1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * DB8500 PRCM Unit driver 4 * 5 * Copyright (C) STMicroelectronics 2009 6 * Copyright (C) ST-Ericsson SA 2010 7 * 8 * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com> 9 * Author: Sundar Iyer <sundar.iyer@stericsson.com> 10 * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com> 11 * 12 * U8500 PRCM Unit interface driver 13 */ 14 #include <linux/init.h> 15 #include <linux/export.h> 16 #include <linux/kernel.h> 17 #include <linux/delay.h> 18 #include <linux/errno.h> 19 #include <linux/err.h> 20 #include <linux/spinlock.h> 21 #include <linux/io.h> 22 #include <linux/slab.h> 23 #include <linux/mutex.h> 24 #include <linux/completion.h> 25 #include <linux/irq.h> 26 #include <linux/jiffies.h> 27 #include <linux/bitops.h> 28 #include <linux/fs.h> 29 #include <linux/of.h> 30 #include <linux/of_address.h> 31 #include <linux/of_irq.h> 32 #include <linux/platform_device.h> 33 #include <linux/uaccess.h> 34 #include <linux/mfd/core.h> 35 #include <linux/mfd/dbx500-prcmu.h> 36 #include <linux/mfd/abx500/ab8500.h> 37 #include <linux/regulator/db8500-prcmu.h> 38 #include <linux/regulator/machine.h> 39 #include <linux/platform_data/ux500_wdt.h> 40 #include "dbx500-prcmu-regs.h" 41 42 /* Index of different voltages to be used when accessing AVSData */ 43 #define PRCM_AVS_BASE 0x2FC 44 #define PRCM_AVS_VBB_RET (PRCM_AVS_BASE + 0x0) 45 #define PRCM_AVS_VBB_MAX_OPP (PRCM_AVS_BASE + 0x1) 46 #define PRCM_AVS_VBB_100_OPP (PRCM_AVS_BASE + 0x2) 47 #define PRCM_AVS_VBB_50_OPP (PRCM_AVS_BASE + 0x3) 48 #define PRCM_AVS_VARM_MAX_OPP (PRCM_AVS_BASE + 0x4) 49 #define PRCM_AVS_VARM_100_OPP (PRCM_AVS_BASE + 0x5) 50 #define PRCM_AVS_VARM_50_OPP (PRCM_AVS_BASE + 0x6) 51 #define PRCM_AVS_VARM_RET (PRCM_AVS_BASE + 0x7) 52 #define PRCM_AVS_VAPE_100_OPP (PRCM_AVS_BASE + 0x8) 53 #define PRCM_AVS_VAPE_50_OPP (PRCM_AVS_BASE + 0x9) 54 #define PRCM_AVS_VMOD_100_OPP (PRCM_AVS_BASE + 0xA) 55 #define PRCM_AVS_VMOD_50_OPP (PRCM_AVS_BASE + 0xB) 56 #define PRCM_AVS_VSAFE (PRCM_AVS_BASE + 0xC) 57 58 #define PRCM_AVS_VOLTAGE 0 59 #define PRCM_AVS_VOLTAGE_MASK 0x3f 60 #define PRCM_AVS_ISSLOWSTARTUP 6 61 #define PRCM_AVS_ISSLOWSTARTUP_MASK (1 << PRCM_AVS_ISSLOWSTARTUP) 62 #define PRCM_AVS_ISMODEENABLE 7 63 #define PRCM_AVS_ISMODEENABLE_MASK (1 << PRCM_AVS_ISMODEENABLE) 64 65 #define PRCM_BOOT_STATUS 0xFFF 66 #define PRCM_ROMCODE_A2P 0xFFE 67 #define PRCM_ROMCODE_P2A 0xFFD 68 #define PRCM_XP70_CUR_PWR_STATE 0xFFC /* 4 BYTES */ 69 70 #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */ 71 72 #define _PRCM_MBOX_HEADER 0xFE8 /* 16 bytes */ 73 #define PRCM_MBOX_HEADER_REQ_MB0 (_PRCM_MBOX_HEADER + 0x0) 74 #define PRCM_MBOX_HEADER_REQ_MB1 (_PRCM_MBOX_HEADER + 0x1) 75 #define PRCM_MBOX_HEADER_REQ_MB2 (_PRCM_MBOX_HEADER + 0x2) 76 #define PRCM_MBOX_HEADER_REQ_MB3 (_PRCM_MBOX_HEADER + 0x3) 77 #define PRCM_MBOX_HEADER_REQ_MB4 (_PRCM_MBOX_HEADER + 0x4) 78 #define PRCM_MBOX_HEADER_REQ_MB5 (_PRCM_MBOX_HEADER + 0x5) 79 #define PRCM_MBOX_HEADER_ACK_MB0 (_PRCM_MBOX_HEADER + 0x8) 80 81 /* Req Mailboxes */ 82 #define PRCM_REQ_MB0 0xFDC /* 12 bytes */ 83 #define PRCM_REQ_MB1 0xFD0 /* 12 bytes */ 84 #define PRCM_REQ_MB2 0xFC0 /* 16 bytes */ 85 #define PRCM_REQ_MB3 0xE4C /* 372 bytes */ 86 #define PRCM_REQ_MB4 0xE48 /* 4 bytes */ 87 #define PRCM_REQ_MB5 0xE44 /* 4 bytes */ 88 89 /* Ack Mailboxes */ 90 #define PRCM_ACK_MB0 0xE08 /* 52 bytes */ 91 #define PRCM_ACK_MB1 0xE04 /* 4 bytes */ 92 #define PRCM_ACK_MB2 0xE00 /* 4 bytes */ 93 #define PRCM_ACK_MB3 0xDFC /* 4 bytes */ 94 #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */ 95 #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */ 96 97 /* Mailbox 0 headers */ 98 #define MB0H_POWER_STATE_TRANS 0 99 #define MB0H_CONFIG_WAKEUPS_EXE 1 100 #define MB0H_READ_WAKEUP_ACK 3 101 #define MB0H_CONFIG_WAKEUPS_SLEEP 4 102 103 #define MB0H_WAKEUP_EXE 2 104 #define MB0H_WAKEUP_SLEEP 5 105 106 /* Mailbox 0 REQs */ 107 #define PRCM_REQ_MB0_AP_POWER_STATE (PRCM_REQ_MB0 + 0x0) 108 #define PRCM_REQ_MB0_AP_PLL_STATE (PRCM_REQ_MB0 + 0x1) 109 #define PRCM_REQ_MB0_ULP_CLOCK_STATE (PRCM_REQ_MB0 + 0x2) 110 #define PRCM_REQ_MB0_DO_NOT_WFI (PRCM_REQ_MB0 + 0x3) 111 #define PRCM_REQ_MB0_WAKEUP_8500 (PRCM_REQ_MB0 + 0x4) 112 #define PRCM_REQ_MB0_WAKEUP_4500 (PRCM_REQ_MB0 + 0x8) 113 114 /* Mailbox 0 ACKs */ 115 #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS (PRCM_ACK_MB0 + 0x0) 116 #define PRCM_ACK_MB0_READ_POINTER (PRCM_ACK_MB0 + 0x1) 117 #define PRCM_ACK_MB0_WAKEUP_0_8500 (PRCM_ACK_MB0 + 0x4) 118 #define PRCM_ACK_MB0_WAKEUP_0_4500 (PRCM_ACK_MB0 + 0x8) 119 #define PRCM_ACK_MB0_WAKEUP_1_8500 (PRCM_ACK_MB0 + 0x1C) 120 #define PRCM_ACK_MB0_WAKEUP_1_4500 (PRCM_ACK_MB0 + 0x20) 121 #define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20 122 123 /* Mailbox 1 headers */ 124 #define MB1H_ARM_APE_OPP 0x0 125 #define MB1H_RESET_MODEM 0x2 126 #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3 127 #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4 128 #define MB1H_RELEASE_USB_WAKEUP 0x5 129 #define MB1H_PLL_ON_OFF 0x6 130 131 /* Mailbox 1 Requests */ 132 #define PRCM_REQ_MB1_ARM_OPP (PRCM_REQ_MB1 + 0x0) 133 #define PRCM_REQ_MB1_APE_OPP (PRCM_REQ_MB1 + 0x1) 134 #define PRCM_REQ_MB1_PLL_ON_OFF (PRCM_REQ_MB1 + 0x4) 135 #define PLL_SOC0_OFF 0x1 136 #define PLL_SOC0_ON 0x2 137 #define PLL_SOC1_OFF 0x4 138 #define PLL_SOC1_ON 0x8 139 140 /* Mailbox 1 ACKs */ 141 #define PRCM_ACK_MB1_CURRENT_ARM_OPP (PRCM_ACK_MB1 + 0x0) 142 #define PRCM_ACK_MB1_CURRENT_APE_OPP (PRCM_ACK_MB1 + 0x1) 143 #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2) 144 #define PRCM_ACK_MB1_DVFS_STATUS (PRCM_ACK_MB1 + 0x3) 145 146 /* Mailbox 2 headers */ 147 #define MB2H_DPS 0x0 148 #define MB2H_AUTO_PWR 0x1 149 150 /* Mailbox 2 REQs */ 151 #define PRCM_REQ_MB2_SVA_MMDSP (PRCM_REQ_MB2 + 0x0) 152 #define PRCM_REQ_MB2_SVA_PIPE (PRCM_REQ_MB2 + 0x1) 153 #define PRCM_REQ_MB2_SIA_MMDSP (PRCM_REQ_MB2 + 0x2) 154 #define PRCM_REQ_MB2_SIA_PIPE (PRCM_REQ_MB2 + 0x3) 155 #define PRCM_REQ_MB2_SGA (PRCM_REQ_MB2 + 0x4) 156 #define PRCM_REQ_MB2_B2R2_MCDE (PRCM_REQ_MB2 + 0x5) 157 #define PRCM_REQ_MB2_ESRAM12 (PRCM_REQ_MB2 + 0x6) 158 #define PRCM_REQ_MB2_ESRAM34 (PRCM_REQ_MB2 + 0x7) 159 #define PRCM_REQ_MB2_AUTO_PM_SLEEP (PRCM_REQ_MB2 + 0x8) 160 #define PRCM_REQ_MB2_AUTO_PM_IDLE (PRCM_REQ_MB2 + 0xC) 161 162 /* Mailbox 2 ACKs */ 163 #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0) 164 #define HWACC_PWR_ST_OK 0xFE 165 166 /* Mailbox 3 headers */ 167 #define MB3H_ANC 0x0 168 #define MB3H_SIDETONE 0x1 169 #define MB3H_SYSCLK 0xE 170 171 /* Mailbox 3 Requests */ 172 #define PRCM_REQ_MB3_ANC_FIR_COEFF (PRCM_REQ_MB3 + 0x0) 173 #define PRCM_REQ_MB3_ANC_IIR_COEFF (PRCM_REQ_MB3 + 0x20) 174 #define PRCM_REQ_MB3_ANC_SHIFTER (PRCM_REQ_MB3 + 0x60) 175 #define PRCM_REQ_MB3_ANC_WARP (PRCM_REQ_MB3 + 0x64) 176 #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN (PRCM_REQ_MB3 + 0x68) 177 #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C) 178 #define PRCM_REQ_MB3_SYSCLK_MGT (PRCM_REQ_MB3 + 0x16C) 179 180 /* Mailbox 4 headers */ 181 #define MB4H_DDR_INIT 0x0 182 #define MB4H_MEM_ST 0x1 183 #define MB4H_HOTDOG 0x12 184 #define MB4H_HOTMON 0x13 185 #define MB4H_HOT_PERIOD 0x14 186 #define MB4H_A9WDOG_CONF 0x16 187 #define MB4H_A9WDOG_EN 0x17 188 #define MB4H_A9WDOG_DIS 0x18 189 #define MB4H_A9WDOG_LOAD 0x19 190 #define MB4H_A9WDOG_KICK 0x20 191 192 /* Mailbox 4 Requests */ 193 #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE (PRCM_REQ_MB4 + 0x0) 194 #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE (PRCM_REQ_MB4 + 0x1) 195 #define PRCM_REQ_MB4_ESRAM0_ST (PRCM_REQ_MB4 + 0x3) 196 #define PRCM_REQ_MB4_HOTDOG_THRESHOLD (PRCM_REQ_MB4 + 0x0) 197 #define PRCM_REQ_MB4_HOTMON_LOW (PRCM_REQ_MB4 + 0x0) 198 #define PRCM_REQ_MB4_HOTMON_HIGH (PRCM_REQ_MB4 + 0x1) 199 #define PRCM_REQ_MB4_HOTMON_CONFIG (PRCM_REQ_MB4 + 0x2) 200 #define PRCM_REQ_MB4_HOT_PERIOD (PRCM_REQ_MB4 + 0x0) 201 #define HOTMON_CONFIG_LOW BIT(0) 202 #define HOTMON_CONFIG_HIGH BIT(1) 203 #define PRCM_REQ_MB4_A9WDOG_0 (PRCM_REQ_MB4 + 0x0) 204 #define PRCM_REQ_MB4_A9WDOG_1 (PRCM_REQ_MB4 + 0x1) 205 #define PRCM_REQ_MB4_A9WDOG_2 (PRCM_REQ_MB4 + 0x2) 206 #define PRCM_REQ_MB4_A9WDOG_3 (PRCM_REQ_MB4 + 0x3) 207 #define A9WDOG_AUTO_OFF_EN BIT(7) 208 #define A9WDOG_AUTO_OFF_DIS 0 209 #define A9WDOG_ID_MASK 0xf 210 211 /* Mailbox 5 Requests */ 212 #define PRCM_REQ_MB5_I2C_SLAVE_OP (PRCM_REQ_MB5 + 0x0) 213 #define PRCM_REQ_MB5_I2C_HW_BITS (PRCM_REQ_MB5 + 0x1) 214 #define PRCM_REQ_MB5_I2C_REG (PRCM_REQ_MB5 + 0x2) 215 #define PRCM_REQ_MB5_I2C_VAL (PRCM_REQ_MB5 + 0x3) 216 #define PRCMU_I2C_WRITE(slave) (((slave) << 1) | BIT(6)) 217 #define PRCMU_I2C_READ(slave) (((slave) << 1) | BIT(0) | BIT(6)) 218 #define PRCMU_I2C_STOP_EN BIT(3) 219 220 /* Mailbox 5 ACKs */ 221 #define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1) 222 #define PRCM_ACK_MB5_I2C_VAL (PRCM_ACK_MB5 + 0x3) 223 #define I2C_WR_OK 0x1 224 #define I2C_RD_OK 0x2 225 226 #define NUM_MB 8 227 #define MBOX_BIT BIT 228 #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1) 229 230 /* 231 * Wakeups/IRQs 232 */ 233 234 #define WAKEUP_BIT_RTC BIT(0) 235 #define WAKEUP_BIT_RTT0 BIT(1) 236 #define WAKEUP_BIT_RTT1 BIT(2) 237 #define WAKEUP_BIT_HSI0 BIT(3) 238 #define WAKEUP_BIT_HSI1 BIT(4) 239 #define WAKEUP_BIT_CA_WAKE BIT(5) 240 #define WAKEUP_BIT_USB BIT(6) 241 #define WAKEUP_BIT_ABB BIT(7) 242 #define WAKEUP_BIT_ABB_FIFO BIT(8) 243 #define WAKEUP_BIT_SYSCLK_OK BIT(9) 244 #define WAKEUP_BIT_CA_SLEEP BIT(10) 245 #define WAKEUP_BIT_AC_WAKE_ACK BIT(11) 246 #define WAKEUP_BIT_SIDE_TONE_OK BIT(12) 247 #define WAKEUP_BIT_ANC_OK BIT(13) 248 #define WAKEUP_BIT_SW_ERROR BIT(14) 249 #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15) 250 #define WAKEUP_BIT_ARM BIT(17) 251 #define WAKEUP_BIT_HOTMON_LOW BIT(18) 252 #define WAKEUP_BIT_HOTMON_HIGH BIT(19) 253 #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20) 254 #define WAKEUP_BIT_GPIO0 BIT(23) 255 #define WAKEUP_BIT_GPIO1 BIT(24) 256 #define WAKEUP_BIT_GPIO2 BIT(25) 257 #define WAKEUP_BIT_GPIO3 BIT(26) 258 #define WAKEUP_BIT_GPIO4 BIT(27) 259 #define WAKEUP_BIT_GPIO5 BIT(28) 260 #define WAKEUP_BIT_GPIO6 BIT(29) 261 #define WAKEUP_BIT_GPIO7 BIT(30) 262 #define WAKEUP_BIT_GPIO8 BIT(31) 263 264 static struct { 265 bool valid; 266 struct prcmu_fw_version version; 267 } fw_info; 268 269 static struct irq_domain *db8500_irq_domain; 270 271 /* 272 * This vector maps irq numbers to the bits in the bit field used in 273 * communication with the PRCMU firmware. 274 * 275 * The reason for having this is to keep the irq numbers contiguous even though 276 * the bits in the bit field are not. (The bits also have a tendency to move 277 * around, to further complicate matters.) 278 */ 279 #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name)) 280 #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name) 281 282 #define IRQ_PRCMU_RTC 0 283 #define IRQ_PRCMU_RTT0 1 284 #define IRQ_PRCMU_RTT1 2 285 #define IRQ_PRCMU_HSI0 3 286 #define IRQ_PRCMU_HSI1 4 287 #define IRQ_PRCMU_CA_WAKE 5 288 #define IRQ_PRCMU_USB 6 289 #define IRQ_PRCMU_ABB 7 290 #define IRQ_PRCMU_ABB_FIFO 8 291 #define IRQ_PRCMU_ARM 9 292 #define IRQ_PRCMU_MODEM_SW_RESET_REQ 10 293 #define IRQ_PRCMU_GPIO0 11 294 #define IRQ_PRCMU_GPIO1 12 295 #define IRQ_PRCMU_GPIO2 13 296 #define IRQ_PRCMU_GPIO3 14 297 #define IRQ_PRCMU_GPIO4 15 298 #define IRQ_PRCMU_GPIO5 16 299 #define IRQ_PRCMU_GPIO6 17 300 #define IRQ_PRCMU_GPIO7 18 301 #define IRQ_PRCMU_GPIO8 19 302 #define IRQ_PRCMU_CA_SLEEP 20 303 #define IRQ_PRCMU_HOTMON_LOW 21 304 #define IRQ_PRCMU_HOTMON_HIGH 22 305 #define NUM_PRCMU_WAKEUPS 23 306 307 static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = { 308 IRQ_ENTRY(RTC), 309 IRQ_ENTRY(RTT0), 310 IRQ_ENTRY(RTT1), 311 IRQ_ENTRY(HSI0), 312 IRQ_ENTRY(HSI1), 313 IRQ_ENTRY(CA_WAKE), 314 IRQ_ENTRY(USB), 315 IRQ_ENTRY(ABB), 316 IRQ_ENTRY(ABB_FIFO), 317 IRQ_ENTRY(CA_SLEEP), 318 IRQ_ENTRY(ARM), 319 IRQ_ENTRY(HOTMON_LOW), 320 IRQ_ENTRY(HOTMON_HIGH), 321 IRQ_ENTRY(MODEM_SW_RESET_REQ), 322 IRQ_ENTRY(GPIO0), 323 IRQ_ENTRY(GPIO1), 324 IRQ_ENTRY(GPIO2), 325 IRQ_ENTRY(GPIO3), 326 IRQ_ENTRY(GPIO4), 327 IRQ_ENTRY(GPIO5), 328 IRQ_ENTRY(GPIO6), 329 IRQ_ENTRY(GPIO7), 330 IRQ_ENTRY(GPIO8) 331 }; 332 333 #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1) 334 #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name) 335 static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = { 336 WAKEUP_ENTRY(RTC), 337 WAKEUP_ENTRY(RTT0), 338 WAKEUP_ENTRY(RTT1), 339 WAKEUP_ENTRY(HSI0), 340 WAKEUP_ENTRY(HSI1), 341 WAKEUP_ENTRY(USB), 342 WAKEUP_ENTRY(ABB), 343 WAKEUP_ENTRY(ABB_FIFO), 344 WAKEUP_ENTRY(ARM) 345 }; 346 347 /* 348 * mb0_transfer - state needed for mailbox 0 communication. 