xref: /openbmc/linux/drivers/mfd/db8500-prcmu.c (revision 992b133a)
1 /*
2  * Copyright (C) STMicroelectronics 2009
3  * Copyright (C) ST-Ericsson SA 2010
4  *
5  * License Terms: GNU General Public License v2
6  * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
7  * Author: Sundar Iyer <sundar.iyer@stericsson.com>
8  * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
9  *
10  * U8500 PRCM Unit interface driver
11  *
12  */
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/delay.h>
16 #include <linux/errno.h>
17 #include <linux/err.h>
18 #include <linux/spinlock.h>
19 #include <linux/io.h>
20 #include <linux/slab.h>
21 #include <linux/mutex.h>
22 #include <linux/completion.h>
23 #include <linux/irq.h>
24 #include <linux/jiffies.h>
25 #include <linux/bitops.h>
26 #include <linux/fs.h>
27 #include <linux/platform_device.h>
28 #include <linux/uaccess.h>
29 #include <linux/mfd/core.h>
30 #include <linux/mfd/dbx500-prcmu.h>
31 #include <linux/regulator/db8500-prcmu.h>
32 #include <linux/regulator/machine.h>
33 #include <mach/hardware.h>
34 #include <mach/irqs.h>
35 #include <mach/db8500-regs.h>
36 #include <mach/id.h>
37 #include "dbx500-prcmu-regs.h"
38 
39 /* Offset for the firmware version within the TCPM */
40 #define PRCMU_FW_VERSION_OFFSET 0xA4
41 
42 /* Index of different voltages to be used when accessing AVSData */
43 #define PRCM_AVS_BASE		0x2FC
44 #define PRCM_AVS_VBB_RET	(PRCM_AVS_BASE + 0x0)
45 #define PRCM_AVS_VBB_MAX_OPP	(PRCM_AVS_BASE + 0x1)
46 #define PRCM_AVS_VBB_100_OPP	(PRCM_AVS_BASE + 0x2)
47 #define PRCM_AVS_VBB_50_OPP	(PRCM_AVS_BASE + 0x3)
48 #define PRCM_AVS_VARM_MAX_OPP	(PRCM_AVS_BASE + 0x4)
49 #define PRCM_AVS_VARM_100_OPP	(PRCM_AVS_BASE + 0x5)
50 #define PRCM_AVS_VARM_50_OPP	(PRCM_AVS_BASE + 0x6)
51 #define PRCM_AVS_VARM_RET	(PRCM_AVS_BASE + 0x7)
52 #define PRCM_AVS_VAPE_100_OPP	(PRCM_AVS_BASE + 0x8)
53 #define PRCM_AVS_VAPE_50_OPP	(PRCM_AVS_BASE + 0x9)
54 #define PRCM_AVS_VMOD_100_OPP	(PRCM_AVS_BASE + 0xA)
55 #define PRCM_AVS_VMOD_50_OPP	(PRCM_AVS_BASE + 0xB)
56 #define PRCM_AVS_VSAFE		(PRCM_AVS_BASE + 0xC)
57 
58 #define PRCM_AVS_VOLTAGE		0
59 #define PRCM_AVS_VOLTAGE_MASK		0x3f
60 #define PRCM_AVS_ISSLOWSTARTUP		6
61 #define PRCM_AVS_ISSLOWSTARTUP_MASK	(1 << PRCM_AVS_ISSLOWSTARTUP)
62 #define PRCM_AVS_ISMODEENABLE		7
63 #define PRCM_AVS_ISMODEENABLE_MASK	(1 << PRCM_AVS_ISMODEENABLE)
64 
65 #define PRCM_BOOT_STATUS	0xFFF
66 #define PRCM_ROMCODE_A2P	0xFFE
67 #define PRCM_ROMCODE_P2A	0xFFD
68 #define PRCM_XP70_CUR_PWR_STATE 0xFFC      /* 4 BYTES */
69 
70 #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
71 
72 #define _PRCM_MBOX_HEADER		0xFE8 /* 16 bytes */
73 #define PRCM_MBOX_HEADER_REQ_MB0	(_PRCM_MBOX_HEADER + 0x0)
74 #define PRCM_MBOX_HEADER_REQ_MB1	(_PRCM_MBOX_HEADER + 0x1)
75 #define PRCM_MBOX_HEADER_REQ_MB2	(_PRCM_MBOX_HEADER + 0x2)
76 #define PRCM_MBOX_HEADER_REQ_MB3	(_PRCM_MBOX_HEADER + 0x3)
77 #define PRCM_MBOX_HEADER_REQ_MB4	(_PRCM_MBOX_HEADER + 0x4)
78 #define PRCM_MBOX_HEADER_REQ_MB5	(_PRCM_MBOX_HEADER + 0x5)
79 #define PRCM_MBOX_HEADER_ACK_MB0	(_PRCM_MBOX_HEADER + 0x8)
80 
81 /* Req Mailboxes */
82 #define PRCM_REQ_MB0 0xFDC /* 12 bytes  */
83 #define PRCM_REQ_MB1 0xFD0 /* 12 bytes  */
84 #define PRCM_REQ_MB2 0xFC0 /* 16 bytes  */
85 #define PRCM_REQ_MB3 0xE4C /* 372 bytes  */
86 #define PRCM_REQ_MB4 0xE48 /* 4 bytes  */
87 #define PRCM_REQ_MB5 0xE44 /* 4 bytes  */
88 
89 /* Ack Mailboxes */
90 #define PRCM_ACK_MB0 0xE08 /* 52 bytes  */
91 #define PRCM_ACK_MB1 0xE04 /* 4 bytes */
92 #define PRCM_ACK_MB2 0xE00 /* 4 bytes */
93 #define PRCM_ACK_MB3 0xDFC /* 4 bytes */
94 #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
95 #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
96 
97 /* Mailbox 0 headers */
98 #define MB0H_POWER_STATE_TRANS		0
99 #define MB0H_CONFIG_WAKEUPS_EXE		1
100 #define MB0H_READ_WAKEUP_ACK		3
101 #define MB0H_CONFIG_WAKEUPS_SLEEP	4
102 
103 #define MB0H_WAKEUP_EXE 2
104 #define MB0H_WAKEUP_SLEEP 5
105 
106 /* Mailbox 0 REQs */
107 #define PRCM_REQ_MB0_AP_POWER_STATE	(PRCM_REQ_MB0 + 0x0)
108 #define PRCM_REQ_MB0_AP_PLL_STATE	(PRCM_REQ_MB0 + 0x1)
109 #define PRCM_REQ_MB0_ULP_CLOCK_STATE	(PRCM_REQ_MB0 + 0x2)
110 #define PRCM_REQ_MB0_DO_NOT_WFI		(PRCM_REQ_MB0 + 0x3)
111 #define PRCM_REQ_MB0_WAKEUP_8500	(PRCM_REQ_MB0 + 0x4)
112 #define PRCM_REQ_MB0_WAKEUP_4500	(PRCM_REQ_MB0 + 0x8)
113 
114 /* Mailbox 0 ACKs */
115 #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS	(PRCM_ACK_MB0 + 0x0)
116 #define PRCM_ACK_MB0_READ_POINTER	(PRCM_ACK_MB0 + 0x1)
117 #define PRCM_ACK_MB0_WAKEUP_0_8500	(PRCM_ACK_MB0 + 0x4)
118 #define PRCM_ACK_MB0_WAKEUP_0_4500	(PRCM_ACK_MB0 + 0x8)
119 #define PRCM_ACK_MB0_WAKEUP_1_8500	(PRCM_ACK_MB0 + 0x1C)
120 #define PRCM_ACK_MB0_WAKEUP_1_4500	(PRCM_ACK_MB0 + 0x20)
121 #define PRCM_ACK_MB0_EVENT_4500_NUMBERS	20
122 
123 /* Mailbox 1 headers */
124 #define MB1H_ARM_APE_OPP 0x0
125 #define MB1H_RESET_MODEM 0x2
126 #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
127 #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
128 #define MB1H_RELEASE_USB_WAKEUP 0x5
129 #define MB1H_PLL_ON_OFF 0x6
130 
131 /* Mailbox 1 Requests */
132 #define PRCM_REQ_MB1_ARM_OPP			(PRCM_REQ_MB1 + 0x0)
133 #define PRCM_REQ_MB1_APE_OPP			(PRCM_REQ_MB1 + 0x1)
134 #define PRCM_REQ_MB1_PLL_ON_OFF			(PRCM_REQ_MB1 + 0x4)
135 #define PLL_SOC0_OFF	0x1
136 #define PLL_SOC0_ON	0x2
137 #define PLL_SOC1_OFF	0x4
138 #define PLL_SOC1_ON	0x8
139 
140 /* Mailbox 1 ACKs */
141 #define PRCM_ACK_MB1_CURRENT_ARM_OPP	(PRCM_ACK_MB1 + 0x0)
142 #define PRCM_ACK_MB1_CURRENT_APE_OPP	(PRCM_ACK_MB1 + 0x1)
143 #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS	(PRCM_ACK_MB1 + 0x2)
144 #define PRCM_ACK_MB1_DVFS_STATUS	(PRCM_ACK_MB1 + 0x3)
145 
146 /* Mailbox 2 headers */
147 #define MB2H_DPS	0x0
148 #define MB2H_AUTO_PWR	0x1
149 
150 /* Mailbox 2 REQs */
151 #define PRCM_REQ_MB2_SVA_MMDSP		(PRCM_REQ_MB2 + 0x0)
152 #define PRCM_REQ_MB2_SVA_PIPE		(PRCM_REQ_MB2 + 0x1)
153 #define PRCM_REQ_MB2_SIA_MMDSP		(PRCM_REQ_MB2 + 0x2)
154 #define PRCM_REQ_MB2_SIA_PIPE		(PRCM_REQ_MB2 + 0x3)
155 #define PRCM_REQ_MB2_SGA		(PRCM_REQ_MB2 + 0x4)
156 #define PRCM_REQ_MB2_B2R2_MCDE		(PRCM_REQ_MB2 + 0x5)
157 #define PRCM_REQ_MB2_ESRAM12		(PRCM_REQ_MB2 + 0x6)
158 #define PRCM_REQ_MB2_ESRAM34		(PRCM_REQ_MB2 + 0x7)
159 #define PRCM_REQ_MB2_AUTO_PM_SLEEP	(PRCM_REQ_MB2 + 0x8)
160 #define PRCM_REQ_MB2_AUTO_PM_IDLE	(PRCM_REQ_MB2 + 0xC)
161 
162 /* Mailbox 2 ACKs */
163 #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
164 #define HWACC_PWR_ST_OK 0xFE
165 
166 /* Mailbox 3 headers */
167 #define MB3H_ANC	0x0
168 #define MB3H_SIDETONE	0x1
169 #define MB3H_SYSCLK	0xE
170 
171 /* Mailbox 3 Requests */
172 #define PRCM_REQ_MB3_ANC_FIR_COEFF	(PRCM_REQ_MB3 + 0x0)
173 #define PRCM_REQ_MB3_ANC_IIR_COEFF	(PRCM_REQ_MB3 + 0x20)
174 #define PRCM_REQ_MB3_ANC_SHIFTER	(PRCM_REQ_MB3 + 0x60)
175 #define PRCM_REQ_MB3_ANC_WARP		(PRCM_REQ_MB3 + 0x64)
176 #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN	(PRCM_REQ_MB3 + 0x68)
177 #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF	(PRCM_REQ_MB3 + 0x6C)
178 #define PRCM_REQ_MB3_SYSCLK_MGT		(PRCM_REQ_MB3 + 0x16C)
179 
180 /* Mailbox 4 headers */
181 #define MB4H_DDR_INIT	0x0
182 #define MB4H_MEM_ST	0x1
183 #define MB4H_HOTDOG	0x12
184 #define MB4H_HOTMON	0x13
185 #define MB4H_HOT_PERIOD	0x14
186 #define MB4H_A9WDOG_CONF 0x16
