1 /* 2 * Copyright (C) STMicroelectronics 2009 3 * Copyright (C) ST-Ericsson SA 2010 4 * 5 * License Terms: GNU General Public License v2 6 * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com> 7 * Author: Sundar Iyer <sundar.iyer@stericsson.com> 8 * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com> 9 * 10 * U8500 PRCM Unit interface driver 11 * 12 */ 13 #include <linux/module.h> 14 #include <linux/kernel.h> 15 #include <linux/delay.h> 16 #include <linux/errno.h> 17 #include <linux/err.h> 18 #include <linux/spinlock.h> 19 #include <linux/io.h> 20 #include <linux/slab.h> 21 #include <linux/mutex.h> 22 #include <linux/completion.h> 23 #include <linux/irq.h> 24 #include <linux/jiffies.h> 25 #include <linux/bitops.h> 26 #include <linux/fs.h> 27 #include <linux/platform_device.h> 28 #include <linux/uaccess.h> 29 #include <linux/irqchip/arm-gic.h> 30 #include <linux/mfd/core.h> 31 #include <linux/mfd/dbx500-prcmu.h> 32 #include <linux/mfd/abx500/ab8500.h> 33 #include <linux/regulator/db8500-prcmu.h> 34 #include <linux/regulator/machine.h> 35 #include <linux/cpufreq.h> 36 #include <linux/platform_data/ux500_wdt.h> 37 #include <mach/hardware.h> 38 #include <mach/irqs.h> 39 #include <mach/db8500-regs.h> 40 #include "dbx500-prcmu-regs.h" 41 42 /* Index of different voltages to be used when accessing AVSData */ 43 #define PRCM_AVS_BASE 0x2FC 44 #define PRCM_AVS_VBB_RET (PRCM_AVS_BASE + 0x0) 45 #define PRCM_AVS_VBB_MAX_OPP (PRCM_AVS_BASE + 0x1) 46 #define PRCM_AVS_VBB_100_OPP (PRCM_AVS_BASE + 0x2) 47 #define PRCM_AVS_VBB_50_OPP (PRCM_AVS_BASE + 0x3) 48 #define PRCM_AVS_VARM_MAX_OPP (PRCM_AVS_BASE + 0x4) 49 #define PRCM_AVS_VARM_100_OPP (PRCM_AVS_BASE + 0x5) 50 #define PRCM_AVS_VARM_50_OPP (PRCM_AVS_BASE + 0x6) 51 #define PRCM_AVS_VARM_RET (PRCM_AVS_BASE + 0x7) 52 #define PRCM_AVS_VAPE_100_OPP (PRCM_AVS_BASE + 0x8) 53 #define PRCM_AVS_VAPE_50_OPP (PRCM_AVS_BASE + 0x9) 54 #define PRCM_AVS_VMOD_100_OPP (PRCM_AVS_BASE + 0xA) 55 #define PRCM_AVS_VMOD_50_OPP (PRCM_AVS_BASE + 0xB) 56 #define PRCM_AVS_VSAFE (PRCM_AVS_BASE + 0xC) 57 58 #define PRCM_AVS_VOLTAGE 0 59 #define PRCM_AVS_VOLTAGE_MASK 0x3f 60 #define PRCM_AVS_ISSLOWSTARTUP 6 61 #define PRCM_AVS_ISSLOWSTARTUP_MASK (1 << PRCM_AVS_ISSLOWSTARTUP) 62 #define PRCM_AVS_ISMODEENABLE 7 63 #define PRCM_AVS_ISMODEENABLE_MASK (1 << PRCM_AVS_ISMODEENABLE) 64 65 #define PRCM_BOOT_STATUS 0xFFF 66 #define PRCM_ROMCODE_A2P 0xFFE 67 #define PRCM_ROMCODE_P2A 0xFFD 68 #define PRCM_XP70_CUR_PWR_STATE 0xFFC /* 4 BYTES */ 69 70 #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */ 71 72 #define _PRCM_MBOX_HEADER 0xFE8 /* 16 bytes */ 73 #define PRCM_MBOX_HEADER_REQ_MB0 (_PRCM_MBOX_HEADER + 0x0) 74 #define PRCM_MBOX_HEADER_REQ_MB1 (_PRCM_MBOX_HEADER + 0x1) 75 #define PRCM_MBOX_HEADER_REQ_MB2 (_PRCM_MBOX_HEADER + 0x2) 76 #define PRCM_MBOX_HEADER_REQ_MB3 (_PRCM_MBOX_HEADER + 0x3) 77 #define PRCM_MBOX_HEADER_REQ_MB4 (_PRCM_MBOX_HEADER + 0x4) 78 #define PRCM_MBOX_HEADER_REQ_MB5 (_PRCM_MBOX_HEADER + 0x5) 79 #define PRCM_MBOX_HEADER_ACK_MB0 (_PRCM_MBOX_HEADER + 0x8) 80 81 /* Req Mailboxes */ 82 #define PRCM_REQ_MB0 0xFDC /* 12 bytes */ 83 #define PRCM_REQ_MB1 0xFD0 /* 12 bytes */ 84 #define PRCM_REQ_MB2 0xFC0 /* 16 bytes */ 85 #define PRCM_REQ_MB3 0xE4C /* 372 bytes */ 86 #define PRCM_REQ_MB4 0xE48 /* 4 bytes */ 87 #define PRCM_REQ_MB5 0xE44 /* 4 bytes */ 88 89 /* Ack Mailboxes */ 90 #define PRCM_ACK_MB0 0xE08 /* 52 bytes */ 91 #define PRCM_ACK_MB1 0xE04 /* 4 bytes */ 92 #define PRCM_ACK_MB2 0xE00 /* 4 bytes */ 93 #define PRCM_ACK_MB3 0xDFC /* 4 bytes */ 94 #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */ 95 #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */ 96 97 /* Mailbox 0 headers */ 98 #define MB0H_POWER_STATE_TRANS 0 99 #define MB0H_CONFIG_WAKEUPS_EXE 1 100 #define MB0H_READ_WAKEUP_ACK 3 101 #define MB0H_CONFIG_WAKEUPS_SLEEP 4 102 103 #define MB0H_WAKEUP_EXE 2 104 #define MB0H_WAKEUP_SLEEP 5 105 106 /* Mailbox 0 REQs */ 107 #define PRCM_REQ_MB0_AP_POWER_STATE (PRCM_REQ_MB0 + 0x0) 108 #define PRCM_REQ_MB0_AP_PLL_STATE (PRCM_REQ_MB0 + 0x1) 109 #define PRCM_REQ_MB0_ULP_CLOCK_STATE (PRCM_REQ_MB0 + 0x2) 110 #define PRCM_REQ_MB0_DO_NOT_WFI (PRCM_REQ_MB0 + 0x3) 111 #define PRCM_REQ_MB0_WAKEUP_8500 (PRCM_REQ_MB0 + 0x4) 112 #define PRCM_REQ_MB0_WAKEUP_4500 (PRCM_REQ_MB0 + 0x8) 113 114 /* Mailbox 0 ACKs */ 115 #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS (PRCM_ACK_MB0 + 0x0) 116 #define PRCM_ACK_MB0_READ_POINTER (PRCM_ACK_MB0 + 0x1) 117 #define PRCM_ACK_MB0_WAKEUP_0_8500 (PRCM_ACK_MB0 + 0x4) 118 #define PRCM_ACK_MB0_WAKEUP_0_4500 (PRCM_ACK_MB0 + 0x8) 119 #define PRCM_ACK_MB0_WAKEUP_1_8500 (PRCM_ACK_MB0 + 0x1C) 120 #define PRCM_ACK_MB0_WAKEUP_1_4500 (PRCM_ACK_MB0 + 0x20) 121 #define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20 122 123 /* Mailbox 1 headers */ 124 #define MB1H_ARM_APE_OPP 0x0 125 #define MB1H_RESET_MODEM 0x2 126 #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3 127 #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4 128 #define MB1H_RELEASE_USB_WAKEUP 0x5 129 #define MB1H_PLL_ON_OFF 0x6 130 131 /* Mailbox 1 Requests */ 132 #define PRCM_REQ_MB1_ARM_OPP (PRCM_REQ_MB1 + 0x0) 133 #define PRCM_REQ_MB1_APE_OPP (PRCM_REQ_MB1 + 0x1) 134 #define PRCM_REQ_MB1_PLL_ON_OFF (PRCM_REQ_MB1 + 0x4) 135 #define PLL_SOC0_OFF 0x1 136 #define PLL_SOC0_ON 0x2 137 #define PLL_SOC1_OFF 0x4 138 #define PLL_SOC1_ON 0x8 139 140 /* Mailbox 1 ACKs */ 141 #define PRCM_ACK_MB1_CURRENT_ARM_OPP (PRCM_ACK_MB1 + 0x0) 142 #define PRCM_ACK_MB1_CURRENT_APE_OPP (PRCM_ACK_MB1 + 0x1) 143 #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2) 144 #define PRCM_ACK_MB1_DVFS_STATUS (PRCM_ACK_MB1 + 0x3) 145 146 /* Mailbox 2 headers */ 147 #define MB2H_DPS 0x0 148 #define MB2H_AUTO_PWR 0x1 149 150 /* Mailbox 2 REQs */ 151 #define PRCM_REQ_MB2_SVA_MMDSP (PRCM_REQ_MB2 + 0x0) 152 #define PRCM_REQ_MB2_SVA_PIPE (PRCM_REQ_MB2 + 0x1) 153 #define PRCM_REQ_MB2_SIA_MMDSP (PRCM_REQ_MB2 + 0x2) 154 #define PRCM_REQ_MB2_SIA_PIPE (PRCM_REQ_MB2 + 0x3) 155 #define PRCM_REQ_MB2_SGA (PRCM_REQ_MB2 + 0x4) 156 #define PRCM_REQ_MB2_B2R2_MCDE (PRCM_REQ_MB2 + 0x5) 157 #define PRCM_REQ_MB2_ESRAM12 (PRCM_REQ_MB2 + 0x6) 158 #define PRCM_REQ_MB2_ESRAM34 (PRCM_REQ_MB2 + 0x7) 159 #define PRCM_REQ_MB2_AUTO_PM_SLEEP (PRCM_REQ_MB2 + 0x8) 160 #define PRCM_REQ_MB2_AUTO_PM_IDLE (PRCM_REQ_MB2 + 0xC) 161 162 /* Mailbox 2 ACKs */ 163 #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0) 164 #define HWACC_PWR_ST_OK 0xFE 165 166 /* Mailbox 3 headers */ 167 #define MB3H_ANC 0x0 168 #define MB3H_SIDETONE 0x1 169 #define MB3H_SYSCLK 0xE 170 171 /* Mailbox 3 Requests */ 172 #define PRCM_REQ_MB3_ANC_FIR_COEFF (PRCM_REQ_MB3 + 0x0) 173 #define PRCM_REQ_MB3_ANC_IIR_COEFF (PRCM_REQ_MB3 + 0x20) 174 #define PRCM_REQ_MB3_ANC_SHIFTER (PRCM_REQ_MB3 + 0x60) 175 #define PRCM_REQ_MB3_ANC_WARP (PRCM_REQ_MB3 + 0x64) 176 #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN (PRCM_REQ_MB3 + 0x68) 177 #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C) 178 #define PRCM_REQ_MB3_SYSCLK_MGT (PRCM_REQ_MB3 + 0x16C) 179 180 /* Mailbox 4 headers */ 181 #define MB4H_DDR_INIT 0x0 182 #define MB4H_MEM_ST 0x1 183 #define MB4H_HOTDOG 0x12 184 #define MB4H_HOTMON 0x13 185 #define MB4H_HOT_PERIOD 0x14 186 #define MB4H_A9WDOG_CONF 0x16 187 #define MB4H_A9WDOG_EN 0x17 188 #define MB4H_A9WDOG_DIS 0x18 189 #define MB4H_A9WDOG_LOAD 0x19 190 #define MB4H_A9WDOG_KICK 0x20 191 192 /* Mailbox 4 Requests */ 193 #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE (PRCM_REQ_MB4 + 0x0) 194 #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE (PRCM_REQ_MB4 + 0x1) 195 #define PRCM_REQ_MB4_ESRAM0_ST (PRCM_REQ_MB4 + 0x3) 196 #define PRCM_REQ_MB4_HOTDOG_THRESHOLD (PRCM_REQ_MB4 + 0x0) 197 #define PRCM_REQ_MB4_HOTMON_LOW (PRCM_REQ_MB4 + 0x0) 198 #define PRCM_REQ_MB4_HOTMON_HIGH (PRCM_REQ_MB4 + 0x1) 199 #define PRCM_REQ_MB4_HOTMON_CONFIG (PRCM_REQ_MB4 + 0x2) 200 #define PRCM_REQ_MB4_HOT_PERIOD (PRCM_REQ_MB4 + 0x0) 201 #define HOTMON_CONFIG_LOW BIT(0) 202 #define HOTMON_CONFIG_HIGH BIT(1) 203 #define PRCM_REQ_MB4_A9WDOG_0 (PRCM_REQ_MB4 + 0x0) 204 #define PRCM_REQ_MB4_A9WDOG_1 (PRCM_REQ_MB4 + 0x1) 205 #define PRCM_REQ_MB4_A9WDOG_2 (PRCM_REQ_MB4 + 0x2) 206 #define PRCM_REQ_MB4_A9WDOG_3 (PRCM_REQ_MB4 + 0x3) 207 #define A9WDOG_AUTO_OFF_EN BIT(7) 208 #define A9WDOG_AUTO_OFF_DIS 0 209 #define A9WDOG_ID_MASK 0xf 210 211 /* Mailbox 5 Requests */ 212 #define PRCM_REQ_MB5_I2C_SLAVE_OP (PRCM_REQ_MB5 + 0x0) 213 #define PRCM_REQ_MB5_I2C_HW_BITS (PRCM_REQ_MB5 + 0x1) 214 #define PRCM_REQ_MB5_I2C_REG (PRCM_REQ_MB5 + 0x2) 215 #define PRCM_REQ_MB5_I2C_VAL (PRCM_REQ_MB5 + 0x3) 216 #define PRCMU_I2C_WRITE(slave) (((slave) << 1) | BIT(6)) 217 #define PRCMU_I2C_READ(slave) (((slave) << 1) | BIT(0) | BIT(6)) 218 #define PRCMU_I2C_STOP_EN BIT(3) 219 220 /* Mailbox 5 ACKs */ 221 #define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1) 222 #define PRCM_ACK_MB5_I2C_VAL (PRCM_ACK_MB5 + 0x3) 223 #define I2C_WR_OK 0x1 224 #define I2C_RD_OK 0x2 225 226 #define NUM_MB 8 227 #define MBOX_BIT BIT 228 #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1) 229 230 /* 231 * Wakeups/IRQs 232 */ 233 234 #define WAKEUP_BIT_RTC BIT(0) 235 #define WAKEUP_BIT_RTT0 BIT(1) 236 #define WAKEUP_BIT_RTT1 BIT(2) 237 #define WAKEUP_BIT_HSI0 BIT(3) 238 #define WAKEUP_BIT_HSI1 BIT(4) 239 #define WAKEUP_BIT_CA_WAKE BIT(5) 240 #define WAKEUP_BIT_USB BIT(6) 241 #define WAKEUP_BIT_ABB BIT(7) 242 #define WAKEUP_BIT_ABB_FIFO BIT(8) 243 #define WAKEUP_BIT_SYSCLK_OK BIT(9) 244 #define WAKEUP_BIT_CA_SLEEP BIT(10) 245 #define WAKEUP_BIT_AC_WAKE_ACK BIT(11) 246 #define WAKEUP_BIT_SIDE_TONE_OK BIT(12) 247 #define WAKEUP_BIT_ANC_OK BIT(13) 248 #define WAKEUP_BIT_SW_ERROR BIT(14) 249 #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15) 250 #define WAKEUP_BIT_ARM BIT(17) 251 #define WAKEUP_BIT_HOTMON_LOW BIT(18) 252 #define WAKEUP_BIT_HOTMON_HIGH BIT(19) 253 #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20) 254 #define WAKEUP_BIT_GPIO0 BIT(23) 255 #define WAKEUP_BIT_GPIO1 BIT(24) 256 #define WAKEUP_BIT_GPIO2 BIT(25) 257 #define WAKEUP_BIT_GPIO3 BIT(26) 258 #define WAKEUP_BIT_GPIO4 BIT(27) 259 #define WAKEUP_BIT_GPIO5 BIT(28) 260 #define WAKEUP_BIT_GPIO6 BIT(29) 261 #define WAKEUP_BIT_GPIO7 BIT(30) 262 #define WAKEUP_BIT_GPIO8 BIT(31) 263 264 static struct { 265 bool valid; 266 struct prcmu_fw_version version; 267 } fw_info; 268 269 static struct irq_domain *db8500_irq_domain; 270 271 /* 272 * This vector maps irq numbers to the bits in the bit field used in 273 * communication with the PRCMU firmware. 274 * 275 * The reason for having this is to keep the irq numbers contiguous even though 276 * the bits in the bit field are not. (The bits also have a tendency to move 277 * around, to further complicate matters.) 