349 * @lock: The transaction lock. 350 * @dbb_events_lock: A lock used to handle concurrent access to (parts of) 351 * the request data. 352 * @mask_work: Work structure used for (un)masking wakeup interrupts. 353 * @req: Request data that need to persist between requests. 354 */ 355 static struct { 356 spinlock_t lock; 357 spinlock_t dbb_irqs_lock; 358 struct work_struct mask_work; 359 struct mutex ac_wake_lock; 360 struct completion ac_wake_work; 361 struct { 362 u32 dbb_irqs; 363 u32 dbb_wakeups; 364 u32 abb_events; 365 } req; 366 } mb0_transfer; 367 368 /* 369 * mb1_transfer - state needed for mailbox 1 communication. 370 * @lock: The transaction lock. 371 * @work: The transaction completion structure. 372 * @ape_opp: The current APE OPP. 373 * @ack: Reply ("acknowledge") data. 374 */ 375 static struct { 376 struct mutex lock; 377 struct completion work; 378 u8 ape_opp; 379 struct { 380 u8 header; 381 u8 arm_opp; 382 u8 ape_opp; 383 u8 ape_voltage_status; 384 } ack; 385 } mb1_transfer; 386 387 /* 388 * mb2_transfer - state needed for mailbox 2 communication. 389 * @lock: The transaction lock. 390 * @work: The transaction completion structure. 391 * @auto_pm_lock: The autonomous power management configuration lock. 392 * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled. 393 * @req: Request data that need to persist between requests. 394 * @ack: Reply ("acknowledge") data. 395 */ 396 static struct { 397 struct mutex lock; 398 struct completion work; 399 spinlock_t auto_pm_lock; 400 bool auto_pm_enabled; 401 struct { 402 u8 status; 403 } ack; 404 } mb2_transfer; 405 406 /* 407 * mb3_transfer - state needed for mailbox 3 communication. 408 * @lock: The request lock. 409 * @sysclk_lock: A lock used to handle concurrent sysclk requests. 410 * @sysclk_work: Work structure used for sysclk requests. 411 */ 412 static struct { 413 spinlock_t lock; 414 struct mutex sysclk_lock; 415 struct completion sysclk_work; 416 } mb3_transfer; 417 418 /* 419 * mb4_transfer - state needed for mailbox 4 communication. 420 * @lock: The transaction lock. 421 * @work: The transaction completion structure. 422 */ 423 static struct { 424 struct mutex lock; 425 struct completion work; 426 } mb4_transfer; 427 428 /* 429 * mb5_transfer - state needed for mailbox 5 communication. 430 * @lock: The transaction lock. 431 * @work: The transaction completion structure. 432 * @ack: Reply ("acknowledge") data. 433 */ 434 static struct { 435 struct mutex lock; 436 struct completion work; 437 struct { 438 u8 status; 439 u8 value; 440 } ack; 441 } mb5_transfer; 442 443 static atomic_t ac_wake_req_state = ATOMIC_INIT(0); 444 445 /* Spinlocks */ 446 static DEFINE_SPINLOCK(prcmu_lock); 447 static DEFINE_SPINLOCK(clkout_lock); 448 449 /* Global var to runtime determine TCDM base for v2 or v1 */ 450 static __iomem void *tcdm_base; 451 static __iomem void *prcmu_base; 452 453 struct clk_mgt { 454 u32 offset; 455 u32 pllsw; 456 int branch; 457 bool clk38div; 458 }; 459 460 enum { 461 PLL_RAW, 462 PLL_FIX, 463 PLL_DIV 464 }; 465 466 static DEFINE_SPINLOCK(clk_mgt_lock); 467 468 #define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \ 469 { (PRCM_##_name##_MGT), 0 , _branch, _clk38div} 470 static struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = { 471 CLK_MGT_ENTRY(SGACLK, PLL_DIV, false), 472 CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true), 473 CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true), 474 CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true), 475 CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true), 476 CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true), 477 CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true), 478 CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true), 479 CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true), 480 CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true), 481 CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true), 482 CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true), 483 CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true), 484 CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true), 485 CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true), 486 CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true), 487 CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true), 488 CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false), 489 CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true), 490 CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true), 491 CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true), 492 CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true), 493 CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false), 494 CLK_MGT_ENTRY(DMACLK, PLL_DIV, true), 495 CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true), 496 CLK_MGT_ENTRY(TVCLK, PLL_FIX, true), 497 CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true), 498 CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true), 499 CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false), 500 }; 501 502 struct dsiclk { 503 u32 divsel_mask; 504 u32 divsel_shift; 505 u32 divsel; 506 }; 507 508 static struct dsiclk dsiclk[2] = { 509 { 510 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK, 511 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT, 512 .divsel = PRCM_DSI_PLLOUT_SEL_PHI, 513 }, 514 { 515 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK, 516 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT, 517 .divsel = PRCM_DSI_PLLOUT_SEL_PHI, 518 } 519 }; 520 521 struct dsiescclk { 522 u32 en; 523 u32 div_mask; 524 u32 div_shift; 525 }; 526 527 static struct dsiescclk dsiescclk[3] = { 528 { 529 .en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN, 530 .div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK, 531 .div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT, 532 }, 533 { 534 .en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN, 535 .div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK, 536 .div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT, 537 }, 538 { 539 .en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN, 540 .div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK, 541 .div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT, 542 } 543 }; 544 545 u32 db8500_prcmu_read(unsigned int reg) 546 { 547 return readl(prcmu_base + reg); 548 } 549 550 void db8500_prcmu_write(unsigned int reg, u32 value) 551 { 552 unsigned long flags; 553 554 spin_lock_irqsave(&prcmu_lock, flags); 555 writel(value, (prcmu_base + reg)); 556 spin_unlock_irqrestore(&prcmu_lock, flags); 557 } 558 559 void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value) 560 { 561 u32 val; 562 unsigned long flags; 563 564 spin_lock_irqsave(&prcmu_lock, flags); 565 val = readl(prcmu_base + reg); 566 val = ((val & ~mask) | (value & mask)); 567 writel(val, (prcmu_base + reg)); 568 spin_unlock_irqrestore(&prcmu_lock, flags); 569 } 570 571 struct prcmu_fw_version *prcmu_get_fw_version(void) 572 { 573 return fw_info.valid ? &fw_info.version : NULL; 574 } 575 576 static bool prcmu_is_ulppll_disabled(void) 577 { 578 struct prcmu_fw_version *ver; 579 580 ver = prcmu_get_fw_version(); 581 return ver && ver->project == PRCMU_FW_PROJECT_U8420_SYSCLK; 582 } 583 584 bool prcmu_has_arm_maxopp(void) 585 { 586 return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) & 587 PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK; 588 } 589 590 /** 591 * prcmu_set_rc_a2p - This function is used to run few power state sequences 592 * @val: Value to be set, i.e. transition requested 593 * Returns: 0 on success, -EINVAL on invalid argument 594 * 595 * This function is used to run the following power state sequences - 596 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep 597 */ 598 int prcmu_set_rc_a2p(enum romcode_write val) 599 { 600 if (val < RDY_2_DS || val > RDY_2_XP70_RST) 601 return -EINVAL; 602 writeb(val, (tcdm_base + PRCM_ROMCODE_A2P)); 603 return 0; 604 } 605 606 /** 607 * prcmu_get_rc_p2a - This function is used to get power state sequences 608 * Returns: the power transition that has last happened 609 * 610 * This function can return the following transitions- 611 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep 612 */ 613 enum romcode_read prcmu_get_rc_p2a(void) 614 { 615 return readb(tcdm_base + PRCM_ROMCODE_P2A); 616 } 617 618 /** 619 * prcmu_get_current_mode - Return the current XP70 power mode 620 * Returns: Returns the current AP(ARM) power mode: init, 621 * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset 622 */ 623 enum ap_pwrst prcmu_get_xp70_current_state(void) 624 { 625 return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE); 626 } 627 628 /** 629 * prcmu_config_clkout - Configure one of the programmable clock outputs. 630 * @clkout: The CLKOUT number (0 or 1). 631 * @source: The clock to be used (one of the PRCMU_CLKSRC_*). 632 * @div: The divider to be applied. 633 * 634 * Configures one of the programmable clock outputs (CLKOUTs). 635 * @div should be in the range [1,63] to request a configuration, or 0 to 636 * inform that the configuration is no longer requested. 637 */ 638 int prcmu_config_clkout(u8 clkout, u8 source, u8 div) 639 { 640 static int requests[2]; 641 int r = 0; 642 unsigned long flags; 643 u32 val; 644 u32 bits; 645 u32 mask; 646 u32 div_mask; 647 648 BUG_ON(clkout > 1); 649 BUG_ON(div > 63); 650 BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009)); 651 652 if (!div && !requests[clkout]) 653 return -EINVAL; 654 655 if (clkout == 0) { 656 div_mask = PRCM_CLKOCR_CLKODIV0_MASK; 657 mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK); 658 bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) | 659 (div << PRCM_CLKOCR_CLKODIV0_SHIFT)); 660 } else { 661 div_mask = PRCM_CLKOCR_CLKODIV1_MASK; 662 mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK | 663 PRCM_CLKOCR_CLK1TYPE); 664 bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) | 665 (div << PRCM_CLKOCR_CLKODIV1_SHIFT)); 666 } 667 bits &= mask; 668 669 spin_lock_irqsave(&clkout_lock, flags); 670 671 val = readl(PRCM_CLKOCR); 672 if (val & div_mask) { 673 if (div) { 674 if ((val & mask) != bits) { 675 r = -EBUSY; 676 goto unlock_and_return; 677 } 678 } else { 679 if ((val & mask & ~div_mask) != bits) { 680 r = -EINVAL; 681 goto unlock_and_return; 682 } 683 } 684 } 685 writel((bits | (val & ~mask)), PRCM_CLKOCR); 686 requests[clkout] += (div ? 