187 #define MB4H_A9WDOG_EN   0x17
188 #define MB4H_A9WDOG_DIS  0x18
189 #define MB4H_A9WDOG_LOAD 0x19
190 #define MB4H_A9WDOG_KICK 0x20
191 
192 /* Mailbox 4 Requests */
193 #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE	(PRCM_REQ_MB4 + 0x0)
194 #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE	(PRCM_REQ_MB4 + 0x1)
195 #define PRCM_REQ_MB4_ESRAM0_ST			(PRCM_REQ_MB4 + 0x3)
196 #define PRCM_REQ_MB4_HOTDOG_THRESHOLD		(PRCM_REQ_MB4 + 0x0)
197 #define PRCM_REQ_MB4_HOTMON_LOW			(PRCM_REQ_MB4 + 0x0)
198 #define PRCM_REQ_MB4_HOTMON_HIGH		(PRCM_REQ_MB4 + 0x1)
199 #define PRCM_REQ_MB4_HOTMON_CONFIG		(PRCM_REQ_MB4 + 0x2)
200 #define PRCM_REQ_MB4_HOT_PERIOD			(PRCM_REQ_MB4 + 0x0)
201 #define HOTMON_CONFIG_LOW			BIT(0)
202 #define HOTMON_CONFIG_HIGH			BIT(1)
203 #define PRCM_REQ_MB4_A9WDOG_0			(PRCM_REQ_MB4 + 0x0)
204 #define PRCM_REQ_MB4_A9WDOG_1			(PRCM_REQ_MB4 + 0x1)
205 #define PRCM_REQ_MB4_A9WDOG_2			(PRCM_REQ_MB4 + 0x2)
206 #define PRCM_REQ_MB4_A9WDOG_3			(PRCM_REQ_MB4 + 0x3)
207 #define A9WDOG_AUTO_OFF_EN			BIT(7)
208 #define A9WDOG_AUTO_OFF_DIS			0
209 #define A9WDOG_ID_MASK				0xf
210 
211 /* Mailbox 5 Requests */
212 #define PRCM_REQ_MB5_I2C_SLAVE_OP	(PRCM_REQ_MB5 + 0x0)
213 #define PRCM_REQ_MB5_I2C_HW_BITS	(PRCM_REQ_MB5 + 0x1)
214 #define PRCM_REQ_MB5_I2C_REG		(PRCM_REQ_MB5 + 0x2)
215 #define PRCM_REQ_MB5_I2C_VAL		(PRCM_REQ_MB5 + 0x3)
216 #define PRCMU_I2C_WRITE(slave) \
217 	(((slave) << 1) | (cpu_is_u8500v2() ? BIT(6) : 0))
218 #define PRCMU_I2C_READ(slave) \
219 	(((slave) << 1) | BIT(0) | (cpu_is_u8500v2() ? BIT(6) : 0))
220 #define PRCMU_I2C_STOP_EN		BIT(3)
221 
222 /* Mailbox 5 ACKs */
223 #define PRCM_ACK_MB5_I2C_STATUS	(PRCM_ACK_MB5 + 0x1)
224 #define PRCM_ACK_MB5_I2C_VAL	(PRCM_ACK_MB5 + 0x3)
225 #define I2C_WR_OK 0x1
226 #define I2C_RD_OK 0x2
227 
228 #define NUM_MB 8
229 #define MBOX_BIT BIT
230 #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
231 
232 /*
233  * Wakeups/IRQs
234  */
235 
236 #define WAKEUP_BIT_RTC BIT(0)
237 #define WAKEUP_BIT_RTT0 BIT(1)
238 #define WAKEUP_BIT_RTT1 BIT(2)
239 #define WAKEUP_BIT_HSI0 BIT(3)
240 #define WAKEUP_BIT_HSI1 BIT(4)
241 #define WAKEUP_BIT_CA_WAKE BIT(5)
242 #define WAKEUP_BIT_USB BIT(6)
243 #define WAKEUP_BIT_ABB BIT(7)
244 #define WAKEUP_BIT_ABB_FIFO BIT(8)
245 #define WAKEUP_BIT_SYSCLK_OK BIT(9)
246 #define WAKEUP_BIT_CA_SLEEP BIT(10)
247 #define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
248 #define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
249 #define WAKEUP_BIT_ANC_OK BIT(13)
250 #define WAKEUP_BIT_SW_ERROR BIT(14)
251 #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
252 #define WAKEUP_BIT_ARM BIT(17)
253 #define WAKEUP_BIT_HOTMON_LOW BIT(18)
254 #define WAKEUP_BIT_HOTMON_HIGH BIT(19)
255 #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
256 #define WAKEUP_BIT_GPIO0 BIT(23)
257 #define WAKEUP_BIT_GPIO1 BIT(24)
258 #define WAKEUP_BIT_GPIO2 BIT(25)
259 #define WAKEUP_BIT_GPIO3 BIT(26)
260 #define WAKEUP_BIT_GPIO4 BIT(27)
261 #define WAKEUP_BIT_GPIO5 BIT(28)
262 #define WAKEUP_BIT_GPIO6 BIT(29)
263 #define WAKEUP_BIT_GPIO7 BIT(30)
264 #define WAKEUP_BIT_GPIO8 BIT(31)
265 
266 static struct {
267 	bool valid;
268 	struct prcmu_fw_version version;
269 } fw_info;
270 
271 /*
272  * This vector maps irq numbers to the bits in the bit field used in
273  * communication with the PRCMU firmware.
274  *
275  * The reason for having this is to keep the irq numbers contiguous even though
276  * the bits in the bit field are not. (The bits also have a tendency to move
277  * around, to further complicate matters.)
278  */
279 #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name) - IRQ_PRCMU_BASE)
280 #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
281 static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
282 	IRQ_ENTRY(RTC),
283 	IRQ_ENTRY(RTT0),
284 	IRQ_ENTRY(RTT1),
285 	IRQ_ENTRY(HSI0),
286 	IRQ_ENTRY(HSI1),
287 	IRQ_ENTRY(CA_WAKE),
288 	IRQ_ENTRY(USB),
289 	IRQ_ENTRY(ABB),
290 	IRQ_ENTRY(ABB_FIFO),
291 	IRQ_ENTRY(CA_SLEEP),
292 	IRQ_ENTRY(ARM),
293 	IRQ_ENTRY(HOTMON_LOW),
294 	IRQ_ENTRY(HOTMON_HIGH),
295 	IRQ_ENTRY(MODEM_SW_RESET_REQ),
296 	IRQ_ENTRY(GPIO0),
297 	IRQ_ENTRY(GPIO1),
298 	IRQ_ENTRY(GPIO2),
299 	IRQ_ENTRY(GPIO3),
300 	IRQ_ENTRY(GPIO4),
301 	IRQ_ENTRY(GPIO5),
302 	IRQ_ENTRY(GPIO6),
303 	IRQ_ENTRY(GPIO7),
304 	IRQ_ENTRY(GPIO8)
305 };
306 
307 #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
308 #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
309 static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
310 	WAKEUP_ENTRY(RTC),
311 	WAKEUP_ENTRY(RTT0),
312 	WAKEUP_ENTRY(RTT1),
313 	WAKEUP_ENTRY(HSI0),
314 	WAKEUP_ENTRY(HSI1),
315 	WAKEUP_ENTRY(USB),
316 	WAKEUP_ENTRY(ABB),
317 	WAKEUP_ENTRY(ABB_FIFO),
318 	WAKEUP_ENTRY(ARM)
319 };
320 
321 /*
322  * mb0_transfer - state needed for mailbox 0 communication.
323  * @lock:		The transaction lock.
324  * @dbb_events_lock:	A lock used to handle concurrent access to (parts of)
325  *			the request data.
326  * @mask_work:		Work structure used for (un)masking wakeup interrupts.
327  * @req:		Request data that need to persist between requests.
328  */
329 static struct {
330 	spinlock_t lock;
331 	spinlock_t dbb_irqs_lock;
332 	struct work_struct mask_work;
333 	struct mutex ac_wake_lock;
334 	struct completion ac_wake_work;
335 	struct {
336 		u32 dbb_irqs;
337 		u32 dbb_wakeups;
338 		u32 abb_events;
339 	} req;
340 } mb0_transfer;
341 
342 /*
343  * mb1_transfer - state needed for mailbox 1 communication.
344  * @lock:	The transaction lock.
345  * @work:	The transaction completion structure.
346  * @ack:	Reply ("acknowledge") data.
347  */
348 static struct {
349 	struct mutex lock;
350 	struct completion work;
351 	struct {
352 		u8 header;
353 		u8 arm_opp;
354 		u8 ape_opp;
355 		u8 ape_voltage_status;
356 	} ack;
357 } mb1_transfer;
358 
359 /*
360  * mb2_transfer - state needed for mailbox 2 communication.
361  * @lock:            The transaction lock.
362  * @work:            The transaction completion structure.
363  * @auto_pm_lock:    The autonomous power management configuration lock.
364  * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
365  * @req:             Request data that need to persist between requests.
366  * @ack:             Reply ("acknowledge") data.
367  */
368 static struct {
369 	struct mutex lock;
370 	struct completion work;
371 	spinlock_t auto_pm_lock;
372 	bool auto_pm_enabled;
373 	struct {
374 		u8 status;
375 	} ack;
376 } mb2_transfer;
377 
378 /*
379  * mb3_transfer - state needed for mailbox 3 communication.
380  * @lock:		The request lock.
381  * @sysclk_lock:	A lock used to handle concurrent sysclk requests.
382  * @sysclk_work:	Work structure used for sysclk requests.
383  */
384 static struct {
385 	spinlock_t lock;
386 	struct mutex sysclk_lock;
387 	struct completion sysclk_work;
388 } mb3_transfer;
389 
390 /*
391  * mb4_transfer - state needed for mailbox 4 communication.
392  * @lock:	The transaction lock.
393  * @work:	The transaction completion structure.
394  */
395 static struct {
396 	struct mutex lock;
397 	struct completion work;
398 } mb4_transfer;
399 
400 /*
401  * mb5_transfer - state needed for mailbox 5 communication.
402  * @lock:	The transaction lock.
403  * @work:	The transaction completion structure.
404  * @ack:	Reply ("acknowledge") data.