278 */ 279 #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name) - IRQ_PRCMU_BASE) 280 #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name) 281 static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = { 282 IRQ_ENTRY(RTC), 283 IRQ_ENTRY(RTT0), 284 IRQ_ENTRY(RTT1), 285 IRQ_ENTRY(HSI0), 286 IRQ_ENTRY(HSI1), 287 IRQ_ENTRY(CA_WAKE), 288 IRQ_ENTRY(USB), 289 IRQ_ENTRY(ABB), 290 IRQ_ENTRY(ABB_FIFO), 291 IRQ_ENTRY(CA_SLEEP), 292 IRQ_ENTRY(ARM), 293 IRQ_ENTRY(HOTMON_LOW), 294 IRQ_ENTRY(HOTMON_HIGH), 295 IRQ_ENTRY(MODEM_SW_RESET_REQ), 296 IRQ_ENTRY(GPIO0), 297 IRQ_ENTRY(GPIO1), 298 IRQ_ENTRY(GPIO2), 299 IRQ_ENTRY(GPIO3), 300 IRQ_ENTRY(GPIO4), 301 IRQ_ENTRY(GPIO5), 302 IRQ_ENTRY(GPIO6), 303 IRQ_ENTRY(GPIO7), 304 IRQ_ENTRY(GPIO8) 305 }; 306 307 #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1) 308 #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name) 309 static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = { 310 WAKEUP_ENTRY(RTC), 311 WAKEUP_ENTRY(RTT0), 312 WAKEUP_ENTRY(RTT1), 313 WAKEUP_ENTRY(HSI0), 314 WAKEUP_ENTRY(HSI1), 315 WAKEUP_ENTRY(USB), 316 WAKEUP_ENTRY(ABB), 317 WAKEUP_ENTRY(ABB_FIFO), 318 WAKEUP_ENTRY(ARM) 319 }; 320 321 /* 322 * mb0_transfer - state needed for mailbox 0 communication. 323 * @lock: The transaction lock. 324 * @dbb_events_lock: A lock used to handle concurrent access to (parts of) 325 * the request data. 326 * @mask_work: Work structure used for (un)masking wakeup interrupts. 327 * @req: Request data that need to persist between requests. 328 */ 329 static struct { 330 spinlock_t lock; 331 spinlock_t dbb_irqs_lock; 332 struct work_struct mask_work; 333 struct mutex ac_wake_lock; 334 struct completion ac_wake_work; 335 struct { 336 u32 dbb_irqs; 337 u32 dbb_wakeups; 338 u32 abb_events; 339 } req; 340 } mb0_transfer; 341 342 /* 343 * mb1_transfer - state needed for mailbox 1 communication. 344 * @lock: The transaction lock. 345 * @work: The transaction completion structure. 346 * @ape_opp: The current APE OPP. 347 * @ack: Reply ("acknowledge") data. 348 */ 349 static struct { 350 struct mutex lock; 351 struct completion work; 352 u8 ape_opp; 353 struct { 354 u8 header; 355 u8 arm_opp; 356 u8 ape_opp; 357 u8 ape_voltage_status; 358 } ack; 359 } mb1_transfer; 360 361 /* 362 * mb2_transfer - state needed for mailbox 2 communication. 363 * @lock: The transaction lock. 364 * @work: The transaction completion structure. 365 * @auto_pm_lock: The autonomous power management configuration lock. 366 * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled. 367 * @req: Request data that need to persist between requests. 368 * @ack: Reply ("acknowledge") data. 369 */ 370 static struct { 371 struct mutex lock; 372 struct completion work; 373 spinlock_t auto_pm_lock; 374 bool auto_pm_enabled; 375 struct { 376 u8 status; 377 } ack; 378 } mb2_transfer; 379 380 /* 381 * mb3_transfer - state needed for mailbox 3 communication. 382 * @lock: The request lock. 383 * @sysclk_lock: A lock used to handle concurrent sysclk requests. 384 * @sysclk_work: Work structure used for sysclk requests. 385 */ 386 static struct { 387 spinlock_t lock; 388 struct mutex sysclk_lock; 389 struct completion sysclk_work; 390 } mb3_transfer; 391 392 /* 393 * mb4_transfer - state needed for mailbox 4 communication. 394 * @lock: The transaction lock. 395 * @work: The transaction completion structure. 396 */ 397 static struct { 398 struct mutex lock; 399 struct completion work; 400 } mb4_transfer; 401 402 /* 403 * mb5_transfer - state needed for mailbox 5 communication. 404 * @lock: The transaction lock. 405 * @work: The transaction completion structure. 406 * @ack: Reply ("acknowledge") data. 407 */ 408 static struct { 409 struct mutex lock; 410 struct completion work; 411 struct { 412 u8 status; 413 u8 value; 414 } ack; 415 } mb5_transfer; 416 417 static atomic_t ac_wake_req_state = ATOMIC_INIT(0); 418 419 /* Spinlocks */ 420 static DEFINE_SPINLOCK(prcmu_lock); 421 static DEFINE_SPINLOCK(clkout_lock); 422 423 /* Global var to runtime determine TCDM base for v2 or v1 */ 424 static __iomem void *tcdm_base; 425 426 struct clk_mgt { 427 void __iomem *reg; 428 u32 pllsw; 429 int branch; 430 bool clk38div; 431 }; 432 433 enum { 434 PLL_RAW, 435 PLL_FIX, 436 PLL_DIV 437 }; 438 439 static DEFINE_SPINLOCK(clk_mgt_lock); 440 441 #define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \ 442 { (PRCM_##_name##_MGT), 0 , _branch, _clk38div} 443 struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = { 444 CLK_MGT_ENTRY(SGACLK, PLL_DIV, false), 445 CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true), 446 CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true), 447 CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true), 448 CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true), 449 CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true), 450 CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true), 451 CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true), 452 CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true), 453 CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true), 454 CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true), 455 CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true), 456 CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true), 457 CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true), 458 CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true), 459 CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true), 460 CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true), 461 CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false), 462 CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true), 463 CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true), 464 CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true), 465 CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true), 466 CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false), 467 CLK_MGT_ENTRY(DMACLK, PLL_DIV, true), 468 CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true), 469 CLK_MGT_ENTRY(TVCLK, PLL_FIX, true), 470 CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true), 471 CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true), 472 CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false), 473 }; 474 475 struct dsiclk { 476 u32 divsel_mask; 477 u32 divsel_shift; 478 u32 divsel; 479 }; 480 481 static struct dsiclk dsiclk[2] = { 482 { 483 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK, 484 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT, 485 .divsel = PRCM_DSI_PLLOUT_SEL_PHI, 486 }, 487 { 488 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK, 489 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT, 490 .divsel = PRCM_DSI_PLLOUT_SEL_PHI, 491 } 492 }; 493 494 struct dsiescclk { 495 u32 en; 496 u32 div_mask; 497 u32 div_shift; 498 }; 499 500 static struct dsiescclk dsiescclk[3] = { 501 { 502 .en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN, 503 .div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK, 504 .div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT, 505 }, 506 { 507 .en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN, 508 .div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK, 509 .div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT, 510 }, 511 { 512 .en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN, 513 .div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK, 514 .div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT, 515 } 516 }; 517 518 519 /* 520 * Used by MCDE to setup all necessary PRCMU registers 521 */ 522 #define PRCMU_RESET_DSIPLL 0x00004000 523 #define PRCMU_UNCLAMP_DSIPLL 0x00400800 524 525 #define PRCMU_CLK_PLL_DIV_SHIFT 0 526 #define PRCMU_CLK_PLL_SW_SHIFT 5 527 #define PRCMU_CLK_38 (1 << 9) 528 #define PRCMU_CLK_38_SRC (1 << 10) 529 #define PRCMU_CLK_38_DIV (1 << 11) 530 531 /* PLLDIV=12, PLLSW=4 (PLLDDR) */ 532 #define PRCMU_DSI_CLOCK_SETTING 0x0000008C 533 534 /* DPI 50000000 Hz */ 535 #define PRCMU_DPI_CLOCK_SETTING ((1 << PRCMU_CLK_PLL_SW_SHIFT) | \ 536 (16 << PRCMU_CLK_PLL_DIV_SHIFT)) 537 #define PRCMU_DSI_LP_CLOCK_SETTING 0x00000E00 538 539 /* D=101, N=1, R=4, SELDIV2=0 */ 540 #define PRCMU_PLLDSI_FREQ_SETTING 0x00040165 541 542 #define PRCMU_ENABLE_PLLDSI 0x00000001 543 #define PRCMU_DISABLE_PLLDSI 0x00000000 544 #define PRCMU_RELEASE_RESET_DSS 0x0000400C 545 #define PRCMU_DSI_PLLOUT_SEL_SETTING 0x00000202 546 /* ESC clk, div0=1, div1=1, div2=3 */ 547 #define PRCMU_ENABLE_ESCAPE_CLOCK_DIV 0x07030101 548 #define PRCMU_DISABLE_ESCAPE_CLOCK_DIV 0x00030101 549 #define PRCMU_DSI_RESET_SW 0x00000007 550 551 #define PRCMU_PLLDSI_LOCKP_LOCKED 0x3 552 553 int db8500_prcmu_enable_dsipll(void) 554 { 555 int i; 556 557 /* Clear DSIPLL_RESETN */ 558 writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR); 559 /* Unclamp DSIPLL in/out */ 560 writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR); 561 562 /* Set DSI PLL FREQ */ 563 writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ); 564 writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL); 565 /* Enable Escape clocks */ 566 writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV); 567 568 /* Start DSI PLL */ 569 writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE); 570 /* Reset DSI PLL */ 571 writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET); 572 for (i = 0; i < 10; i++) { 573 if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED) 574 == PRCMU_PLLDSI_LOCKP_LOCKED) 575 break; 576 udelay(100); 577 } 578 /* Set DSIPLL_RESETN */ 579 writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET); 580 return 0; 581 } 582 583 int db8500_prcmu_disable_dsipll(void) 584 { 585 /* Disable dsi pll */ 586 writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE); 587 /* Disable escapeclock */ 588 writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV); 589 return 0; 590 } 591 592 int db8500_prcmu_set_display_clocks(void) 593 { 594 unsigned long flags; 595 596 spin_lock_irqsave(&clk_mgt_lock, flags); 597 598 /* Grab the HW semaphore. */ 599 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0) 600 cpu_relax(); 601 602 writel(PRCMU_DSI_CLOCK_SETTING, PRCM_HDMICLK_MGT); 603 writel(PRCMU_DSI_LP_CLOCK_SETTING, PRCM_TVCLK_MGT); 604 writel(PRCMU_DPI_CLOCK_SETTING, PRCM_LCDCLK_MGT); 605 606 /* Release the HW semaphore. */ 607 writel(0, PRCM_SEM); 608 609 spin_unlock_irqrestore(&clk_mgt_lock, flags); 610 611 return 0; 612 } 613 614 u32 db8500_prcmu_read(unsigned int reg) 615 { 616 return