_EXE,
727 		MB0H_CONFIG_WAKEUPS_SLEEP
728 	};
729 	static u32 last_dbb_events;
730 	static u32 last_abb_events;
731 	u32 dbb_events;
732 	u32 abb_events;
733 	unsigned int i;
734 
735 	dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
736 	dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
737 
738 	abb_events = mb0_transfer.req.abb_events;
739 
740 	if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
741 		return;
742 
743 	for (i = 0; i < 2; i++) {
744 		while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
745 			cpu_relax();
746 		writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
747 		writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
748 		writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
749 		writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
750 	}
751 	last_dbb_events = dbb_events;
752 	last_abb_events = abb_events;
753 }
754 
755 void db8500_prcmu_enable_wakeups(u32 wakeups)
756 {
757 	unsigned long flags;
758 	u32 bits;
759 	int i;
760 
761 	BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
762 
763 	for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
764 		if (wakeups & BIT(i))
765 			bits |= prcmu_wakeup_bit[i];
766 	}
767 
768 	spin_lock_irqsave(&mb0_transfer.lock, flags);
769 
770 	mb0_transfer.req.dbb_wakeups = bits;
771 	config_wakeups();
772 
773 	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
774 }
775 
776 void db8500_prcmu_config_abb_event_readout(u32 abb_events)
777 {
778 	unsigned long flags;
779 
780 	spin_lock_irqsave(&mb0_transfer.lock, flags);
781 
782 	mb0_transfer.req.abb_events = abb_events;
783 	config_wakeups();
784 
785 	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
786 }
787 
788 void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
789 {
790 	if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
791 		*buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
792 	else
793 		*buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
794 }
795 
796 /**
797  * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
798  * @opp: The new ARM operating point to which transition is to be made
799  * Returns: 0 on success, non-zero on failure
800  *
801  * This function sets the the operating point of the ARM.
802  */
803 int db8500_prcmu_set_arm_opp(u8 opp)
804 {
805 	int r;
806 
807 	if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
808 		return -EINVAL;
809 
810 	r = 0;
811 
812 	mutex_lock(&mb1_transfer.lock);
813 
814 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
815 		cpu_relax();
816 
817 	writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
818 	writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
819 	writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
820 
821 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
822 	wait_for_completion(&mb1_transfer.work);
823 
824 	if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
825 		(mb1_transfer.ack.arm_opp != opp))
826 		r = -EIO;
827 
828 	mutex_unlock(&mb1_transfer.lock);
829 
830 	return r;
831 }
832 
833 /**
834  * db8500_prcmu_get_arm_opp - get the current ARM OPP
835  *
836  * Returns: the current ARM OPP
837  */
838 int db8500_prcmu_get_arm_opp(void)
839 {
840 	return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
841 }
842 
843 /**
844  * db8500_prcmu_get_ddr_opp - get the current DDR OPP
845  *
846  * Returns: the current DDR OPP
847  */
848 int db8500_prcmu_get_ddr_opp(void)
849 {
850 	return readb(PRCM_DDR_SUBSYS_APE_MINBW);
851 }
852 
853 /* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
854 static void request_even_slower_clocks(bool enable)
855 {
856 	u32 clock_reg[] = {
857 		PRCM_ACLK_MGT,
858 		PRCM_DMACLK_MGT
859 	};
860 	unsigned long flags;
861 	unsigned int i;
862 
863 	spin_lock_irqsave(&clk_mgt_lock, flags);
864 
865 	/* Grab the HW semaphore. */
866 	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
867 		cpu_relax();
868 
869 	for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
870 		u32 val;
871 		u32 div;
872 
873 		val = readl(prcmu_base + clock_reg[i]);
874 		div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
875 		if (enable) {
876 			if ((div <= 1) || (div > 15)) {
877 				pr_err("prcmu: Bad clock divider %d in %s\n",
878 					div, __func__);
879 				goto unlock_and_return;
880 			}
881 			div <<= 1;
882 		} else {
883 			if (div <= 2)
884 				goto unlock_and_return;
885 			div >>= 1;
886 		}
887 		val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
888 			(div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
889 		writel(val, prcmu_base + clock_reg[i]);
890 	}
891 
892 unlock_and_return:
893 	/* Release the HW semaphore. */
894 	writel(0, PRCM_SEM);
895 
896 	spin_unlock_irqrestore(&clk_mgt_lock, flags);
897 }
898 
899 /**
900  * db8500_prcmu_set_ape_opp - set the appropriate APE OPP
901  * @opp: The new APE operating point to which transition is to be made
902  * Returns: 0 on success, non-zero on failure
903  *
904  * This function sets the operating point of the APE.
905  */
906 int db8500_prcmu_set_ape_opp(u8 opp)
907 {
908 	int r = 0;
909 
910 	if (opp == mb1_transfer.ape_opp)
911 		return 0;
912 
913 	mutex_lock(&mb1_transfer.lock);
914 
915 	if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
916 		request_even_slower_clocks(false);
917 
918 	if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
919 		goto skip_message;
920 
921 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
922 		cpu_relax();
923 
924 	writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
925 	writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
926 	writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
927 		(tcdm_base + PRCM_REQ_MB1_APE_OPP));
928 
929 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
930 	wait_for_completion(&mb1_transfer.work);
931 
932 	if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
933 		(mb1_transfer.ack.ape_opp != opp))
934 		r = -EIO;
935 
936 skip_message:
937 	if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
938 		(r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
939 		request_even_slower_clocks(true);
940 	if (!r)
941 		mb1_transfer.ape_opp = opp;
942 
943 	mutex_unlock(&mb1_transfer.lock);
944 
945 	return r;
946 }
947 
948 /**
949  * db8500_prcmu_get_ape_opp - get the current APE OPP
950  *
951  * Returns: the current APE OPP
952  */
953 int db8500_prcmu_get_ape_opp(void)
954 {
955 	return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
956 }
957 
958 /**
959  * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
960  * @enable: true to request the higher voltage, false to drop a request.
961  *
962  * Calls to this function to enable and disable requests must be balanced.
963  */
964 int db8500_prcmu_request_ape_opp_100_voltage(bool enable)
965 {
966 	int r = 0;
967 	u8 header;
968 	static unsigned int requests;
969 
970 	mutex_lock(&mb1_transfer.lock);
971 
972 	if (enable) {
973 		if (0 != requests++)
974 			goto unlock_and_return;
975 		header = MB1H_REQUEST_APE_OPP_100_VOLT;
976 	} else {
977 		if (requests == 0) {
978 			r = -EIO;
979 			goto unlock_and_return;
980 		} else if (1 != requests--) {
981 			goto unlock_and_return;
982 		}
983 		header = MB1H_RELEASE_APE_OPP_100_VOLT;
984 	}
985 
986 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
987 		cpu_relax();
988 
989 	writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
990 
991 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
992 	wait_for_completion(&mb1_transfer.work);
993 
994 	if ((mb1_transfer.ack.header != header) ||
995 		((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
996 		r = -EIO;
997 
998 unlock_and_return:
999 	mutex_unlock(&mb1_transfer.lock);
1000 
1001 	return r;
1002 }
1003 
1004 /**
1005  * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
1006  *
1007  * This function releases the power state requirements of a USB wakeup.
1008  */
1009 int prcmu_release_usb_wakeup_state(void)
1010 {
1011 	int r = 0;
1012 
1013 	mutex_lock(&mb1_transfer.lock);
1014 
1015 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1016 		cpu_relax();
1017 
1018 	writeb(MB1H_RELEASE_USB_WAKEUP,
1019 		(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1020 
1021 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1022 	wait_for_completion(&mb1_transfer.work);
1023 
1024 	if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
1025 		((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1026 		r = -EIO;
1027 
1028 	mutex_unlock(&mb1_transfer.lock);
1029 
1030 	return r;
1031 }
1032 
1033 static int request_pll(u8 clock, bool enable)
1034 {
1035 	int r = 0;
1036 
1037 	if (clock == PRCMU_PLLSOC0)
1038 		clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
1039 	else if (clock == PRCMU_PLLSOC1)
1040 		clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
1041 	else
1042 		return -EINVAL;
1043 
1044 	mutex_lock(&mb1_transfer.lock);
1045 
1046 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1047 		cpu_relax();
1048 
1049 	writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1050 	writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
1051 
1052 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1053 	wait_for_completion(&mb1_transfer.work);
1054 
1055 	if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
1056 		r = -EIO;
1057 
1058 	mutex_unlock(&mb1_transfer.lock);
1059 
1060 	return r;
1061 }
1062 
1063 /**
1064  * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
1065  * @epod_id: The EPOD to set
1066  * @epod_state: The new EPOD state
1067  *
1068  * This function sets the state of a EPOD (power domain). It may not be called
1069  * from interrupt context.