405  */
406 static struct {
407 	struct mutex lock;
408 	struct completion work;
409 	struct {
410 		u8 status;
411 		u8 value;
412 	} ack;
413 } mb5_transfer;
414 
415 static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
416 
417 /* Spinlocks */
418 static DEFINE_SPINLOCK(clkout_lock);
419 static DEFINE_SPINLOCK(gpiocr_lock);
420 
421 /* Global var to runtime determine TCDM base for v2 or v1 */
422 static __iomem void *tcdm_base;
423 
424 struct clk_mgt {
425 	void __iomem *reg;
426 	u32 pllsw;
427 	int branch;
428 	bool clk38div;
429 };
430 
431 enum {
432 	PLL_RAW,
433 	PLL_FIX,
434 	PLL_DIV
435 };
436 
437 static DEFINE_SPINLOCK(clk_mgt_lock);
438 
439 #define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
440 	{ (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
441 struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
442 	CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
443 	CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
444 	CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
445 	CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
446 	CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
447 	CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
448 	CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
449 	CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
450 	CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
451 	CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
452 	CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
453 	CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
454 	CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
455 	CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
456 	CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
457 	CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
458 	CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
459 	CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
460 	CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
461 	CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
462 	CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
463 	CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
464 	CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
465 	CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
466 	CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
467 	CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
468 	CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
469 	CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
470 	CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
471 };
472 
473 struct dsiclk {
474 	u32 divsel_mask;
475 	u32 divsel_shift;
476 	u32 divsel;
477 };
478 
479 static struct dsiclk dsiclk[2] = {
480 	{
481 		.divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
482 		.divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
483 		.divsel = PRCM_DSI_PLLOUT_SEL_PHI,
484 	},
485 	{
486 		.divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
487 		.divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
488 		.divsel = PRCM_DSI_PLLOUT_SEL_PHI,
489 	}
490 };
491 
492 struct dsiescclk {
493 	u32 en;
494 	u32 div_mask;
495 	u32 div_shift;
496 };
497 
498 static struct dsiescclk dsiescclk[3] = {
499 	{
500 		.en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
501 		.div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
502 		.div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
503 	},
504 	{
505 		.en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
506 		.div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
507 		.div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
508 	},
509 	{
510 		.en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
511 		.div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
512 		.div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
513 	}
514 };
515 
516 static struct regulator *hwacc_regulator[NUM_HW_ACC];
517 static struct regulator *hwacc_ret_regulator[NUM_HW_ACC];
518 
519 static bool hwacc_enabled[NUM_HW_ACC];
520 static bool hwacc_ret_enabled[NUM_HW_ACC];
521 
522 static const char *hwacc_regulator_name[NUM_HW_ACC] = {
523 	[HW_ACC_SVAMMDSP]	= "hwacc-sva-mmdsp",
524 	[HW_ACC_SVAPIPE]	= "hwacc-sva-pipe",
525 	[HW_ACC_SIAMMDSP]	= "hwacc-sia-mmdsp",
526 	[HW_ACC_SIAPIPE]	= "hwacc-sia-pipe",
527 	[HW_ACC_SGA]		= "hwacc-sga",
528 	[HW_ACC_B2R2]		= "hwacc-b2r2",
529 	[HW_ACC_MCDE]		= "hwacc-mcde",
530 	[HW_ACC_ESRAM1]		= "hwacc-esram1",
531 	[HW_ACC_ESRAM2]		= "hwacc-esram2",
532 	[HW_ACC_ESRAM3]		= "hwacc-esram3",
533 	[HW_ACC_ESRAM4]		= "hwacc-esram4",
534 };
535 
536 static const char *hwacc_ret_regulator_name[NUM_HW_ACC] = {
537 	[HW_ACC_SVAMMDSP]	= "hwacc-sva-mmdsp-ret",
538 	[HW_ACC_SIAMMDSP]	= "hwacc-sia-mmdsp-ret",
539 	[HW_ACC_ESRAM1]		= "hwacc-esram1-ret",
540 	[HW_ACC_ESRAM2]		= "hwacc-esram2-ret",
541 	[HW_ACC_ESRAM3]		= "hwacc-esram3-ret",
542 	[HW_ACC_ESRAM4]		= "hwacc-esram4-ret",
543 };
544 
545 /*
546 * Used by MCDE to setup all necessary PRCMU registers
547 */
548 #define PRCMU_RESET_DSIPLL		0x00004000
549 #define PRCMU_UNCLAMP_DSIPLL		0x00400800
550 
551 #define PRCMU_CLK_PLL_DIV_SHIFT		0
552 #define PRCMU_CLK_PLL_SW_SHIFT		5
553 #define PRCMU_CLK_38			(1 << 9)
554 #define PRCMU_CLK_38_SRC		(1 << 10)
555 #define PRCMU_CLK_38_DIV		(1 << 11)
556 
557 /* PLLDIV=12, PLLSW=4 (PLLDDR) */
558 #define PRCMU_DSI_CLOCK_SETTING		0x0000008C
559 
560 /* DPI 50000000 Hz */
561 #define PRCMU_DPI_CLOCK_SETTING		((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
562 					  (16 << PRCMU_CLK_PLL_DIV_SHIFT))
563 #define PRCMU_DSI_LP_CLOCK_SETTING	0x00000E00
564 
565 /* D=101, N=1, R=4, SELDIV2=0 */
566 #define PRCMU_PLLDSI_FREQ_SETTING	0x00040165
567 
568 #define PRCMU_ENABLE_PLLDSI		0x00000001
569 #define PRCMU_DISABLE_PLLDSI		0x00000000
570 #define PRCMU_RELEASE_RESET_DSS		0x0000400C
571 #define PRCMU_DSI_PLLOUT_SEL_SETTING	0x00000202
572 /* ESC clk, div0=1, div1=1, div2=3 */
573 #define PRCMU_ENABLE_ESCAPE_CLOCK_DIV	0x07030101
574 #define PRCMU_DISABLE_ESCAPE_CLOCK_DIV	0x00030101
575 #define PRCMU_DSI_RESET_SW		0x00000007
576 
577 #define PRCMU_PLLDSI_LOCKP_LOCKED	0x3
578 
579 int db8500_prcmu_enable_dsipll(void)
580 {
581 	int i;
582 
583 	/* Clear DSIPLL_RESETN */
584 	writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR);
585 	/* Unclamp DSIPLL in/out */
586 	writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR);
587 
588 	/* Set DSI PLL FREQ */
589 	writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ);
590 	writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL);
591 	/* Enable Escape clocks */
592 	writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
593 
594 	/* Start DSI PLL */
595 	writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
596 	/* Reset DSI PLL */
597 	writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET);
598 	for (i = 0; i < 10; i++) {
599 		if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED)
600 					== PRCMU_PLLDSI_LOCKP_LOCKED)
601 			break;
602 		udelay(100);
603 	}
604 	/* Set DSIPLL_RESETN */
605 	writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET);
606 	return 0;
607 }
608 
609 int db8500_prcmu_disable_dsipll(void)
610 {
611 	/* Disable dsi pll */
612 	writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
613 	/* Disable  escapeclock */
614 	writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
615 	return 0;
616 }
617 
618 int db8500_prcmu_set_display_clocks(void)
619 {
620 	unsigned long flags;
621 
622 	spin_lock_irqsave(&clk_mgt_lock, flags);
623 
624 	/* Grab the HW semaphore. */
625 	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
626 		cpu_relax();
627 
628 	writel(PRCMU_DSI_CLOCK_SETTING, PRCM_HDMICLK_MGT);
629 	writel(PRCMU_DSI_LP_CLOCK_SETTING, PRCM_TVCLK_MGT);
630 	writel(PRCMU_DPI_CLOCK_SETTING, PRCM_LCDCLK_MGT);
631 
632 	/* Release the HW semaphore. */
633 	writel(0, PRCM_SEM);
634 
635 	spin_unlock_irqrestore(&clk_mgt_lock, flags);
636 
637 	return 0;
638 }
639 
640 /**
641  * prcmu_enable_spi2 - Enables pin muxing for SPI2 on OtherAlternateC1.
642  */
643 void prcmu_enable_spi2(void)
644 {
645 	u32 reg;
646 	unsigned long flags;
647 
648 	spin_lock_irqsave(&gpiocr_lock, flags);
649 	reg = readl(PRCM_GPIOCR);
650 	writel(reg | PRCM_GPIOCR_SPI2_SELECT, PRCM_GPIOCR);
651 	spin_unlock_irqrestore(&gpiocr_lock, flags);
652 }
653 
654 /**
655  * prcmu_disable_spi2 - Disables pin muxing for SPI2 on OtherAlternateC1.
656  */
657 void prcmu_disable_spi2(void)
658 {
659 	u32 reg;
660 	unsigned long flags;
661 
662 	spin_lock_irqsave(&gpiocr_lock, flags);
663 	reg = readl(PRCM_GPIOCR);
664 	writel(reg & ~PRCM_GPIOCR_SPI2_SELECT, PRCM_GPIOCR);
665 	spin_unlock_irqrestore(&gpiocr_lock, flags);
666 }
667 
668 struct prcmu_fw_version *prcmu_get_fw_version(void)
669 {
670 	return fw_info.valid ? &fw_info.version : NULL;
671 }
672 
673 bool prcmu_has_arm_maxopp(void)
674 {
675 	return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
676 		PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
677 }
678 
679 /**
680  * prcmu_get_boot_status - PRCMU boot status checking
681  * Returns: the current PRCMU boot status
682  */
683 int prcmu_get_boot_status(void)
684 {
685 	return readb(tcdm_base + PRCM_BOOT_STATUS);
686 }
687 
688 /**
689  * prcmu_set_rc_a2p - This function is used to run few power state sequences
690  * @val: Value to be set, i.e. transition requested
691  * Returns: 0 on success, -EINVAL on invalid argument
692  *
693  * This function is used to run the following power state sequences -
694  * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
695  */
696 int prcmu_set_rc_a2p(enum romcode_write val)
697 {
698 	if (val < RDY_2_DS || val > RDY_2_XP70_RST)
699 		return -EINVAL;
700 	writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
701 	return 0;
702 }
703 
704 /**
705  * prcmu_get_rc_p2a - This function is used to get power state sequences
706  * Returns: the power transition that has last happened
707  *
708  * This function can return the following transitions-
709  * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
710  */
711 enum romcode_read prcmu_get_rc_p2a(void)
712 {
713 	return readb(tcdm_base + PRCM_ROMCODE_P2A);
714 }
715 
716 /**
717  * prcmu_get_current_mode - Return the current XP70 power mode
718  * Returns: Returns the current AP(ARM) power mode: init,
719  * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
720  */
721 enum ap_pwrst prcmu_get_xp70_current_state(void)
722 {
723 	return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
724 }
725 
726 /**
727  * prcmu_config_clkout - Configure one of the programmable clock outputs.
728  * @clkout:	The CLKOUT number (0 or 1).
729  * @source:	The clock to be used (one of the PRCMU_CLKSRC_*).
730  * @div:	The divider to be applied.
731  *
732  * Configures one of the programmable clock outputs (CLKOUTs).
733  * @div should be in the range [1,63] to request a configuration, or 0 to
734  * inform that the configuration is no longer requested.
735  */
736 int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
737 {
738 	static int requests[2];
739 	int r = 0;
740 	unsigned long flags;
741 	u32 val;
742 	u32 bits;
743 	u32 mask;
744 	u32 div_mask;
745 
746 	BUG_ON(clkout > 1);
747 	BUG_ON(div > 63);
748 	BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
749 
750 	if (!div && !requests[clkout])
751 		return -EINVAL;
752 
753 	switch (clkout) {
754 	case 0:
755 		div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
756 		mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
757 		bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
758 			(div << PRCM_CLKOCR_CLKODIV0_SHIFT));
759 		break;
760 	case 1:
761 		div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
762 		mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
763 			PRCM_CLKOCR_CLK1TYPE);
764 		bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
765 			(div << PRCM_CLKOCR_CLKODIV1_SHIFT));
766 		break;
767 	}
768 	bits &= mask;
769 
770 	spin_lock_irqsave(&clkout_lock, flags);
771 
772 	val = readl(PRCM_CLKOCR);
773 	if (val & div_mask) {
774 		if (div) {
775 			if ((val & mask) != bits) {
776 				r = -EBUSY;
777 				goto unlock_and_return;
778 			}
779 		} else {
780 			if ((val & mask & ~div_mask) != bits) {
781 				r = -EINVAL;
782 				goto unlock_and_return;
783 			}
784 		}
785 	}
786 	writel((bits | (val & ~mask)), PRCM_CLKOCR);
787 	requests[clkout] += (div ? 1 : -1);
788 
789 unlock_and_return:
790 	spin_unlock_irqrestore(&clkout_lock, flags);
791 
792 	return r;
793 }
794 
795 int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
796 {
797 	unsigned long flags;
798 
799 	BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
800 
801 	spin_lock_irqsave(&mb0_transfer.lock, flags);
802 
803 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
804 		cpu_relax();
805 
806 	writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
807 	writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
808 	writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
809 	writeb((keep_ulp_clk ? 1 : 0),
810 		(tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
811 	writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
812 	writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
813 
814 	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
815 
816 	return 0;
817 }
818 
819 /* This function should only be called while mb0_transfer.lock is held. */
820 static void config_wakeups(void)
821 {
822 	const u8 header[2] = {
823 		MB0H_CONFIG_WAKEUPS_EXE,
824 		MB0H_CONFIG_WAKEUPS_SLEEP
825 	};
826 	static u32 last_dbb_events;
827 	static u32 last_abb_events;
828 	u32 dbb_events;
829 	u32 abb_events;
830 	unsigned int i;
831 
832 	dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
833 	dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
834 
835 	abb_events = mb0_transfer.req.abb_events;
836 
837 	if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
838 		return;
839 
840 	for (i = 0; i < 2; i++) {
841 		while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
842 			cpu_relax();
843 		writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
844 		writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
845 		writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
846 		writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
847 	}
848 	last_dbb_events = dbb_events;
849 	last_abb_events = abb_events;
850 }
851 
852 void db8500_prcmu_enable_wakeups(u32 wakeups)
853 {
854 	unsigned long flags;
855 	u32 bits;
856 	int i;
857 
858 	BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
859 
860 	for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
861 		if (wakeups & BIT(i))
862 			bits |= prcmu_wakeup_bit[i];
863 	}
864 
865 	spin_lock_irqsave(&mb0_transfer.lock, flags);
866 
867 	mb0_transfer.req.dbb_wakeups = bits;
868 	config_wakeups();
869 
870 	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
871 }
872 
873 void db8500_prcmu_config_abb_event_readout(u32 abb_events)
874 {
875 	unsigned long flags;
876 
877 	spin_lock_irqsave(&mb0_transfer.lock, flags);
878 
879 	mb0_transfer.req.abb_events = abb_events;
880 	config_wakeups();
881 
882 	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
883 }
884 
885 void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
886 {
887 	if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
888 		*buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
889 	else
890 		*buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
891 }
892 
893 /**
894  * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
895  * @opp: The new ARM operating point to which transition is to be made
896  * Returns: 0 on success, non-zero on failure
897  *
898  * This function sets the the operating point of the ARM.