1 : -1); 687 688 unlock_and_return: 689 spin_unlock_irqrestore(&clkout_lock, flags); 690 691 return r; 692 } 693 694 int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll) 695 { 696 unsigned long flags; 697 698 BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state)); 699 700 spin_lock_irqsave(&mb0_transfer.lock, flags); 701 702 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0)) 703 cpu_relax(); 704 705 writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0)); 706 writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE)); 707 writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE)); 708 writeb((keep_ulp_clk ? 1 : 0), 709 (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE)); 710 writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI)); 711 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET); 712 713 spin_unlock_irqrestore(&mb0_transfer.lock, flags); 714 715 return 0; 716 } 717 718 u8 db8500_prcmu_get_power_state_result(void) 719 { 720 return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS); 721 } 722 723 /* This function should only be called while mb0_transfer.lock is held. */ 724 static void config_wakeups(void) 725 { 726 const u8 header[2] = { 727 MB0H_CONFIG_WAKEUPS_EXE, 728 MB0H_CONFIG_WAKEUPS_SLEEP 729 }; 730 static u32 last_dbb_events; 731 static u32 last_abb_events; 732 u32 dbb_events; 733 u32 abb_events; 734 unsigned int i; 735 736 dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups; 737 dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK); 738 739 abb_events = mb0_transfer.req.abb_events; 740 741 if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events)) 742 return; 743 744 for (i = 0; i < 2; i++) { 745 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0)) 746 cpu_relax(); 747 writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500)); 748 writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500)); 749 writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0)); 750 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET); 751 } 752 last_dbb_events = dbb_events; 753 last_abb_events = abb_events; 754 } 755 756 void db8500_prcmu_enable_wakeups(u32 wakeups) 757 { 758 unsigned long flags; 759 u32 bits; 760 int i; 761 762 BUG_ON(wakeups != (wakeups & VALID_WAKEUPS)); 763 764 for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) { 765 if (wakeups & BIT(i)) 766 bits |= prcmu_wakeup_bit[i]; 767 } 768 769 spin_lock_irqsave(&mb0_transfer.lock, flags); 770 771 mb0_transfer.req.dbb_wakeups = bits; 772 config_wakeups(); 773 774 spin_unlock_irqrestore(&mb0_transfer.lock, flags); 775 } 776 777 void db8500_prcmu_config_abb_event_readout(u32 abb_events) 778 { 779 unsigned long flags; 780 781 spin_lock_irqsave(&mb0_transfer.lock, flags); 782 783 mb0_transfer.req.abb_events = abb_events; 784 config_wakeups(); 785 786 spin_unlock_irqrestore(&mb0_transfer.lock, flags); 787 } 788 789 void db8500_prcmu_get_abb_event_buffer(void __iomem **buf) 790 { 791 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1) 792 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500); 793 else 794 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500); 795 } 796 797 /** 798 * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP 799 * @opp: The new ARM operating point to which transition is to be made 800 * Returns: 0 on success, non-zero on failure 801 * 802 * This function sets the the operating point of the ARM. 803 */ 804 int db8500_prcmu_set_arm_opp(u8 opp) 805 { 806 int r; 807 808 if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK) 809 return -EINVAL; 810 811 r = 0; 812 813 mutex_lock(&mb1_transfer.lock); 814 815 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1)) 816 cpu_relax(); 817 818 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1)); 819 writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP)); 820 writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP)); 821 822 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET); 823 wait_for_completion(&mb1_transfer.work); 824 825 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) || 826 (mb1_transfer.ack.arm_opp != opp)) 827 r = -EIO; 828 829 mutex_unlock(&mb1_transfer.lock); 830 831 return r; 832 } 833 834 /** 835 * db8500_prcmu_get_arm_opp - get the current ARM OPP 836 * 837 * Returns: the current ARM OPP 838 */ 839 int db8500_prcmu_get_arm_opp(void) 840 { 841 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP); 842 } 843 844 /** 845 * db8500_prcmu_get_ddr_opp - get the current DDR OPP 846 * 847 * Returns: the current DDR OPP 848 */ 849 int db8500_prcmu_get_ddr_opp(void) 850 { 851 return readb(PRCM_DDR_SUBSYS_APE_MINBW); 852 } 853 854 /* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */ 855 static void request_even_slower_clocks(bool enable) 856 { 857 u32 clock_reg[] = { 858 PRCM_ACLK_MGT, 859 PRCM_DMACLK_MGT 860 }; 861 unsigned long flags; 862 unsigned int i; 863 864 spin_lock_irqsave(&clk_mgt_lock, flags); 865 866 /* Grab the HW semaphore. */ 867 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0) 868 cpu_relax(); 869 870 for (i = 0; i < ARRAY_SIZE(clock_reg); i++) { 871 u32 val; 872 u32 div; 873 874 val = readl(prcmu_base + clock_reg[i]); 875 div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK); 876 if (enable) { 877 if ((div <= 1) || (div > 15)) { 878 pr_err("prcmu: Bad clock divider %d in %s\n", 879 div, __func__); 880 goto unlock_and_return; 881 } 882 div <<= 1; 883 } else { 884 if (div <= 2) 885 goto unlock_and_return; 886 div >>= 1; 887 } 888 val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) | 889 (div & PRCM_CLK_MGT_CLKPLLDIV_MASK)); 890 writel(val, prcmu_base + clock_reg[i]); 891 } 892 893 unlock_and_return: 894 /* Release the HW semaphore. */ 895 writel(0, PRCM_SEM); 896 897 spin_unlock_irqrestore(&clk_mgt_lock, flags); 898 } 899 900 /** 901 * db8500_set_ape_opp - set the appropriate APE OPP 902 * @opp: The new APE operating point to which transition is to be made 903 * Returns: 0 on success, non-zero on failure 904 * 905 * This function sets the operating point of the APE. 906 */ 907 int db8500_prcmu_set_ape_opp(u8 opp) 908 { 909 int r = 0; 910 911 if (opp == mb1_transfer.ape_opp) 912 return 0; 913 914 mutex_lock(&mb1_transfer.lock); 915 916 if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP) 917 request_even_slower_clocks(false); 918 919 if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP)) 920 goto skip_message; 921 922 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1)) 923 cpu_relax(); 924 925 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1)); 926 writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP)); 927 writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp), 928 (tcdm_base + PRCM_REQ_MB1_APE_OPP)); 929 930 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET); 931 wait_for_completion(&mb1_transfer.work); 932 933 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) || 934 (mb1_transfer.ack.ape_opp != opp)) 935 r = -EIO; 936 937 skip_message: 938 if ((!r && (opp == APE_50_PARTLY_25_OPP)) || 939 (r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP))) 940 request_even_slower_clocks(true); 941 if (!r) 942 mb1_transfer.ape_opp = opp; 943 944 mutex_unlock(&mb1_transfer.lock); 945 946 return r; 947 } 948 949 /** 950 * db8500_prcmu_get_ape_opp - get the current APE OPP 951 * 952 * Returns: the current APE OPP 953 */ 954 int db8500_prcmu_get_ape_opp(void) 955 { 956 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP); 957 } 958 959 /** 960 * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage 961 * @enable: true to request the higher voltage, false to drop a request. 962 * 963 * Calls to this function to enable and disable requests must be balanced. 964 */ 965 int db8500_prcmu_request_ape_opp_100_voltage(bool enable) 966 { 967 int r = 0; 968 u8 header; 969 static unsigned int requests; 970 971 mutex_lock(&mb1_transfer.lock); 972 973 if (enable) { 974 if (0 != requests++) 975 goto unlock_and_return; 976 header = MB1H_REQUEST_APE_OPP_100_VOLT; 977 } else { 978 if (requests == 0) { 979 r = -EIO; 980 goto unlock_and_return; 981 } else if (1 != requests--) { 982 goto unlock_and_return; 983 } 984 header = MB1H_RELEASE_APE_OPP_100_VOLT; 985 } 986 987 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1)) 988 cpu_relax(); 989 990 writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1)); 991 992 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET); 993 wait_for_completion(&mb1_transfer.work); 994 995 if ((mb1_transfer.ack.header != header) || 996 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0)) 997 r = -EIO; 998 999 unlock_and_return: 1000 mutex_unlock(&mb1_transfer.lock); 1001 1002 return r; 1003 } 1004 1005 /** 1006 * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup 1007 * 1008 * This function releases the power state requirements of a USB wakeup. 1009 */ 1010 int prcmu_release_usb_wakeup_state(void) 1011 { 1012 int r = 0; 1013 1014 mutex_lock(&mb1_transfer.lock); 1015 1016 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1)) 1017 cpu_relax(); 1018 1019 writeb(MB1H_RELEASE_USB_WAKEUP, 1020 (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1)); 1021 1022 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET); 1023 wait_for_completion(&mb1_transfer.work); 1024 1025 if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) || 1026 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0)) 1027 r = -EIO; 1028 1029 mutex_unlock(&mb1_transfer.lock); 1030 1031 return r; 1032 } 1033 1034 static int request_pll(u8 clock, bool enable) 1035 { 1036 int r = 0; 1037 1038 if (clock == PRCMU_PLLSOC0) 1039 clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF); 1040 else if (clock == PRCMU_PLLSOC1) 1041 clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF); 1042 else 1043 return -EINVAL; 1044 1045 mutex_lock(&mb1_transfer.lock); 1046 1047 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1)) 1048 cpu_relax(); 1049 1050 writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1)); 1051 writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF)); 1052 1053 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET); 1054 wait_for_completion(&mb1_transfer.work); 1055 1056 if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF) 1057 r = -EIO; 1058 1059 mutex_unlock(&mb1_transfer.lock); 1060 1061 return r; 1062 } 1063 1064 /** 1065 * db8500_prcmu_set_epod - set the state of a EPOD (power domain) 1066 * @epod_id: The EPOD to set 1067 * @epod_state: The new EPOD state 1068 * 1069 * This function sets the state of a EPOD (power domain). It may not be called 1070 * from interrupt context. 1071 */ 1072 int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state) 1073 { 1074 int r = 0; 1075 bool ram_retention = false; 1076 int i; 1077 1078 /* check argument */ 1079 BUG_ON(epod_id >= NUM_EPOD_ID); 1080 1081 /* set flag if retention is possible */ 1082 switch (epod_id) { 1083 case EPOD_ID_SVAMMDSP: 1084 case EPOD_ID_SIAMMDSP: 1085 case EPOD_ID_ESRAM12: 1086 case EPOD_ID_ESRAM34: 1087 ram_retention = true; 1088 break; 1089 } 1090 1091 /* check argument */ 1092 BUG_ON(epod_state > EPOD_STATE_ON); 1093 BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention); 1094 1095 /* get lock */ 1096 mutex_lock(&mb2_transfer.lock); 1097 1098 /* wait for mailbox */ 1099 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2)) 1100 cpu_relax(); 1101 1102 /* fill in mailbox */ 1103 for (i = 0; i < NUM_EPOD_ID; i++) 1104 writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i)); 1105 writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id)); 1106 1107 writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2)); 1108 1109 writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET); 1110 1111 /* 1112 * The current firmware version does not handle errors correctly, 1113 * and we cannot recover if there is an error. 1114 * This is expected to change when the firmware is updated. 