1070  */
1071 int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
1072 {
1073 	int r = 0;
1074 	bool ram_retention = false;
1075 	int i;
1076 
1077 	/* check argument */
1078 	BUG_ON(epod_id >= NUM_EPOD_ID);
1079 
1080 	/* set flag if retention is possible */
1081 	switch (epod_id) {
1082 	case EPOD_ID_SVAMMDSP:
1083 	case EPOD_ID_SIAMMDSP:
1084 	case EPOD_ID_ESRAM12:
1085 	case EPOD_ID_ESRAM34:
1086 		ram_retention = true;
1087 		break;
1088 	}
1089 
1090 	/* check argument */
1091 	BUG_ON(epod_state > EPOD_STATE_ON);
1092 	BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
1093 
1094 	/* get lock */
1095 	mutex_lock(&mb2_transfer.lock);
1096 
1097 	/* wait for mailbox */
1098 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
1099 		cpu_relax();
1100 
1101 	/* fill in mailbox */
1102 	for (i = 0; i < NUM_EPOD_ID; i++)
1103 		writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
1104 	writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
1105 
1106 	writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
1107 
1108 	writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
1109 
1110 	/*
1111 	 * The current firmware version does not handle errors correctly,
1112 	 * and we cannot recover if there is an error.
1113 	 * This is expected to change when the firmware is updated.
1114 	 */
1115 	if (!wait_for_completion_timeout(&mb2_transfer.work,
1116 			msecs_to_jiffies(20000))) {
1117 		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1118 			__func__);
1119 		r = -EIO;
1120 		goto unlock_and_return;
1121 	}
1122 
1123 	if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
1124 		r = -EIO;
1125 
1126 unlock_and_return:
1127 	mutex_unlock(&mb2_transfer.lock);
1128 	return r;
1129 }
1130 
1131 /**
1132  * prcmu_configure_auto_pm - Configure autonomous power management.
1133  * @sleep: Configuration for ApSleep.
1134  * @idle:  Configuration for ApIdle.
1135  */
1136 void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
1137 	struct prcmu_auto_pm_config *idle)
1138 {
1139 	u32 sleep_cfg;
1140 	u32 idle_cfg;
1141 	unsigned long flags;
1142 
1143 	BUG_ON((sleep == NULL) || (idle == NULL));
1144 
1145 	sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
1146 	sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
1147 	sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
1148 	sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
1149 	sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
1150 	sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
1151 
1152 	idle_cfg = (idle->sva_auto_pm_enable & 0xF);
1153 	idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
1154 	idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
1155 	idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
1156 	idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
1157 	idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
1158 
1159 	spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
1160 
1161 	/*
1162 	 * The autonomous power management configuration is done through
1163 	 * fields in mailbox 2, but these fields are only used as shared
1164 	 * variables - i.e. there is no need to send a message.
1165 	 */
1166 	writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
1167 	writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
1168 
1169 	mb2_transfer.auto_pm_enabled =
1170 		((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1171 		 (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1172 		 (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1173 		 (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
1174 
1175 	spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
1176 }
1177 EXPORT_SYMBOL(prcmu_configure_auto_pm);
1178 
1179 bool prcmu_is_auto_pm_enabled(void)
1180 {
1181 	return mb2_transfer.auto_pm_enabled;
1182 }
1183 
1184 static int request_sysclk(bool enable)
1185 {
1186 	int r;
1187 	unsigned long flags;
1188 
1189 	r = 0;
1190 
1191 	mutex_lock(&mb3_transfer.sysclk_lock);
1192 
1193 	spin_lock_irqsave(&mb3_transfer.lock, flags);
1194 
1195 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
1196 		cpu_relax();
1197 
1198 	writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
1199 
1200 	writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
1201 	writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
1202 
1203 	spin_unlock_irqrestore(&mb3_transfer.lock, flags);
1204 
1205 	/*
1206 	 * The firmware only sends an ACK if we want to enable the
1207 	 * SysClk, and it succeeds.
1208 	 */
1209 	if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
1210 			msecs_to_jiffies(20000))) {
1211 		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1212 			__func__);
1213 		r = -EIO;
1214 	}
1215 
1216 	mutex_unlock(&mb3_transfer.sysclk_lock);
1217 
1218 	return r;
1219 }
1220 
1221 static int request_timclk(bool enable)
1222 {
1223 	u32 val;
1224 
1225 	/*
1226 	 * On the U8420_CLKSEL firmware, the ULP (Ultra Low Power)
1227 	 * PLL is disabled so we cannot use doze mode, this will
1228 	 * stop the clock on this firmware.
1229 	 */
1230 	if (prcmu_is_ulppll_disabled())
1231 		val = 0;
1232 	else
1233 		val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
1234 
1235 	if (!enable)
1236 		val |= PRCM_TCR_STOP_TIMERS |
1237 			PRCM_TCR_DOZE_MODE |
1238 			PRCM_TCR_TENSEL_MASK;
1239 
1240 	writel(val, PRCM_TCR);
1241 
1242 	return 0;
1243 }
1244 
1245 static int request_clock(u8 clock, bool enable)
1246 {
1247 	u32 val;
1248 	unsigned long flags;
1249 
1250 	spin_lock_irqsave(&clk_mgt_lock, flags);
1251 
1252 	/* Grab the HW semaphore. */
1253 	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1254 		cpu_relax();
1255 
1256 	val = readl(prcmu_base + clk_mgt[clock].offset);
1257 	if (enable) {
1258 		val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
1259 	} else {
1260 		clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1261 		val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
1262 	}
1263 	writel(val, prcmu_base + clk_mgt[clock].offset);
1264 
1265 	/* Release the HW semaphore. */
1266 	writel(0, PRCM_SEM);
1267 
1268 	spin_unlock_irqrestore(&clk_mgt_lock, flags);
1269 
1270 	return 0;
1271 }
1272 
1273 static int request_sga_clock(u8 clock, bool enable)
1274 {
1275 	u32 val;
1276 	int ret;
1277 
1278 	if (enable) {
1279 		val = readl(PRCM_CGATING_BYPASS);
1280 		writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1281 	}
1282 
1283 	ret = request_clock(clock, enable);
1284 
1285 	if (!ret && !enable) {
1286 		val = readl(PRCM_CGATING_BYPASS);
1287 		writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1288 	}
1289 
1290 	return ret;
1291 }
1292 
1293 static inline bool plldsi_locked(void)
1294 {
1295 	return (readl(PRCM_PLLDSI_LOCKP) &
1296 		(PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1297 		 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
1298 		(PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1299 		 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
1300 }
1301 
1302 static int request_plldsi(bool enable)
1303 {
1304 	int r = 0;
1305 	u32 val;
1306 
1307 	writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1308 		PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
1309 		PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
1310 
1311 	val = readl(PRCM_PLLDSI_ENABLE);
1312 	if (enable)
1313 		val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1314 	else
1315 		val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1316 	writel(val, PRCM_PLLDSI_ENABLE);
1317 
1318 	if (enable) {
1319 		unsigned int i;
1320 		bool locked = plldsi_locked();
1321 
1322 		for (i = 10; !locked && (i > 0); --i) {
1323 			udelay(100);
1324 			locked = plldsi_locked();
1325 		}
1326 		if (locked) {
1327 			writel(PRCM_APE_RESETN_DSIPLL_RESETN,
1328 				PRCM_APE_RESETN_SET);
1329 		} else {
1330 			writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1331 				PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
1332 				PRCM_MMIP_LS_CLAMP_SET);
1333 			val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1334 			writel(val, PRCM_PLLDSI_ENABLE);
1335 			r = -EAGAIN;
1336 		}
1337 	} else {
1338 		writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
1339 	}
1340 	return r;
1341 }
1342 
1343 static int request_dsiclk(u8 n, bool enable)
1344 {
1345 	u32 val;
1346 
1347 	val = readl(PRCM_DSI_PLLOUT_SEL);
1348 	val &= ~dsiclk[n].divsel_mask;
1349 	val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
1350 		dsiclk[n].divsel_shift);
1351 	writel(val, PRCM_DSI_PLLOUT_SEL);
1352 	return 0;
1353 }
1354 
1355 static int request_dsiescclk(u8 n, bool enable)
1356 {
1357 	u32 val;
1358 
1359 	val = readl(PRCM_DSITVCLK_DIV);
1360 	enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
1361 	writel(val, PRCM_DSITVCLK_DIV);
1362 	return 0;
1363 }
1364 
1365 /**
1366  * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
1367  * @clock:      The clock for which the request is made.
1368  * @enable:     Whether the clock should be enabled (true) or disabled (false).
1369  *
1370  * This function should only be used by the clock implementation.
1371  * Do not use it from any other place!