899  */
900 int db8500_prcmu_set_arm_opp(u8 opp)
901 {
902 	int r;
903 
904 	if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
905 		return -EINVAL;
906 
907 	r = 0;
908 
909 	mutex_lock(&mb1_transfer.lock);
910 
911 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
912 		cpu_relax();
913 
914 	writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
915 	writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
916 	writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
917 
918 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
919 	wait_for_completion(&mb1_transfer.work);
920 
921 	if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
922 		(mb1_transfer.ack.arm_opp != opp))
923 		r = -EIO;
924 
925 	mutex_unlock(&mb1_transfer.lock);
926 
927 	return r;
928 }
929 
930 /**
931  * db8500_prcmu_get_arm_opp - get the current ARM OPP
932  *
933  * Returns: the current ARM OPP
934  */
935 int db8500_prcmu_get_arm_opp(void)
936 {
937 	return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
938 }
939 
940 /**
941  * db8500_prcmu_get_ddr_opp - get the current DDR OPP
942  *
943  * Returns: the current DDR OPP
944  */
945 int db8500_prcmu_get_ddr_opp(void)
946 {
947 	return readb(PRCM_DDR_SUBSYS_APE_MINBW);
948 }
949 
950 /**
951  * db8500_set_ddr_opp - set the appropriate DDR OPP
952  * @opp: The new DDR operating point to which transition is to be made
953  * Returns: 0 on success, non-zero on failure
954  *
955  * This function sets the operating point of the DDR.
956  */
957 int db8500_prcmu_set_ddr_opp(u8 opp)
958 {
959 	if (opp < DDR_100_OPP || opp > DDR_25_OPP)
960 		return -EINVAL;
961 	/* Changing the DDR OPP can hang the hardware pre-v21 */
962 	if (cpu_is_u8500v20_or_later() && !cpu_is_u8500v20())
963 		writeb(opp, PRCM_DDR_SUBSYS_APE_MINBW);
964 
965 	return 0;
966 }
967 
968 /**
969  * db8500_set_ape_opp - set the appropriate APE OPP
970  * @opp: The new APE operating point to which transition is to be made
971  * Returns: 0 on success, non-zero on failure
972  *
973  * This function sets the operating point of the APE.
974  */
975 int db8500_prcmu_set_ape_opp(u8 opp)
976 {
977 	int r = 0;
978 
979 	mutex_lock(&mb1_transfer.lock);
980 
981 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
982 		cpu_relax();
983 
984 	writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
985 	writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
986 	writeb(opp, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
987 
988 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
989 	wait_for_completion(&mb1_transfer.work);
990 
991 	if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
992 		(mb1_transfer.ack.ape_opp != opp))
993 		r = -EIO;
994 
995 	mutex_unlock(&mb1_transfer.lock);
996 
997 	return r;
998 }
999 
1000 /**
1001  * db8500_prcmu_get_ape_opp - get the current APE OPP
1002  *
1003  * Returns: the current APE OPP
1004  */
1005 int db8500_prcmu_get_ape_opp(void)
1006 {
1007 	return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
1008 }
1009 
1010 /**
1011  * prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
1012  * @enable: true to request the higher voltage, false to drop a request.
1013  *
1014  * Calls to this function to enable and disable requests must be balanced.
1015  */
1016 int prcmu_request_ape_opp_100_voltage(bool enable)
1017 {
1018 	int r = 0;
1019 	u8 header;
1020 	static unsigned int requests;
1021 
1022 	mutex_lock(&mb1_transfer.lock);
1023 
1024 	if (enable) {
1025 		if (0 != requests++)
1026 			goto unlock_and_return;
1027 		header = MB1H_REQUEST_APE_OPP_100_VOLT;
1028 	} else {
1029 		if (requests == 0) {
1030 			r = -EIO;
1031 			goto unlock_and_return;
1032 		} else if (1 != requests--) {
1033 			goto unlock_and_return;
1034 		}
1035 		header = MB1H_RELEASE_APE_OPP_100_VOLT;
1036 	}
1037 
1038 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1039 		cpu_relax();
1040 
1041 	writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1042 
1043 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1044 	wait_for_completion(&mb1_transfer.work);
1045 
1046 	if ((mb1_transfer.ack.header != header) ||
1047 		((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1048 		r = -EIO;
1049 
1050 unlock_and_return:
1051 	mutex_unlock(&mb1_transfer.lock);
1052 
1053 	return r;
1054 }
1055 
1056 /**
1057  * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
1058  *
1059  * This function releases the power state requirements of a USB wakeup.
1060  */
1061 int prcmu_release_usb_wakeup_state(void)
1062 {
1063 	int r = 0;
1064 
1065 	mutex_lock(&mb1_transfer.lock);
1066 
1067 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1068 		cpu_relax();
1069 
1070 	writeb(MB1H_RELEASE_USB_WAKEUP,
1071 		(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1072 
1073 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1074 	wait_for_completion(&mb1_transfer.work);
1075 
1076 	if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
1077 		((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1078 		r = -EIO;
1079 
1080 	mutex_unlock(&mb1_transfer.lock);
1081 
1082 	return r;
1083 }
1084 
1085 static int request_pll(u8 clock, bool enable)
1086 {
1087 	int r = 0;
1088 
1089 	if (clock == PRCMU_PLLSOC0)
1090 		clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
1091 	else if (clock == PRCMU_PLLSOC1)
1092 		clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
1093 	else
1094 		return -EINVAL;
1095 
1096 	mutex_lock(&mb1_transfer.lock);
1097 
1098 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1099 		cpu_relax();
1100 
1101 	writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1102 	writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
1103 
1104 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1105 	wait_for_completion(&mb1_transfer.work);
1106 
1107 	if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
1108 		r = -EIO;
1109 
1110 	mutex_unlock(&mb1_transfer.lock);
1111 
1112 	return r;
1113 }
1114 
1115 /**
1116  * prcmu_set_hwacc - set the power state of a h/w accelerator
1117  * @hwacc_dev: The hardware accelerator (enum hw_acc_dev).
1118  * @state: The new power state (enum hw_acc_state).
1119  *
1120  * This function sets the power state of a hardware accelerator.
1121  * This function should not be called from interrupt context.
1122  *
1123  * NOTE! Deprecated, to be removed when all users switched over to use the
1124  * regulator framework API.
1125  */
1126 int prcmu_set_hwacc(u16 hwacc_dev, u8 state)
1127 {
1128 	int r = 0;
1129 	bool ram_retention = false;
1130 	bool enable, enable_ret;
1131 
1132 	/* check argument */
1133 	BUG_ON(hwacc_dev >= NUM_HW_ACC);
1134 
1135 	/* get state of switches */
1136 	enable = hwacc_enabled[hwacc_dev];
1137 	enable_ret = hwacc_ret_enabled[hwacc_dev];
1138 
1139 	/* set flag if retention is possible */
1140 	switch (hwacc_dev) {
1141 	case HW_ACC_SVAMMDSP:
1142 	case HW_ACC_SIAMMDSP:
1143 	case HW_ACC_ESRAM1:
1144 	case HW_ACC_ESRAM2:
1145 	case HW_ACC_ESRAM3:
1146 	case HW_ACC_ESRAM4:
1147 		ram_retention = true;
1148 		break;
1149 	}
1150 
1151 	/* check argument */
1152 	BUG_ON(state > HW_ON);
1153 	BUG_ON(state == HW_OFF_RAMRET && !ram_retention);
1154 
1155 	/* modify enable flags */
1156 	switch (state) {
1157 	case HW_OFF:
1158 		enable_ret = false;
1159 		enable = false;
1160 		break;
1161 	case HW_ON:
1162 		enable = true;
1163 		break;
1164 	case HW_OFF_RAMRET:
1165 		enable_ret = true;
1166 		enable = false;
1167 		break;
1168 	}
1169 
1170 	/* get regulator (lazy) */
1171 	if (hwacc_regulator[hwacc_dev] == NULL) {
1172 		hwacc_regulator[hwacc_dev] = regulator_get(NULL,
1173 			hwacc_regulator_name[hwacc_dev]);
1174 		if (IS_ERR(hwacc_regulator[hwacc_dev])) {
1175 			pr_err("prcmu: failed to get supply %s\n",
1176 				hwacc_regulator_name[hwacc_dev]);
1177 			r = PTR_ERR(hwacc_regulator[hwacc_dev]);
1178 			goto out;
1179 		}
1180 	}
1181 
1182 	if (ram_retention) {
1183 		if (hwacc_ret_regulator[hwacc_dev] == NULL) {
1184 			hwacc_ret_regulator[hwacc_dev] = regulator_get(NULL,
1185 				hwacc_ret_regulator_name[hwacc_dev]);
1186 			if (IS_ERR(hwacc_ret_regulator[hwacc_dev])) {
1187 				pr_err("prcmu: failed to get supply %s\n",
1188 					hwacc_ret_regulator_name[hwacc_dev]);
1189 				r = PTR_ERR(hwacc_ret_regulator[hwacc_dev]);
1190 				goto out;
1191 			}
1192 		}
1193 	}
1194 
1195 	/* set regulators */
1196 	if (ram_retention) {
1197 		if (enable_ret && !hwacc_ret_enabled[hwacc_dev]) {
1198 			r = regulator_enable(hwacc_ret_regulator[hwacc_dev]);
1199 			if (r < 0) {
1200 				pr_err("prcmu_set_hwacc: ret enable failed\n");
1201 				goto out;
1202 			}
1203 			hwacc_ret_enabled[hwacc_dev] = true;
1204 		}
1205 	}
1206 
1207 	if (enable && !hwacc_enabled[hwacc_dev]) {
1208 		r = regulator_enable(hwacc_regulator[hwacc_dev]);
1209 		if (r < 0) {
1210 			pr_err("prcmu_set_hwacc: enable failed\n");
1211 			goto out;
1212 		}
1213 		hwacc_enabled[hwacc_dev] = true;
1214 	}
1215 
1216 	if (!enable && hwacc_enabled[hwacc_dev]) {
1217 		r = regulator_disable(hwacc_regulator[hwacc_dev]);
1218 		if (r < 0) {
1219 			pr_err("prcmu_set_hwacc: disable failed\n");
1220 			goto out;
1221 		}
1222 		hwacc_enabled[hwacc_dev] = false;
1223 	}
1224 
1225 	if (ram_retention) {
1226 		if (!enable_ret && hwacc_ret_enabled[hwacc_dev]) {
1227 			r = regulator_disable(hwacc_ret_regulator[hwacc_dev]);
1228 			if (r < 0) {
1229 				pr_err("prcmu_set_hwacc: ret disable failed\n");
1230 				goto out;
1231 			}
1232 			hwacc_ret_enabled[hwacc_dev] = false;
1233 		}
1234 	}
1235 
1236 out:
1237 	return r;
1238 }
1239 EXPORT_SYMBOL(prcmu_set_hwacc);
1240 
1241 /**
1242  * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
1243  * @epod_id: The EPOD to set
1244  * @epod_state: The new EPOD state
1245  *
1246  * This function sets the state of a EPOD (power domain). It may not be called
1247  * from interrupt context.
1248  */
1249 int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
1250 {
1251 	int r = 0;
1252 	bool ram_retention = false;
1253 	int i;
1254 
1255 	/* check argument */
1256 	BUG_ON(epod_id >= NUM_EPOD_ID);
1257 
1258 	/* set flag if retention is possible */
1259 	switch (epod_id) {
1260 	case EPOD_ID_SVAMMDSP:
1261 	case EPOD_ID_SIAMMDSP:
1262 	case EPOD_ID_ESRAM12:
1263 	case EPOD_ID_ESRAM34:
1264 		ram_retention = true;
1265 		break;
1266 	}
1267 
1268 	/* check argument */
1269 	BUG_ON(epod_state > EPOD_STATE_ON);
1270 	BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
1271 
1272 	/* get lock */
1273 	mutex_lock(&mb2_transfer.lock);
1274 
1275 	/* wait for mailbox */
1276 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
1277 		cpu_relax();
1278 
1279 	/* fill in mailbox */
1280 	for (i = 0; i < NUM_EPOD_ID; i++)
1281 		writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
1282 	writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
1283 
1284 	writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
1285 
1286 	writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
1287 
1288 	/*
1289 	 * The current firmware version does not handle errors correctly,
1290 	 * and we cannot recover if there is an error.
1291 	 * This is expected to change when the firmware is updated.
1292 	 */
1293 	if (!wait_for_completion_timeout(&mb2_transfer.work,
1294 			msecs_to_jiffies(20000))) {
1295 		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1296 			__func__);
1297 		r = -EIO;
1298 		goto unlock_and_return;
1299 	}
1300 
1301 	if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
1302 		r = -EIO;
1303 
1304 unlock_and_return:
1305 	mutex_unlock(&mb2_transfer.lock);
1306 	return r;
1307 }
1308 
1309 /**
1310  * prcmu_configure_auto_pm - Configure autonomous power management.