1115 */ 1116 if (!wait_for_completion_timeout(&mb2_transfer.work, 1117 msecs_to_jiffies(20000))) { 1118 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n", 1119 __func__); 1120 r = -EIO; 1121 goto unlock_and_return; 1122 } 1123 1124 if (mb2_transfer.ack.status != HWACC_PWR_ST_OK) 1125 r = -EIO; 1126 1127 unlock_and_return: 1128 mutex_unlock(&mb2_transfer.lock); 1129 return r; 1130 } 1131 1132 /** 1133 * prcmu_configure_auto_pm - Configure autonomous power management. 1134 * @sleep: Configuration for ApSleep. 1135 * @idle: Configuration for ApIdle. 1136 */ 1137 void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep, 1138 struct prcmu_auto_pm_config *idle) 1139 { 1140 u32 sleep_cfg; 1141 u32 idle_cfg; 1142 unsigned long flags; 1143 1144 BUG_ON((sleep == NULL) || (idle == NULL)); 1145 1146 sleep_cfg = (sleep->sva_auto_pm_enable & 0xF); 1147 sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF)); 1148 sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF)); 1149 sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF)); 1150 sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF)); 1151 sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF)); 1152 1153 idle_cfg = (idle->sva_auto_pm_enable & 0xF); 1154 idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF)); 1155 idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF)); 1156 idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF)); 1157 idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF)); 1158 idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF)); 1159 1160 spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags); 1161 1162 /* 1163 * The autonomous power management configuration is done through 1164 * fields in mailbox 2, but these fields are only used as shared 1165 * variables - i.e. there is no need to send a message. 1166 */ 1167 writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP)); 1168 writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE)); 1169 1170 mb2_transfer.auto_pm_enabled = 1171 ((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) || 1172 (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) || 1173 (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) || 1174 (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON)); 1175 1176 spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags); 1177 } 1178 EXPORT_SYMBOL(prcmu_configure_auto_pm); 1179 1180 bool prcmu_is_auto_pm_enabled(void) 1181 { 1182 return mb2_transfer.auto_pm_enabled; 1183 } 1184 1185 static int request_sysclk(bool enable) 1186 { 1187 int r; 1188 unsigned long flags; 1189 1190 r = 0; 1191 1192 mutex_lock(&mb3_transfer.sysclk_lock); 1193 1194 spin_lock_irqsave(&mb3_transfer.lock, flags); 1195 1196 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3)) 1197 cpu_relax(); 1198 1199 writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT)); 1200 1201 writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3)); 1202 writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET); 1203 1204 spin_unlock_irqrestore(&mb3_transfer.lock, flags); 1205 1206 /* 1207 * The firmware only sends an ACK if we want to enable the 1208 * SysClk, and it succeeds. 1209 */ 1210 if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work, 1211 msecs_to_jiffies(20000))) { 1212 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n", 1213 __func__); 1214 r = -EIO; 1215 } 1216 1217 mutex_unlock(&mb3_transfer.sysclk_lock); 1218 1219 return r; 1220 } 1221 1222 static int request_timclk(bool enable) 1223 { 1224 u32 val; 1225 1226 /* 1227 * On the U8420_CLKSEL firmware, the ULP (Ultra Low Power) 1228 * PLL is disabled so we cannot use doze mode, this will 1229 * stop the clock on this firmware. 1230 */ 1231 if (prcmu_is_ulppll_disabled()) 1232 val = 0; 1233 else 1234 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK); 1235 1236 if (!enable) 1237 val |= PRCM_TCR_STOP_TIMERS | 1238 PRCM_TCR_DOZE_MODE | 1239 PRCM_TCR_TENSEL_MASK; 1240 1241 writel(val, PRCM_TCR); 1242 1243 return 0; 1244 } 1245 1246 static int request_clock(u8 clock, bool enable) 1247 { 1248 u32 val; 1249 unsigned long flags; 1250 1251 spin_lock_irqsave(&clk_mgt_lock, flags); 1252 1253 /* Grab the HW semaphore. */ 1254 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0) 1255 cpu_relax(); 1256 1257 val = readl(prcmu_base + clk_mgt[clock].offset); 1258 if (enable) { 1259 val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw); 1260 } else { 1261 clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK); 1262 val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK); 1263 } 1264 writel(val, prcmu_base + clk_mgt[clock].offset); 1265 1266 /* Release the HW semaphore. */ 1267 writel(0, PRCM_SEM); 1268 1269 spin_unlock_irqrestore(&clk_mgt_lock, flags); 1270 1271 return 0; 1272 } 1273 1274 static int request_sga_clock(u8 clock, bool enable) 1275 { 1276 u32 val; 1277 int ret; 1278 1279 if (enable) { 1280 val = readl(PRCM_CGATING_BYPASS); 1281 writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS); 1282 } 1283 1284 ret = request_clock(clock, enable); 1285 1286 if (!ret && !enable) { 1287 val = readl(PRCM_CGATING_BYPASS); 1288 writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS); 1289 } 1290 1291 return ret; 1292 } 1293 1294 static inline bool plldsi_locked(void) 1295 { 1296 return (readl(PRCM_PLLDSI_LOCKP) & 1297 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 | 1298 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) == 1299 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 | 1300 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3); 1301 } 1302 1303 static int request_plldsi(bool enable) 1304 { 1305 int r = 0; 1306 u32 val; 1307 1308 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP | 1309 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ? 1310 PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET)); 1311 1312 val = readl(PRCM_PLLDSI_ENABLE); 1313 if (enable) 1314 val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE; 1315 else 1316 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE; 1317 writel(val, PRCM_PLLDSI_ENABLE); 1318 1319 if (enable) { 1320 unsigned int i; 1321 bool locked = plldsi_locked(); 1322 1323 for (i = 10; !locked && (i > 0); --i) { 1324 udelay(100); 1325 locked = plldsi_locked(); 1326 } 1327 if (locked) { 1328 writel(PRCM_APE_RESETN_DSIPLL_RESETN, 1329 PRCM_APE_RESETN_SET); 1330 } else { 1331 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP | 1332 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), 1333 PRCM_MMIP_LS_CLAMP_SET); 1334 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE; 1335 writel(val, PRCM_PLLDSI_ENABLE); 1336 r = -EAGAIN; 1337 } 1338 } else { 1339 writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR); 1340 } 1341 return r; 1342 } 1343 1344 static int request_dsiclk(u8 n, bool enable) 1345 { 1346 u32 val; 1347 1348 val = readl(PRCM_DSI_PLLOUT_SEL); 1349 val &= ~dsiclk[n].divsel_mask; 1350 val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) << 1351 dsiclk[n].divsel_shift); 1352 writel(val, PRCM_DSI_PLLOUT_SEL); 1353 return 0; 1354 } 1355 1356 static int request_dsiescclk(u8 n, bool enable) 1357 { 1358 u32 val; 1359 1360 val = readl(PRCM_DSITVCLK_DIV); 1361 enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en); 1362 writel(val, PRCM_DSITVCLK_DIV); 1363 return 0; 1364 } 1365 1366 /** 1367 * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled. 1368 * @clock: The clock for which the request is made. 1369 * @enable: Whether the clock should be enabled (true) or disabled (false). 1370 * 1371 * This function should only be used by the clock implementation. 1372 * Do not use it from any other place! 1373 */ 1374 int db8500_prcmu_request_clock(u8 clock, bool enable) 1375 { 1376 if (clock == PRCMU_SGACLK) 1377 return request_sga_clock(clock, enable); 1378 else if (clock < PRCMU_NUM_REG_CLOCKS) 1379 return request_clock(clock, enable); 1380 else if (clock == PRCMU_TIMCLK) 1381 return request_timclk(enable); 1382 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK)) 1383 return request_dsiclk((clock - PRCMU_DSI0CLK), enable); 1384 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK)) 1385 return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable); 1386 else if (clock == PRCMU_PLLDSI) 1387 return request_plldsi(enable); 1388 else if (clock == PRCMU_SYSCLK) 1389 return request_sysclk(enable); 1390 else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1)) 1391 return request_pll(clock, enable); 1392 else 1393 return -EINVAL; 1394 } 1395 1396 static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate, 1397 int branch) 1398 { 1399 u64 rate; 1400 u32 val; 1401 u32 d; 1402 u32 div = 1; 1403 1404 val = readl(reg); 1405 1406 rate = src_rate; 1407 rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT); 1408 1409 d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT); 1410 if (d > 1) 1411 div *= d; 1412 1413 d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT); 1414 if (d > 1) 1415 div *= d; 1416 1417 if (val & PRCM_PLL_FREQ_SELDIV2) 1418 div *= 2; 1419 1420 if ((branch == PLL_FIX) || ((branch == PLL_DIV) && 1421 (val & PRCM_PLL_FREQ_DIV2EN) && 1422 ((reg == PRCM_PLLSOC0_FREQ) || 1423 (reg == PRCM_PLLARM_FREQ) || 1424 (reg == PRCM_PLLDDR_FREQ)))) 1425 div *= 2; 1426 1427 (void)do_div(rate, div); 1428 1429 return (unsigned long)rate; 1430 } 1431 1432 #define ROOT_CLOCK_RATE 38400000 1433 1434 static unsigned long clock_rate(u8 clock) 1435 { 1436 u32 val; 1437 u32 pllsw; 1438 unsigned long rate = ROOT_CLOCK_RATE; 1439 1440 val = readl(prcmu_base + clk_mgt[clock].offset); 1441 1442 if (val & PRCM_CLK_MGT_CLK38) { 1443 if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV)) 1444 rate /= 2; 1445 return rate; 1446 } 1447 1448 val |= clk_mgt[clock].pllsw; 1449 pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK); 1450 1451 if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0) 1452 rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch); 1453 else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1) 1454 rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch); 1455 else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR) 1456 rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch); 1457 else 1458 return 0; 1459 1460 if ((clock == PRCMU_SGACLK) && 1461 (val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) { 1462 u64 r = (rate * 10); 1463 1464 (void)do_div(r, 25); 1465 return (unsigned long)r; 1466 } 1467 val &= PRCM_CLK_MGT_CLKPLLDIV_MASK; 1468 if (val) 1469 return rate / val; 1470 else 1471 return 0; 1472 } 1473 1474 static unsigned long armss_rate(void) 1475 { 1476 u32 r; 1477 unsigned long rate; 1478 1479 r = readl(PRCM_ARM_CHGCLKREQ); 1480 1481 if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) { 1482 /* External ARMCLKFIX clock */ 1483 1484 rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX); 1485 1486 /* Check PRCM_ARM_CHGCLKREQ divider */ 1487 if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL)) 1488 rate /= 2; 1489 1490 /* Check PRCM_ARMCLKFIX_MGT divider */ 1491 r = readl(PRCM_ARMCLKFIX_MGT); 1492 r &= PRCM_CLK_MGT_CLKPLLDIV_MASK; 1493 rate /= r; 1494 1495 } else {/* ARM PLL */ 1496 rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV); 1497 } 1498 1499 return rate; 1500 } 1501 1502 static unsigned long dsiclk_rate(u8 n) 1503 { 1504 u32 divsel; 1505 u32 div = 1; 1506 1507 divsel = readl(PRCM_DSI_PLLOUT_SEL); 1508 divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift); 1509 1510 if (divsel == PRCM_DSI_PLLOUT_SEL_OFF) 1511 divsel = dsiclk[n].divsel; 1512 else 1513 dsiclk[n].divsel = divsel; 1514 1515 switch (divsel) { 1516 case PRCM_DSI_PLLOUT_SEL_PHI_4: 1517 div *= 2; 1518 fallthrough; 1519 case PRCM_DSI_PLLOUT_SEL_PHI_2: 1520 div *= 2; 1521 fallthrough; 1522 case PRCM_DSI_PLLOUT_SEL_PHI: 1523 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK), 1524 PLL_RAW) / div; 1525 default: 1526 return 0; 1527 } 1528 } 1529 1530 static unsigned long dsiescclk_rate(u8 n) 1531 { 1532 u32 div; 1533 1534 div = readl(PRCM_DSITVCLK_DIV); 1535 div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift)); 1536 return clock_rate(PRCMU_TVCLK) / max((u32)1, div); 1537 } 1538 1539 unsigned long prcmu_clock_rate(u8 clock) 1540 { 1541 if (clock < PRCMU_NUM_REG_CLOCKS) 1542 return clock_rate(clock); 1543 else if (clock == PRCMU_TIMCLK) 1544 return prcmu_is_ulppll_disabled() ? 