1372  */
1373 int db8500_prcmu_request_clock(u8 clock, bool enable)
1374 {
1375 	if (clock == PRCMU_SGACLK)
1376 		return request_sga_clock(clock, enable);
1377 	else if (clock < PRCMU_NUM_REG_CLOCKS)
1378 		return request_clock(clock, enable);
1379 	else if (clock == PRCMU_TIMCLK)
1380 		return request_timclk(enable);
1381 	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1382 		return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
1383 	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1384 		return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
1385 	else if (clock == PRCMU_PLLDSI)
1386 		return request_plldsi(enable);
1387 	else if (clock == PRCMU_SYSCLK)
1388 		return request_sysclk(enable);
1389 	else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
1390 		return request_pll(clock, enable);
1391 	else
1392 		return -EINVAL;
1393 }
1394 
1395 static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
1396 	int branch)
1397 {
1398 	u64 rate;
1399 	u32 val;
1400 	u32 d;
1401 	u32 div = 1;
1402 
1403 	val = readl(reg);
1404 
1405 	rate = src_rate;
1406 	rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
1407 
1408 	d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
1409 	if (d > 1)
1410 		div *= d;
1411 
1412 	d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
1413 	if (d > 1)
1414 		div *= d;
1415 
1416 	if (val & PRCM_PLL_FREQ_SELDIV2)
1417 		div *= 2;
1418 
1419 	if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
1420 		(val & PRCM_PLL_FREQ_DIV2EN) &&
1421 		((reg == PRCM_PLLSOC0_FREQ) ||
1422 		 (reg == PRCM_PLLARM_FREQ) ||
1423 		 (reg == PRCM_PLLDDR_FREQ))))
1424 		div *= 2;
1425 
1426 	(void)do_div(rate, div);
1427 
1428 	return (unsigned long)rate;
1429 }
1430 
1431 #define ROOT_CLOCK_RATE 38400000
1432 
1433 static unsigned long clock_rate(u8 clock)
1434 {
1435 	u32 val;
1436 	u32 pllsw;
1437 	unsigned long rate = ROOT_CLOCK_RATE;
1438 
1439 	val = readl(prcmu_base + clk_mgt[clock].offset);
1440 
1441 	if (val & PRCM_CLK_MGT_CLK38) {
1442 		if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
1443 			rate /= 2;
1444 		return rate;
1445 	}
1446 
1447 	val |= clk_mgt[clock].pllsw;
1448 	pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1449 
1450 	if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1451 		rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
1452 	else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1453 		rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
1454 	else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
1455 		rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
1456 	else
1457 		return 0;
1458 
1459 	if ((clock == PRCMU_SGACLK) &&
1460 		(val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
1461 		u64 r = (rate * 10);
1462 
1463 		(void)do_div(r, 25);
1464 		return (unsigned long)r;
1465 	}
1466 	val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1467 	if (val)
1468 		return rate / val;
1469 	else
1470 		return 0;
1471 }
1472 
1473 static unsigned long armss_rate(void)
1474 {
1475 	u32 r;
1476 	unsigned long rate;
1477 
1478 	r = readl(PRCM_ARM_CHGCLKREQ);
1479 
1480 	if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) {
1481 		/* External ARMCLKFIX clock */
1482 
1483 		rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX);
1484 
1485 		/* Check PRCM_ARM_CHGCLKREQ divider */
1486 		if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL))
1487 			rate /= 2;
1488 
1489 		/* Check PRCM_ARMCLKFIX_MGT divider */
1490 		r = readl(PRCM_ARMCLKFIX_MGT);
1491 		r &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1492 		rate /= r;
1493 
1494 	} else {/* ARM PLL */
1495 		rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV);
1496 	}
1497 
1498 	return rate;
1499 }
1500 
1501 static unsigned long dsiclk_rate(u8 n)
1502 {
1503 	u32 divsel;
1504 	u32 div = 1;
1505 
1506 	divsel = readl(PRCM_DSI_PLLOUT_SEL);
1507 	divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
1508 
1509 	if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
1510 		divsel = dsiclk[n].divsel;
1511 	else
1512 		dsiclk[n].divsel = divsel;
1513 
1514 	switch (divsel) {
1515 	case PRCM_DSI_PLLOUT_SEL_PHI_4:
1516 		div *= 2;
1517 		fallthrough;
1518 	case PRCM_DSI_PLLOUT_SEL_PHI_2:
1519 		div *= 2;
1520 		fallthrough;
1521 	case PRCM_DSI_PLLOUT_SEL_PHI:
1522 		return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1523 			PLL_RAW) / div;
1524 	default:
1525 		return 0;
1526 	}
1527 }
1528 
1529 static unsigned long dsiescclk_rate(u8 n)
1530 {
1531 	u32 div;
1532 
1533 	div = readl(PRCM_DSITVCLK_DIV);
1534 	div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
1535 	return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
1536 }
1537 
1538 unsigned long prcmu_clock_rate(u8 clock)
1539 {
1540 	if (clock < PRCMU_NUM_REG_CLOCKS)
1541 		return clock_rate(clock);
1542 	else if (clock == PRCMU_TIMCLK)
1543 		return prcmu_is_ulppll_disabled() ?
1544 			32768 : ROOT_CLOCK_RATE / 16;
1545 	else if (clock == PRCMU_SYSCLK)
1546 		return ROOT_CLOCK_RATE;
1547 	else if (clock == PRCMU_PLLSOC0)
1548 		return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1549 	else if (clock == PRCMU_PLLSOC1)
1550 		return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1551 	else if (clock == PRCMU_ARMSS)
1552 		return armss_rate();
1553 	else if (clock == PRCMU_PLLDDR)
1554 		return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1555 	else if (clock == PRCMU_PLLDSI)
1556 		return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1557 			PLL_RAW);
1558 	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1559 		return dsiclk_rate(clock - PRCMU_DSI0CLK);
1560 	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1561 		return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
1562 	else
1563 		return 0;
1564 }
1565 
1566 static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
1567 {
1568 	if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
1569 		return ROOT_CLOCK_RATE;
1570 	clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
1571 	if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1572 		return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
1573 	else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1574 		return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
1575 	else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
1576 		return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
1577 	else
1578 		return 0;
1579 }
1580 
1581 static u32 clock_divider(unsigned long src_rate, unsigned long rate)
1582 {
1583 	u32 div;
1584 
1585 	div = (src_rate / rate);
1586 	if (div == 0)
1587 		return 1;
1588 	if (rate < (src_rate / div))
1589 		div++;
1590 	return div;
1591 }
1592 
1593 static long round_clock_rate(u8 clock, unsigned long rate)
1594 {
1595 	u32 val;
1596 	u32 div;
1597 	unsigned long src_rate;
1598 	long rounded_rate;
1599 
1600 	val = readl(prcmu_base + clk_mgt[clock].offset);
1601 	src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1602 		clk_mgt[clock].branch);
1603 	div = clock_divider(src_rate, rate);
1604 	if (val & PRCM_CLK_MGT_CLK38) {
1605 		if (clk_mgt[clock].clk38div) {
1606 			if (div > 2)
1607 				div = 2;
1608 		} else {
1609 			div = 1;
1610 		}
1611 	} else if ((clock == PRCMU_SGACLK) && (div == 3)) {
1612 		u64 r = (src_rate * 10);
1613 
1614 		(void)do_div(r, 25);
1615 		if (r <= rate)
1616 			return (unsigned long)r;
1617 	}
1618 	rounded_rate = (src_rate / min(div, (u32)31));
1619 
1620 	return rounded_rate;
1621 }
1622 
1623 static const unsigned long db8500_armss_freqs[] = {
1624 	199680000,
1625 	399360000,
1626 	798720000,
1627 	998400000
1628 };
1629 
1630 /* The DB8520 has slightly higher ARMSS max frequency */
1631 static const unsigned long db8520_armss_freqs[] = {
1632 	199680000,
1633 	399360000,
1634 	798720000,
1635 	1152000000
1636 };
1637 
1638 static long round_armss_rate(unsigned long rate)
1639 {
1640 	unsigned long freq = 0;
1641 	const unsigned long *freqs;
1642 	int nfreqs;
1643 	int i;
1644 
1645 	if (fw_info.version.project == PRCMU_FW_PROJECT_U8520) {
1646 		freqs = db8520_armss_freqs;
1647 		nfreqs = ARRAY_SIZE(db8520_armss_freqs);
1648 	} else {
1649 		freqs = db8500_armss_freqs;
1650 		nfreqs = ARRAY_SIZE(db8500_armss_freqs);
1651 	}
1652 
1653 	/* Find the corresponding arm opp from the cpufreq table. */
1654 	for (i = 0; i < nfreqs; i++) {
1655 		freq = freqs[i];
1656 		if (rate <= freq)
1657 			break;
1658 	}
1659 
1660 	/* Return the last valid value, even if a match was not found. */
1661 	return freq;
1662 }
1663 
1664 #define MIN_PLL_VCO_RATE 600000000ULL
1665 #define MAX_PLL_VCO_RATE 1680640000ULL
1666 
1667 static long round_plldsi_rate(unsigned long rate)
1668 {
1669 	long rounded_rate = 0;
1670 	unsigned long src_rate;
1671 	unsigned long rem;
1672 	u32 r;
1673 
1674 	src_rate = clock_rate(PRCMU_HDMICLK);
1675 	rem = rate;
1676 
1677 	for (r = 7; (rem > 0) && (r > 0); r--) {
1678 		u64 d;
1679 
1680 		d = (r * rate);
1681 		(void)do_div(d, src_rate);
1682 		if (d < 6)
1683 			d = 6;
1684 		else if (d > 255)
1685 			d = 255;
1686 		d *= src_rate;
1687 		if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
1688 			((r * MAX_PLL_VCO_RATE) < (2 * d)))
1689 			continue;
1690 		(void)do_div(d, r);
1691 		if (rate < d) {
1692 			if (rounded_rate == 0)
1693 				rounded_rate = (long)d;
1694 			break;
1695 		}
1696 		if ((rate - d) < rem) {
1697 			rem = (rate - d);
1698 			rounded_rate = (long)d;
1699 		}
1700 	}
1701 	return rounded_rate;
1702 }
1703 
1704 static long round_dsiclk_rate(unsigned long rate)
1705 {
1706 	u32 div;
1707 	unsigned long src_rate;
1708 	long rounded_rate;
1709 
1710 	src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1711 		PLL_RAW);
1712 	div = clock_divider(src_rate, rate);
1713 	rounded_rate = (src_rate / ((div > 2) ? 4 : div));
1714 
1715 	return rounded_rate;
1716 }
1717 
1718 static long round_dsiescclk_rate(unsigned long rate)
1719 {
1720 	u32 div;
1721 	unsigned long src_rate;
1722 	long rounded_rate;
1723 
1724 	src_rate = clock_rate(PRCMU_TVCLK);
1725 	div = clock_divider(src_rate, rate);
1726 	rounded_rate = (src_rate / min(div, (u32)255));
1727 
1728 	return rounded_rate;
1729 }
1730 
1731 long prcmu_round_clock_rate(u8 clock, unsigned long rate)