1311  * @sleep: Configuration for ApSleep.
1312  * @idle:  Configuration for ApIdle.
1313  */
1314 void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
1315 	struct prcmu_auto_pm_config *idle)
1316 {
1317 	u32 sleep_cfg;
1318 	u32 idle_cfg;
1319 	unsigned long flags;
1320 
1321 	BUG_ON((sleep == NULL) || (idle == NULL));
1322 
1323 	sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
1324 	sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
1325 	sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
1326 	sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
1327 	sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
1328 	sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
1329 
1330 	idle_cfg = (idle->sva_auto_pm_enable & 0xF);
1331 	idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
1332 	idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
1333 	idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
1334 	idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
1335 	idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
1336 
1337 	spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
1338 
1339 	/*
1340 	 * The autonomous power management configuration is done through
1341 	 * fields in mailbox 2, but these fields are only used as shared
1342 	 * variables - i.e. there is no need to send a message.
1343 	 */
1344 	writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
1345 	writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
1346 
1347 	mb2_transfer.auto_pm_enabled =
1348 		((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1349 		 (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1350 		 (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1351 		 (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
1352 
1353 	spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
1354 }
1355 EXPORT_SYMBOL(prcmu_configure_auto_pm);
1356 
1357 bool prcmu_is_auto_pm_enabled(void)
1358 {
1359 	return mb2_transfer.auto_pm_enabled;
1360 }
1361 
1362 static int request_sysclk(bool enable)
1363 {
1364 	int r;
1365 	unsigned long flags;
1366 
1367 	r = 0;
1368 
1369 	mutex_lock(&mb3_transfer.sysclk_lock);
1370 
1371 	spin_lock_irqsave(&mb3_transfer.lock, flags);
1372 
1373 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
1374 		cpu_relax();
1375 
1376 	writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
1377 
1378 	writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
1379 	writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
1380 
1381 	spin_unlock_irqrestore(&mb3_transfer.lock, flags);
1382 
1383 	/*
1384 	 * The firmware only sends an ACK if we want to enable the
1385 	 * SysClk, and it succeeds.
1386 	 */
1387 	if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
1388 			msecs_to_jiffies(20000))) {
1389 		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1390 			__func__);
1391 		r = -EIO;
1392 	}
1393 
1394 	mutex_unlock(&mb3_transfer.sysclk_lock);
1395 
1396 	return r;
1397 }
1398 
1399 static int request_timclk(bool enable)
1400 {
1401 	u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
1402 
1403 	if (!enable)
1404 		val |= PRCM_TCR_STOP_TIMERS;
1405 	writel(val, PRCM_TCR);
1406 
1407 	return 0;
1408 }
1409 
1410 static int request_clock(u8 clock, bool enable)
1411 {
1412 	u32 val;
1413 	unsigned long flags;
1414 
1415 	spin_lock_irqsave(&clk_mgt_lock, flags);
1416 
1417 	/* Grab the HW semaphore. */
1418 	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1419 		cpu_relax();
1420 
1421 	val = readl(clk_mgt[clock].reg);
1422 	if (enable) {
1423 		val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
1424 	} else {
1425 		clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1426 		val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
1427 	}
1428 	writel(val, clk_mgt[clock].reg);
1429 
1430 	/* Release the HW semaphore. */
1431 	writel(0, PRCM_SEM);
1432 
1433 	spin_unlock_irqrestore(&clk_mgt_lock, flags);
1434 
1435 	return 0;
1436 }
1437 
1438 static int request_sga_clock(u8 clock, bool enable)
1439 {
1440 	u32 val;
1441 	int ret;
1442 
1443 	if (enable) {
1444 		val = readl(PRCM_CGATING_BYPASS);
1445 		writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1446 	}
1447 
1448 	ret = request_clock(clock, enable);
1449 
1450 	if (!ret && !enable) {
1451 		val = readl(PRCM_CGATING_BYPASS);
1452 		writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1453 	}
1454 
1455 	return ret;
1456 }
1457 
1458 static inline bool plldsi_locked(void)
1459 {
1460 	return (readl(PRCM_PLLDSI_LOCKP) &
1461 		(PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1462 		 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
1463 		(PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1464 		 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
1465 }
1466 
1467 static int request_plldsi(bool enable)
1468 {
1469 	int r = 0;
1470 	u32 val;
1471 
1472 	writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1473 		PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
1474 		PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
1475 
1476 	val = readl(PRCM_PLLDSI_ENABLE);
1477 	if (enable)
1478 		val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1479 	else
1480 		val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1481 	writel(val, PRCM_PLLDSI_ENABLE);
1482 
1483 	if (enable) {
1484 		unsigned int i;
1485 		bool locked = plldsi_locked();
1486 
1487 		for (i = 10; !locked && (i > 0); --i) {
1488 			udelay(100);
1489 			locked = plldsi_locked();
1490 		}
1491 		if (locked) {
1492 			writel(PRCM_APE_RESETN_DSIPLL_RESETN,
1493 				PRCM_APE_RESETN_SET);
1494 		} else {
1495 			writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1496 				PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
1497 				PRCM_MMIP_LS_CLAMP_SET);
1498 			val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1499 			writel(val, PRCM_PLLDSI_ENABLE);
1500 			r = -EAGAIN;
1501 		}
1502 	} else {
1503 		writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
1504 	}
1505 	return r;
1506 }
1507 
1508 static int request_dsiclk(u8 n, bool enable)
1509 {
1510 	u32 val;
1511 
1512 	val = readl(PRCM_DSI_PLLOUT_SEL);
1513 	val &= ~dsiclk[n].divsel_mask;
1514 	val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
1515 		dsiclk[n].divsel_shift);
1516 	writel(val, PRCM_DSI_PLLOUT_SEL);
1517 	return 0;
1518 }
1519 
1520 static int request_dsiescclk(u8 n, bool enable)
1521 {
1522 	u32 val;
1523 
1524 	val = readl(PRCM_DSITVCLK_DIV);
1525 	enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
1526 	writel(val, PRCM_DSITVCLK_DIV);
1527 	return 0;
1528 }
1529 
1530 /**
1531  * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
1532  * @clock:      The clock for which the request is made.
1533  * @enable:     Whether the clock should be enabled (true) or disabled (false).
1534  *
1535  * This function should only be used by the clock implementation.
1536  * Do not use it from any other place!
1537  */
1538 int db8500_prcmu_request_clock(u8 clock, bool enable)
1539 {
1540 	if (clock == PRCMU_SGACLK)
1541 		return request_sga_clock(clock, enable);
1542 	else if (clock < PRCMU_NUM_REG_CLOCKS)
1543 		return request_clock(clock, enable);
1544 	else if (clock == PRCMU_TIMCLK)
1545 		return request_timclk(enable);
1546 	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1547 		return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
1548 	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1549 		return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
1550 	else if (clock == PRCMU_PLLDSI)
1551 		return request_plldsi(enable);
1552 	else if (clock == PRCMU_SYSCLK)
1553 		return request_sysclk(enable);
1554 	else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
1555 		return request_pll(clock, enable);
1556 	else
1557 		return -EINVAL;
1558 }
1559 
1560 static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
1561 	int branch)
1562 {
1563 	u64 rate;
1564 	u32 val;
1565 	u32 d;
1566 	u32 div = 1;
1567 
1568 	val = readl(reg);
1569 
1570 	rate = src_rate;
1571 	rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
1572 
1573 	d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
1574 	if (d > 1)
1575 		div *= d;
1576 
1577 	d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
1578 	if (d > 1)
1579 		div *= d;
1580 
1581 	if (val & PRCM_PLL_FREQ_SELDIV2)
1582 		div *= 2;
1583 
1584 	if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
1585 		(val & PRCM_PLL_FREQ_DIV2EN) &&
1586 		((reg == PRCM_PLLSOC0_FREQ) ||
1587 		 (reg == PRCM_PLLDDR_FREQ))))
1588 		div *= 2;
1589 
1590 	(void)do_div(rate, div);
1591 
1592 	return (unsigned long)rate;
1593 }
1594 
1595 #define ROOT_CLOCK_RATE 38400000
1596 
1597 static unsigned long clock_rate(u8 clock)
1598 {
1599 	u32 val;
1600 	u32 pllsw;
1601 	unsigned long rate = ROOT_CLOCK_RATE;
1602 
1603 	val = readl(clk_mgt[clock].reg);
1604 
1605 	if (val & PRCM_CLK_MGT_CLK38) {
1606 		if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
1607 			rate /= 2;
1608 		return rate;
1609 	}
1610 
1611 	val |= clk_mgt[clock].pllsw;
1612 	pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1613 
1614 	if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1615 		rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
1616 	else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1617 		rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
1618 	else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
1619 		rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
1620 	else
1621 		return 0;
1622 
1623 	if ((clock == PRCMU_SGACLK) &&
1624 		(val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
1625 		u64 r = (rate * 10);
1626 
1627 		(void)do_div(r, 25);
1628 		return (unsigned long)r;
1629 	}
1630 	val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1631 	if (val)
1632 		return rate / val;
1633 	else
1634 		return 0;
1635 }
1636 
1637 static unsigned long dsiclk_rate(u8 n)
1638 {
1639 	u32 divsel;
1640 	u32 div = 1;
1641 
1642 	divsel = readl(PRCM_DSI_PLLOUT_SEL);
1643 	divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
1644 
1645 	if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
1646 		divsel = dsiclk[n].divsel;
1647 
1648 	switch (divsel) {
1649 	case PRCM_DSI_PLLOUT_SEL_PHI_4:
1650 		div *= 2;
1651 	case PRCM_DSI_PLLOUT_SEL_PHI_2:
1652 		div *= 2;
1653 	case PRCM_DSI_PLLOUT_SEL_PHI:
1654 		return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1655 			PLL_RAW) / div;
1656 	default:
1657 		return 0;
1658 	}
1659 }
1660 
1661 static unsigned long dsiescclk_rate(u8 n)
1662 {
1663 	u32 div;
1664 
1665 	div = readl(PRCM_DSITVCLK_DIV);
1666 	div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
1667 	return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
1668 }
1669 
1670 unsigned long prcmu_clock_rate(u8 clock)
1671 {
1672 	if (clock < PRCMU_NUM_REG_CLOCKS)
1673 		return clock_rate(clock);
1674 	else if (clock == PRCMU_TIMCLK)
1675 		return ROOT_CLOCK_RATE / 16;
1676 	else if (clock == PRCMU_SYSCLK)
1677 		return ROOT_CLOCK_RATE;
1678 	else if (clock == PRCMU_PLLSOC0)
1679 		return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1680 	else if (clock == PRCMU_PLLSOC1)
1681 		return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1682 	else if (clock == PRCMU_PLLDDR)
1683 		return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1684 	else if (clock == PRCMU_PLLDSI)
1685 		return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1686 			PLL_RAW);
1687 	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1688 		return dsiclk_rate(clock - PRCMU_DSI0CLK);
1689 	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1690 		return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
1691 	else
1692 		return 0;
1693 }
1694 
1695 static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
1696 {
1697 	if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
1698 		return ROOT_CLOCK_RATE;
1699 	clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
1700 	if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1701 		return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
1702 	else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1703 		return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
1704 	else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
1705 		return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
1706 	else
1707 		return 0;
1708 }
1709 
1710 static u32 clock_divider(unsigned long src_rate, unsigned long rate)
1711 {
1712 	u32 div;
1713 
1714 	div = (src_rate / rate);
1715 	if (div == 0)
1716 		return 1;
1717 	if (rate < (src_rate / div))
1718 		div++;
1719 	return div;
1720 }
1721 
1722 static long round_clock_rate(u8 clock, unsigned long rate)
1723 {
1724 	u32 val;
1725 	u32 div;
1726 	unsigned long src_rate;
1727 	long rounded_rate;
1728 
1729 	val = readl(clk_mgt[clock].reg);
1730 	src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1731 		clk_mgt[clock].branch);
1732 	div = clock_divider(src_rate, rate);
1733 	if (val & PRCM_CLK_MGT_CLK38) {
1734 		if (clk_mgt[clock].clk38div) {
1735 			if (div > 2)