1545 32768 : ROOT_CLOCK_RATE / 16; 1546 else if (clock == PRCMU_SYSCLK) 1547 return ROOT_CLOCK_RATE; 1548 else if (clock == PRCMU_PLLSOC0) 1549 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW); 1550 else if (clock == PRCMU_PLLSOC1) 1551 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW); 1552 else if (clock == PRCMU_ARMSS) 1553 return armss_rate(); 1554 else if (clock == PRCMU_PLLDDR) 1555 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW); 1556 else if (clock == PRCMU_PLLDSI) 1557 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK), 1558 PLL_RAW); 1559 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK)) 1560 return dsiclk_rate(clock - PRCMU_DSI0CLK); 1561 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK)) 1562 return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK); 1563 else 1564 return 0; 1565 } 1566 1567 static unsigned long clock_source_rate(u32 clk_mgt_val, int branch) 1568 { 1569 if (clk_mgt_val & PRCM_CLK_MGT_CLK38) 1570 return ROOT_CLOCK_RATE; 1571 clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK; 1572 if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0) 1573 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch); 1574 else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1) 1575 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch); 1576 else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR) 1577 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch); 1578 else 1579 return 0; 1580 } 1581 1582 static u32 clock_divider(unsigned long src_rate, unsigned long rate) 1583 { 1584 u32 div; 1585 1586 div = (src_rate / rate); 1587 if (div == 0) 1588 return 1; 1589 if (rate < (src_rate / div)) 1590 div++; 1591 return div; 1592 } 1593 1594 static long round_clock_rate(u8 clock, unsigned long rate) 1595 { 1596 u32 val; 1597 u32 div; 1598 unsigned long src_rate; 1599 long rounded_rate; 1600 1601 val = readl(prcmu_base + clk_mgt[clock].offset); 1602 src_rate = clock_source_rate((val | clk_mgt[clock].pllsw), 1603 clk_mgt[clock].branch); 1604 div = clock_divider(src_rate, rate); 1605 if (val & PRCM_CLK_MGT_CLK38) { 1606 if (clk_mgt[clock].clk38div) { 1607 if (div > 2) 1608 div = 2; 1609 } else { 1610 div = 1; 1611 } 1612 } else if ((clock == PRCMU_SGACLK) && (div == 3)) { 1613 u64 r = (src_rate * 10); 1614 1615 (void)do_div(r, 25); 1616 if (r <= rate) 1617 return (unsigned long)r; 1618 } 1619 rounded_rate = (src_rate / min(div, (u32)31)); 1620 1621 return rounded_rate; 1622 } 1623 1624 static const unsigned long db8500_armss_freqs[] = { 1625 200000000, 1626 400000000, 1627 800000000, 1628 998400000 1629 }; 1630 1631 /* The DB8520 has slightly higher ARMSS max frequency */ 1632 static const unsigned long db8520_armss_freqs[] = { 1633 200000000, 1634 400000000, 1635 800000000, 1636 1152000000 1637 }; 1638 1639 1640 1641 static long round_armss_rate(unsigned long rate) 1642 { 1643 unsigned long freq = 0; 1644 const unsigned long *freqs; 1645 int nfreqs; 1646 int i; 1647 1648 if (fw_info.version.project == PRCMU_FW_PROJECT_U8520) { 1649 freqs = db8520_armss_freqs; 1650 nfreqs = ARRAY_SIZE(db8520_armss_freqs); 1651 } else { 1652 freqs = db8500_armss_freqs; 1653 nfreqs = ARRAY_SIZE(db8500_armss_freqs); 1654 } 1655 1656 /* Find the corresponding arm opp from the cpufreq table. */ 1657 for (i = 0; i < nfreqs; i++) { 1658 freq = freqs[i]; 1659 if (rate <= freq) 1660 break; 1661 } 1662 1663 /* Return the last valid value, even if a match was not found. */ 1664 return freq; 1665 } 1666 1667 #define MIN_PLL_VCO_RATE 600000000ULL 1668 #define MAX_PLL_VCO_RATE 1680640000ULL 1669 1670 static long round_plldsi_rate(unsigned long rate) 1671 { 1672 long rounded_rate = 0; 1673 unsigned long src_rate; 1674 unsigned long rem; 1675 u32 r; 1676 1677 src_rate = clock_rate(PRCMU_HDMICLK); 1678 rem = rate; 1679 1680 for (r = 7; (rem > 0) && (r > 0); r--) { 1681 u64 d; 1682 1683 d = (r * rate); 1684 (void)do_div(d, src_rate); 1685 if (d < 6) 1686 d = 6; 1687 else if (d > 255) 1688 d = 255; 1689 d *= src_rate; 1690 if (((2 * d) < (r * MIN_PLL_VCO_RATE)) || 1691 ((r * MAX_PLL_VCO_RATE) < (2 * d))) 1692 continue; 1693 (void)do_div(d, r); 1694 if (rate < d) { 1695 if (rounded_rate == 0) 1696 rounded_rate = (long)d; 1697 break; 1698 } 1699 if ((rate - d) < rem) { 1700 rem = (rate - d); 1701 rounded_rate = (long)d; 1702 } 1703 } 1704 return rounded_rate; 1705 } 1706 1707 static long round_dsiclk_rate(unsigned long rate) 1708 { 1709 u32 div; 1710 unsigned long src_rate; 1711 long rounded_rate; 1712 1713 src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK), 1714 PLL_RAW); 1715 div = clock_divider(src_rate, rate); 1716 rounded_rate = (src_rate / ((div > 2) ? 4 : div)); 1717 1718 return rounded_rate; 1719 } 1720 1721 static long round_dsiescclk_rate(unsigned long rate) 1722 { 1723 u32 div; 1724 unsigned long src_rate; 1725 long rounded_rate; 1726 1727 src_rate = clock_rate(PRCMU_TVCLK); 1728 div = clock_divider(src_rate, rate); 1729 rounded_rate = (src_rate / min(div, (u32)255)); 1730 1731 return rounded_rate; 1732 } 1733 1734 long prcmu_round_clock_rate(u8 clock, unsigned long rate) 1735 { 1736 if (clock < PRCMU_NUM_REG_CLOCKS) 1737 return round_clock_rate(clock, rate); 1738 else if (clock == PRCMU_ARMSS) 1739 return round_armss_rate(rate); 1740 else if (clock == PRCMU_PLLDSI) 1741 return round_plldsi_rate(rate); 1742 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK)) 1743 return round_dsiclk_rate(rate); 1744 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK)) 1745 return round_dsiescclk_rate(rate); 1746 else 1747 return (long)prcmu_clock_rate(clock); 1748 } 1749 1750 static void set_clock_rate(u8 clock, unsigned long rate) 1751 { 1752 u32 val; 1753 u32 div; 1754 unsigned long src_rate; 1755 unsigned long flags; 1756 1757 spin_lock_irqsave(&clk_mgt_lock, flags); 1758 1759 /* Grab the HW semaphore. */ 1760 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0) 1761 cpu_relax(); 1762 1763 val = readl(prcmu_base + clk_mgt[clock].offset); 1764 src_rate = clock_source_rate((val | clk_mgt[clock].pllsw), 1765 clk_mgt[clock].branch); 1766 div = clock_divider(src_rate, rate); 1767 if (val & PRCM_CLK_MGT_CLK38) { 1768 if (clk_mgt[clock].clk38div) { 1769 if (div > 1) 1770 val |= PRCM_CLK_MGT_CLK38DIV; 1771 else 1772 val &= ~PRCM_CLK_MGT_CLK38DIV; 1773 } 1774 } else if (clock == PRCMU_SGACLK) { 1775 val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK | 1776 PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN); 1777 if (div == 3) { 1778 u64 r = (src_rate * 10); 1779 1780 (void)do_div(r, 25); 1781 if (r <= rate) { 1782 val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN; 1783 div = 0; 1784 } 1785 } 1786 val |= min(div, (u32)31); 1787 } else { 1788 val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK; 1789 val |= min(div, (u32)31); 1790 } 1791 writel(val, prcmu_base + clk_mgt[clock].offset); 1792 1793 /* Release the HW semaphore. */ 1794 writel(0, PRCM_SEM); 1795 1796 spin_unlock_irqrestore(&clk_mgt_lock, flags); 1797 } 1798 1799 static int set_armss_rate(unsigned long rate) 1800 { 1801 unsigned long freq; 1802 u8 opps[] = { ARM_EXTCLK, ARM_50_OPP, ARM_100_OPP, ARM_MAX_OPP }; 1803 const unsigned long *freqs; 1804 int nfreqs; 1805 int i; 1806 1807 if (fw_info.version.project == PRCMU_FW_PROJECT_U8520) { 1808 freqs = db8520_armss_freqs; 1809 nfreqs = ARRAY_SIZE(db8520_armss_freqs); 1810 } else { 1811 freqs = db8500_armss_freqs; 1812 nfreqs = ARRAY_SIZE(db8500_armss_freqs); 1813 } 1814 1815 /* Find the corresponding arm opp from the cpufreq table. */ 1816 for (i = 0; i < nfreqs; i++) { 1817 freq = freqs[i]; 1818 if (rate == freq) 1819 break; 1820 } 1821 1822 if (rate != freq) 1823 return -EINVAL; 1824 1825 /* Set the new arm opp. */ 1826 pr_debug("SET ARM OPP 0x%02x\n", opps[i]); 1827 return db8500_prcmu_set_arm_opp(opps[i]); 1828 } 1829 1830 static int set_plldsi_rate(unsigned long rate) 1831 { 1832 unsigned long src_rate; 1833 unsigned long rem; 1834 u32 pll_freq = 0; 1835 u32 r; 1836 1837 src_rate = clock_rate(PRCMU_HDMICLK); 1838 rem = rate; 1839 1840 for (r = 7; (rem > 0) && (r > 0); r--) { 1841 u64 d; 1842 u64 hwrate; 1843 1844 d = (r * rate); 1845 (void)do_div(d, src_rate); 1846 if (d < 6) 1847 d = 6; 1848 else if (d > 255) 1849 d = 255; 1850 hwrate = (d * src_rate); 1851 if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) || 1852 ((r * MAX_PLL_VCO_RATE) < (2 * hwrate))) 1853 continue; 1854 (void)do_div(hwrate, r); 1855 if (rate < hwrate) { 1856 if (pll_freq == 0) 1857 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) | 1858 (r << PRCM_PLL_FREQ_R_SHIFT)); 1859 break; 1860 } 1861 if ((rate - hwrate) < rem) { 1862 rem = (rate - hwrate); 1863 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) | 1864 (r << PRCM_PLL_FREQ_R_SHIFT)); 1865 } 1866 } 1867 if (pll_freq == 0) 1868 return -EINVAL; 1869 1870 pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT); 1871 writel(pll_freq, PRCM_PLLDSI_FREQ); 1872 1873 return 0; 1874 } 1875 1876 static void set_dsiclk_rate(u8 n, unsigned long rate) 1877 { 1878 u32 val; 1879 u32 div; 1880 1881 div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ, 1882 clock_rate(PRCMU_HDMICLK), PLL_RAW), rate); 1883 1884 dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI : 1885 (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 : 1886 /* else */ PRCM_DSI_PLLOUT_SEL_PHI_4; 1887 1888 val = readl(PRCM_DSI_PLLOUT_SEL); 1889 val &= ~dsiclk[n].divsel_mask; 1890 val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift); 1891 writel(val, PRCM_DSI_PLLOUT_SEL); 1892 } 1893 1894 static void set_dsiescclk_rate(u8 n, unsigned long rate) 1895 { 1896 u32 val; 1897 u32 div; 1898 1899 div = clock_divider(clock_rate(PRCMU_TVCLK), rate); 1900 val = readl(PRCM_DSITVCLK_DIV); 1901 val &= ~dsiescclk[n].div_mask; 1902 val |= (min(div, (u32)255) << dsiescclk[n].div_shift); 1903 writel(val, PRCM_DSITVCLK_DIV); 1904 } 1905 1906 int prcmu_set_clock_rate(u8 clock, unsigned long rate) 1907 { 1908 if (clock < PRCMU_NUM_REG_CLOCKS) 1909 set_clock_rate(clock, rate); 1910 else if (clock == PRCMU_ARMSS) 1911 return set_armss_rate(rate); 1912 else if (clock == PRCMU_PLLDSI) 1913 return set_plldsi_rate(rate); 1914 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK)) 1915 set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate); 1916 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK)) 1917 set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate); 1918 return 0; 1919 } 1920 1921 int db8500_prcmu_config_esram0_deep_sleep(u8 state) 1922 { 1923 if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) || 1924 (state < ESRAM0_DEEP_SLEEP_STATE_OFF)) 1925 return -EINVAL; 1926 1927 mutex_lock(&mb4_transfer.lock); 1928 1929 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4)) 1930 cpu_relax(); 1931 1932 writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4)); 1933 writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON), 1934 (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE)); 1935 writeb(DDR_PWR_STATE_ON, 1936 (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE)); 1937 writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST)); 1938 1939 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET); 