1732 {
1733 	if (clock < PRCMU_NUM_REG_CLOCKS)
1734 		return round_clock_rate(clock, rate);
1735 	else if (clock == PRCMU_ARMSS)
1736 		return round_armss_rate(rate);
1737 	else if (clock == PRCMU_PLLDSI)
1738 		return round_plldsi_rate(rate);
1739 	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1740 		return round_dsiclk_rate(rate);
1741 	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1742 		return round_dsiescclk_rate(rate);
1743 	else
1744 		return (long)prcmu_clock_rate(clock);
1745 }
1746 
1747 static void set_clock_rate(u8 clock, unsigned long rate)
1748 {
1749 	u32 val;
1750 	u32 div;
1751 	unsigned long src_rate;
1752 	unsigned long flags;
1753 
1754 	spin_lock_irqsave(&clk_mgt_lock, flags);
1755 
1756 	/* Grab the HW semaphore. */
1757 	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1758 		cpu_relax();
1759 
1760 	val = readl(prcmu_base + clk_mgt[clock].offset);
1761 	src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1762 		clk_mgt[clock].branch);
1763 	div = clock_divider(src_rate, rate);
1764 	if (val & PRCM_CLK_MGT_CLK38) {
1765 		if (clk_mgt[clock].clk38div) {
1766 			if (div > 1)
1767 				val |= PRCM_CLK_MGT_CLK38DIV;
1768 			else
1769 				val &= ~PRCM_CLK_MGT_CLK38DIV;
1770 		}
1771 	} else if (clock == PRCMU_SGACLK) {
1772 		val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
1773 			PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
1774 		if (div == 3) {
1775 			u64 r = (src_rate * 10);
1776 
1777 			(void)do_div(r, 25);
1778 			if (r <= rate) {
1779 				val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
1780 				div = 0;
1781 			}
1782 		}
1783 		val |= min(div, (u32)31);
1784 	} else {
1785 		val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
1786 		val |= min(div, (u32)31);
1787 	}
1788 	writel(val, prcmu_base + clk_mgt[clock].offset);
1789 
1790 	/* Release the HW semaphore. */
1791 	writel(0, PRCM_SEM);
1792 
1793 	spin_unlock_irqrestore(&clk_mgt_lock, flags);
1794 }
1795 
1796 static int set_armss_rate(unsigned long rate)
1797 {
1798 	unsigned long freq;
1799 	u8 opps[] = { ARM_EXTCLK, ARM_50_OPP, ARM_100_OPP, ARM_MAX_OPP };
1800 	const unsigned long *freqs;
1801 	int nfreqs;
1802 	int i;
1803 
1804 	if (fw_info.version.project == PRCMU_FW_PROJECT_U8520) {
1805 		freqs = db8520_armss_freqs;
1806 		nfreqs = ARRAY_SIZE(db8520_armss_freqs);
1807 	} else {
1808 		freqs = db8500_armss_freqs;
1809 		nfreqs = ARRAY_SIZE(db8500_armss_freqs);
1810 	}
1811 
1812 	/* Find the corresponding arm opp from the cpufreq table. */
1813 	for (i = 0; i < nfreqs; i++) {
1814 		freq = freqs[i];
1815 		if (rate == freq)
1816 			break;
1817 	}
1818 
1819 	if (rate != freq)
1820 		return -EINVAL;
1821 
1822 	/* Set the new arm opp. */
1823 	pr_debug("SET ARM OPP 0x%02x\n", opps[i]);
1824 	return db8500_prcmu_set_arm_opp(opps[i]);
1825 }
1826 
1827 static int set_plldsi_rate(unsigned long rate)
1828 {
1829 	unsigned long src_rate;
1830 	unsigned long rem;
1831 	u32 pll_freq = 0;
1832 	u32 r;
1833 
1834 	src_rate = clock_rate(PRCMU_HDMICLK);
1835 	rem = rate;
1836 
1837 	for (r = 7; (rem > 0) && (r > 0); r--) {
1838 		u64 d;
1839 		u64 hwrate;
1840 
1841 		d = (r * rate);
1842 		(void)do_div(d, src_rate);
1843 		if (d < 6)
1844 			d = 6;
1845 		else if (d > 255)
1846 			d = 255;
1847 		hwrate = (d * src_rate);
1848 		if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
1849 			((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
1850 			continue;
1851 		(void)do_div(hwrate, r);
1852 		if (rate < hwrate) {
1853 			if (pll_freq == 0)
1854 				pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1855 					(r << PRCM_PLL_FREQ_R_SHIFT));
1856 			break;
1857 		}
1858 		if ((rate - hwrate) < rem) {
1859 			rem = (rate - hwrate);
1860 			pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1861 				(r << PRCM_PLL_FREQ_R_SHIFT));
1862 		}
1863 	}
1864 	if (pll_freq == 0)
1865 		return -EINVAL;
1866 
1867 	pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
1868 	writel(pll_freq, PRCM_PLLDSI_FREQ);
1869 
1870 	return 0;
1871 }
1872 
1873 static void set_dsiclk_rate(u8 n, unsigned long rate)
1874 {
1875 	u32 val;
1876 	u32 div;
1877 
1878 	div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
1879 			clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
1880 
1881 	dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
1882 			   (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
1883 			   /* else */	PRCM_DSI_PLLOUT_SEL_PHI_4;
1884 
1885 	val = readl(PRCM_DSI_PLLOUT_SEL);
1886 	val &= ~dsiclk[n].divsel_mask;
1887 	val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
1888 	writel(val, PRCM_DSI_PLLOUT_SEL);
1889 }
1890 
1891 static void set_dsiescclk_rate(u8 n, unsigned long rate)
1892 {
1893 	u32 val;
1894 	u32 div;
1895 
1896 	div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
1897 	val = readl(PRCM_DSITVCLK_DIV);
1898 	val &= ~dsiescclk[n].div_mask;
1899 	val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
1900 	writel(val, PRCM_DSITVCLK_DIV);
1901 }
1902 
1903 int prcmu_set_clock_rate(u8 clock, unsigned long rate)
1904 {
1905 	if (clock < PRCMU_NUM_REG_CLOCKS)
1906 		set_clock_rate(clock, rate);
1907 	else if (clock == PRCMU_ARMSS)
1908 		return set_armss_rate(rate);
1909 	else if (clock == PRCMU_PLLDSI)
1910 		return set_plldsi_rate(rate);
1911 	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1912 		set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
1913 	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1914 		set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
1915 	return 0;
1916 }
1917 
1918 int db8500_prcmu_config_esram0_deep_sleep(u8 state)
1919 {
1920 	if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
1921 	    (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
1922 		return -EINVAL;
1923 
1924 	mutex_lock(&mb4_transfer.lock);
1925 
1926 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1927 		cpu_relax();
1928 
1929 	writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1930 	writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
1931 	       (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
1932 	writeb(DDR_PWR_STATE_ON,
1933 	       (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
1934 	writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
1935 
1936 	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1937 	wait_for_completion(&mb4_transfer.work);
1938 
1939 	mutex_unlock(&mb4_transfer.lock);
1940 
1941 	return 0;
1942 }
1943 
1944 int db8500_prcmu_config_hotdog(u8 threshold)
1945 {
1946 	mutex_lock(&mb4_transfer.lock);
1947 
1948 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1949 		cpu_relax();
1950 
1951 	writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
1952 	writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1953 
1954 	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1955 	wait_for_completion(&mb4_transfer.work);
1956 
1957 	mutex_unlock(&mb4_transfer.lock);
1958 
1959 	return 0;
1960 }
1961 
1962 int db8500_prcmu_config_hotmon(u8 low, u8 high)
1963 {
1964 	mutex_lock(&mb4_transfer.lock);
1965 
1966 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1967 		cpu_relax();
1968 
1969 	writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
1970 	writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
1971 	writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
1972 		(tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
1973 	writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1974 
1975 	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1976 	wait_for_completion(&mb4_transfer.work);
1977 
1978 	mutex_unlock(&mb4_transfer.lock);
1979 
1980 	return 0;
1981 }
1982 EXPORT_SYMBOL_GPL(db8500_prcmu_config_hotmon);
1983 
1984 static int config_hot_period(u16 val)
1985 {
1986 	mutex_lock(&mb4_transfer.lock);
1987 
1988 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1989 		cpu_relax();
1990 
1991 	writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
1992 	writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1993 
1994 	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1995 	wait_for_completion(&mb4_transfer.work);
1996 
1997 	mutex_unlock(&mb4_transfer.lock);
1998 
1999 	return 0;
2000 }
2001 
2002 int db8500_prcmu_start_temp_sense(u16 cycles32k)
2003 {
2004 	if (cycles32k == 0xFFFF)
2005 		return -EINVAL;
2006 
2007 	return config_hot_period(cycles32k);
2008 }
2009 EXPORT_SYMBOL_GPL(db8500_prcmu_start_temp_sense);
2010 
2011 int db8500_prcmu_stop_temp_sense(void)
2012 {
2013 	return config_hot_period(0xFFFF);
2014 }
2015 EXPORT_SYMBOL_GPL(db8500_prcmu_stop_temp_sense);
2016 
2017 static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
2018 {
2019 
2020 	mutex_lock(&mb4_transfer.lock);
2021 
2022 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2023 		cpu_relax();
2024 
2025 	writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
2026 	writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
2027 	writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
2028 	writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
2029 
2030 	writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2031 
2032 	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2033 	wait_for_completion(&mb4_transfer.work);
2034 
2035 	mutex_unlock(&mb4_transfer.lock);
2036 
2037 	return 0;
2038 
2039 }
2040 
2041 int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
2042 {
2043 	BUG_ON(num == 0 || num > 0xf);
2044 	return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
2045 			    sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
2046 			    A9WDOG_AUTO_OFF_DIS);
2047 }
2048 EXPORT_SYMBOL(db8500_prcmu_config_a9wdog);
2049 
2050 int db8500_prcmu_enable_a9wdog(u8 id)
2051 {
2052 	return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
2053 }
2054 EXPORT_SYMBOL(db8500_prcmu_enable_a9wdog);
2055 
2056 int db8500_prcmu_disable_a9wdog(u8 id)
2057 {
2058 	return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
2059 }
2060 EXPORT_SYMBOL(db8500_prcmu_disable_a9wdog);
2061 
2062 int db8500_prcmu_kick_a9wdog(u8 id)
2063 {
2064 	return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
2065 }
2066 EXPORT_SYMBOL(db8500_prcmu_kick_a9wdog);
2067 
2068 /*
2069  * timeout is 28 bit, in ms.