1736 				div = 2;
1737 		} else {
1738 			div = 1;
1739 		}
1740 	} else if ((clock == PRCMU_SGACLK) && (div == 3)) {
1741 		u64 r = (src_rate * 10);
1742 
1743 		(void)do_div(r, 25);
1744 		if (r <= rate)
1745 			return (unsigned long)r;
1746 	}
1747 	rounded_rate = (src_rate / min(div, (u32)31));
1748 
1749 	return rounded_rate;
1750 }
1751 
1752 #define MIN_PLL_VCO_RATE 600000000ULL
1753 #define MAX_PLL_VCO_RATE 1680640000ULL
1754 
1755 static long round_plldsi_rate(unsigned long rate)
1756 {
1757 	long rounded_rate = 0;
1758 	unsigned long src_rate;
1759 	unsigned long rem;
1760 	u32 r;
1761 
1762 	src_rate = clock_rate(PRCMU_HDMICLK);
1763 	rem = rate;
1764 
1765 	for (r = 7; (rem > 0) && (r > 0); r--) {
1766 		u64 d;
1767 
1768 		d = (r * rate);
1769 		(void)do_div(d, src_rate);
1770 		if (d < 6)
1771 			d = 6;
1772 		else if (d > 255)
1773 			d = 255;
1774 		d *= src_rate;
1775 		if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
1776 			((r * MAX_PLL_VCO_RATE) < (2 * d)))
1777 			continue;
1778 		(void)do_div(d, r);
1779 		if (rate < d) {
1780 			if (rounded_rate == 0)
1781 				rounded_rate = (long)d;
1782 			break;
1783 		}
1784 		if ((rate - d) < rem) {
1785 			rem = (rate - d);
1786 			rounded_rate = (long)d;
1787 		}
1788 	}
1789 	return rounded_rate;
1790 }
1791 
1792 static long round_dsiclk_rate(unsigned long rate)
1793 {
1794 	u32 div;
1795 	unsigned long src_rate;
1796 	long rounded_rate;
1797 
1798 	src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1799 		PLL_RAW);
1800 	div = clock_divider(src_rate, rate);
1801 	rounded_rate = (src_rate / ((div > 2) ? 4 : div));
1802 
1803 	return rounded_rate;
1804 }
1805 
1806 static long round_dsiescclk_rate(unsigned long rate)
1807 {
1808 	u32 div;
1809 	unsigned long src_rate;
1810 	long rounded_rate;
1811 
1812 	src_rate = clock_rate(PRCMU_TVCLK);
1813 	div = clock_divider(src_rate, rate);
1814 	rounded_rate = (src_rate / min(div, (u32)255));
1815 
1816 	return rounded_rate;
1817 }
1818 
1819 long prcmu_round_clock_rate(u8 clock, unsigned long rate)
1820 {
1821 	if (clock < PRCMU_NUM_REG_CLOCKS)
1822 		return round_clock_rate(clock, rate);
1823 	else if (clock == PRCMU_PLLDSI)
1824 		return round_plldsi_rate(rate);
1825 	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1826 		return round_dsiclk_rate(rate);
1827 	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1828 		return round_dsiescclk_rate(rate);
1829 	else
1830 		return (long)prcmu_clock_rate(clock);
1831 }
1832 
1833 static void set_clock_rate(u8 clock, unsigned long rate)
1834 {
1835 	u32 val;
1836 	u32 div;
1837 	unsigned long src_rate;
1838 	unsigned long flags;
1839 
1840 	spin_lock_irqsave(&clk_mgt_lock, flags);
1841 
1842 	/* Grab the HW semaphore. */
1843 	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1844 		cpu_relax();
1845 
1846 	val = readl(clk_mgt[clock].reg);
1847 	src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1848 		clk_mgt[clock].branch);
1849 	div = clock_divider(src_rate, rate);
1850 	if (val & PRCM_CLK_MGT_CLK38) {
1851 		if (clk_mgt[clock].clk38div) {
1852 			if (div > 1)
1853 				val |= PRCM_CLK_MGT_CLK38DIV;
1854 			else
1855 				val &= ~PRCM_CLK_MGT_CLK38DIV;
1856 		}
1857 	} else if (clock == PRCMU_SGACLK) {
1858 		val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
1859 			PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
1860 		if (div == 3) {
1861 			u64 r = (src_rate * 10);
1862 
1863 			(void)do_div(r, 25);
1864 			if (r <= rate) {
1865 				val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
1866 				div = 0;
1867 			}
1868 		}
1869 		val |= min(div, (u32)31);
1870 	} else {
1871 		val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
1872 		val |= min(div, (u32)31);
1873 	}
1874 	writel(val, clk_mgt[clock].reg);
1875 
1876 	/* Release the HW semaphore. */
1877 	writel(0, PRCM_SEM);
1878 
1879 	spin_unlock_irqrestore(&clk_mgt_lock, flags);
1880 }
1881 
1882 static int set_plldsi_rate(unsigned long rate)
1883 {
1884 	unsigned long src_rate;
1885 	unsigned long rem;
1886 	u32 pll_freq = 0;
1887 	u32 r;
1888 
1889 	src_rate = clock_rate(PRCMU_HDMICLK);
1890 	rem = rate;
1891 
1892 	for (r = 7; (rem > 0) && (r > 0); r--) {
1893 		u64 d;
1894 		u64 hwrate;
1895 
1896 		d = (r * rate);
1897 		(void)do_div(d, src_rate);
1898 		if (d < 6)
1899 			d = 6;
1900 		else if (d > 255)
1901 			d = 255;
1902 		hwrate = (d * src_rate);
1903 		if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
1904 			((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
1905 			continue;
1906 		(void)do_div(hwrate, r);
1907 		if (rate < hwrate) {
1908 			if (pll_freq == 0)
1909 				pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1910 					(r << PRCM_PLL_FREQ_R_SHIFT));
1911 			break;
1912 		}
1913 		if ((rate - hwrate) < rem) {
1914 			rem = (rate - hwrate);
1915 			pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1916 				(r << PRCM_PLL_FREQ_R_SHIFT));
1917 		}
1918 	}
1919 	if (pll_freq == 0)
1920 		return -EINVAL;
1921 
1922 	pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
1923 	writel(pll_freq, PRCM_PLLDSI_FREQ);
1924 
1925 	return 0;
1926 }
1927 
1928 static void set_dsiclk_rate(u8 n, unsigned long rate)
1929 {
1930 	u32 val;
1931 	u32 div;
1932 
1933 	div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
1934 			clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
1935 
1936 	dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
1937 			   (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
1938 			   /* else */	PRCM_DSI_PLLOUT_SEL_PHI_4;
1939 
1940 	val = readl(PRCM_DSI_PLLOUT_SEL);
1941 	val &= ~dsiclk[n].divsel_mask;
1942 	val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
1943 	writel(val, PRCM_DSI_PLLOUT_SEL);
1944 }
1945 
1946 static void set_dsiescclk_rate(u8 n, unsigned long rate)
1947 {
1948 	u32 val;
1949 	u32 div;
1950 
1951 	div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
1952 	val = readl(PRCM_DSITVCLK_DIV);
1953 	val &= ~dsiescclk[n].div_mask;
1954 	val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
1955 	writel(val, PRCM_DSITVCLK_DIV);
1956 }
1957 
1958 int prcmu_set_clock_rate(u8 clock, unsigned long rate)
1959 {
1960 	if (clock < PRCMU_NUM_REG_CLOCKS)
1961 		set_clock_rate(clock, rate);
1962 	else if (clock == PRCMU_PLLDSI)
1963 		return set_plldsi_rate(rate);
1964 	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1965 		set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
1966 	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1967 		set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
1968 	return 0;
1969 }
1970 
1971 int db8500_prcmu_config_esram0_deep_sleep(u8 state)
1972 {
1973 	if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
1974 	    (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
1975 		return -EINVAL;
1976 
1977 	mutex_lock(&mb4_transfer.lock);
1978 
1979 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1980 		cpu_relax();
1981 
1982 	writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1983 	writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
1984 	       (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
1985 	writeb(DDR_PWR_STATE_ON,
1986 	       (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
1987 	writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
1988 
1989 	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1990 	wait_for_completion(&mb4_transfer.work);
1991 
1992 	mutex_unlock(&mb4_transfer.lock);
1993 
1994 	return 0;
1995 }
1996 
1997 int db8500_prcmu_config_hotdog(u8 threshold)
1998 {
1999 	mutex_lock(&mb4_transfer.lock);
2000 
2001 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2002 		cpu_relax();
2003 
2004 	writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
2005 	writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2006 
2007 	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2008 	wait_for_completion(&mb4_transfer.work);
2009 
2010 	mutex_unlock(&mb4_transfer.lock);
2011 
2012 	return 0;
2013 }
2014 
2015 int db8500_prcmu_config_hotmon(u8 low, u8 high)
2016 {
2017 	mutex_lock(&mb4_transfer.lock);
2018 
2019 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2020 		cpu_relax();
2021 
2022 	writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
2023 	writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
2024 	writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
2025 		(tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
2026 	writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2027 
2028 	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2029 	wait_for_completion(&mb4_transfer.work);
2030 
2031 	mutex_unlock(&mb4_transfer.lock);
2032 
2033 	return 0;
2034 }
2035 
2036 static int config_hot_period(u16 val)
2037 {
2038 	mutex_lock(&mb4_transfer.lock);
2039 
2040 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2041 		cpu_relax();
2042 
2043 	writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
2044 	writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2045 
2046 	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2047 	wait_for_completion(&mb4_transfer.work);
2048 
2049 	mutex_unlock(&mb4_transfer.lock);
2050 
2051 	return 0;
2052 }
2053 
2054 int db8500_prcmu_start_temp_sense(u16 cycles32k)
2055 {
2056 	if (cycles32k == 0xFFFF)
2057 		return -EINVAL;
2058 
2059 	return config_hot_period(cycles32k);
2060 }
2061 
2062 int db8500_prcmu_stop_temp_sense(void)
2063 {
2064 	return config_hot_period(0xFFFF);
2065 }
2066 
2067 static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
2068 {
2069 
2070 	mutex_lock(&mb4_transfer.lock);
2071 
2072 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2073 		cpu_relax();
2074 
2075 	writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
2076 	writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
2077 	writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
2078 	writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
2079 
2080 	writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2081 
2082 	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2083 	wait_for_completion(&mb4_transfer.work);
2084 
2085 	mutex_unlock(&mb4_transfer.lock);
2086 
2087 	return 0;
2088 
2089 }
2090 
2091 int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
2092 {
2093 	BUG_ON(num == 0 || num > 0xf);
2094 	return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
2095 			    sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
2096 			    A9WDOG_AUTO_OFF_DIS);
2097 }
2098 
2099 int db8500_prcmu_enable_a9wdog(u8 id)
2100 {
2101 	return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
2102 }
2103 
2104 int db8500_prcmu_disable_a9wdog(u8 id)
2105 {
2106 	return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
2107 }
2108 
2109 int db8500_prcmu_kick_a9wdog(u8 id)
2110 {
2111 	return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
2112 }
2113 
2114 /*
2115  * timeout is 28 bit, in ms.
2116  */
2117 #define MAX_WATCHDOG_TIMEOUT 131000
2118 int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
2119 {
2120 	if (timeout > MAX_WATCHDOG_TIMEOUT)
2121 		/*
2122 		 * Due to calculation bug in prcmu fw, timeouts
2123 		 * can't be bigger than 131 seconds.
2124 		 */
2125 		return -EINVAL;
2126 
2127 	return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
2128 			    (id & A9WDOG_ID_MASK) |
2129 			    /*
2130 			     * Put the lowest 28 bits of timeout at
2131 			     * offset 4. Four first bits are used for id.
2132 			     */
2133 			    (u8)((timeout << 4) & 0xf0),
2134 			    (u8)((timeout >> 4) & 0xff),
2135 			    (u8)((timeout >> 12) & 0xff),
2136 			    (u8)((timeout >> 20) & 0xff));
2137 }
2138 
2139 /**
2140  * prcmu_abb_read() - Read register value(s) from the ABB.
2141  * @slave:	The I2C slave address.
2142  * @reg:	The (start) register address.
2143  * @value:	The read out value(s).
2144  * @size:	The number of registers to read.
2145  *
2146  * Reads register value(s) from the ABB.
2147  * @size has to be 1 for the current firmware version.
2148  */
2149 int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
2150 {
2151 	int r;
2152 
2153 	if (size != 1)
2154 		return -EINVAL;
2155 
2156 	mutex_lock(&mb5_transfer.lock);
2157 
2158 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2159 		cpu_relax();
2160 
2161 	writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2162 	writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2163 	writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2164 	writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2165 
2166 	writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2167 
2168 	if (!wait_for_completion_timeout(&mb5_transfer.work,
2169 				msecs_to_jiffies(20000))) {
2170 		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2171 			__func__);
2172 		r = -EIO;
2173 	} else {
2174 		r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
2175 	}
2176 
2177 	if (!r)
2178 		*value = mb5_transfer.ack.value;
2179 
2180 	mutex_unlock(&mb5_transfer.lock);
2181 
2182 	return r;
2183 }
2184 
2185 /**
2186  * prcmu_abb_write() - Write register value(s) to the ABB.