readl(_PRCMU_BASE + reg); 617 } 618 619 void db8500_prcmu_write(unsigned int reg, u32 value) 620 { 621 unsigned long flags; 622 623 spin_lock_irqsave(&prcmu_lock, flags); 624 writel(value, (_PRCMU_BASE + reg)); 625 spin_unlock_irqrestore(&prcmu_lock, flags); 626 } 627 628 void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value) 629 { 630 u32 val; 631 unsigned long flags; 632 633 spin_lock_irqsave(&prcmu_lock, flags); 634 val = readl(_PRCMU_BASE + reg); 635 val = ((val & ~mask) | (value & mask)); 636 writel(val, (_PRCMU_BASE + reg)); 637 spin_unlock_irqrestore(&prcmu_lock, flags); 638 } 639 640 struct prcmu_fw_version *prcmu_get_fw_version(void) 641 { 642 return fw_info.valid ? &fw_info.version : NULL; 643 } 644 645 bool prcmu_has_arm_maxopp(void) 646 { 647 return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) & 648 PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK; 649 } 650 651 /** 652 * prcmu_get_boot_status - PRCMU boot status checking 653 * Returns: the current PRCMU boot status 654 */ 655 int prcmu_get_boot_status(void) 656 { 657 return readb(tcdm_base + PRCM_BOOT_STATUS); 658 } 659 660 /** 661 * prcmu_set_rc_a2p - This function is used to run few power state sequences 662 * @val: Value to be set, i.e. transition requested 663 * Returns: 0 on success, -EINVAL on invalid argument 664 * 665 * This function is used to run the following power state sequences - 666 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep 667 */ 668 int prcmu_set_rc_a2p(enum romcode_write val) 669 { 670 if (val < RDY_2_DS || val > RDY_2_XP70_RST) 671 return -EINVAL; 672 writeb(val, (tcdm_base + PRCM_ROMCODE_A2P)); 673 return 0; 674 } 675 676 /** 677 * prcmu_get_rc_p2a - This function is used to get power state sequences 678 * Returns: the power transition that has last happened 679 * 680 * This function can return the following transitions- 681 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep 682 */ 683 enum romcode_read prcmu_get_rc_p2a(void) 684 { 685 return readb(tcdm_base + PRCM_ROMCODE_P2A); 686 } 687 688 /** 689 * prcmu_get_current_mode - Return the current XP70 power mode 690 * Returns: Returns the current AP(ARM) power mode: init, 691 * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset 692 */ 693 enum ap_pwrst prcmu_get_xp70_current_state(void) 694 { 695 return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE); 696 } 697 698 /** 699 * prcmu_config_clkout - Configure one of the programmable clock outputs. 700 * @clkout: The CLKOUT number (0 or 1). 701 * @source: The clock to be used (one of the PRCMU_CLKSRC_*). 702 * @div: The divider to be applied. 703 * 704 * Configures one of the programmable clock outputs (CLKOUTs). 705 * @div should be in the range [1,63] to request a configuration, or 0 to 706 * inform that the configuration is no longer requested. 707 */ 708 int prcmu_config_clkout(u8 clkout, u8 source, u8 div) 709 { 710 static int requests[2]; 711 int r = 0; 712 unsigned long flags; 713 u32 val; 714 u32 bits; 715 u32 mask; 716 u32 div_mask; 717 718 BUG_ON(clkout > 1); 719 BUG_ON(div > 63); 720 BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009)); 721 722 if (!div && !requests[clkout]) 723 return -EINVAL; 724 725 switch (clkout) { 726 case 0: 727 div_mask = PRCM_CLKOCR_CLKODIV0_MASK; 728 mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK); 729 bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) | 730 (div << PRCM_CLKOCR_CLKODIV0_SHIFT)); 731 break; 732 case 1: 733 div_mask = PRCM_CLKOCR_CLKODIV1_MASK; 734 mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK | 735 PRCM_CLKOCR_CLK1TYPE); 736 bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) | 737 (div << PRCM_CLKOCR_CLKODIV1_SHIFT)); 738 break; 739 } 740 bits &= mask; 741 742 spin_lock_irqsave(&clkout_lock, flags); 743 744 val = readl(PRCM_CLKOCR); 745 if (val & div_mask) { 746 if (div) { 747 if ((val & mask) != bits) { 748 r = -EBUSY; 749 goto unlock_and_return; 750 } 751 } else { 752 if ((val & mask & ~div_mask) != bits) { 753 r = -EINVAL; 754 goto unlock_and_return; 755 } 756 } 757 } 758 writel((bits | (val & ~mask)), PRCM_CLKOCR); 759 requests[clkout] += (div ? 1 : -1); 760 761 unlock_and_return: 762 spin_unlock_irqrestore(&clkout_lock, flags); 763 764 return r; 765 } 766 767 int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll) 768 { 769 unsigned long flags; 770 771 BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state)); 772 773 spin_lock_irqsave(&mb0_transfer.lock, flags); 774 775 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0)) 776 cpu_relax(); 777 778 writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0)); 779 writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE)); 780 writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE)); 781 writeb((keep_ulp_clk ? 1 : 0), 782 (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE)); 783 writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI)); 784 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET); 785 786 spin_unlock_irqrestore(&mb0_transfer.lock, flags); 787 788 return 0; 789 } 790 791 u8 db8500_prcmu_get_power_state_result(void) 792 { 793 return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS); 794 } 795 796 /* This function decouple the gic from the prcmu */ 797 int db8500_prcmu_gic_decouple(void) 798 { 799 u32 val = readl(PRCM_A9_MASK_REQ); 800 801 /* Set bit 0 register value to 1 */ 802 writel(val | PRCM_A9_MASK_REQ_PRCM_A9_MASK_REQ, 803 PRCM_A9_MASK_REQ); 804 805 /* Make sure the register is updated */ 806 readl(PRCM_A9_MASK_REQ); 807 808 /* Wait a few cycles for the gic mask completion */ 809 udelay(1); 810 811 return 0; 812 } 813 814 /* This function recouple the gic with the prcmu */ 815 int db8500_prcmu_gic_recouple(void) 816 { 817 u32 val = readl(PRCM_A9_MASK_REQ); 818 819 /* Set bit 0 register value to 0 */ 820 writel(val & ~PRCM_A9_MASK_REQ_PRCM_A9_MASK_REQ, PRCM_A9_MASK_REQ); 821 822 return 0; 823 } 824 825 #define PRCMU_GIC_NUMBER_REGS 5 826 827 /* 828 * This function checks if there are pending irq on the gic. It only 829 * makes sense if the gic has been decoupled before with the 830 * db8500_prcmu_gic_decouple function. Disabling an interrupt only 831 * disables the forwarding of the interrupt to any CPU interface. It 832 * does not prevent the interrupt from changing state, for example 833 * becoming pending, or active and pending if it is already 834 * active. Hence, we have to check the interrupt is pending *and* is 835 * active. 836 */ 837 bool db8500_prcmu_gic_pending_irq(void) 838 { 839 u32 pr; /* Pending register */ 840 u32 er; /* Enable register */ 841 void __iomem *dist_base = __io_address(U8500_GIC_DIST_BASE); 842 int i; 843 844 /* 5 registers. STI & PPI not skipped */ 845 for (i = 0; i < PRCMU_GIC_NUMBER_REGS; i++) { 846 847 pr = readl_relaxed(dist_base + GIC_DIST_PENDING_SET + i * 4); 848 er = readl_relaxed(dist_base + GIC_DIST_ENABLE_SET + i * 4); 849 850 if (pr & er) 851 return true; /* There is a pending interrupt */ 852 } 853 854 return false; 855 } 856 857 /* 858 * This function checks if there are pending interrupt on the 859 * prcmu which has been delegated to monitor the irqs with the 860 * db8500_prcmu_copy_gic_settings function. 861 */ 862 bool db8500_prcmu_pending_irq(void) 863 { 864 u32 it, im; 865 int i; 866 867 for (i = 0; i < PRCMU_GIC_NUMBER_REGS - 1; i++) { 868 it = readl(PRCM_ARMITVAL31TO0 + i * 4); 869 im = readl(PRCM_ARMITMSK31TO0 + i * 4); 870 if (it & im) 871 return true; /* There is a pending interrupt */ 872 } 873 874 return false; 875 } 876 877 /* 878 * This function checks if the specified cpu is in in WFI. It's usage 879 * makes sense only if the gic is decoupled with the db8500_prcmu_gic_decouple 880 * function. Of course passing smp_processor_id() to this function will 881 * always return false... 882 */ 883 bool db8500_prcmu_is_cpu_in_wfi(int cpu) 884 { 885 return readl(PRCM_ARM_WFI_STANDBY) & cpu ? PRCM_ARM_WFI_STANDBY_WFI1 : 886 PRCM_ARM_WFI_STANDBY_WFI0; 887 } 888 889 /* 890 * This function copies the gic SPI settings to the prcmu in order to 891 * monitor them and abort/finish the retention/off sequence or state. 892 */ 893 int db8500_prcmu_copy_gic_settings(void) 894 { 895 u32 er; /* Enable register */ 896 void __iomem *dist_base = __io_address(U8500_GIC_DIST_BASE); 897 int i; 898 899 /* We skip the STI and PPI */ 900 for (i = 0; i < PRCMU_GIC_NUMBER_REGS - 1; i++) { 901 er = readl_relaxed(dist_base + 902 GIC_DIST_ENABLE_SET + (i + 1) * 4); 903 writel(er, PRCM_ARMITMSK31TO0 + i * 4); 904 } 905 906 return 0; 907 } 908 909 /* This function should only be called while mb0_transfer.lock is held. */ 910 static void config_wakeups(void) 911 { 912 const u8 header[2] = { 913 MB0H_CONFIG_WAKEUPS_EXE, 914 MB0H_CONFIG_WAKEUPS_SLEEP 915 }; 916 static u32 last_dbb_events; 917 static u32 last_abb_events; 918 u32 dbb_events; 919 u32 abb_events; 920 unsigned int i; 921 922 dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups; 923 dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK); 924 925 abb_events = mb0_transfer.req.abb_events; 926 927 if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events)) 928 return; 929 930 for (i = 0; i < 2; i++) { 931 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0)) 932 cpu_relax(); 933 writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500)); 934 writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500)); 935 writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0)); 936 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET); 937 } 938 last_dbb_events = dbb_events; 939 last_abb_events = abb_events; 940 } 941 942 void db8500_prcmu_enable_wakeups(u32 wakeups) 943 { 944 unsigned long flags; 945 u32 bits; 946 int i; 947 948 BUG_ON(wakeups != (wakeups & VALID_WAKEUPS)); 949 950 for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) { 951 if (wakeups & BIT(i)) 952 bits |= prcmu_wakeup_bit[i]; 953 } 954 955 spin_lock_irqsave(&mb0_transfer.lock, flags); 956 957 mb0_transfer.req.dbb_wakeups = bits; 958 config_wakeups(); 959 960 spin_unlock_irqrestore(&mb0_transfer.lock, flags); 961 } 962 963 void db8500_prcmu_config_abb_event_readout(u32 abb_events) 964 { 965 unsigned long flags; 966 967 spin_lock_irqsave(&mb0_transfer.lock, flags); 968 969 mb0_transfer.req.abb_events = abb_events; 970 config_wakeups(); 971 972 spin_unlock_irqrestore(&mb0_transfer.lock, flags); 973 } 974 975 void db8500_prcmu_get_abb_event_buffer(void __iomem **buf) 976 { 977 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1) 978 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500); 979 else 980 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500); 