2070  */
2071 int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
2072 {
2073 	return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
2074 			    (id & A9WDOG_ID_MASK) |
2075 			    /*
2076 			     * Put the lowest 28 bits of timeout at
2077 			     * offset 4. Four first bits are used for id.
2078 			     */
2079 			    (u8)((timeout << 4) & 0xf0),
2080 			    (u8)((timeout >> 4) & 0xff),
2081 			    (u8)((timeout >> 12) & 0xff),
2082 			    (u8)((timeout >> 20) & 0xff));
2083 }
2084 EXPORT_SYMBOL(db8500_prcmu_load_a9wdog);
2085 
2086 /**
2087  * prcmu_abb_read() - Read register value(s) from the ABB.
2088  * @slave:	The I2C slave address.
2089  * @reg:	The (start) register address.
2090  * @value:	The read out value(s).
2091  * @size:	The number of registers to read.
2092  *
2093  * Reads register value(s) from the ABB.
2094  * @size has to be 1 for the current firmware version.
2095  */
2096 int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
2097 {
2098 	int r;
2099 
2100 	if (size != 1)
2101 		return -EINVAL;
2102 
2103 	mutex_lock(&mb5_transfer.lock);
2104 
2105 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2106 		cpu_relax();
2107 
2108 	writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2109 	writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2110 	writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2111 	writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2112 	writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2113 
2114 	writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2115 
2116 	if (!wait_for_completion_timeout(&mb5_transfer.work,
2117 				msecs_to_jiffies(20000))) {
2118 		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2119 			__func__);
2120 		r = -EIO;
2121 	} else {
2122 		r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
2123 	}
2124 
2125 	if (!r)
2126 		*value = mb5_transfer.ack.value;
2127 
2128 	mutex_unlock(&mb5_transfer.lock);
2129 
2130 	return r;
2131 }
2132 
2133 /**
2134  * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
2135  * @slave:	The I2C slave address.
2136  * @reg:	The (start) register address.
2137  * @value:	The value(s) to write.
2138  * @mask:	The mask(s) to use.
2139  * @size:	The number of registers to write.
2140  *
2141  * Writes masked register value(s) to the ABB.
2142  * For each @value, only the bits set to 1 in the corresponding @mask
2143  * will be written. The other bits are not changed.
2144  * @size has to be 1 for the current firmware version.
2145  */
2146 int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
2147 {
2148 	int r;
2149 
2150 	if (size != 1)
2151 		return -EINVAL;
2152 
2153 	mutex_lock(&mb5_transfer.lock);
2154 
2155 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2156 		cpu_relax();
2157 
2158 	writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2159 	writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2160 	writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2161 	writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2162 	writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2163 
2164 	writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2165 
2166 	if (!wait_for_completion_timeout(&mb5_transfer.work,
2167 				msecs_to_jiffies(20000))) {
2168 		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2169 			__func__);
2170 		r = -EIO;
2171 	} else {
2172 		r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
2173 	}
2174 
2175 	mutex_unlock(&mb5_transfer.lock);
2176 
2177 	return r;
2178 }
2179 
2180 /**
2181  * prcmu_abb_write() - Write register value(s) to the ABB.
2182  * @slave:	The I2C slave address.
2183  * @reg:	The (start) register address.
2184  * @value:	The value(s) to write.
2185  * @size:	The number of registers to write.
2186  *
2187  * Writes register value(s) to the ABB.
2188  * @size has to be 1 for the current firmware version.
2189  */
2190 int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
2191 {
2192 	u8 mask = ~0;
2193 
2194 	return prcmu_abb_write_masked(slave, reg, value, &mask, size);
2195 }
2196 
2197 /**
2198  * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
2199  */
2200 int prcmu_ac_wake_req(void)
2201 {
2202 	u32 val;
2203 	int ret = 0;
2204 
2205 	mutex_lock(&mb0_transfer.ac_wake_lock);
2206 
2207 	val = readl(PRCM_HOSTACCESS_REQ);
2208 	if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
2209 		goto unlock_and_return;
2210 
2211 	atomic_set(&ac_wake_req_state, 1);
2212 
2213 	/*
2214 	 * Force Modem Wake-up before hostaccess_req ping-pong.
2215 	 * It prevents Modem to enter in Sleep while acking the hostaccess
2216 	 * request. The 31us delay has been calculated by HWI.
2217 	 */
2218 	val |= PRCM_HOSTACCESS_REQ_WAKE_REQ;
2219 	writel(val, PRCM_HOSTACCESS_REQ);
2220 
2221 	udelay(31);
2222 
2223 	val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ;
2224 	writel(val, PRCM_HOSTACCESS_REQ);
2225 
2226 	if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2227 			msecs_to_jiffies(5000))) {
2228 		pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2229 			__func__);
2230 		ret = -EFAULT;
2231 	}
2232 
2233 unlock_and_return:
2234 	mutex_unlock(&mb0_transfer.ac_wake_lock);
2235 	return ret;
2236 }
2237 
2238 /**
2239  * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
2240  */
2241 void prcmu_ac_sleep_req(void)
2242 {
2243 	u32 val;
2244 
2245 	mutex_lock(&mb0_transfer.ac_wake_lock);
2246 
2247 	val = readl(PRCM_HOSTACCESS_REQ);
2248 	if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
2249 		goto unlock_and_return;
2250 
2251 	writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
2252 		PRCM_HOSTACCESS_REQ);
2253 
2254 	if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2255 			msecs_to_jiffies(5000))) {
2256 		pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2257 			__func__);
2258 	}
2259 
2260 	atomic_set(&ac_wake_req_state, 0);
2261 
2262 unlock_and_return:
2263 	mutex_unlock(&mb0_transfer.ac_wake_lock);
2264 }
2265 
2266 bool db8500_prcmu_is_ac_wake_requested(void)
2267 {
2268 	return (atomic_read(&ac_wake_req_state) != 0);
2269 }
2270 
2271 /**
2272  * db8500_prcmu_system_reset - System reset
2273  *
2274  * Saves the reset reason code and then sets the APE_SOFTRST register which
2275  * fires interrupt to fw
2276  *
2277  * @reset_code: The reason for system reset
2278  */
2279 void db8500_prcmu_system_reset(u16 reset_code)
2280 {
2281 	writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
2282 	writel(1, PRCM_APE_SOFTRST);
2283 }
2284 
2285 /**
2286  * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
2287  *
2288  * Retrieves the reset reason code stored by prcmu_system_reset() before
2289  * last restart.