2187  * @slave:	The I2C slave address.
2188  * @reg:	The (start) register address.
2189  * @value:	The value(s) to write.
2190  * @size:	The number of registers to write.
2191  *
2192  * Reads register value(s) from the ABB.
2193  * @size has to be 1 for the current firmware version.
2194  */
2195 int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
2196 {
2197 	int r;
2198 
2199 	if (size != 1)
2200 		return -EINVAL;
2201 
2202 	mutex_lock(&mb5_transfer.lock);
2203 
2204 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2205 		cpu_relax();
2206 
2207 	writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2208 	writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2209 	writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2210 	writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2211 
2212 	writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2213 
2214 	if (!wait_for_completion_timeout(&mb5_transfer.work,
2215 				msecs_to_jiffies(20000))) {
2216 		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2217 			__func__);
2218 		r = -EIO;
2219 	} else {
2220 		r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
2221 	}
2222 
2223 	mutex_unlock(&mb5_transfer.lock);
2224 
2225 	return r;
2226 }
2227 
2228 /**
2229  * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
2230  */
2231 void prcmu_ac_wake_req(void)
2232 {
2233 	u32 val;
2234 	u32 status;
2235 
2236 	mutex_lock(&mb0_transfer.ac_wake_lock);
2237 
2238 	val = readl(PRCM_HOSTACCESS_REQ);
2239 	if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
2240 		goto unlock_and_return;
2241 
2242 	atomic_set(&ac_wake_req_state, 1);
2243 
2244 retry:
2245 	writel((val | PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ), PRCM_HOSTACCESS_REQ);
2246 
2247 	if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2248 			msecs_to_jiffies(5000))) {
2249 		pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2250 			__func__);
2251 		goto unlock_and_return;
2252 	}
2253 
2254 	/*
2255 	 * The modem can generate an AC_WAKE_ACK, and then still go to sleep.
2256 	 * As a workaround, we wait, and then check that the modem is indeed
2257 	 * awake (in terms of the value of the PRCM_MOD_AWAKE_STATUS
2258 	 * register, which may not be the whole truth).
2259 	 */
2260 	udelay(400);
2261 	status = (readl(PRCM_MOD_AWAKE_STATUS) & BITS(0, 2));
2262 	if (status != (PRCM_MOD_AWAKE_STATUS_PRCM_MOD_AAPD_AWAKE |
2263 			PRCM_MOD_AWAKE_STATUS_PRCM_MOD_COREPD_AWAKE)) {
2264 		pr_err("prcmu: %s received ack, but modem not awake (0x%X).\n",
2265 			__func__, status);
2266 		udelay(1200);
2267 		writel(val, PRCM_HOSTACCESS_REQ);
2268 		if (wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2269 				msecs_to_jiffies(5000)))
2270 			goto retry;
2271 		pr_crit("prcmu: %s timed out (5 s) waiting for AC_SLEEP_ACK.\n",
2272 			__func__);
2273 	}
2274 
2275 unlock_and_return:
2276 	mutex_unlock(&mb0_transfer.ac_wake_lock);
2277 }
2278 
2279 /**
2280  * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
2281  */
2282 void prcmu_ac_sleep_req()
2283 {
2284 	u32 val;
2285 
2286 	mutex_lock(&mb0_transfer.ac_wake_lock);
2287 
2288 	val = readl(PRCM_HOSTACCESS_REQ);
2289 	if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
2290 		goto unlock_and_return;
2291 
2292 	writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
2293 		PRCM_HOSTACCESS_REQ);
2294 
2295 	if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2296 			msecs_to_jiffies(5000))) {
2297 		pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2298 			__func__);
2299 	}
2300 
2301 	atomic_set(&ac_wake_req_state, 0);
2302 
2303 unlock_and_return:
2304 	mutex_unlock(&mb0_transfer.ac_wake_lock);
2305 }
2306 
2307 bool db8500_prcmu_is_ac_wake_requested(void)
2308 {
2309 	return (atomic_read(&ac_wake_req_state) != 0);
2310 }
2311 
2312 /**
2313  * db8500_prcmu_system_reset - System reset
2314  *
2315  * Saves the reset reason code and then sets the APE_SOFTRST register which
2316  * fires interrupt to fw
2317  */
2318 void db8500_prcmu_system_reset(u16 reset_code)
2319 {
2320 	writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
2321 	writel(1, PRCM_APE_SOFTRST);
2322 }
2323 
2324 /**
2325  * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
2326  *
2327  * Retrieves the reset reason code stored by prcmu_system_reset() before
2328  * last restart.
2329  */
2330 u16 db8500_prcmu_get_reset_code(void)
2331 {
2332 	return readw(tcdm_base + PRCM_SW_RST_REASON);
2333 }
2334 
2335 /**
2336  * db8500_prcmu_reset_modem - ask the PRCMU to reset modem
2337  */
2338 void db8500_prcmu_modem_reset(void)
2339 {
2340 	mutex_lock(&mb1_transfer.lock);
2341 
2342 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
2343 		cpu_relax();
2344 
2345 	writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
2346 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
2347 	wait_for_completion(&mb1_transfer.work);
2348 
2349 	/*
2350 	 * No need to check return from PRCMU as modem should go in reset state
2351 	 * This state is already managed by upper layer
2352 	 */
2353 
2354 	mutex_unlock(&mb1_transfer.lock);
2355 }
2356 
2357 static void ack_dbb_wakeup(void)
2358 {
2359 	unsigned long flags;
2360 
2361 	spin_lock_irqsave(&mb0_transfer.lock, flags);
2362 
2363 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
2364 		cpu_relax();
2365 
2366 	writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
2367 	writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
2368 
2369 	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2370 }
2371 
2372 static inline void print_unknown_header_warning(u8 n, u8 header)
2373 {
2374 	pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n",
2375 		header, n);
2376 }
2377 
2378 static bool read_mailbox_0(void)
2379 {
2380 	bool r;
2381 	u32 ev;
2382 	unsigned int n;
2383 	u8 header;
2384 
2385 	header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
2386 	switch (header) {
2387 	case MB0H_WAKEUP_EXE:
2388 	case MB0H_WAKEUP_SLEEP:
2389 		if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
2390 			ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
2391 		else
2392 			ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
2393 
2394 		if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
2395 			complete(&mb0_transfer.ac_wake_work);
2396 		if (ev & WAKEUP_BIT_SYSCLK_OK)
2397 			complete(&mb3_transfer.sysclk_work);
2398 
2399 		ev &= mb0_transfer.req.dbb_irqs;
2400 
2401 		for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
2402 			if (ev & prcmu_irq_bit[n])
2403 				generic_handle_irq(IRQ_PRCMU_BASE + n);
2404 		}
2405 		r = true;
2406 		break;
2407 	default:
2408 		print_unknown_header_warning(0, header);
2409 		r = false;
2410 		break;
2411 	}
2412 	writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
2413 	return r;
2414 }
2415 
2416 static bool read_mailbox_1(void)
2417 {
2418 	mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
2419 	mb1_transfer.ack.arm_opp = readb(tcdm_base +
2420 		PRCM_ACK_MB1_CURRENT_ARM_OPP);
2421 	mb1_transfer.ack.ape_opp = readb(tcdm_base +
2422 		PRCM_ACK_MB1_CURRENT_APE_OPP);
2423 	mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
2424 		PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
2425 	writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
2426 	complete(&mb1_transfer.work);
2427 	return false;
2428 }
2429 
2430 static bool read_mailbox_2(void)
2431 {
2432 	mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
2433 	writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
2434 	complete(&mb2_transfer.work);
2435 	return false;
2436 }
2437 
2438 static bool read_mailbox_3(void)
2439 {
2440 	writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
2441 	return false;
2442 }
2443 
2444 static bool read_mailbox_4(void)
2445 {
2446 	u8 header;
2447 	bool do_complete = true;
2448 
2449 	header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
2450 	switch (header) {
2451 	case MB4H_MEM_ST:
2452 	case MB4H_HOTDOG:
2453 	case MB4H_HOTMON:
2454 	case MB4H_HOT_PERIOD:
2455 	case MB4H_A9WDOG_CONF:
2456 	case MB4H_A9WDOG_EN:
2457 	case MB4H_A9WDOG_DIS:
2458 	case MB4H_A9WDOG_LOAD:
2459 	case MB4H_A9WDOG_KICK:
2460 		break;
2461 	default:
2462 		print_unknown_header_warning(4, header);
2463 		do_complete = false;
2464 		break;
2465 	}
2466 
2467 	writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
2468 
2469 	if (do_complete)
2470 		complete(&mb4_transfer.work);
2471 
2472 	return false;
2473 }
2474 
2475 static bool read_mailbox_5(void)
2476 {
2477 	mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
2478 	mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
2479 	writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
2480 	complete(&mb5_transfer.work);
2481 	return false;
2482 }
2483 
2484 static bool read_mailbox_6(void)
2485 {
2486 	writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
2487 	return false;
2488 }
2489 
2490 static bool read_mailbox_7(void)
2491 {
2492 	writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
2493 	return false;
2494 }
2495 
2496 static bool (* const read_mailbox[NUM_MB])(void) = {
2497 	read_mailbox_0,
2498 	read_mailbox_1,
2499 	read_mailbox_2,
2500 	read_mailbox_3,
2501 	read_mailbox_4,
2502 	read_mailbox_5,
2503 	read_mailbox_6,
2504 	read_mailbox_7
2505 };
2506 
2507 static irqreturn_t prcmu_irq_handler(int irq, void *data)
2508 {
2509 	u32 bits;
2510 	u8 n;
2511 	irqreturn_t r;
2512 
2513 	bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
2514 	if (unlikely(!bits))
2515 		return IRQ_NONE;
2516 
2517 	r = IRQ_HANDLED;
2518 	for (n = 0; bits; n++) {
2519 		if (bits & MBOX_BIT(n)) {
2520 			bits -= MBOX_BIT(n);
2521 			if (read_mailbox[n]())
2522 				r = IRQ_WAKE_THREAD;
2523 		}
2524 	}
2525 	return r;
2526 }
2527 
2528 static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
2529 {
2530 	ack_dbb_wakeup();
2531 	return IRQ_HANDLED;
2532 }
2533 
2534 static void prcmu_mask_work(struct work_struct *work)
2535 {
2536 	unsigned long flags;
2537 
2538 	spin_lock_irqsave(&mb0_transfer.lock, flags);
2539 
2540 	config_wakeups();
2541 
2542 	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2543 }
2544 
2545 static void prcmu_irq_mask(struct irq_data *d)
2546 {
2547 	unsigned long flags;
2548 
2549 	spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2550 
2551 	mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->irq - IRQ_PRCMU_BASE];
2552 
2553 	spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2554 
2555 	if (d->irq != IRQ_PRCMU_CA_SLEEP)
2556 		schedule_work(&mb0_transfer.mask_work);
2557 }
2558 
2559 static void prcmu_irq_unmask(struct irq_data *d)
2560 {
2561 	unsigned long flags;
2562 
2563 	spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2564 
2565 	mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->irq - IRQ_PRCMU_BASE];
2566 
2567 	spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2568 
2569 	if (d->irq != IRQ_PRCMU_CA_SLEEP)
2570 		schedule_work(&mb0_transfer.mask_work);
2571 }
2572 
2573 static void noop(struct irq_data *d)
2574 {
2575 }
2576 
2577 static struct irq_chip prcmu_irq_chip = {
2578 	.name		= "prcmu",
2579 	.irq_disable	= prcmu_irq_mask,
2580 	.irq_ack	= noop,
2581 	.irq_mask	= prcmu_irq_mask,
2582 	.irq_unmask	= prcmu_irq_unmask,
2583 };
2584 
2585 static char *fw_project_name(u8 project)
2586 {
2587 	switch (project) {
2588 	case PRCMU_FW_PROJECT_U8500:
2589 		return "U8500";
2590 	case PRCMU_FW_PROJECT_U8500_C2:
2591 		return "U8500 C2";
2592 	case PRCMU_FW_PROJECT_U9500:
2593 		return "U9500";
2594 	case PRCMU_FW_PROJECT_U9500_C2:
2595 		return "U9500 C2";
2596 	default:
2597 		return "Unknown";
2598 	}
2599 }
2600 
2601 void __init db8500_prcmu_early_init(void)
2602 {
2603 	unsigned int i;
2604 	if (cpu_is_u8500v2()) {
2605 		void *tcpm_base = ioremap_nocache(U8500_PRCMU_TCPM_BASE, SZ_4K);
2606 
2607 		if (tcpm_base != NULL) {
2608 			u32 version;
2609 			version = readl(tcpm_base + PRCMU_FW_VERSION_OFFSET);
2610 			fw_info.version.project = version & 0xFF;
2611 			fw_info.version.api_version = (version >> 8) & 0xFF;
2612 			fw_info.version.func_version = (version >> 16) & 0xFF;