981 } 982 983 /** 984 * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP 985 * @opp: The new ARM operating point to which transition is to be made 986 * Returns: 0 on success, non-zero on failure 987 * 988 * This function sets the the operating point of the ARM. 989 */ 990 int db8500_prcmu_set_arm_opp(u8 opp) 991 { 992 int r; 993 994 if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK) 995 return -EINVAL; 996 997 r = 0; 998 999 mutex_lock(&mb1_transfer.lock); 1000 1001 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1)) 1002 cpu_relax(); 1003 1004 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1)); 1005 writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP)); 1006 writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP)); 1007 1008 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET); 1009 wait_for_completion(&mb1_transfer.work); 1010 1011 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) || 1012 (mb1_transfer.ack.arm_opp != opp)) 1013 r = -EIO; 1014 1015 mutex_unlock(&mb1_transfer.lock); 1016 1017 return r; 1018 } 1019 1020 /** 1021 * db8500_prcmu_get_arm_opp - get the current ARM OPP 1022 * 1023 * Returns: the current ARM OPP 1024 */ 1025 int db8500_prcmu_get_arm_opp(void) 1026 { 1027 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP); 1028 } 1029 1030 /** 1031 * db8500_prcmu_get_ddr_opp - get the current DDR OPP 1032 * 1033 * Returns: the current DDR OPP 1034 */ 1035 int db8500_prcmu_get_ddr_opp(void) 1036 { 1037 return readb(PRCM_DDR_SUBSYS_APE_MINBW); 1038 } 1039 1040 /** 1041 * db8500_set_ddr_opp - set the appropriate DDR OPP 1042 * @opp: The new DDR operating point to which transition is to be made 1043 * Returns: 0 on success, non-zero on failure 1044 * 1045 * This function sets the operating point of the DDR. 1046 */ 1047 static bool enable_set_ddr_opp; 1048 int db8500_prcmu_set_ddr_opp(u8 opp) 1049 { 1050 if (opp < DDR_100_OPP || opp > DDR_25_OPP) 1051 return -EINVAL; 1052 /* Changing the DDR OPP can hang the hardware pre-v21 */ 1053 if (enable_set_ddr_opp) 1054 writeb(opp, PRCM_DDR_SUBSYS_APE_MINBW); 1055 1056 return 0; 1057 } 1058 1059 /* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */ 1060 static void request_even_slower_clocks(bool enable) 1061 { 1062 void __iomem *clock_reg[] = { 1063 PRCM_ACLK_MGT, 1064 PRCM_DMACLK_MGT 1065 }; 1066 unsigned long flags; 1067 unsigned int i; 1068 1069 spin_lock_irqsave(&clk_mgt_lock, flags); 1070 1071 /* Grab the HW semaphore. */ 1072 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0) 1073 cpu_relax(); 1074 1075 for (i = 0; i < ARRAY_SIZE(clock_reg); i++) { 1076 u32 val; 1077 u32 div; 1078 1079 val = readl(clock_reg[i]); 1080 div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK); 1081 if (enable) { 1082 if ((div <= 1) || (div > 15)) { 1083 pr_err("prcmu: Bad clock divider %d in %s\n", 1084 div, __func__); 1085 goto unlock_and_return; 1086 } 1087 div <<= 1; 1088 } else { 1089 if (div <= 2) 1090 goto unlock_and_return; 1091 div >>= 1; 1092 } 1093 val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) | 1094 (div & PRCM_CLK_MGT_CLKPLLDIV_MASK)); 1095 writel(val, clock_reg[i]); 1096 } 1097 1098 unlock_and_return: 1099 /* Release the HW semaphore. */ 1100 writel(0, PRCM_SEM); 1101 1102 spin_unlock_irqrestore(&clk_mgt_lock, flags); 1103 } 1104 1105 /** 1106 * db8500_set_ape_opp - set the appropriate APE OPP 1107 * @opp: The new APE operating point to which transition is to be made 1108 * Returns: 0 on success, non-zero on failure 1109 * 1110 * This function sets the operating point of the APE. 1111 */ 1112 int db8500_prcmu_set_ape_opp(u8 opp) 1113 { 1114 int r = 0; 1115 1116 if (opp == mb1_transfer.ape_opp) 1117 return 0; 1118 1119 mutex_lock(&mb1_transfer.lock); 1120 1121 if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP) 1122 request_even_slower_clocks(false); 1123 1124 if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP)) 1125 goto skip_message; 1126 1127 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1)) 1128 cpu_relax(); 1129 1130 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1)); 1131 writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP)); 1132 writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp), 1133 (tcdm_base + PRCM_REQ_MB1_APE_OPP)); 1134 1135 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET); 1136 wait_for_completion(&mb1_transfer.work); 1137 1138 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) || 1139 (mb1_transfer.ack.ape_opp != opp)) 1140 r = -EIO; 1141 1142 skip_message: 1143 if ((!r && (opp == APE_50_PARTLY_25_OPP)) || 1144 (r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP))) 1145 request_even_slower_clocks(true); 1146 if (!r) 1147 mb1_transfer.ape_opp = opp; 1148 1149 mutex_unlock(&mb1_transfer.lock); 1150 1151 return r; 1152 } 1153 1154 /** 1155 * db8500_prcmu_get_ape_opp - get the current APE OPP 1156 * 1157 * Returns: the current APE OPP 1158 */ 1159 int db8500_prcmu_get_ape_opp(void) 1160 { 1161 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP); 1162 } 1163 1164 /** 1165 * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage 1166 * @enable: true to request the higher voltage, false to drop a request. 1167 * 1168 * Calls to this function to enable and disable requests must be balanced. 1169 */ 1170 int db8500_prcmu_request_ape_opp_100_voltage(bool enable) 1171 { 1172 int r = 0; 1173 u8 header; 1174 static unsigned int requests; 1175 1176 mutex_lock(&mb1_transfer.lock); 1177 1178 if (enable) { 1179 if (0 != requests++) 1180 goto unlock_and_return; 1181 header = MB1H_REQUEST_APE_OPP_100_VOLT; 1182 } else { 1183 if (requests == 0) { 1184 r = -EIO; 1185 goto unlock_and_return; 1186 } else if (1 != requests--) { 1187 goto unlock_and_return; 1188 } 1189 header = MB1H_RELEASE_APE_OPP_100_VOLT; 1190 } 1191 1192 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1)) 1193 cpu_relax(); 1194 1195 writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1)); 1196 1197 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET); 1198 wait_for_completion(&mb1_transfer.work); 1199 1200 if ((mb1_transfer.ack.header != header) || 1201 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0)) 1202 r = -EIO; 1203 1204 unlock_and_return: 1205 mutex_unlock(&mb1_transfer.lock); 1206 1207 return r; 1208 } 1209 1210 /** 1211 * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup 1212 * 1213 * This function releases the power state requirements of a USB wakeup. 1214 */ 1215 int prcmu_release_usb_wakeup_state(void) 1216 { 1217 int r = 0; 1218 1219 mutex_lock(&mb1_transfer.lock); 1220 1221 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1)) 1222 cpu_relax(); 1223 1224 writeb(MB1H_RELEASE_USB_WAKEUP, 1225 (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1)); 1226 1227 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET); 1228 wait_for_completion(&mb1_transfer.work); 1229 1230 if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) || 1231 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0)) 1232 r = -EIO; 1233 1234 mutex_unlock(&mb1_transfer.lock); 1235 1236 return r; 1237 } 1238 1239 static int request_pll(u8 clock, bool enable) 1240 { 1241 int r = 0; 1242 1243 if (clock == PRCMU_PLLSOC0) 1244 clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF); 1245 else if (clock == PRCMU_PLLSOC1) 1246 clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF); 1247 else 1248 return -EINVAL; 1249 1250 mutex_lock(&mb1_transfer.lock); 1251 1252 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1)) 1253 cpu_relax(); 1254 1255 writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1)); 1256 writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF)); 1257 1258 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET); 1259 wait_for_completion(&mb1_transfer.work); 1260 1261 if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF) 1262 r = -EIO; 1263 1264 mutex_unlock(&mb1_transfer.lock); 1265 1266 return r; 1267 } 1268 1269 /** 1270 * db8500_prcmu_set_epod - set the state of a EPOD (power domain) 1271 * @epod_id: The EPOD to set 1272 * @epod_state: The new EPOD state 1273 * 1274 * This function sets the state of a EPOD (power domain). It may not be called 1275 * from interrupt context. 1276 */ 1277 int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state) 1278 { 1279 int r = 0; 1280 bool ram_retention = false; 1281 int i; 1282 1283 /* check argument */ 1284 BUG_ON(epod_id >= NUM_EPOD_ID); 1285 1286 /* set flag if retention is possible */ 1287 switch (epod_id) { 1288 case EPOD_ID_SVAMMDSP: 1289 case EPOD_ID_SIAMMDSP: 1290 case EPOD_ID_ESRAM12: 1291 case EPOD_ID_ESRAM34: 1292 ram_retention = true; 1293 break; 1294 } 1295 1296 /* check argument */ 1297 BUG_ON(epod_state > EPOD_STATE_ON); 1298 BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention); 1299 1300 /* get lock */ 1301 mutex_lock(&mb2_transfer.lock); 1302 1303 /* wait for mailbox */ 1304 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2)) 1305 cpu_relax(); 1306 1307 /* fill in mailbox */ 1308 for (i = 0; i < NUM_EPOD_ID; i++) 1309 writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i)); 1310 writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id)); 1311 1312 writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2)); 1313 1314 writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET); 1315 1316 /* 1317 * The current firmware version does not handle errors correctly, 1318 * and we cannot recover if there is an error. 1319 * This is expected to change when the firmware is updated. 1320 */ 1321 if (!wait_for_completion_timeout(&mb2_transfer.work, 1322 msecs_to_jiffies(20000))) { 1323 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n", 1324 __func__); 1325 r = -EIO; 1326 goto unlock_and_return; 1327 } 1328 1329 if (mb2_transfer.ack.status != HWACC_PWR_ST_OK) 1330 r = -EIO; 1331 1332 unlock_and_return: 1333 mutex_unlock(&mb2_transfer.lock); 1334 return r; 1335 } 1336 1337 /** 1338 * prcmu_configure_auto_pm - Configure autonomous power management. 1339 * @sleep: Configuration for ApSleep. 1340 * @idle: Configuration for ApIdle. 