1940 wait_for_completion(&mb4_transfer.work); 1941 1942 mutex_unlock(&mb4_transfer.lock); 1943 1944 return 0; 1945 } 1946 1947 int db8500_prcmu_config_hotdog(u8 threshold) 1948 { 1949 mutex_lock(&mb4_transfer.lock); 1950 1951 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4)) 1952 cpu_relax(); 1953 1954 writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD)); 1955 writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4)); 1956 1957 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET); 1958 wait_for_completion(&mb4_transfer.work); 1959 1960 mutex_unlock(&mb4_transfer.lock); 1961 1962 return 0; 1963 } 1964 1965 int db8500_prcmu_config_hotmon(u8 low, u8 high) 1966 { 1967 mutex_lock(&mb4_transfer.lock); 1968 1969 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4)) 1970 cpu_relax(); 1971 1972 writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW)); 1973 writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH)); 1974 writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH), 1975 (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG)); 1976 writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4)); 1977 1978 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET); 1979 wait_for_completion(&mb4_transfer.work); 1980 1981 mutex_unlock(&mb4_transfer.lock); 1982 1983 return 0; 1984 } 1985 EXPORT_SYMBOL_GPL(db8500_prcmu_config_hotmon); 1986 1987 static int config_hot_period(u16 val) 1988 { 1989 mutex_lock(&mb4_transfer.lock); 1990 1991 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4)) 1992 cpu_relax(); 1993 1994 writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD)); 1995 writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4)); 1996 1997 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET); 1998 wait_for_completion(&mb4_transfer.work); 1999 2000 mutex_unlock(&mb4_transfer.lock); 2001 2002 return 0; 2003 } 2004 2005 int db8500_prcmu_start_temp_sense(u16 cycles32k) 2006 { 2007 if (cycles32k == 0xFFFF) 2008 return -EINVAL; 2009 2010 return config_hot_period(cycles32k); 2011 } 2012 EXPORT_SYMBOL_GPL(db8500_prcmu_start_temp_sense); 2013 2014 int db8500_prcmu_stop_temp_sense(void) 2015 { 2016 return config_hot_period(0xFFFF); 2017 } 2018 EXPORT_SYMBOL_GPL(db8500_prcmu_stop_temp_sense); 2019 2020 static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3) 2021 { 2022 2023 mutex_lock(&mb4_transfer.lock); 2024 2025 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4)) 2026 cpu_relax(); 2027 2028 writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0)); 2029 writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1)); 2030 writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2)); 2031 writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3)); 2032 2033 writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4)); 2034 2035 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET); 2036 wait_for_completion(&mb4_transfer.work); 2037 2038 mutex_unlock(&mb4_transfer.lock); 2039 2040 return 0; 2041 2042 } 2043 2044 int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off) 2045 { 2046 BUG_ON(num == 0 || num > 0xf); 2047 return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0, 2048 sleep_auto_off ? A9WDOG_AUTO_OFF_EN : 2049 A9WDOG_AUTO_OFF_DIS); 2050 } 2051 EXPORT_SYMBOL(db8500_prcmu_config_a9wdog); 2052 2053 int db8500_prcmu_enable_a9wdog(u8 id) 2054 { 2055 return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0); 2056 } 2057 EXPORT_SYMBOL(db8500_prcmu_enable_a9wdog); 2058 2059 int db8500_prcmu_disable_a9wdog(u8 id) 2060 { 2061 return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0); 2062 } 2063 EXPORT_SYMBOL(db8500_prcmu_disable_a9wdog); 2064 2065 int db8500_prcmu_kick_a9wdog(u8 id) 2066 { 2067 return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0); 2068 } 2069 EXPORT_SYMBOL(db8500_prcmu_kick_a9wdog); 2070 2071 /* 2072 * timeout is 28 bit, in ms. 2073 */ 2074 int db8500_prcmu_load_a9wdog(u8 id, u32 timeout) 2075 { 2076 return prcmu_a9wdog(MB4H_A9WDOG_LOAD, 2077 (id & A9WDOG_ID_MASK) | 2078 /* 2079 * Put the lowest 28 bits of timeout at 2080 * offset 4. Four first bits are used for id. 2081 */ 2082 (u8)((timeout << 4) & 0xf0), 2083 (u8)((timeout >> 4) & 0xff), 2084 (u8)((timeout >> 12) & 0xff), 2085 (u8)((timeout >> 20) & 0xff)); 2086 } 2087 EXPORT_SYMBOL(db8500_prcmu_load_a9wdog); 2088 2089 /** 2090 * prcmu_abb_read() - Read register value(s) from the ABB. 2091 * @slave: The I2C slave address. 2092 * @reg: The (start) register address. 2093 * @value: The read out value(s). 2094 * @size: The number of registers to read. 2095 * 2096 * Reads register value(s) from the ABB. 2097 * @size has to be 1 for the current firmware version. 2098 */ 2099 int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size) 2100 { 2101 int r; 2102 2103 if (size != 1) 2104 return -EINVAL; 2105 2106 mutex_lock(&mb5_transfer.lock); 2107 2108 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5)) 2109 cpu_relax(); 2110 2111 writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5)); 2112 writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP)); 2113 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS)); 2114 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG)); 2115 writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL)); 2116 2117 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET); 2118 2119 if (!wait_for_completion_timeout(&mb5_transfer.work, 2120 msecs_to_jiffies(20000))) { 2121 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n", 2122 __func__); 2123 r = -EIO; 2124 } else { 2125 r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO); 2126 } 2127 2128 if (!r) 2129 *value = mb5_transfer.ack.value; 2130 2131 mutex_unlock(&mb5_transfer.lock); 2132 2133 return r; 2134 } 2135 2136 /** 2137 * prcmu_abb_write_masked() - Write masked register value(s) to the ABB. 2138 * @slave: The I2C slave address. 2139 * @reg: The (start) register address. 2140 * @value: The value(s) to write. 2141 * @mask: The mask(s) to use. 2142 * @size: The number of registers to write. 2143 * 2144 * Writes masked register value(s) to the ABB. 2145 * For each @value, only the bits set to 1 in the corresponding @mask 2146 * will be written. The other bits are not changed. 2147 * @size has to be 1 for the current firmware version. 2148 */ 2149 int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size) 2150 { 2151 int r; 2152 2153 if (size != 1) 2154 return -EINVAL; 2155 2156 mutex_lock(&mb5_transfer.lock); 2157 2158 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5)) 2159 cpu_relax(); 2160 2161 writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5)); 2162 writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP)); 2163 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS)); 2164 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG)); 2165 writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL)); 2166 2167 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET); 2168 2169 if (!wait_for_completion_timeout(&mb5_transfer.work, 2170 msecs_to_jiffies(20000))) { 2171 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n", 2172 __func__); 2173 r = -EIO; 2174 } else { 2175 r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO); 2176 } 2177 2178 mutex_unlock(&mb5_transfer.lock); 2179 2180 return r; 2181 } 2182 2183 /** 2184 * prcmu_abb_write() - Write register value(s) to the ABB. 2185 * @slave: The I2C slave address. 2186 * @reg: The (start) register address. 2187 * @value: The value(s) to write. 2188 * @size: The number of registers to write. 2189 * 2190 * Writes register value(s) to the ABB. 2191 * @size has to be 1 for the current firmware version. 2192 */ 2193 int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size) 2194 { 2195 u8 mask = ~0; 2196 2197 return prcmu_abb_write_masked(slave, reg, value, &mask, size); 2198 } 2199 2200 /** 2201 * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem 2202 */ 2203 int prcmu_ac_wake_req(void) 2204 { 2205 u32 val; 2206 int ret = 0; 2207 2208 mutex_lock(&mb0_transfer.ac_wake_lock); 2209 2210 val = readl(PRCM_HOSTACCESS_REQ); 2211 if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ) 2212 goto unlock_and_return; 2213 2214 atomic_set(&ac_wake_req_state, 1); 2215 2216 /* 2217 * Force Modem Wake-up before hostaccess_req ping-pong. 2218 * It prevents Modem to enter in Sleep while acking the hostaccess 2219 * request. The 31us delay has been calculated by HWI. 2220 */ 2221 val |= PRCM_HOSTACCESS_REQ_WAKE_REQ; 2222 writel(val, PRCM_HOSTACCESS_REQ); 2223 2224 udelay(31); 2225 2226 val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ; 2227 writel(val, PRCM_HOSTACCESS_REQ); 2228 2229 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work, 2230 msecs_to_jiffies(5000))) { 2231 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n", 2232 __func__); 2233 ret = -EFAULT; 2234 } 2235 2236 unlock_and_return: 2237 mutex_unlock(&mb0_transfer.ac_wake_lock); 2238 return ret; 2239 } 2240 2241 /** 2242 * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem 2243 */ 2244 void prcmu_ac_sleep_req(void) 2245 { 2246 u32 val; 2247 2248 mutex_lock(&mb0_transfer.ac_wake_lock); 2249 2250 val = readl(PRCM_HOSTACCESS_REQ); 2251 if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)) 2252 goto unlock_and_return; 2253 2254 writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ), 2255 PRCM_HOSTACCESS_REQ); 2256 2257 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work, 2258 msecs_to_jiffies(5000))) { 2259 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n", 2260 __func__); 2261 } 2262 2263 atomic_set(&ac_wake_req_state, 0); 2264 2265 unlock_and_return: 2266 mutex_unlock(&mb0_transfer.ac_wake_lock); 2267 } 2268 2269 bool db8500_prcmu_is_ac_wake_requested(void) 2270 { 2271 return (atomic_read(&ac_wake_req_state) != 0); 2272 } 2273 2274 /** 2275 * db8500_prcmu_system_reset - System reset 2276 * 2277 * Saves the reset reason code and then sets the APE_SOFTRST register which 2278 * fires interrupt to fw 2279 * 2280 * @reset_code: The reason for system reset 2281 */ 2282 void db8500_prcmu_system_reset(u16 reset_code) 2283 { 2284 writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON)); 2285 writel(1, PRCM_APE_SOFTRST); 2286 } 2287 2288 /** 2289 * db8500_prcmu_get_reset_code - Retrieve SW reset reason code 2290 * 2291 * Retrieves the reset reason code stored by prcmu_system_reset() before 2292 * last restart. 