2290  */
2291 u16 db8500_prcmu_get_reset_code(void)
2292 {
2293 	return readw(tcdm_base + PRCM_SW_RST_REASON);
2294 }
2295 
2296 /**
2297  * db8500_prcmu_modem_reset - ask the PRCMU to reset modem
2298  */
2299 void db8500_prcmu_modem_reset(void)
2300 {
2301 	mutex_lock(&mb1_transfer.lock);
2302 
2303 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
2304 		cpu_relax();
2305 
2306 	writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
2307 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
2308 	wait_for_completion(&mb1_transfer.work);
2309 
2310 	/*
2311 	 * No need to check return from PRCMU as modem should go in reset state
2312 	 * This state is already managed by upper layer
2313 	 */
2314 
2315 	mutex_unlock(&mb1_transfer.lock);
2316 }
2317 
2318 static void ack_dbb_wakeup(void)
2319 {
2320 	unsigned long flags;
2321 
2322 	spin_lock_irqsave(&mb0_transfer.lock, flags);
2323 
2324 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
2325 		cpu_relax();
2326 
2327 	writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
2328 	writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
2329 
2330 	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2331 }
2332 
2333 static inline void print_unknown_header_warning(u8 n, u8 header)
2334 {
2335 	pr_warn("prcmu: Unknown message header (%d) in mailbox %d\n",
2336 		header, n);
2337 }
2338 
2339 static bool read_mailbox_0(void)
2340 {
2341 	bool r;
2342 	u32 ev;
2343 	unsigned int n;
2344 	u8 header;
2345 
2346 	header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
2347 	switch (header) {
2348 	case MB0H_WAKEUP_EXE:
2349 	case MB0H_WAKEUP_SLEEP:
2350 		if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
2351 			ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
2352 		else
2353 			ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
2354 
2355 		if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
2356 			complete(&mb0_transfer.ac_wake_work);
2357 		if (ev & WAKEUP_BIT_SYSCLK_OK)
2358 			complete(&mb3_transfer.sysclk_work);
2359 
2360 		ev &= mb0_transfer.req.dbb_irqs;
2361 
2362 		for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
2363 			if (ev & prcmu_irq_bit[n])
2364 				generic_handle_domain_irq(db8500_irq_domain, n);
2365 		}
2366 		r = true;
2367 		break;
2368 	default:
2369 		print_unknown_header_warning(0, header);
2370 		r = false;
2371 		break;
2372 	}
2373 	writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
2374 	return r;
2375 }
2376 
2377 static bool read_mailbox_1(void)
2378 {
2379 	mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
2380 	mb1_transfer.ack.arm_opp = readb(tcdm_base +
2381 		PRCM_ACK_MB1_CURRENT_ARM_OPP);
2382 	mb1_transfer.ack.ape_opp = readb(tcdm_base +
2383 		PRCM_ACK_MB1_CURRENT_APE_OPP);
2384 	mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
2385 		PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
2386 	writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
2387 	complete(&mb1_transfer.work);
2388 	return false;
2389 }
2390 
2391 static bool read_mailbox_2(void)
2392 {
2393 	mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
2394 	writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
2395 	complete(&mb2_transfer.work);
2396 	return false;
2397 }
2398 
2399 static bool read_mailbox_3(void)
2400 {
2401 	writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
2402 	return false;
2403 }
2404 
2405 static bool read_mailbox_4(void)
2406 {
2407 	u8 header;
2408 	bool do_complete = true;
2409 
2410 	header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
2411 	switch (header) {
2412 	case MB4H_MEM_ST:
2413 	case MB4H_HOTDOG:
2414 	case MB4H_HOTMON:
2415 	case MB4H_HOT_PERIOD:
2416 	case MB4H_A9WDOG_CONF:
2417 	case MB4H_A9WDOG_EN:
2418 	case MB4H_A9WDOG_DIS:
2419 	case MB4H_A9WDOG_LOAD:
2420 	case MB4H_A9WDOG_KICK:
2421 		break;
2422 	default:
2423 		print_unknown_header_warning(4, header);
2424 		do_complete = false;
2425 		break;
2426 	}
2427 
2428 	writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
2429 
2430 	if (do_complete)
2431 		complete(&mb4_transfer.work);
2432 
2433 	return false;
2434 }
2435 
2436 static bool read_mailbox_5(void)
2437 {
2438 	mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
2439 	mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
2440 	writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
2441 	complete(&mb5_transfer.work);
2442 	return false;
2443 }
2444 
2445 static bool read_mailbox_6(void)
2446 {
2447 	writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
2448 	return false;
2449 }
2450 
2451 static bool read_mailbox_7(void)
2452 {
2453 	writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
2454 	return false;
2455 }
2456 
2457 static bool (* const read_mailbox[NUM_MB])(void) = {
2458 	read_mailbox_0,
2459 	read_mailbox_1,
2460 	read_mailbox_2,
2461 	read_mailbox_3,
2462 	read_mailbox_4,
2463 	read_mailbox_5,
2464 	read_mailbox_6,
2465 	read_mailbox_7
2466 };
2467 
2468 static irqreturn_t prcmu_irq_handler(int irq, void *data)
2469 {
2470 	u32 bits;
2471 	u8 n;
2472 	irqreturn_t r;
2473 
2474 	bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
2475 	if (unlikely(!bits))
2476 		return IRQ_NONE;
2477 
2478 	r = IRQ_HANDLED;
2479 	for (n = 0; bits; n++) {
2480 		if (bits & MBOX_BIT(n)) {
2481 			bits -= MBOX_BIT(n);
2482 			if (read_mailbox[n]())
2483 				r = IRQ_WAKE_THREAD;
2484 		}
2485 	}
2486 	return r;
2487 }
2488 
2489 static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
2490 {
2491 	ack_dbb_wakeup();
2492 	return IRQ_HANDLED;
2493 }
2494 
2495 static void prcmu_mask_work(struct work_struct *work)
2496 {
2497 	unsigned long flags;
2498 
2499 	spin_lock_irqsave(&mb0_transfer.lock, flags);
2500 
2501 	config_wakeups();
2502 
2503 	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2504 }
2505 
2506 static void prcmu_irq_mask(struct irq_data *d)
2507 {
2508 	unsigned long flags;
2509 
2510 	spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2511 
2512 	mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq];
2513 
2514 	spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2515 
2516 	if (d->irq != IRQ_PRCMU_CA_SLEEP)
2517 		schedule_work(&mb0_transfer.mask_work);
2518 }
2519 
2520 static void prcmu_irq_unmask(struct irq_data *d)
2521 {
2522 	unsigned long flags;
2523 
2524 	spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2525 
2526 	mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq];
2527 
2528 	spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2529 
2530 	if (d->irq != IRQ_PRCMU_CA_SLEEP)
2531 		schedule_work(&mb0_transfer.mask_work);
2532 }
2533 
2534 static void noop(struct irq_data *d)
2535 {
2536 }
2537 
2538 static struct irq_chip prcmu_irq_chip = {
2539 	.name		= "prcmu",
2540 	.irq_disable	= prcmu_irq_mask,
2541 	.irq_ack	= noop,
2542 	.irq_mask	= prcmu_irq_mask,
2543 	.irq_unmask	= prcmu_irq_unmask,
2544 };
2545 
2546 static char *fw_project_name(u32 project)
2547 {
2548 	switch (project) {
2549 	case PRCMU_FW_PROJECT_U8500:
2550 		return "U8500";
2551 	case PRCMU_FW_PROJECT_U8400:
2552 		return "U8400";
2553 	case PRCMU_FW_PROJECT_U9500:
2554 		return "U9500";
2555 	case PRCMU_FW_PROJECT_U8500_MBB:
2556 		return "U8500 MBB";
2557 	case PRCMU_FW_PROJECT_U8500_C1:
2558 		return "U8500 C1";
2559 	case PRCMU_FW_PROJECT_U8500_C2:
2560 		return "U8500 C2";
2561 	case PRCMU_FW_PROJECT_U8500_C3:
2562 		return "U8500 C3";
2563 	case PRCMU_FW_PROJECT_U8500_C4:
2564 		return "U8500 C4";
2565 	case PRCMU_FW_PROJECT_U9500_MBL:
2566 		return "U9500 MBL";
2567 	case PRCMU_FW_PROJECT_U8500_SSG1:
2568 		return "U8500 Samsung 1";
2569 	case PRCMU_FW_PROJECT_U8500_MBL2:
2570 		return "U8500 MBL2";
2571 	case PRCMU_FW_PROJECT_U8520:
2572 		return "U8520 MBL";
2573 	case PRCMU_FW_PROJECT_U8420:
2574 		return "U8420";
2575 	case PRCMU_FW_PROJECT_U8500_SSG2:
2576 		return "U8500 Samsung 2";
2577 	case PRCMU_FW_PROJECT_U8420_SYSCLK:
2578 		return "U8420-sysclk";
2579 	case PRCMU_FW_PROJECT_U9540:
2580 		return "U9540";
2581 	case PRCMU_FW_PROJECT_A9420:
2582 		return "A9420";
2583 	case PRCMU_FW_PROJECT_L8540:
2584 		return "L8540";
2585 	case PRCMU_FW_PROJECT_L8580:
2586 		return "L8580";
2587 	default:
2588 		return "Unknown";
2589 	}
2590 }
2591 
2592 static int db8500_irq_map(struct irq_domain *d, unsigned int virq,
2593 				irq_hw_number_t hwirq)
2594 {
2595 	irq_set_chip_and_handler(virq, &prcmu_irq_chip,
2596 				handle_simple_irq);
2597 
2598 	return 0;
2599 }
2600 