1341 */ 1342 void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep, 1343 struct prcmu_auto_pm_config *idle) 1344 { 1345 u32 sleep_cfg; 1346 u32 idle_cfg; 1347 unsigned long flags; 1348 1349 BUG_ON((sleep == NULL) || (idle == NULL)); 1350 1351 sleep_cfg = (sleep->sva_auto_pm_enable & 0xF); 1352 sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF)); 1353 sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF)); 1354 sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF)); 1355 sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF)); 1356 sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF)); 1357 1358 idle_cfg = (idle->sva_auto_pm_enable & 0xF); 1359 idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF)); 1360 idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF)); 1361 idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF)); 1362 idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF)); 1363 idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF)); 1364 1365 spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags); 1366 1367 /* 1368 * The autonomous power management configuration is done through 1369 * fields in mailbox 2, but these fields are only used as shared 1370 * variables - i.e. there is no need to send a message. 1371 */ 1372 writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP)); 1373 writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE)); 1374 1375 mb2_transfer.auto_pm_enabled = 1376 ((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) || 1377 (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) || 1378 (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) || 1379 (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON)); 1380 1381 spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags); 1382 } 1383 EXPORT_SYMBOL(prcmu_configure_auto_pm); 1384 1385 bool prcmu_is_auto_pm_enabled(void) 1386 { 1387 return mb2_transfer.auto_pm_enabled; 1388 } 1389 1390 static int request_sysclk(bool enable) 1391 { 1392 int r; 1393 unsigned long flags; 1394 1395 r = 0; 1396 1397 mutex_lock(&mb3_transfer.sysclk_lock); 1398 1399 spin_lock_irqsave(&mb3_transfer.lock, flags); 1400 1401 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3)) 1402 cpu_relax(); 1403 1404 writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT)); 1405 1406 writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3)); 1407 writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET); 1408 1409 spin_unlock_irqrestore(&mb3_transfer.lock, flags); 1410 1411 /* 1412 * The firmware only sends an ACK if we want to enable the 1413 * SysClk, and it succeeds. 1414 */ 1415 if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work, 1416 msecs_to_jiffies(20000))) { 1417 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n", 1418 __func__); 1419 r = -EIO; 1420 } 1421 1422 mutex_unlock(&mb3_transfer.sysclk_lock); 1423 1424 return r; 1425 } 1426 1427 static int request_timclk(bool enable) 1428 { 1429 u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK); 1430 1431 if (!enable) 1432 val |= PRCM_TCR_STOP_TIMERS; 1433 writel(val, PRCM_TCR); 1434 1435 return 0; 1436 } 1437 1438 static int request_clock(u8 clock, bool enable) 1439 { 1440 u32 val; 1441 unsigned long flags; 1442 1443 spin_lock_irqsave(&clk_mgt_lock, flags); 1444 1445 /* Grab the HW semaphore. */ 1446 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0) 1447 cpu_relax(); 1448 1449 val = readl(clk_mgt[clock].reg); 1450 if (enable) { 1451 val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw); 1452 } else { 1453 clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK); 1454 val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK); 1455 } 1456 writel(val, clk_mgt[clock].reg); 1457 1458 /* Release the HW semaphore. */ 1459 writel(0, PRCM_SEM); 1460 1461 spin_unlock_irqrestore(&clk_mgt_lock, flags); 1462 1463 return 0; 1464 } 1465 1466 static int request_sga_clock(u8 clock, bool enable) 1467 { 1468 u32 val; 1469 int ret; 1470 1471 if (enable) { 1472 val = readl(PRCM_CGATING_BYPASS); 1473 writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS); 1474 } 1475 1476 ret = request_clock(clock, enable); 1477 1478 if (!ret && !enable) { 1479 val = readl(PRCM_CGATING_BYPASS); 1480 writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS); 1481 } 1482 1483 return ret; 1484 } 1485 1486 static inline bool plldsi_locked(void) 1487 { 1488 return (readl(PRCM_PLLDSI_LOCKP) & 1489 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 | 1490 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) == 1491 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 | 1492 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3); 1493 } 1494 1495 static int request_plldsi(bool enable) 1496 { 1497 int r = 0; 1498 u32 val; 1499 1500 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP | 1501 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ? 1502 PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET)); 1503 1504 val = readl(PRCM_PLLDSI_ENABLE); 1505 if (enable) 1506 val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE; 1507 else 1508 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE; 1509 writel(val, PRCM_PLLDSI_ENABLE); 1510 1511 if (enable) { 1512 unsigned int i; 1513 bool locked = plldsi_locked(); 1514 1515 for (i = 10; !locked && (i > 0); --i) { 1516 udelay(100); 1517 locked = plldsi_locked(); 1518 } 1519 if (locked) { 1520 writel(PRCM_APE_RESETN_DSIPLL_RESETN, 1521 PRCM_APE_RESETN_SET); 1522 } else { 1523 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP | 1524 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), 1525 PRCM_MMIP_LS_CLAMP_SET); 1526 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE; 1527 writel(val, PRCM_PLLDSI_ENABLE); 1528 r = -EAGAIN; 1529 } 1530 } else { 1531 writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR); 1532 } 1533 return r; 1534 } 1535 1536 static int request_dsiclk(u8 n, bool enable) 1537 { 1538 u32 val; 1539 1540 val = readl(PRCM_DSI_PLLOUT_SEL); 1541 val &= ~dsiclk[n].divsel_mask; 1542 val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) << 1543 dsiclk[n].divsel_shift); 1544 writel(val, PRCM_DSI_PLLOUT_SEL); 1545 return 0; 1546 } 1547 1548 static int request_dsiescclk(u8 n, bool enable) 1549 { 1550 u32 val; 1551 1552 val = readl(PRCM_DSITVCLK_DIV); 1553 enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en); 1554 writel(val, PRCM_DSITVCLK_DIV); 1555 return 0; 1556 } 1557 1558 /** 1559 * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled. 1560 * @clock: The clock for which the request is made. 1561 * @enable: Whether the clock should be enabled (true) or disabled (false). 1562 * 1563 * This function should only be used by the clock implementation. 1564 * Do not use it from any other place! 1565 */ 1566 int db8500_prcmu_request_clock(u8 clock, bool enable) 1567 { 1568 if (clock == PRCMU_SGACLK) 1569 return request_sga_clock(clock, enable); 1570 else if (clock < PRCMU_NUM_REG_CLOCKS) 1571 return request_clock(clock, enable); 1572 else if (clock == PRCMU_TIMCLK) 1573 return request_timclk(enable); 1574 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK)) 1575 return request_dsiclk((clock - PRCMU_DSI0CLK), enable); 1576 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK)) 1577 return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable); 1578 else if (clock == PRCMU_PLLDSI) 1579 return request_plldsi(enable); 1580 else if (clock == PRCMU_SYSCLK) 1581 return request_sysclk(enable); 1582 else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1)) 1583 return request_pll(clock, enable); 1584 else 1585 return -EINVAL; 1586 } 1587 1588 static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate, 1589 int branch) 1590 { 1591 u64 rate; 1592 u32 val; 1593 u32 d; 1594 u32 div = 1; 1595 1596 val = readl(reg); 1597 1598 rate = src_rate; 1599 rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT); 1600 1601 d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT); 1602 if (d > 1) 1603 div *= d; 1604 1605 d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT); 1606 if (d > 1) 1607 div *= d; 1608 1609 if (val & PRCM_PLL_FREQ_SELDIV2) 1610 div *= 2; 1611 1612 if ((branch == PLL_FIX) || ((branch == PLL_DIV) && 1613 (val & PRCM_PLL_FREQ_DIV2EN) && 1614 ((reg == PRCM_PLLSOC0_FREQ) || 1615 (reg == PRCM_PLLARM_FREQ) || 1616 (reg == PRCM_PLLDDR_FREQ)))) 1617 div *= 2; 1618 1619 (void)do_div(rate, div); 1620 1621 return (unsigned long)rate; 1622 } 1623 1624 #define ROOT_CLOCK_RATE 38400000 1625 1626 static unsigned long clock_rate(u8 clock) 1627 { 1628 u32 val; 1629 u32 pllsw; 1630 unsigned long rate = ROOT_CLOCK_RATE; 1631 1632 val = readl(clk_mgt[clock].reg); 1633 1634 if (val & PRCM_CLK_MGT_CLK38) { 1635 if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV)) 1636 rate /= 2; 1637 return rate; 1638 } 1639 1640 val |= clk_mgt[clock].pllsw; 1641 pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK); 1642 1643 if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0) 1644 rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch); 1645 else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1) 1646 rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch); 1647 else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR) 1648 rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch); 1649 else 1650 return 0; 1651 1652 if ((clock == PRCMU_SGACLK) && 1653 (val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) { 1654 u64 r = (rate * 10); 1655 1656 (void)do_div(r, 25); 1657 return (unsigned long)r; 1658 } 1659 val &= PRCM_CLK_MGT_CLKPLLDIV_MASK; 1660 if (val) 1661 return rate / val; 1662 else 1663 return 0; 1664 } 1665 1666 static unsigned long armss_rate(void) 1667 { 1668 u32 r; 1669 unsigned long rate; 1670 1671 r = readl(PRCM_ARM_CHGCLKREQ); 1672 1673 if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) { 1674 /* External ARMCLKFIX clock */ 1675 1676 rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX); 1677 1678 /* Check PRCM_ARM_CHGCLKREQ divider */ 1679 if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL)) 1680 rate /= 2; 1681 1682 /* Check PRCM_ARMCLKFIX_MGT divider */ 1683 r = readl(PRCM_ARMCLKFIX_MGT); 1684 r &= PRCM_CLK_MGT_CLKPLLDIV_MASK; 1685 rate /= r; 1686 1687 } else {/* ARM PLL */ 1688 rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV); 1689 } 1690 1691 return rate; 1692 } 1693 1694 static unsigned long dsiclk_rate(u8 n) 1695 { 1696 u32 divsel; 1697 u32 div = 1; 1698 1699 divsel = readl(PRCM_DSI_PLLOUT_SEL); 1700 divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift); 1701 1702 if (divsel == PRCM_DSI_PLLOUT_SEL_OFF) 1703 divsel = dsiclk[n].divsel; 1704 1705 switch (divsel) { 1706 case PRCM_DSI_PLLOUT_SEL_PHI_4: 1707 div *= 2; 1708 case PRCM_DSI_PLLOUT_SEL_PHI_2: 1709 div *= 2; 1710 case PRCM_DSI_PLLOUT_SEL_PHI: 1711 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK), 1712 PLL_RAW) / div; 1713 default: 1714 return 0; 1715 } 1716 } 1717 1718 static unsigned long dsiescclk_rate(u8 n) 1719 { 1720 u32 div; 1721 1722 div = readl(PRCM_DSITVCLK_DIV); 1723 div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift)); 1724 return clock_rate(PRCMU_TVCLK) / max((u32)1, div); 1725 } 1726 