2293 */ 2294 u16 db8500_prcmu_get_reset_code(void) 2295 { 2296 return readw(tcdm_base + PRCM_SW_RST_REASON); 2297 } 2298 2299 /** 2300 * db8500_prcmu_reset_modem - ask the PRCMU to reset modem 2301 */ 2302 void db8500_prcmu_modem_reset(void) 2303 { 2304 mutex_lock(&mb1_transfer.lock); 2305 2306 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1)) 2307 cpu_relax(); 2308 2309 writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1)); 2310 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET); 2311 wait_for_completion(&mb1_transfer.work); 2312 2313 /* 2314 * No need to check return from PRCMU as modem should go in reset state 2315 * This state is already managed by upper layer 2316 */ 2317 2318 mutex_unlock(&mb1_transfer.lock); 2319 } 2320 2321 static void ack_dbb_wakeup(void) 2322 { 2323 unsigned long flags; 2324 2325 spin_lock_irqsave(&mb0_transfer.lock, flags); 2326 2327 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0)) 2328 cpu_relax(); 2329 2330 writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0)); 2331 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET); 2332 2333 spin_unlock_irqrestore(&mb0_transfer.lock, flags); 2334 } 2335 2336 static inline void print_unknown_header_warning(u8 n, u8 header) 2337 { 2338 pr_warn("prcmu: Unknown message header (%d) in mailbox %d\n", 2339 header, n); 2340 } 2341 2342 static bool read_mailbox_0(void) 2343 { 2344 bool r; 2345 u32 ev; 2346 unsigned int n; 2347 u8 header; 2348 2349 header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0); 2350 switch (header) { 2351 case MB0H_WAKEUP_EXE: 2352 case MB0H_WAKEUP_SLEEP: 2353 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1) 2354 ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500); 2355 else 2356 ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500); 2357 2358 if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK)) 2359 complete(&mb0_transfer.ac_wake_work); 2360 if (ev & WAKEUP_BIT_SYSCLK_OK) 2361 complete(&mb3_transfer.sysclk_work); 2362 2363 ev &= mb0_transfer.req.dbb_irqs; 2364 2365 for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) { 2366 if (ev & prcmu_irq_bit[n]) 2367 generic_handle_irq(irq_find_mapping(db8500_irq_domain, n)); 2368 } 2369 r = true; 2370 break; 2371 default: 2372 print_unknown_header_warning(0, header); 2373 r = false; 2374 break; 2375 } 2376 writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR); 2377 return r; 2378 } 2379 2380 static bool read_mailbox_1(void) 2381 { 2382 mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1); 2383 mb1_transfer.ack.arm_opp = readb(tcdm_base + 2384 PRCM_ACK_MB1_CURRENT_ARM_OPP); 2385 mb1_transfer.ack.ape_opp = readb(tcdm_base + 2386 PRCM_ACK_MB1_CURRENT_APE_OPP); 2387 mb1_transfer.ack.ape_voltage_status = readb(tcdm_base + 2388 PRCM_ACK_MB1_APE_VOLTAGE_STATUS); 2389 writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR); 2390 complete(&mb1_transfer.work); 2391 return false; 2392 } 2393 2394 static bool read_mailbox_2(void) 2395 { 2396 mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS); 2397 writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR); 2398 complete(&mb2_transfer.work); 2399 return false; 2400 } 2401 2402 static bool read_mailbox_3(void) 2403 { 2404 writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR); 2405 return false; 2406 } 2407 2408 static bool read_mailbox_4(void) 2409 { 2410 u8 header; 2411 bool do_complete = true; 2412 2413 header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4); 2414 switch (header) { 2415 case MB4H_MEM_ST: 2416 case MB4H_HOTDOG: 2417 case MB4H_HOTMON: 2418 case MB4H_HOT_PERIOD: 2419 case MB4H_A9WDOG_CONF: 2420 case MB4H_A9WDOG_EN: 2421 case MB4H_A9WDOG_DIS: 2422 case MB4H_A9WDOG_LOAD: 2423 case MB4H_A9WDOG_KICK: 2424 break; 2425 default: 2426 print_unknown_header_warning(4, header); 2427 do_complete = false; 2428 break; 2429 } 2430 2431 writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR); 2432 2433 if (do_complete) 2434 complete(&mb4_transfer.work); 2435 2436 return false; 2437 } 2438 2439 static bool read_mailbox_5(void) 2440 { 2441 mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS); 2442 mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL); 2443 writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR); 2444 complete(&mb5_transfer.work); 2445 return false; 2446 } 2447 2448 static bool read_mailbox_6(void) 2449 { 2450 writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR); 2451 return false; 2452 } 2453 2454 static bool read_mailbox_7(void) 2455 { 2456 writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR); 2457 return false; 2458 } 2459 2460 static bool (* const read_mailbox[NUM_MB])(void) = { 2461 read_mailbox_0, 2462 read_mailbox_1, 2463 read_mailbox_2, 2464 read_mailbox_3, 2465 read_mailbox_4, 2466 read_mailbox_5, 2467 read_mailbox_6, 2468 read_mailbox_7 2469 }; 2470 2471 static irqreturn_t prcmu_irq_handler(int irq, void *data) 2472 { 2473 u32 bits; 2474 u8 n; 2475 irqreturn_t r; 2476 2477 bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS); 2478 if (unlikely(!bits)) 2479 return IRQ_NONE; 2480 2481 r = IRQ_HANDLED; 2482 for (n = 0; bits; n++) { 2483 if (bits & MBOX_BIT(n)) { 2484 bits -= MBOX_BIT(n); 2485 if (read_mailbox[n]()) 2486 r = IRQ_WAKE_THREAD; 2487 } 2488 } 2489 return r; 2490 } 2491 2492 static irqreturn_t prcmu_irq_thread_fn(int irq, void *data) 2493 { 2494 ack_dbb_wakeup(); 2495 return IRQ_HANDLED; 2496 } 2497 2498 static void prcmu_mask_work(struct work_struct *work) 2499 { 2500 unsigned long flags; 2501 2502 spin_lock_irqsave(&mb0_transfer.lock, flags); 2503 2504 config_wakeups(); 2505 2506 spin_unlock_irqrestore(&mb0_transfer.lock, flags); 2507 } 2508 2509 static void prcmu_irq_mask(struct irq_data *d) 2510 { 2511 unsigned long flags; 2512 2513 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags); 2514 2515 mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq]; 2516 2517 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags); 2518 2519 if (d->irq != IRQ_PRCMU_CA_SLEEP) 2520 schedule_work(&mb0_transfer.mask_work); 2521 } 2522 2523 static void prcmu_irq_unmask(struct irq_data *d) 2524 { 2525 unsigned long flags; 2526 2527 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags); 2528 2529 mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq]; 2530 2531 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags); 2532 2533 if (d->irq != IRQ_PRCMU_CA_SLEEP) 2534 schedule_work(&mb0_transfer.mask_work); 2535 } 2536 2537 static void noop(struct irq_data *d) 2538 { 2539 } 2540 2541 static struct irq_chip prcmu_irq_chip = { 2542 .name = "prcmu", 2543 .irq_disable = prcmu_irq_mask, 2544 .irq_ack = noop, 2545 .irq_mask = prcmu_irq_mask, 2546 .irq_unmask = prcmu_irq_unmask, 2547 }; 2548 2549 static char *fw_project_name(u32 project) 2550 { 2551 switch (project) { 2552 case PRCMU_FW_PROJECT_U8500: 2553 return "U8500"; 2554 case PRCMU_FW_PROJECT_U8400: 2555 return "U8400"; 2556 case PRCMU_FW_PROJECT_U9500: 2557 return "U9500"; 2558 case PRCMU_FW_PROJECT_U8500_MBB: 2559 return "U8500 MBB"; 2560 case PRCMU_FW_PROJECT_U8500_C1: 2561 return "U8500 C1"; 2562 case PRCMU_FW_PROJECT_U8500_C2: 2563 return "U8500 C2"; 2564 case PRCMU_FW_PROJECT_U8500_C3: 2565 return "U8500 C3"; 2566 case PRCMU_FW_PROJECT_U8500_C4: 2567 return "U8500 C4"; 2568 case PRCMU_FW_PROJECT_U9500_MBL: 2569 return "U9500 MBL"; 2570 case PRCMU_FW_PROJECT_U8500_MBL: 2571 return "U8500 MBL"; 2572 case PRCMU_FW_PROJECT_U8500_MBL2: 2573 return "U8500 MBL2"; 2574 case PRCMU_FW_PROJECT_U8520: 2575 return "U8520 MBL"; 2576 case PRCMU_FW_PROJECT_U8420: 2577 return "U8420"; 2578 case PRCMU_FW_PROJECT_U8420_SYSCLK: 2579 return "U8420-sysclk"; 2580 case PRCMU_FW_PROJECT_U9540: 2581 return "U9540"; 2582 case PRCMU_FW_PROJECT_A9420: 2583 return "A9420"; 2584 case PRCMU_FW_PROJECT_L8540: 2585 return "L8540"; 2586 case PRCMU_FW_PROJECT_L8580: 2587 return "L8580"; 2588 default: 2589 return "Unknown"; 2590 } 2591 } 2592 2593 static int db8500_irq_map(struct irq_domain *d, unsigned int virq, 2594 irq_hw_number_t hwirq) 2595 { 2596 irq_set_chip_and_handler(virq, &prcmu_irq_chip, 2597 handle_simple_irq); 2598 2599 return 0; 2600 } 2601 2602 static const struct irq_domain_ops db8500_irq_ops = { 2603 .map = db8500_irq_map, 2604 .xlate = irq_domain_xlate_twocell, 2605 }; 2606 2607 static int db8500_irq_init(struct device_node *np) 2608 { 2609 int i; 2610 2611 db8500_irq_domain = irq_domain_add_simple( 2612 np, NUM_PRCMU_WAKEUPS, 0, 2613 &db8500_irq_ops, NULL); 2614 2615 if (!db8500_irq_domain) { 2616 pr_err("Failed to create irqdomain\n"); 2617 return -ENOSYS; 2618 } 2619 2620 /* All wakeups will be used, so create mappings for all */ 2621 for (i = 0; i < NUM_PRCMU_WAKEUPS; i++) 2622 irq_create_mapping(db8500_irq_domain, i); 2623 2624 return 0; 2625 } 2626 2627 static void dbx500_fw_version_init(struct device_node *np) 2628 { 2629 void __iomem *tcpm_base; 2630 u32 version; 2631 2632 tcpm_base = of_iomap(np, 1); 2633 if (!tcpm_base) { 2634 pr_err("no prcmu tcpm mem region provided\n"); 2635 return; 2636 } 2637 2638 version = readl(tcpm_base + DB8500_PRCMU_FW_VERSION_OFFSET); 2639 fw_info.version.project = (version & 0xFF); 2640 fw_info.version.api_version = (version >> 8) & 0xFF; 2641 fw_info.version.func_version = (version >> 16) & 0xFF; 2642 fw_info.version.errata = (version >> 24) & 0xFF; 2643 strncpy(fw_info.version.project_name, 2644 fw_project_name(fw_info.version.project), 2645 PRCMU_FW_PROJECT_NAME_LEN); 2646 fw_info.valid = true; 2647 pr_info("PRCMU firmware: %s(%d), version %d.%d.%d\n", 2648 fw_info.version.project_name, 2649 fw_info.version.project, 2650 fw_info.version.api_version, 2651 fw_info.version.func_version, 2652 fw_info.version.errata); 2653 iounmap(tcpm_base); 2654 } 2655 2656 void __init db8500_prcmu_early_init(void) 2657 { 2658 /* 2659 * This is a temporary remap to bring up the clocks. It is 2660 * subsequently replaces with a real remap. After the merge of 2661 * the mailbox subsystem all of this early code goes away, and the 2662 * clock driver can probe independently. An early initcall will 2663 * still be needed, but it can be diverted into drivers/clk/ux500. 2664 */ 2665 struct device_node *np; 2666 2667 np = of_find_compatible_node(NULL, NULL, "stericsson,db8500-prcmu"); 2668 prcmu_base = of_iomap(np, 0); 2669 if (!prcmu_base) { 2670 of_node_put(np); 2671 pr_err("%s: ioremap() of prcmu registers failed!\n", __func__); 2672 return; 2673 } 2674 dbx500_fw_version_init(np); 2675 of_node_put(np); 2676 2677 spin_lock_init(&mb0_transfer.lock); 2678 spin_lock_init(&mb0_transfer.dbb_irqs_lock); 2679 mutex_init(&mb0_transfer.ac_wake_lock); 2680 init_completion(&mb0_transfer.ac_wake_work); 2681 mutex_init(&mb1_transfer.lock); 2682 init_completion(&mb1_transfer.work); 2683 mb1_transfer.ape_opp = APE_NO_CHANGE; 2684 mutex_init(&mb2_transfer.lock); 2685 init_completion(&mb2_transfer.work); 2686 spin_lock_init(&mb2_transfer.auto_pm_lock); 2687 spin_lock_init(&mb3_transfer.lock); 2688 mutex_init(&mb3_transfer.sysclk_lock); 2689 init_completion(&mb3_transfer.sysclk_work); 2690 mutex_init(&mb4_transfer.lock); 2691 init_completion(&mb4_transfer.work); 2692 mutex_init(&mb5_transfer.lock); 2693 init_completion(&mb5_transfer.work); 2694 2695 INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work); 2696 } 2697 2698 static void init_prcm_registers(void) 2699 { 2700 u32 val; 2701 2702 val = readl(PRCM_A9PL_FORCE_CLKEN); 2703 val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN | 2704 PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN); 2705 writel(val, (PRCM_A9PL_FORCE_CLKEN)); 2706 } 2707 2708 /* 2709 * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC 2710 */ 2711 static struct regulator_consumer_supply db8500_vape_consumers[] = { 2712 REGULATOR_SUPPLY("v-ape", NULL), 2713 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"), 2714 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"), 2715 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"), 2716 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"), 2717 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"), 2718 /* "v-mmc" changed to "vcore" in the mainline kernel */ 2719 REGULATOR_SUPPLY("vcore", "sdi0"), 2720 REGULATOR_SUPPLY("vcore", "sdi1"), 2721 REGULATOR_SUPPLY("vcore", "sdi2"), 2722 REGULATOR_SUPPLY("vcore", "sdi3"), 2723 REGULATOR_SUPPLY("vcore", "sdi4"), 2724 REGULATOR_SUPPLY("v-dma", "dma40.0"), 2725 REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"), 2726 /* "v-uart" changed to "vcore" in the mainline kernel */ 2727 REGULATOR_SUPPLY("vcore", "uart0"), 2728 REGULATOR_SUPPLY("vcore", "uart1"), 2729 REGULATOR_SUPPLY("vcore", "uart2"), 2730 REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"), 2731 REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"), 2732 REGULATOR_SUPPLY("vddvario", "smsc911x.0"), 2733 }; 2734 2735 static struct regulator_consumer_supply db8500_vsmps2_consumers[] = { 2736 REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"), 2737 /* AV8100 regulator */ 2738 REGULATOR_SUPPLY("hdmi_1v8", "0-0070"), 2739 }; 2740 2741 static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = { 2742 REGULATOR_SUPPLY("vsupply", "b2r2_bus"), 2743 REGULATOR_SUPPLY("vsupply", "mcde"), 2744 }; 2745 2746 /* SVA MMDSP regulator switch */ 2747 static struct regulator_consumer_supply db8500_svammdsp_consumers[] = { 2748 REGULATOR_SUPPLY("sva-mmdsp", "cm_control"), 2749 }; 2750 2751 /* SVA pipe regulator switch */ 2752 static struct regulator_consumer_supply db8500_svapipe_consumers[] = { 2753 REGULATOR_SUPPLY("sva-pipe", "cm_control"), 2754 }; 2755 2756 /* SIA MMDSP regulator switch */ 2757 static struct regulator_consumer_supply db8500_siammdsp_consumers[] = { 2758 REGULATOR_SUPPLY("sia-mmdsp", "cm_control"), 2759 }; 2760 2761 /* SIA pipe regulator switch */ 2762 static struct regulator_consumer_supply db8500_siapipe_consumers[] = { 2763 REGULATOR_SUPPLY("sia-pipe", "cm_control"), 2764 }; 2765 2766 static struct regulator_consumer_supply db8500_sga_consumers[] = { 2767 REGULATOR_SUPPLY("v-mali", NULL), 2768 }; 2769 2770 /* ESRAM1 and 2 regulator switch */ 2771 static struct regulator_consumer_supply db8500_esram12_consumers[] = { 2772 REGULATOR_SUPPLY("esram12", "cm_control"), 2773 }; 2774 2775 /* ESRAM3 and 4 regulator switch */ 2776 static struct regulator_consumer_supply db8500_esram34_consumers[] = { 2777 REGULATOR_SUPPLY("v-esram34", "mcde"), 2778 REGULATOR_SUPPLY("esram34", "cm_control"), 2779 REGULATOR_SUPPLY("lcla_esram", "dma40.0"), 2780 }; 2781 2782 static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = { 2783 [DB8500_REGULATOR_VAPE] = { 2784 .constraints = { 2785 .name = "db8500-vape", 2786 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2787 .always_on = true, 2788 }, 2789 .consumer_supplies = db8500_vape_consumers, 2790 .