2601 static const struct irq_domain_ops db8500_irq_ops = {
2602 	.map    = db8500_irq_map,
2603 	.xlate  = irq_domain_xlate_twocell,
2604 };
2605 
2606 static int db8500_irq_init(struct device_node *np)
2607 {
2608 	int i;
2609 
2610 	db8500_irq_domain = irq_domain_add_simple(
2611 		np, NUM_PRCMU_WAKEUPS, 0,
2612 		&db8500_irq_ops, NULL);
2613 
2614 	if (!db8500_irq_domain) {
2615 		pr_err("Failed to create irqdomain\n");
2616 		return -ENOSYS;
2617 	}
2618 
2619 	/* All wakeups will be used, so create mappings for all */
2620 	for (i = 0; i < NUM_PRCMU_WAKEUPS; i++)
2621 		irq_create_mapping(db8500_irq_domain, i);
2622 
2623 	return 0;
2624 }
2625 
2626 static void dbx500_fw_version_init(struct device_node *np)
2627 {
2628 	void __iomem *tcpm_base;
2629 	u32 version;
2630 
2631 	tcpm_base = of_iomap(np, 1);
2632 	if (!tcpm_base) {
2633 		pr_err("no prcmu tcpm mem region provided\n");
2634 		return;
2635 	}
2636 
2637 	version = readl(tcpm_base + DB8500_PRCMU_FW_VERSION_OFFSET);
2638 	fw_info.version.project = (version & 0xFF);
2639 	fw_info.version.api_version = (version >> 8) & 0xFF;
2640 	fw_info.version.func_version = (version >> 16) & 0xFF;
2641 	fw_info.version.errata = (version >> 24) & 0xFF;
2642 	strncpy(fw_info.version.project_name,
2643 		fw_project_name(fw_info.version.project),
2644 		PRCMU_FW_PROJECT_NAME_LEN);
2645 	fw_info.valid = true;
2646 	pr_info("PRCMU firmware: %s(%d), version %d.%d.%d\n",
2647 		fw_info.version.project_name,
2648 		fw_info.version.project,
2649 		fw_info.version.api_version,
2650 		fw_info.version.func_version,
2651 		fw_info.version.errata);
2652 	iounmap(tcpm_base);
2653 }
2654 
2655 void __init db8500_prcmu_early_init(void)
2656 {
2657 	/*
2658 	 * This is a temporary remap to bring up the clocks. It is
2659 	 * subsequently replaces with a real remap. After the merge of
2660 	 * the mailbox subsystem all of this early code goes away, and the
2661 	 * clock driver can probe independently. An early initcall will
2662 	 * still be needed, but it can be diverted into drivers/clk/ux500.
2663 	 */
2664 	struct device_node *np;
2665 
2666 	np = of_find_compatible_node(NULL, NULL, "stericsson,db8500-prcmu");
2667 	prcmu_base = of_iomap(np, 0);
2668 	if (!prcmu_base) {
2669 		of_node_put(np);
2670 		pr_err("%s: ioremap() of prcmu registers failed!\n", __func__);
2671 		return;
2672 	}
2673 	dbx500_fw_version_init(np);
2674 	of_node_put(np);
2675 
2676 	spin_lock_init(&mb0_transfer.lock);
2677 	spin_lock_init(&mb0_transfer.dbb_irqs_lock);
2678 	mutex_init(&mb0_transfer.ac_wake_lock);
2679 	init_completion(&mb0_transfer.ac_wake_work);
2680 	mutex_init(&mb1_transfer.lock);
2681 	init_completion(&mb1_transfer.work);
2682 	mb1_transfer.ape_opp = APE_NO_CHANGE;
2683 	mutex_init(&mb2_transfer.lock);
2684 	init_completion(&mb2_transfer.work);
2685 	spin_lock_init(&mb2_transfer.auto_pm_lock);
2686 	spin_lock_init(&mb3_transfer.lock);
2687 	mutex_init(&mb3_transfer.sysclk_lock);
2688 	init_completion(&mb3_transfer.sysclk_work);
2689 	mutex_init(&mb4_transfer.lock);
2690 	init_completion(&mb4_transfer.work);
2691 	mutex_init(&mb5_transfer.lock);
2692 	init_completion(&mb5_transfer.work);
2693 
2694 	INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
2695 }
2696 
2697 static void init_prcm_registers(void)
2698 {
2699 	u32 val;
2700 
2701 	val = readl(PRCM_A9PL_FORCE_CLKEN);
2702 	val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
2703 		PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
2704 	writel(val, (PRCM_A9PL_FORCE_CLKEN));
2705 }
2706 
2707 /*
2708  * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
2709  */
2710 static struct regulator_consumer_supply db8500_vape_consumers[] = {
2711 	REGULATOR_SUPPLY("v-ape", NULL),
2712 	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2713 	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2714 	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2715 	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
2716 	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
2717 	/* "v-mmc" changed to "vcore" in the mainline kernel */
2718 	REGULATOR_SUPPLY("vcore", "sdi0"),
2719 	REGULATOR_SUPPLY("vcore", "sdi1"),
2720 	REGULATOR_SUPPLY("vcore", "sdi2"),
2721 	REGULATOR_SUPPLY("vcore", "sdi3"),
2722 	REGULATOR_SUPPLY("vcore", "sdi4"),
2723 	REGULATOR_SUPPLY("v-dma", "dma40.0"),
2724 	REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2725 	/* "v-uart" changed to "vcore" in the mainline kernel */
2726 	REGULATOR_SUPPLY("vcore", "uart0"),
2727 	REGULATOR_SUPPLY("vcore", "uart1"),
2728 	REGULATOR_SUPPLY("vcore", "uart2"),
2729 	REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
2730 	REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
2731 	REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
2732 };
2733 
2734 static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
2735 	REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2736 	/* AV8100 regulator */
2737 	REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2738 };
2739 
2740 static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
2741 	REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
2742 	REGULATOR_SUPPLY("vsupply", "mcde"),
2743 };
2744 
2745 /* SVA MMDSP regulator switch */
2746 static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
2747 	REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2748 };
2749 
2750 /* SVA pipe regulator switch */
2751 static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
2752 	REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2753 };
2754 
2755 /* SIA MMDSP regulator switch */
2756 static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
2757 	REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2758 };
2759 
2760 /* SIA pipe regulator switch */
2761 static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
2762 	REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2763 };
2764 
2765 static struct regulator_consumer_supply db8500_sga_consumers[] = {
2766 	REGULATOR_SUPPLY("v-mali", NULL),
2767 };
2768 
2769 /* ESRAM1 and 2 regulator switch */
2770 static struct regulator_consumer_supply db8500_esram12_consumers[] = {
2771 	REGULATOR_SUPPLY("esram12", "cm_control"),
2772 };
2773 
2774 /* ESRAM3 and 4 regulator switch */
2775 static struct regulator_consumer_supply db8500_esram34_consumers[] = {
2776 	REGULATOR_SUPPLY("v-esram34", "mcde"),
2777 	REGULATOR_SUPPLY("esram34", "cm_control"),
2778 	REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
2779 };
2780 
2781 static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
2782 	[DB8500_REGULATOR_VAPE] = {
2783 		.constraints = {
2784 			.name = "db8500-vape",
2785 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2786 			.always_on = true,
2787 		},
2788 		.consumer_supplies = db8500_vape_consumers,
2789 		.num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
2790 	},
2791 	[DB8500_REGULATOR_VARM] = {
2792 		.constraints = {
2793 			.name = "db8500-varm",
2794 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2795 		},
2796 	},
2797 	[DB8500_REGULATOR_VMODEM] = {
2798 		.constraints = {
2799 			.name = "db8500-vmodem",
2800 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2801 		},
2802 	},
2803 	[DB8500_REGULATOR_VPLL] = {
2804 		.constraints = {
2805 			.name = "db8500-vpll",
2806 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2807 		},
2808 	},
2809 	[DB8500_REGULATOR_VSMPS1] = {
2810 		.constraints = {
2811 			.name = "db8500-vsmps1",
2812 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2813 		},
2814 	},
2815 	[DB8500_REGULATOR_VSMPS2] = {
2816 		.constraints = {
2817 			.name = "db8500-vsmps2",
2818 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2819 		},
2820 		.consumer_supplies = db8500_vsmps2_consumers,
2821 		.num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
2822 	},
2823 	[DB8500_REGULATOR_VSMPS3] = {
2824 		.constraints = {
2825 			.name = "db8500-vsmps3",
2826 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2827 		},
2828 	},
2829 	[DB8500_REGULATOR_VRF1] = {
2830 		.constraints = {
2831 			.name = "db8500-vrf1",
2832 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2833 		},
2834 	},
2835 	[DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
2836 		/* dependency to u8500-vape is handled outside regulator framework */
2837 		.constraints = {
2838 			.name = "db8500-sva-mmdsp",
2839 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2840 		},
2841 		.consumer_supplies = db8500_svammdsp_consumers,