1727 unsigned long prcmu_clock_rate(u8 clock) 1728 { 1729 if (clock < PRCMU_NUM_REG_CLOCKS) 1730 return clock_rate(clock); 1731 else if (clock == PRCMU_TIMCLK) 1732 return ROOT_CLOCK_RATE / 16; 1733 else if (clock == PRCMU_SYSCLK) 1734 return ROOT_CLOCK_RATE; 1735 else if (clock == PRCMU_PLLSOC0) 1736 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW); 1737 else if (clock == PRCMU_PLLSOC1) 1738 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW); 1739 else if (clock == PRCMU_ARMSS) 1740 return armss_rate(); 1741 else if (clock == PRCMU_PLLDDR) 1742 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW); 1743 else if (clock == PRCMU_PLLDSI) 1744 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK), 1745 PLL_RAW); 1746 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK)) 1747 return dsiclk_rate(clock - PRCMU_DSI0CLK); 1748 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK)) 1749 return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK); 1750 else 1751 return 0; 1752 } 1753 1754 static unsigned long clock_source_rate(u32 clk_mgt_val, int branch) 1755 { 1756 if (clk_mgt_val & PRCM_CLK_MGT_CLK38) 1757 return ROOT_CLOCK_RATE; 1758 clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK; 1759 if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0) 1760 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch); 1761 else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1) 1762 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch); 1763 else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR) 1764 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch); 1765 else 1766 return 0; 1767 } 1768 1769 static u32 clock_divider(unsigned long src_rate, unsigned long rate) 1770 { 1771 u32 div; 1772 1773 div = (src_rate / rate); 1774 if (div == 0) 1775 return 1; 1776 if (rate < (src_rate / div)) 1777 div++; 1778 return div; 1779 } 1780 1781 static long round_clock_rate(u8 clock, unsigned long rate) 1782 { 1783 u32 val; 1784 u32 div; 1785 unsigned long src_rate; 1786 long rounded_rate; 1787 1788 val = readl(clk_mgt[clock].reg); 1789 src_rate = clock_source_rate((val | clk_mgt[clock].pllsw), 1790 clk_mgt[clock].branch); 1791 div = clock_divider(src_rate, rate); 1792 if (val & PRCM_CLK_MGT_CLK38) { 1793 if (clk_mgt[clock].clk38div) { 1794 if (div > 2) 1795 div = 2; 1796 } else { 1797 div = 1; 1798 } 1799 } else if ((clock == PRCMU_SGACLK) && (div == 3)) { 1800 u64 r = (src_rate * 10); 1801 1802 (void)do_div(r, 25); 1803 if (r <= rate) 1804 return (unsigned long)r; 1805 } 1806 rounded_rate = (src_rate / min(div, (u32)31)); 1807 1808 return rounded_rate; 1809 } 1810 1811 /* CPU FREQ table, may be changed due to if MAX_OPP is supported. */ 1812 static struct cpufreq_frequency_table db8500_cpufreq_table[] = { 1813 { .frequency = 200000, .index = ARM_EXTCLK,}, 1814 { .frequency = 400000, .index = ARM_50_OPP,}, 1815 { .frequency = 800000, .index = ARM_100_OPP,}, 1816 { .frequency = CPUFREQ_TABLE_END,}, /* To be used for MAX_OPP. */ 1817 { .frequency = CPUFREQ_TABLE_END,}, 1818 }; 1819 1820 static long round_armss_rate(unsigned long rate) 1821 { 1822 long freq = 0; 1823 int i = 0; 1824 1825 /* cpufreq table frequencies is in KHz. */ 1826 rate = rate / 1000; 1827 1828 /* Find the corresponding arm opp from the cpufreq table. */ 1829 while (db8500_cpufreq_table[i].frequency != CPUFREQ_TABLE_END) { 1830 freq = db8500_cpufreq_table[i].frequency; 1831 if (freq == rate) 1832 break; 1833 i++; 1834 } 1835 1836 /* Return the last valid value, even if a match was not found. */ 1837 return freq * 1000; 1838 } 1839 1840 #define MIN_PLL_VCO_RATE 600000000ULL 1841 #define MAX_PLL_VCO_RATE 1680640000ULL 1842 1843 static long round_plldsi_rate(unsigned long rate) 1844 { 1845 long rounded_rate = 0; 1846 unsigned long src_rate; 1847 unsigned long rem; 1848 u32 r; 1849 1850 src_rate = clock_rate(PRCMU_HDMICLK); 1851 rem = rate; 1852 1853 for (r = 7; (rem > 0) && (r > 0); r--) { 1854 u64 d; 1855 1856 d = (r * rate); 1857 (void)do_div(d, src_rate); 1858 if (d < 6) 1859 d = 6; 1860 else if (d > 255) 1861 d = 255; 1862 d *= src_rate; 1863 if (((2 * d) < (r * MIN_PLL_VCO_RATE)) || 1864 ((r * MAX_PLL_VCO_RATE) < (2 * d))) 1865 continue; 1866 (void)do_div(d, r); 1867 if (rate < d) { 1868 if (rounded_rate == 0) 1869 rounded_rate = (long)d; 1870 break; 1871 } 1872 if ((rate - d) < rem) { 1873 rem = (rate - d); 1874 rounded_rate = (long)d; 1875 } 1876 } 1877 return rounded_rate; 1878 } 1879 1880 static long round_dsiclk_rate(unsigned long rate) 1881 { 1882 u32 div; 1883 unsigned long src_rate; 1884 long rounded_rate; 1885 1886 src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK), 1887 PLL_RAW); 1888 div = clock_divider(src_rate, rate); 1889 rounded_rate = (src_rate / ((div > 2) ? 4 : div)); 1890 1891 return rounded_rate; 1892 } 1893 1894 static long round_dsiescclk_rate(unsigned long rate) 1895 { 1896 u32 div; 1897 unsigned long src_rate; 1898 long rounded_rate; 1899 1900 src_rate = clock_rate(PRCMU_TVCLK); 1901 div = clock_divider(src_rate, rate); 1902 rounded_rate = (src_rate / min(div, (u32)255)); 1903 1904 return rounded_rate; 1905 } 1906 1907 long prcmu_round_clock_rate(u8 clock, unsigned long rate) 1908 { 1909 if (clock < PRCMU_NUM_REG_CLOCKS) 1910 return round_clock_rate(clock, rate); 1911 else if (clock == PRCMU_ARMSS) 1912 return round_armss_rate(rate); 1913 else if (clock == PRCMU_PLLDSI) 1914 return round_plldsi_rate(rate); 1915 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK)) 1916 return round_dsiclk_rate(rate); 1917 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK)) 1918 return round_dsiescclk_rate(rate); 1919 else 1920 return (long)prcmu_clock_rate(clock); 1921 } 1922 1923 static void set_clock_rate(u8 clock, unsigned long rate) 1924 { 1925 u32 val; 1926 u32 div; 1927 unsigned long src_rate; 1928 unsigned long flags; 1929 1930 spin_lock_irqsave(&clk_mgt_lock, flags); 1931 1932 /* Grab the HW semaphore. */ 1933 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0) 1934 cpu_relax(); 1935 1936 val = readl(clk_mgt[clock].reg); 1937 src_rate = clock_source_rate((val | clk_mgt[clock].pllsw), 1938 clk_mgt[clock].branch); 1939 div = clock_divider(src_rate, rate); 1940 if (val & PRCM_CLK_MGT_CLK38) { 1941 if (clk_mgt[clock].clk38div) { 1942 if (div > 1) 1943 val |= PRCM_CLK_MGT_CLK38DIV; 1944 else 1945 val &= ~PRCM_CLK_MGT_CLK38DIV; 1946 } 1947 } else if (clock == PRCMU_SGACLK) { 1948 val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK | 1949 PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN); 1950 if (div == 3) { 1951 u64 r = (src_rate * 10); 1952 1953 (void)do_div(r, 25); 1954 if (r <= rate) { 1955 val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN; 1956 div = 0; 1957 } 1958 } 1959 val |= min(div, (u32)31); 1960 } else { 1961 val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK; 1962 val |= min(div, (u32)31); 1963 } 1964 writel(val, clk_mgt[clock].reg); 1965 1966 /* Release the HW semaphore. */ 1967 writel(0, PRCM_SEM); 1968 1969 spin_unlock_irqrestore(&clk_mgt_lock, flags); 1970 } 1971 1972 static int set_armss_rate(unsigned long rate) 1973 { 1974 int i = 0; 1975 1976 /* cpufreq table frequencies is in KHz. */ 1977 rate = rate / 1000; 1978 1979 /* Find the corresponding arm opp from the cpufreq table. */ 1980 while (db8500_cpufreq_table[i].frequency != CPUFREQ_TABLE_END) { 1981 if (db8500_cpufreq_table[i].frequency == rate) 1982 break; 1983 i++; 1984 } 1985 1986 if (db8500_cpufreq_table[i].frequency != rate) 1987 return -EINVAL; 1988 1989 /* Set the new arm opp. */ 1990 return db8500_prcmu_set_arm_opp(db8500_cpufreq_table[i].index); 1991 } 1992 1993 static int set_plldsi_rate(unsigned long rate) 1994 { 1995 unsigned long src_rate; 1996 unsigned long rem; 1997 u32 pll_freq = 0; 1998 u32 r; 1999 2000 src_rate = clock_rate(PRCMU_HDMICLK); 2001 rem = rate; 2002 2003 for (r = 7; (rem > 0) && (r > 0); r--) { 2004 u64 d; 2005 u64 hwrate; 2006 2007 d = (r * rate); 2008 (void)do_div(d, src_rate); 2009 if (d < 6) 2010 d = 6; 2011 else if (d > 255) 2012 d = 255; 2013 hwrate = (d * src_rate); 2014 if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) || 2015 ((r * MAX_PLL_VCO_RATE) < (2 * hwrate))) 2016 continue; 2017 (void)do_div(hwrate, r); 2018 if (rate < hwrate) { 2019 if (pll_freq == 0) 2020 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) | 2021 (r << PRCM_PLL_FREQ_R_SHIFT)); 2022 break; 2023 } 2024 if ((rate - hwrate) < rem) { 2025 rem = (rate - hwrate); 2026 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) | 2027 (r << PRCM_PLL_FREQ_R_SHIFT)); 2028 } 2029 } 2030 if (pll_freq == 0) 2031 return -EINVAL; 2032 2033 pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT); 2034 writel(pll_freq, PRCM_PLLDSI_FREQ); 2035 2036 return 0; 2037 } 2038 2039 static void set_dsiclk_rate(u8 n, unsigned long rate) 2040 { 2041 u32 val; 2042 u32 div; 2043 2044 div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ, 2045 clock_rate(PRCMU_HDMICLK), PLL_RAW), rate); 2046 2047 dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI : 2048 (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 : 2049 /* else */ PRCM_DSI_PLLOUT_SEL_PHI_4; 2050 2051 val = readl(PRCM_DSI_PLLOUT_SEL); 2052 val &= ~dsiclk[n].divsel_mask; 2053 val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift); 2054 writel(val, PRCM_DSI_PLLOUT_SEL); 2055 } 2056 2057 static void set_dsiescclk_rate(u8 n, unsigned long rate) 2058 { 2059 u32 val; 2060 u32 div; 2061 2062 div = clock_divider(clock_rate(PRCMU_TVCLK), rate); 2063 val = readl(PRCM_DSITVCLK_DIV); 2064 val &= ~dsiescclk[n].div_mask; 2065 val |= (min(div, (u32)255) << dsiescclk[n].div_shift); 2066 writel(val, PRCM_DSITVCLK_DIV); 2067 } 2068 2069 int prcmu_set_clock_rate(u8 clock, unsigned long rate) 2070 { 2071 if (clock < PRCMU_NUM_REG_CLOCKS) 2072 set_clock_rate(clock, rate); 2073 else if (clock == PRCMU_ARMSS) 2074 return set_armss_rate(rate); 2075 else if (clock == PRCMU_PLLDSI) 2076 return set_plldsi_rate(rate); 2077 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK)) 2078 set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate); 2079 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK)) 2080 set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate); 2081 return 0; 2082 } 2083 2084 int db8500_prcmu_config_esram0_deep_sleep(u8 state) 2085 { 2086 if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) || 2087 (state < ESRAM0_DEEP_SLEEP_STATE_OFF)) 2088 return -EINVAL; 2089 2090 mutex_lock(&mb4_transfer.lock); 2091 2092 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4)) 2093 cpu_relax(); 2094 2095 writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4)); 