2613 			fw_info.version.errata = (version >> 24) & 0xFF;
2614 			fw_info.valid = true;
2615 			pr_info("PRCMU firmware: %s, version %d.%d.%d\n",
2616 				fw_project_name(fw_info.version.project),
2617 				(version >> 8) & 0xFF, (version >> 16) & 0xFF,
2618 				(version >> 24) & 0xFF);
2619 			iounmap(tcpm_base);
2620 		}
2621 
2622 		tcdm_base = __io_address(U8500_PRCMU_TCDM_BASE);
2623 	} else {
2624 		pr_err("prcmu: Unsupported chip version\n");
2625 		BUG();
2626 	}
2627 
2628 	spin_lock_init(&mb0_transfer.lock);
2629 	spin_lock_init(&mb0_transfer.dbb_irqs_lock);
2630 	mutex_init(&mb0_transfer.ac_wake_lock);
2631 	init_completion(&mb0_transfer.ac_wake_work);
2632 	mutex_init(&mb1_transfer.lock);
2633 	init_completion(&mb1_transfer.work);
2634 	mutex_init(&mb2_transfer.lock);
2635 	init_completion(&mb2_transfer.work);
2636 	spin_lock_init(&mb2_transfer.auto_pm_lock);
2637 	spin_lock_init(&mb3_transfer.lock);
2638 	mutex_init(&mb3_transfer.sysclk_lock);
2639 	init_completion(&mb3_transfer.sysclk_work);
2640 	mutex_init(&mb4_transfer.lock);
2641 	init_completion(&mb4_transfer.work);
2642 	mutex_init(&mb5_transfer.lock);
2643 	init_completion(&mb5_transfer.work);
2644 
2645 	INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
2646 
2647 	/* Initalize irqs. */
2648 	for (i = 0; i < NUM_PRCMU_WAKEUPS; i++) {
2649 		unsigned int irq;
2650 
2651 		irq = IRQ_PRCMU_BASE + i;
2652 		irq_set_chip_and_handler(irq, &prcmu_irq_chip,
2653 					 handle_simple_irq);
2654 		set_irq_flags(irq, IRQF_VALID);
2655 	}
2656 }
2657 
2658 static void __init init_prcm_registers(void)
2659 {
2660 	u32 val;
2661 
2662 	val = readl(PRCM_A9PL_FORCE_CLKEN);
2663 	val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
2664 		PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
2665 	writel(val, (PRCM_A9PL_FORCE_CLKEN));
2666 }
2667 
2668 /*
2669  * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
2670  */
2671 static struct regulator_consumer_supply db8500_vape_consumers[] = {
2672 	REGULATOR_SUPPLY("v-ape", NULL),
2673 	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2674 	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2675 	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2676 	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
2677 	/* "v-mmc" changed to "vcore" in the mainline kernel */
2678 	REGULATOR_SUPPLY("vcore", "sdi0"),
2679 	REGULATOR_SUPPLY("vcore", "sdi1"),
2680 	REGULATOR_SUPPLY("vcore", "sdi2"),
2681 	REGULATOR_SUPPLY("vcore", "sdi3"),
2682 	REGULATOR_SUPPLY("vcore", "sdi4"),
2683 	REGULATOR_SUPPLY("v-dma", "dma40.0"),
2684 	REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2685 	/* "v-uart" changed to "vcore" in the mainline kernel */
2686 	REGULATOR_SUPPLY("vcore", "uart0"),
2687 	REGULATOR_SUPPLY("vcore", "uart1"),
2688 	REGULATOR_SUPPLY("vcore", "uart2"),
2689 	REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
2690 	REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
2691 };
2692 
2693 static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
2694 	REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2695 	/* AV8100 regulator */
2696 	REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2697 };
2698 
2699 static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
2700 	REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
2701 	REGULATOR_SUPPLY("vsupply", "mcde"),
2702 };
2703 
2704 /* SVA MMDSP regulator switch */
2705 static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
2706 	REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2707 };
2708 
2709 /* SVA pipe regulator switch */
2710 static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
2711 	REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2712 };
2713 
2714 /* SIA MMDSP regulator switch */
2715 static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
2716 	REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2717 };
2718 
2719 /* SIA pipe regulator switch */
2720 static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
2721 	REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2722 };
2723 
2724 static struct regulator_consumer_supply db8500_sga_consumers[] = {
2725 	REGULATOR_SUPPLY("v-mali", NULL),
2726 };
2727 
2728 /* ESRAM1 and 2 regulator switch */
2729 static struct regulator_consumer_supply db8500_esram12_consumers[] = {
2730 	REGULATOR_SUPPLY("esram12", "cm_control"),
2731 };
2732 
2733 /* ESRAM3 and 4 regulator switch */
2734 static struct regulator_consumer_supply db8500_esram34_consumers[] = {
2735 	REGULATOR_SUPPLY("v-esram34", "mcde"),
2736 	REGULATOR_SUPPLY("esram34", "cm_control"),
2737 	REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
2738 };
2739 
2740 static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
2741 	[DB8500_REGULATOR_VAPE] = {
2742 		.constraints = {
2743 			.name = "db8500-vape",
2744 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2745 		},
2746 		.consumer_supplies = db8500_vape_consumers,
2747 		.num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
2748 	},
2749 	[DB8500_REGULATOR_VARM] = {
2750 		.constraints = {
2751 			.name = "db8500-varm",
2752 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2753 		},
2754 	},
2755 	[DB8500_REGULATOR_VMODEM] = {
2756 		.constraints = {
2757 			.name = "db8500-vmodem",
2758 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2759 		},
2760 	},
2761 	[DB8500_REGULATOR_VPLL] = {
2762 		.constraints = {
2763 			.name = "db8500-vpll",
2764 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2765 		},
2766 	},
2767 	[DB8500_REGULATOR_VSMPS1] = {
2768 		.constraints = {
2769 			.name = "db8500-vsmps1",
2770 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2771 		},
2772 	},
2773 	[DB8500_REGULATOR_VSMPS2] = {
2774 		.constraints = {
2775 			.name = "db8500-vsmps2",
2776 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2777 		},
2778 		.consumer_supplies = db8500_vsmps2_consumers,
2779 		.num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
2780 	},
2781 	[DB8500_REGULATOR_VSMPS3] = {
2782 		.constraints = {
2783 			.name = "db8500-vsmps3",
2784 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2785 		},
2786 	},
2787 	[DB8500_REGULATOR_VRF1] = {
2788 		.constraints = {
2789 			.name = "db8500-vrf1",
2790 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2791 		},
2792 	},
2793 	[DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
2794 		/* dependency to u8500-vape is handled outside regulator framework */
2795 		.constraints = {
2796 			.name = "db8500-sva-mmdsp",
2797 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2798 		},
2799 		.consumer_supplies = db8500_svammdsp_consumers,
2800 		.num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
2801 	},
2802 	[DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
2803 		.constraints = {
2804 			/* "ret" means "retention" */
2805 			.name = "db8500-sva-mmdsp-ret",
2806 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2807 		},
2808 	},
2809 	[DB8500_REGULATOR_SWITCH_SVAPIPE] = {
2810 		/* dependency to u8500-vape is handled outside regulator framework */
2811 		.constraints = {
2812 			.name = "db8500-sva-pipe",
2813 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2814 		},
2815 		.consumer_supplies = db8500_svapipe_consumers,
2816 		.num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
2817 	},
2818 	[DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
2819 		/* dependency to u8500-vape is handled outside regulator framework */
2820 		.constraints = {
2821 			.name = "db8500-sia-mmdsp",
2822 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2823 		},
2824 		.consumer_supplies = db8500_siammdsp_consumers,
2825 		.num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
2826 	},
2827 	[DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
2828 		.constraints = {
2829 			.name = "db8500-sia-mmdsp-ret",
2830 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2831 		},
2832 	},
2833 	[DB8500_REGULATOR_SWITCH_SIAPIPE] = {
2834 		/* dependency to u8500-vape is handled outside regulator framework */
2835 		.constraints = {
2836 			.name = "db8500-sia-pipe",
2837 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2838 		},
2839 		.consumer_supplies = db8500_siapipe_consumers,
2840 		.num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
2841 	},
2842 	[DB8500_REGULATOR_SWITCH_SGA] = {
2843 		.supply_regulator = "db8500-vape",
2844 		.constraints = {
2845 			.name = "db8500-sga",
2846 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2847 		},
2848 		.consumer_supplies = db8500_sga_consumers,
2849 		.num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
2850 
2851 	},
2852 	[DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
2853 		.supply_regulator = "db8500-vape",
2854 		.constraints = {
2855 			.name = "db8500-b2r2-mcde",
2856 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2857 		},
2858 		.consumer_supplies = db8500_b2r2_mcde_consumers,
2859 		.num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
2860 	},
2861 	[DB8500_REGULATOR_SWITCH_ESRAM12] = {
2862 		/*
2863 		 * esram12 is set in retention and supplied by Vsafe when Vape is off,
2864 		 * no need to hold Vape
2865 		 */
2866 		.constraints = {
2867 			.name = "db8500-esram12",
2868 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2869 		},
2870 		.consumer_supplies = db8500_esram12_consumers,
2871 		.num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
2872 	},
2873 	[DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
2874 		.constraints = {
2875 			.name = "db8500-esram12-ret",
2876 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2877 		},
2878 	},
2879 	[DB8500_REGULATOR_SWITCH_ESRAM34] = {
2880 		/*
2881 		 * esram34 is set in retention and supplied by Vsafe when Vape is off,
2882 		 * no need to hold Vape
2883 		 */
2884 		.constraints = {
2885 			.name = "db8500-esram34",
2886 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2887 		},
2888 		.consumer_supplies = db8500_esram34_consumers,
2889 		.num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
2890 	},
2891 	[DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
2892 		.constraints = {
2893 			.name = "db8500-esram34-ret",
2894 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2895 		},
2896 	},
2897 };
2898 
2899 static struct mfd_cell db8500_prcmu_devs[] = {
2900 	{
2901 		.name = "db8500-prcmu-regulators",
2902 		.platform_data = &db8500_regulators,
2903 		.pdata_size = sizeof(db8500_regulators),
2904 	},
2905 	{
2906 		.name = "cpufreq-u8500",
2907 	},
2908 };
2909 
2910 /**
2911  * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
2912  *
2913  */
2914 static int __init db8500_prcmu_probe(struct platform_device *pdev)
2915 {
2916 	int err = 0;
2917 
2918 	if (ux500_is_svp())
2919 		return -ENODEV;
2920 
2921 	init_prcm_registers();
2922 
2923 	/* Clean up the mailbox interrupts after pre-kernel code. */
2924 	writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
2925 
2926 	err = request_threaded_irq(IRQ_DB8500_PRCMU1, prcmu_irq_handler,
2927 		prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
2928 	if (err < 0) {
2929 		pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
2930 		err = -EBUSY;
2931 		goto no_irq_return;
2932 	}
2933 
2934 	if (cpu_is_u8500v20_or_later())
2935 		prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
2936 
2937 	err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
2938 			      ARRAY_SIZE(db8500_prcmu_devs), NULL,
2939 			      0);
2940 
2941 	if (err)
2942 		pr_err("prcmu: Failed to add subdevices\n");
2943 	else
2944 		pr_info("DB8500 PRCMU initialized\n");
2945 
2946 no_irq_return:
2947 	return err;
2948 }
2949 
2950 static struct platform_driver db8500_prcmu_driver = {
2951 	.driver = {
2952 		.name = "db8500-prcmu",
2953 		.owner = THIS_MODULE,
2954 	},
2955 };
2956 
2957 static int __init db8500_prcmu_init(void)
2958 {
2959 	return platform_driver_probe(&db8500_prcmu_driver, db8500_prcmu_probe);
2960 }
2961 
2962 arch_initcall(db8500_prcmu_init);
2963 
2964 MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>");
2965 MODULE_DESCRIPTION("DB8500 PRCM Unit driver");
2966 MODULE_LICENSE("GPL v2");
2967