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers), 2791 }, 2792 [DB8500_REGULATOR_VARM] = { 2793 .constraints = { 2794 .name = "db8500-varm", 2795 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2796 }, 2797 }, 2798 [DB8500_REGULATOR_VMODEM] = { 2799 .constraints = { 2800 .name = "db8500-vmodem", 2801 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2802 }, 2803 }, 2804 [DB8500_REGULATOR_VPLL] = { 2805 .constraints = { 2806 .name = "db8500-vpll", 2807 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2808 }, 2809 }, 2810 [DB8500_REGULATOR_VSMPS1] = { 2811 .constraints = { 2812 .name = "db8500-vsmps1", 2813 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2814 }, 2815 }, 2816 [DB8500_REGULATOR_VSMPS2] = { 2817 .constraints = { 2818 .name = "db8500-vsmps2", 2819 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2820 }, 2821 .consumer_supplies = db8500_vsmps2_consumers, 2822 .num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers), 2823 }, 2824 [DB8500_REGULATOR_VSMPS3] = { 2825 .constraints = { 2826 .name = "db8500-vsmps3", 2827 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2828 }, 2829 }, 2830 [DB8500_REGULATOR_VRF1] = { 2831 .constraints = { 2832 .name = "db8500-vrf1", 2833 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2834 }, 2835 }, 2836 [DB8500_REGULATOR_SWITCH_SVAMMDSP] = { 2837 /* dependency to u8500-vape is handled outside regulator framework */ 2838 .constraints = { 2839 .name = "db8500-sva-mmdsp", 2840 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2841 }, 2842 .consumer_supplies = db8500_svammdsp_consumers, 2843 .num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers), 2844 }, 2845 [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = { 2846 .constraints = { 2847 /* "ret" means "retention" */ 2848 .name = "db8500-sva-mmdsp-ret", 2849 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2850 }, 2851 }, 2852 [DB8500_REGULATOR_SWITCH_SVAPIPE] = { 2853 /* dependency to u8500-vape is handled outside regulator framework */ 2854 .constraints = { 2855 .name = "db8500-sva-pipe", 2856 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2857 }, 2858 .consumer_supplies = db8500_svapipe_consumers, 2859 .num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers), 2860 }, 2861 [DB8500_REGULATOR_SWITCH_SIAMMDSP] = { 2862 /* dependency to u8500-vape is handled outside regulator framework */ 2863 .constraints = { 2864 .name = "db8500-sia-mmdsp", 2865 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2866 }, 2867 .consumer_supplies = db8500_siammdsp_consumers, 2868 .num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers), 2869 }, 2870 [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = { 2871 .constraints = { 2872 .name = "db8500-sia-mmdsp-ret", 2873 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2874 }, 2875 }, 2876 [DB8500_REGULATOR_SWITCH_SIAPIPE] = { 2877 /* dependency to u8500-vape is handled outside regulator framework */ 2878 .constraints = { 2879 .name = "db8500-sia-pipe", 2880 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2881 }, 2882 .consumer_supplies = db8500_siapipe_consumers, 2883 .num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers), 2884 }, 2885 [DB8500_REGULATOR_SWITCH_SGA] = { 2886 .supply_regulator = "db8500-vape", 2887 .constraints = { 2888 .name = "db8500-sga", 2889 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2890 }, 2891 .consumer_supplies = db8500_sga_consumers, 2892 .num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers), 2893 2894 }, 2895 [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = { 2896 .supply_regulator = "db8500-vape", 2897 .constraints = { 2898 .name = "db8500-b2r2-mcde", 2899 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2900 }, 2901 .consumer_supplies = db8500_b2r2_mcde_consumers, 2902 .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers), 2903 }, 2904 [DB8500_REGULATOR_SWITCH_ESRAM12] = { 2905 /* 2906 * esram12 is set in retention and supplied by Vsafe when Vape is off, 2907 * no need to hold Vape 2908 */ 2909 .constraints = { 2910 .name = "db8500-esram12", 2911 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2912 }, 2913 .consumer_supplies = db8500_esram12_consumers, 2914 .num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers), 2915 }, 2916 [DB8500_REGULATOR_SWITCH_ESRAM12RET] = { 2917 .constraints = { 2918 .name = "db8500-esram12-ret", 2919 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2920 }, 2921 }, 2922 [DB8500_REGULATOR_SWITCH_ESRAM34] = { 2923 /* 2924 * esram34 is set in retention and supplied by Vsafe when Vape is off, 2925 * no need to hold Vape 2926 */ 2927 .constraints = { 2928 .name = "db8500-esram34", 2929 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2930 }, 2931 .consumer_supplies = db8500_esram34_consumers, 2932 .num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers), 2933 }, 2934 [DB8500_REGULATOR_SWITCH_ESRAM34RET] = { 2935 .constraints = { 2936 .name = "db8500-esram34-ret", 2937 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2938 }, 2939 }, 2940 }; 2941 2942 static struct ux500_wdt_data db8500_wdt_pdata = { 2943 .timeout = 600, /* 10 minutes */ 2944 .has_28_bits_resolution = true, 2945 }; 2946 2947 static const struct mfd_cell common_prcmu_devs[] = { 2948 { 2949 .name = "ux500_wdt", 2950 .platform_data = &db8500_wdt_pdata, 2951 .pdata_size = sizeof(db8500_wdt_pdata), 2952 .id = -1, 2953 }, 2954 }; 2955 2956 static const struct mfd_cell db8500_prcmu_devs[] = { 2957 MFD_CELL_OF("db8500-prcmu-regulators", NULL, 2958 &db8500_regulators, sizeof(db8500_regulators), 0, 2959 "stericsson,db8500-prcmu-regulator"), 2960 MFD_CELL_OF("cpuidle-dbx500", 2961 NULL, NULL, 0, 0, "stericsson,cpuidle-dbx500"), 2962 MFD_CELL_OF("db8500-thermal", 2963 NULL, NULL, 0, 0, "stericsson,db8500-thermal"), 2964 }; 2965 2966 static int db8500_prcmu_register_ab8500(struct device *parent) 2967 { 2968 struct device_node *np; 2969 struct resource ab850x_resource; 2970 const struct mfd_cell ab8500_cell = { 2971 .name = "ab8500-core", 2972 .of_compatible = "stericsson,ab8500", 2973 .id = AB8500_VERSION_AB8500, 2974 .resources = &ab850x_resource, 2975 .num_resources = 1, 2976 }; 2977 const struct mfd_cell ab8505_cell = { 2978 .name = "ab8505-core", 2979 .of_compatible = "stericsson,ab8505", 2980 .id = AB8500_VERSION_AB8505, 2981 .resources = &ab850x_resource, 2982 .num_resources = 1, 2983 }; 2984 const struct mfd_cell *ab850x_cell; 2985 2986 if (!parent->of_node) 2987 return -ENODEV; 2988 2989 /* Look up the device node, sneak the IRQ out of it */ 2990 for_each_child_of_node(parent->of_node, np) { 2991 if (of_device_is_compatible(np, ab8500_cell.of_compatible)) { 2992 ab850x_cell = &ab8500_cell; 2993 break; 2994 } 2995 if (of_device_is_compatible(np, ab8505_cell.of_compatible)) { 2996 ab850x_cell = &ab8505_cell; 2997 break; 2998 } 2999 } 3000 if (!np) { 3001 dev_info(parent, "could not find AB850X node in the device tree\n"); 3002 return -ENODEV; 3003 } 3004 of_irq_to_resource_table(np, &ab850x_resource, 1); 3005 3006 return mfd_add_devices(parent, 0, ab850x_cell, 1, NULL, 0, NULL); 3007 } 3008 3009 static int db8500_prcmu_probe(struct platform_device *pdev) 3010 { 3011 struct device_node *np = pdev->dev.of_node; 3012 int irq = 0, err = 0; 3013 struct resource *res; 3014 3015 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu"); 3016 if (!res) { 3017 dev_err(&pdev->dev, "no prcmu memory region provided\n"); 3018 return -EINVAL; 3019 } 3020 prcmu_base = devm_ioremap(&pdev->dev, res->start, resource_size(res)); 3021 if (!prcmu_base) { 3022 dev_err(&pdev->dev, 3023 "failed to ioremap prcmu register memory\n"); 3024 return -ENOMEM; 3025 } 3026 init_prcm_registers(); 3027 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu-tcdm"); 3028 if (!res) { 3029 dev_err(&pdev->dev, "no prcmu tcdm region provided\n"); 3030 return -EINVAL; 3031 } 3032 tcdm_base = devm_ioremap(&pdev->dev, res->start, 3033 resource_size(res)); 3034 if (!tcdm_base) { 3035 dev_err(&pdev->dev, 3036 "failed to ioremap prcmu-tcdm register memory\n"); 3037 return -ENOMEM; 3038 } 3039 3040 /* Clean up the mailbox interrupts after pre-kernel code. */ 3041 writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR); 3042 3043 irq = platform_get_irq(pdev, 0); 3044 if (irq <= 0) 3045 return irq; 3046 3047 err = request_threaded_irq(irq, prcmu_irq_handler, 3048 prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL); 3049 if (err < 0) { 3050 pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n"); 3051 return err; 3052 } 3053 3054 db8500_irq_init(np); 3055 3056 prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET); 3057 3058 err = mfd_add_devices(&pdev->dev, 0, common_prcmu_devs, 3059 ARRAY_SIZE(common_prcmu_devs), NULL, 0, db8500_irq_domain); 3060 if (err) { 3061 pr_err("prcmu: Failed to add subdevices\n"); 3062 return err; 3063 } 3064 3065 /* TODO: Remove restriction when clk definitions are available. */ 3066 if (!of_machine_is_compatible("st-ericsson,u8540")) { 3067 err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs, 3068 ARRAY_SIZE(db8500_prcmu_devs), NULL, 0, 3069 db8500_irq_domain); 3070 if (err) { 3071 mfd_remove_devices(&pdev->dev); 3072 pr_err("prcmu: Failed to add subdevices\n"); 3073 return err; 3074 } 3075 } 3076 3077 err = db8500_prcmu_register_ab8500(&pdev->dev); 3078 if (err) { 3079 mfd_remove_devices(&pdev->dev); 3080 pr_err("prcmu: Failed to add ab8500 subdevice\n"); 3081 return err; 3082 } 3083 3084 pr_info("DB8500 PRCMU initialized\n"); 3085 return err; 3086 } 3087 static const struct of_device_id db8500_prcmu_match[] = { 3088 { .compatible = "stericsson,db8500-prcmu"}, 3089 { }, 3090 }; 3091 3092 static struct platform_driver db8500_prcmu_driver = { 3093 .driver = { 3094 .name = "db8500-prcmu", 3095 .of_match_table = db8500_prcmu_match, 3096 }, 3097 .probe = db8500_prcmu_probe, 3098 }; 3099 3100 static int __init db8500_prcmu_init(void) 3101 { 3102 return platform_driver_register(&db8500_prcmu_driver); 3103 } 3104 core_initcall(db8500_prcmu_init); 3105