2096 writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON), 2097 (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE)); 2098 writeb(DDR_PWR_STATE_ON, 2099 (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE)); 2100 writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST)); 2101 2102 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET); 2103 wait_for_completion(&mb4_transfer.work); 2104 2105 mutex_unlock(&mb4_transfer.lock); 2106 2107 return 0; 2108 } 2109 2110 int db8500_prcmu_config_hotdog(u8 threshold) 2111 { 2112 mutex_lock(&mb4_transfer.lock); 2113 2114 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4)) 2115 cpu_relax(); 2116 2117 writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD)); 2118 writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4)); 2119 2120 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET); 2121 wait_for_completion(&mb4_transfer.work); 2122 2123 mutex_unlock(&mb4_transfer.lock); 2124 2125 return 0; 2126 } 2127 2128 int db8500_prcmu_config_hotmon(u8 low, u8 high) 2129 { 2130 mutex_lock(&mb4_transfer.lock); 2131 2132 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4)) 2133 cpu_relax(); 2134 2135 writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW)); 2136 writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH)); 2137 writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH), 2138 (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG)); 2139 writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4)); 2140 2141 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET); 2142 wait_for_completion(&mb4_transfer.work); 2143 2144 mutex_unlock(&mb4_transfer.lock); 2145 2146 return 0; 2147 } 2148 2149 static int config_hot_period(u16 val) 2150 { 2151 mutex_lock(&mb4_transfer.lock); 2152 2153 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4)) 2154 cpu_relax(); 2155 2156 writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD)); 2157 writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4)); 2158 2159 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET); 2160 wait_for_completion(&mb4_transfer.work); 2161 2162 mutex_unlock(&mb4_transfer.lock); 2163 2164 return 0; 2165 } 2166 2167 int db8500_prcmu_start_temp_sense(u16 cycles32k) 2168 { 2169 if (cycles32k == 0xFFFF) 2170 return -EINVAL; 2171 2172 return config_hot_period(cycles32k); 2173 } 2174 2175 int db8500_prcmu_stop_temp_sense(void) 2176 { 2177 return config_hot_period(0xFFFF); 2178 } 2179 2180 static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3) 2181 { 2182 2183 mutex_lock(&mb4_transfer.lock); 2184 2185 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4)) 2186 cpu_relax(); 2187 2188 writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0)); 2189 writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1)); 2190 writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2)); 2191 writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3)); 2192 2193 writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4)); 2194 2195 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET); 2196 wait_for_completion(&mb4_transfer.work); 2197 2198 mutex_unlock(&mb4_transfer.lock); 2199 2200 return 0; 2201 2202 } 2203 2204 int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off) 2205 { 2206 BUG_ON(num == 0 || num > 0xf); 2207 return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0, 2208 sleep_auto_off ? A9WDOG_AUTO_OFF_EN : 2209 A9WDOG_AUTO_OFF_DIS); 2210 } 2211 EXPORT_SYMBOL(db8500_prcmu_config_a9wdog); 2212 2213 int db8500_prcmu_enable_a9wdog(u8 id) 2214 { 2215 return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0); 2216 } 2217 EXPORT_SYMBOL(db8500_prcmu_enable_a9wdog); 2218 2219 int db8500_prcmu_disable_a9wdog(u8 id) 2220 { 2221 return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0); 2222 } 2223 EXPORT_SYMBOL(db8500_prcmu_disable_a9wdog); 2224 2225 int db8500_prcmu_kick_a9wdog(u8 id) 2226 { 2227 return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0); 2228 } 2229 EXPORT_SYMBOL(db8500_prcmu_kick_a9wdog); 2230 2231 /* 2232 * timeout is 28 bit, in ms. 2233 */ 2234 int db8500_prcmu_load_a9wdog(u8 id, u32 timeout) 2235 { 2236 return prcmu_a9wdog(MB4H_A9WDOG_LOAD, 2237 (id & A9WDOG_ID_MASK) | 2238 /* 2239 * Put the lowest 28 bits of timeout at 2240 * offset 4. Four first bits are used for id. 2241 */ 2242 (u8)((timeout << 4) & 0xf0), 2243 (u8)((timeout >> 4) & 0xff), 2244 (u8)((timeout >> 12) & 0xff), 2245 (u8)((timeout >> 20) & 0xff)); 2246 } 2247 EXPORT_SYMBOL(db8500_prcmu_load_a9wdog); 2248 2249 /** 2250 * prcmu_abb_read() - Read register value(s) from the ABB. 2251 * @slave: The I2C slave address. 2252 * @reg: The (start) register address. 2253 * @value: The read out value(s). 2254 * @size: The number of registers to read. 2255 * 2256 * Reads register value(s) from the ABB. 2257 * @size has to be 1 for the current firmware version. 2258 */ 2259 int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size) 2260 { 2261 int r; 2262 2263 if (size != 1) 2264 return -EINVAL; 2265 2266 mutex_lock(&mb5_transfer.lock); 2267 2268 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5)) 2269 cpu_relax(); 2270 2271 writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5)); 2272 writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP)); 2273 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS)); 2274 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG)); 2275 writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL)); 2276 2277 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET); 2278 2279 if (!wait_for_completion_timeout(&mb5_transfer.work, 2280 msecs_to_jiffies(20000))) { 2281 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n", 2282 __func__); 2283 r = -EIO; 2284 } else { 2285 r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO); 2286 } 2287 2288 if (!r) 2289 *value = mb5_transfer.ack.value; 2290 2291 mutex_unlock(&mb5_transfer.lock); 2292 2293 return r; 2294 } 2295 2296 /** 2297 * prcmu_abb_write_masked() - Write masked register value(s) to the ABB. 2298 * @slave: The I2C slave address. 2299 * @reg: The (start) register address. 2300 * @value: The value(s) to write. 2301 * @mask: The mask(s) to use. 2302 * @size: The number of registers to write. 2303 * 2304 * Writes masked register value(s) to the ABB. 2305 * For each @value, only the bits set to 1 in the corresponding @mask 2306 * will be written. The other bits are not changed. 2307 * @size has to be 1 for the current firmware version. 2308 */ 2309 int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size) 2310 { 2311 int r; 2312 2313 if (size != 1) 2314 return -EINVAL; 2315 2316 mutex_lock(&mb5_transfer.lock); 2317 2318 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5)) 2319 cpu_relax(); 2320 2321 writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5)); 2322 writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP)); 2323 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS)); 2324 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG)); 2325 writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL)); 2326 2327 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET); 2328 2329 if (!wait_for_completion_timeout(&mb5_transfer.work, 2330 msecs_to_jiffies(20000))) { 2331 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n", 2332 __func__); 2333 r = -EIO; 2334 } else { 2335 r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO); 2336 } 2337 2338 mutex_unlock(&mb5_transfer.lock); 2339 2340 return r; 2341 } 2342 2343 /** 2344 * prcmu_abb_write() - Write register value(s) to the ABB. 2345 * @slave: The I2C slave address. 2346 * @reg: The (start) register address. 2347 * @value: The value(s) to write. 2348 * @size: The number of registers to write. 2349 * 2350 * Writes register value(s) to the ABB. 2351 * @size has to be 1 for the current firmware version. 2352 */ 2353 int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size) 2354 { 2355 u8 mask = ~0; 2356 2357 return prcmu_abb_write_masked(slave, reg, value, &mask, size); 2358 } 2359 2360 /** 2361 * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem 2362 */ 2363 int prcmu_ac_wake_req(void) 2364 { 2365 u32 val; 2366 int ret = 0; 2367 2368 mutex_lock(&mb0_transfer.ac_wake_lock); 2369 2370 val = readl(PRCM_HOSTACCESS_REQ); 2371 if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ) 2372 goto unlock_and_return; 2373 2374 atomic_set(&ac_wake_req_state, 1); 2375 2376 /* 2377 * Force Modem Wake-up before hostaccess_req ping-pong. 2378 * It prevents Modem to enter in Sleep while acking the hostaccess 2379 * request. The 31us delay has been calculated by HWI. 2380 */ 2381 val |= PRCM_HOSTACCESS_REQ_WAKE_REQ; 2382 writel(val, PRCM_HOSTACCESS_REQ); 2383 2384 udelay(31); 2385 2386 val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ; 2387 writel(val, PRCM_HOSTACCESS_REQ); 2388 2389 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work, 2390 msecs_to_jiffies(5000))) { 2391 #if defined(CONFIG_DBX500_PRCMU_DEBUG) 2392 db8500_prcmu_debug_dump(__func__, true, true); 2393 #endif 2394 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n", 2395 __func__); 2396 ret = -EFAULT; 2397 } 2398 2399 unlock_and_return: 2400 mutex_unlock(&mb0_transfer.ac_wake_lock); 2401 return ret; 2402 } 2403 2404 /** 2405 * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem 2406 */ 2407 void prcmu_ac_sleep_req() 2408 { 2409 u32 val; 2410 2411 mutex_lock(&mb0_transfer.ac_wake_lock); 2412 2413 val = readl(PRCM_HOSTACCESS_REQ); 2414 if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)) 2415 goto unlock_and_return; 2416 2417 writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ), 2418 PRCM_HOSTACCESS_REQ); 2419 2420 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work, 2421 msecs_to_jiffies(5000))) { 2422 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n", 2423 __func__); 2424 } 2425 2426 atomic_set(&ac_wake_req_state, 0); 2427 2428 unlock_and_return: 2429 mutex_unlock(&mb0_transfer.ac_wake_lock); 2430 } 2431 2432 bool db8500_prcmu_is_ac_wake_requested(void) 2433 { 2434 return (atomic_read(&ac_wake_req_state) != 0); 2435 } 2436 2437 /** 2438 * db8500_prcmu_system_reset - System reset 2439 * 2440 * Saves the reset reason code and then sets the APE_SOFTRST register which 2441 * fires interrupt to fw 2442 */ 2443 void db8500_prcmu_system_reset(u16 reset_code) 2444 { 2445 writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON)); 2446 writel(1, PRCM_APE_SOFTRST); 2447 } 2448 2449 /** 2450 * db8500_prcmu_get_reset_code - Retrieve SW reset reason code 2451 * 2452 * Retrieves the reset reason code stored by prcmu_system_reset() before 2453 * last restart. 