2842 		.num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
2843 	},
2844 	[DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
2845 		.constraints = {
2846 			/* "ret" means "retention" */
2847 			.name = "db8500-sva-mmdsp-ret",
2848 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2849 		},
2850 	},
2851 	[DB8500_REGULATOR_SWITCH_SVAPIPE] = {
2852 		/* dependency to u8500-vape is handled outside regulator framework */
2853 		.constraints = {
2854 			.name = "db8500-sva-pipe",
2855 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2856 		},
2857 		.consumer_supplies = db8500_svapipe_consumers,
2858 		.num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
2859 	},
2860 	[DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
2861 		/* dependency to u8500-vape is handled outside regulator framework */
2862 		.constraints = {
2863 			.name = "db8500-sia-mmdsp",
2864 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2865 		},
2866 		.consumer_supplies = db8500_siammdsp_consumers,
2867 		.num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
2868 	},
2869 	[DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
2870 		.constraints = {
2871 			.name = "db8500-sia-mmdsp-ret",
2872 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2873 		},
2874 	},
2875 	[DB8500_REGULATOR_SWITCH_SIAPIPE] = {
2876 		/* dependency to u8500-vape is handled outside regulator framework */
2877 		.constraints = {
2878 			.name = "db8500-sia-pipe",
2879 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2880 		},
2881 		.consumer_supplies = db8500_siapipe_consumers,
2882 		.num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
2883 	},
2884 	[DB8500_REGULATOR_SWITCH_SGA] = {
2885 		.supply_regulator = "db8500-vape",
2886 		.constraints = {
2887 			.name = "db8500-sga",
2888 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2889 		},
2890 		.consumer_supplies = db8500_sga_consumers,
2891 		.num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
2892 
2893 	},
2894 	[DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
2895 		.supply_regulator = "db8500-vape",
2896 		.constraints = {
2897 			.name = "db8500-b2r2-mcde",
2898 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2899 		},
2900 		.consumer_supplies = db8500_b2r2_mcde_consumers,
2901 		.num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
2902 	},
2903 	[DB8500_REGULATOR_SWITCH_ESRAM12] = {
2904 		/*
2905 		 * esram12 is set in retention and supplied by Vsafe when Vape is off,
2906 		 * no need to hold Vape
2907 		 */
2908 		.constraints = {
2909 			.name = "db8500-esram12",
2910 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2911 		},
2912 		.consumer_supplies = db8500_esram12_consumers,
2913 		.num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
2914 	},
2915 	[DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
2916 		.constraints = {
2917 			.name = "db8500-esram12-ret",
2918 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2919 		},
2920 	},
2921 	[DB8500_REGULATOR_SWITCH_ESRAM34] = {
2922 		/*
2923 		 * esram34 is set in retention and supplied by Vsafe when Vape is off,
2924 		 * no need to hold Vape
2925 		 */
2926 		.constraints = {
2927 			.name = "db8500-esram34",
2928 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2929 		},
2930 		.consumer_supplies = db8500_esram34_consumers,
2931 		.num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
2932 	},
2933 	[DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
2934 		.constraints = {
2935 			.name = "db8500-esram34-ret",
2936 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2937 		},
2938 	},
2939 };
2940 
2941 static const struct mfd_cell common_prcmu_devs[] = {
2942 	MFD_CELL_NAME("db8500_wdt"),
2943 	MFD_CELL_NAME("db8500-cpuidle"),
2944 };
2945 
2946 static const struct mfd_cell db8500_prcmu_devs[] = {
2947 	MFD_CELL_OF("db8500-prcmu-regulators", NULL,
2948 		    &db8500_regulators, sizeof(db8500_regulators), 0,
2949 		    "stericsson,db8500-prcmu-regulator"),
2950 	MFD_CELL_OF("db8500-thermal",
2951 		    NULL, NULL, 0, 0, "stericsson,db8500-thermal"),
2952 };
2953 
2954 static int db8500_prcmu_register_ab8500(struct device *parent)
2955 {
2956 	struct device_node *np;
2957 	struct resource ab850x_resource;
2958 	const struct mfd_cell ab8500_cell = {
2959 		.name = "ab8500-core",
2960 		.of_compatible = "stericsson,ab8500",
2961 		.id = AB8500_VERSION_AB8500,
2962 		.resources = &ab850x_resource,
2963 		.num_resources = 1,
2964 	};
2965 	const struct mfd_cell ab8505_cell = {
2966 		.name = "ab8505-core",
2967 		.of_compatible = "stericsson,ab8505",
2968 		.id = AB8500_VERSION_AB8505,
2969 		.resources = &ab850x_resource,
2970 		.num_resources = 1,
2971 	};
2972 	const struct mfd_cell *ab850x_cell;
2973 
2974 	if (!parent->of_node)
2975 		return -ENODEV;
2976 
2977 	/* Look up the device node, sneak the IRQ out of it */
2978 	for_each_child_of_node(parent->of_node, np) {
2979 		if (of_device_is_compatible(np, ab8500_cell.of_compatible)) {
2980 			ab850x_cell = &ab8500_cell;
2981 			break;
2982 		}
2983 		if (of_device_is_compatible(np, ab8505_cell.of_compatible)) {
2984 			ab850x_cell = &ab8505_cell;
2985 			break;
2986 		}
2987 	}
2988 	if (!np) {
2989 		dev_info(parent, "could not find AB850X node in the device tree\n");
2990 		return -ENODEV;
2991 	}
2992 	of_irq_to_resource_table(np, &ab850x_resource, 1);
2993 
2994 	return mfd_add_devices(parent, 0, ab850x_cell, 1, NULL, 0, NULL);
2995 }
2996 
2997 static int db8500_prcmu_probe(struct platform_device *pdev)
2998 {
2999 	struct device_node *np = pdev->dev.of_node;
3000 	int irq = 0, err = 0;
3001 	struct resource *res;
3002 
3003 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu");
3004 	if (!res) {
3005 		dev_err(&pdev->dev, "no prcmu memory region provided\n");
3006 		return -EINVAL;
3007 	}
3008 	prcmu_base = devm_ioremap(&pdev->dev, res->start, resource_size(res));
3009 	if (!prcmu_base) {
3010 		dev_err(&pdev->dev,
3011 			"failed to ioremap prcmu register memory\n");
3012 		return -ENOMEM;
3013 	}
3014 	init_prcm_registers();
3015 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu-tcdm");
3016 	if (!res) {
3017 		dev_err(&pdev->dev, "no prcmu tcdm region provided\n");
3018 		return -EINVAL;
3019 	}
3020 	tcdm_base = devm_ioremap(&pdev->dev, res->start,
3021 			resource_size(res));
3022 	if (!tcdm_base) {
3023 		dev_err(&pdev->dev,
3024 			"failed to ioremap prcmu-tcdm register memory\n");
3025 		return -ENOMEM;
3026 	}
3027 
3028 	/* Clean up the mailbox interrupts after pre-kernel code. */
3029 	writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
3030 
3031 	irq = platform_get_irq(pdev, 0);
3032 	if (irq <= 0)
3033 		return irq;
3034 
3035 	err = request_threaded_irq(irq, prcmu_irq_handler,
3036 	        prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
3037 	if (err < 0) {
3038 		pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
3039 		return err;
3040 	}
3041 
3042 	db8500_irq_init(np);
3043 
3044 	prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
3045 
3046 	err = mfd_add_devices(&pdev->dev, 0, common_prcmu_devs,
3047 			      ARRAY_SIZE(common_prcmu_devs), NULL, 0, db8500_irq_domain);
3048 	if (err) {
3049 		pr_err("prcmu: Failed to add subdevices\n");
3050 		return err;
3051 	}
3052 
3053 	/* TODO: Remove restriction when clk definitions are available. */
3054 	if (!of_machine_is_compatible("st-ericsson,u8540")) {
3055 		err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
3056 				      ARRAY_SIZE(db8500_prcmu_devs), NULL, 0,
3057 				      db8500_irq_domain);
3058 		if (err) {
3059 			mfd_remove_devices(&pdev->dev);
3060 			pr_err("prcmu: Failed to add subdevices\n");
3061 			return err;
3062 		}
3063 	}
3064 
3065 	err = db8500_prcmu_register_ab8500(&pdev->dev);
3066 	if (err) {
3067 		mfd_remove_devices(&pdev->dev);
3068 		pr_err("prcmu: Failed to add ab8500 subdevice\n");
3069 		return err;
3070 	}
3071 
3072 	pr_info("DB8500 PRCMU initialized\n");
3073 	return err;
3074 }
3075 static const struct of_device_id db8500_prcmu_match[] = {
3076 	{ .compatible = "stericsson,db8500-prcmu"},
3077 	{ },
3078 };
3079 
3080 static struct platform_driver db8500_prcmu_driver = {
3081 	.driver = {
3082 		.name = "db8500-prcmu",
3083 		.of_match_table = db8500_prcmu_match,
3084 	},
3085 	.probe = db8500_prcmu_probe,
3086 };
3087 
3088 static int __init db8500_prcmu_init(void)
3089 {
3090 	return platform_driver_register(&db8500_prcmu_driver);
3091 }
3092 core_initcall(db8500_prcmu_init);
3093