2454 */ 2455 u16 db8500_prcmu_get_reset_code(void) 2456 { 2457 return readw(tcdm_base + PRCM_SW_RST_REASON); 2458 } 2459 2460 /** 2461 * db8500_prcmu_reset_modem - ask the PRCMU to reset modem 2462 */ 2463 void db8500_prcmu_modem_reset(void) 2464 { 2465 mutex_lock(&mb1_transfer.lock); 2466 2467 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1)) 2468 cpu_relax(); 2469 2470 writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1)); 2471 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET); 2472 wait_for_completion(&mb1_transfer.work); 2473 2474 /* 2475 * No need to check return from PRCMU as modem should go in reset state 2476 * This state is already managed by upper layer 2477 */ 2478 2479 mutex_unlock(&mb1_transfer.lock); 2480 } 2481 2482 static void ack_dbb_wakeup(void) 2483 { 2484 unsigned long flags; 2485 2486 spin_lock_irqsave(&mb0_transfer.lock, flags); 2487 2488 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0)) 2489 cpu_relax(); 2490 2491 writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0)); 2492 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET); 2493 2494 spin_unlock_irqrestore(&mb0_transfer.lock, flags); 2495 } 2496 2497 static inline void print_unknown_header_warning(u8 n, u8 header) 2498 { 2499 pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n", 2500 header, n); 2501 } 2502 2503 static bool read_mailbox_0(void) 2504 { 2505 bool r; 2506 u32 ev; 2507 unsigned int n; 2508 u8 header; 2509 2510 header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0); 2511 switch (header) { 2512 case MB0H_WAKEUP_EXE: 2513 case MB0H_WAKEUP_SLEEP: 2514 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1) 2515 ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500); 2516 else 2517 ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500); 2518 2519 if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK)) 2520 complete(&mb0_transfer.ac_wake_work); 2521 if (ev & WAKEUP_BIT_SYSCLK_OK) 2522 complete(&mb3_transfer.sysclk_work); 2523 2524 ev &= mb0_transfer.req.dbb_irqs; 2525 2526 for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) { 2527 if (ev & prcmu_irq_bit[n]) 2528 generic_handle_irq(irq_find_mapping(db8500_irq_domain, n)); 2529 } 2530 r = true; 2531 break; 2532 default: 2533 print_unknown_header_warning(0, header); 2534 r = false; 2535 break; 2536 } 2537 writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR); 2538 return r; 2539 } 2540 2541 static bool read_mailbox_1(void) 2542 { 2543 mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1); 2544 mb1_transfer.ack.arm_opp = readb(tcdm_base + 2545 PRCM_ACK_MB1_CURRENT_ARM_OPP); 2546 mb1_transfer.ack.ape_opp = readb(tcdm_base + 2547 PRCM_ACK_MB1_CURRENT_APE_OPP); 2548 mb1_transfer.ack.ape_voltage_status = readb(tcdm_base + 2549 PRCM_ACK_MB1_APE_VOLTAGE_STATUS); 2550 writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR); 2551 complete(&mb1_transfer.work); 2552 return false; 2553 } 2554 2555 static bool read_mailbox_2(void) 2556 { 2557 mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS); 2558 writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR); 2559 complete(&mb2_transfer.work); 2560 return false; 2561 } 2562 2563 static bool read_mailbox_3(void) 2564 { 2565 writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR); 2566 return false; 2567 } 2568 2569 static bool read_mailbox_4(void) 2570 { 2571 u8 header; 2572 bool do_complete = true; 2573 2574 header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4); 2575 switch (header) { 2576 case MB4H_MEM_ST: 2577 case MB4H_HOTDOG: 2578 case MB4H_HOTMON: 2579 case MB4H_HOT_PERIOD: 2580 case MB4H_A9WDOG_CONF: 2581 case MB4H_A9WDOG_EN: 2582 case MB4H_A9WDOG_DIS: 2583 case MB4H_A9WDOG_LOAD: 2584 case MB4H_A9WDOG_KICK: 2585 break; 2586 default: 2587 print_unknown_header_warning(4, header); 2588 do_complete = false; 2589 break; 2590 } 2591 2592 writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR); 2593 2594 if (do_complete) 2595 complete(&mb4_transfer.work); 2596 2597 return false; 2598 } 2599 2600 static bool read_mailbox_5(void) 2601 { 2602 mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS); 2603 mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL); 2604 writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR); 2605 complete(&mb5_transfer.work); 2606 return false; 2607 } 2608 2609 static bool read_mailbox_6(void) 2610 { 2611 writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR); 2612 return false; 2613 } 2614 2615 static bool read_mailbox_7(void) 2616 { 2617 writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR); 2618 return false; 2619 } 2620 2621 static bool (* const read_mailbox[NUM_MB])(void) = { 2622 read_mailbox_0, 2623 read_mailbox_1, 2624 read_mailbox_2, 2625 read_mailbox_3, 2626 read_mailbox_4, 2627 read_mailbox_5, 2628 read_mailbox_6, 2629 read_mailbox_7 2630 }; 2631 2632 static irqreturn_t prcmu_irq_handler(int irq, void *data) 2633 { 2634 u32 bits; 2635 u8 n; 2636 irqreturn_t r; 2637 2638 bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS); 2639 if (unlikely(!bits)) 2640 return IRQ_NONE; 2641 2642 r = IRQ_HANDLED; 2643 for (n = 0; bits; n++) { 2644 if (bits & MBOX_BIT(n)) { 2645 bits -= MBOX_BIT(n); 2646 if (read_mailbox[n]()) 2647 r = IRQ_WAKE_THREAD; 2648 } 2649 } 2650 return r; 2651 } 2652 2653 static irqreturn_t prcmu_irq_thread_fn(int irq, void *data) 2654 { 2655 ack_dbb_wakeup(); 2656 return IRQ_HANDLED; 2657 } 2658 2659 static void prcmu_mask_work(struct work_struct *work) 2660 { 2661 unsigned long flags; 2662 2663 spin_lock_irqsave(&mb0_transfer.lock, flags); 2664 2665 config_wakeups(); 2666 2667 spin_unlock_irqrestore(&mb0_transfer.lock, flags); 2668 } 2669 2670 static void prcmu_irq_mask(struct irq_data *d) 2671 { 2672 unsigned long flags; 2673 2674 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags); 2675 2676 mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq]; 2677 2678 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags); 2679 2680 if (d->irq != IRQ_PRCMU_CA_SLEEP) 2681 schedule_work(&mb0_transfer.mask_work); 2682 } 2683 2684 static void prcmu_irq_unmask(struct irq_data *d) 2685 { 2686 unsigned long flags; 2687 2688 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags); 2689 2690 mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq]; 2691 2692 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags); 2693 2694 if (d->irq != IRQ_PRCMU_CA_SLEEP) 2695 schedule_work(&mb0_transfer.mask_work); 2696 } 2697 2698 static void noop(struct irq_data *d) 2699 { 2700 } 2701 2702 static struct irq_chip prcmu_irq_chip = { 2703 .name = "prcmu", 2704 .irq_disable = prcmu_irq_mask, 2705 .irq_ack = noop, 2706 .irq_mask = prcmu_irq_mask, 2707 .irq_unmask = prcmu_irq_unmask, 2708 }; 2709 2710 static __init char *fw_project_name(u32 project) 2711 { 2712 switch (project) { 2713 case PRCMU_FW_PROJECT_U8500: 2714 return "U8500"; 2715 case PRCMU_FW_PROJECT_U8400: 2716 return "U8400"; 2717 case PRCMU_FW_PROJECT_U9500: 2718 return "U9500"; 2719 case PRCMU_FW_PROJECT_U8500_MBB: 2720 return "U8500 MBB"; 2721 case PRCMU_FW_PROJECT_U8500_C1: 2722 return "U8500 C1"; 2723 case PRCMU_FW_PROJECT_U8500_C2: 2724 return "U8500 C2"; 2725 case PRCMU_FW_PROJECT_U8500_C3: 2726 return "U8500 C3"; 2727 case PRCMU_FW_PROJECT_U8500_C4: 2728 return "U8500 C4"; 2729 case PRCMU_FW_PROJECT_U9500_MBL: 2730 return "U9500 MBL"; 2731 case PRCMU_FW_PROJECT_U8500_MBL: 2732 return "U8500 MBL"; 2733 case PRCMU_FW_PROJECT_U8500_MBL2: 2734 return "U8500 MBL2"; 2735 case PRCMU_FW_PROJECT_U8520: 2736 return "U8520 MBL"; 2737 case PRCMU_FW_PROJECT_U8420: 2738 return "U8420"; 2739 case PRCMU_FW_PROJECT_U9540: 2740 return "U9540"; 2741 case PRCMU_FW_PROJECT_A9420: 2742 return "A9420"; 2743 case PRCMU_FW_PROJECT_L8540: 2744 return "L8540"; 2745 case PRCMU_FW_PROJECT_L8580: 2746 return "L8580"; 2747 default: 2748 return "Unknown"; 2749 } 2750 } 2751 2752 static int db8500_irq_map(struct irq_domain *d, unsigned int virq, 2753 irq_hw_number_t hwirq) 2754 { 2755 irq_set_chip_and_handler(virq, &prcmu_irq_chip, 2756 handle_simple_irq); 2757 set_irq_flags(virq, IRQF_VALID); 2758 2759 return 0; 2760 } 2761 2762 static struct irq_domain_ops db8500_irq_ops = { 2763 .map = db8500_irq_map, 2764 .xlate = irq_domain_xlate_twocell, 2765 }; 2766 2767 static int db8500_irq_init(struct device_node *np) 2768 { 2769 int irq_base = 0; 2770 int i; 2771 2772 /* In the device tree case, just take some IRQs */ 2773 if (!np) 2774 irq_base = IRQ_PRCMU_BASE; 2775 2776 db8500_irq_domain = irq_domain_add_simple( 2777 np, NUM_PRCMU_WAKEUPS, irq_base, 2778 &db8500_irq_ops, NULL); 2779 2780 if (!db8500_irq_domain) { 2781 pr_err("Failed to create irqdomain\n"); 2782 return -ENOSYS; 2783 } 2784 2785 /* All wakeups will be used, so create mappings for all */ 2786 for (i = 0; i < NUM_PRCMU_WAKEUPS; i++) 2787 irq_create_mapping(db8500_irq_domain, i); 2788 2789 return 0; 2790 } 2791 2792 static void dbx500_fw_version_init(struct platform_device *pdev, 2793 u32 version_offset) 2794 { 2795 struct resource *res; 2796 void __iomem *tcpm_base; 2797 2798 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, 2799 "prcmu-tcpm"); 2800 if (!res) { 2801 dev_err(&pdev->dev, 2802 "Error: no prcmu tcpm memory region provided\n"); 2803 return; 2804 } 2805 tcpm_base = ioremap(res->start, resource_size(res)); 2806 if (tcpm_base != NULL) { 2807 u32 version; 2808 2809 version = readl(tcpm_base + version_offset); 2810 fw_info.version.project = (version & 0xFF); 2811 fw_info.version.api_version = (version >> 8) & 0xFF; 2812 fw_info.version.func_version = (version >> 16) & 0xFF; 2813 fw_info.version.errata = (version >> 24) & 0xFF; 2814 strncpy(fw_info.version.project_name, 2815 fw_project_name(fw_info.version.project), 2816 PRCMU_FW_PROJECT_NAME_LEN); 2817 fw_info.valid = true; 2818 pr_info("PRCMU firmware: %s(%d), version %d.%d.%d\n", 2819 fw_info.version.project_name, 2820 fw_info.version.project, 2821 fw_info.version.api_version, 2822 fw_info.version.func_version, 2823 fw_info.version.errata); 2824 iounmap(tcpm_base); 2825 } 2826 } 2827 2828 void __init db8500_prcmu_early_init(void) 2829 { 2830 spin_lock_init(&mb0_transfer.lock); 2831 spin_lock_init(&mb0_transfer.dbb_irqs_lock); 2832 mutex_init(&mb0_transfer.ac_wake_lock); 2833 init_completion(&mb0_transfer.ac_wake_work); 2834 mutex_init(&mb1_transfer.lock); 2835 init_completion(&mb1_transfer.work); 2836 mb1_transfer.ape_opp = APE_NO_CHANGE; 2837 mutex_init(&mb2_transfer.lock); 2838 init_completion(&mb2_transfer.work); 2839 spin_lock_init(&mb2_transfer.auto_pm_lock); 2840 spin_lock_init(&mb3_transfer.lock); 2841 mutex_init(&mb3_transfer.sysclk_lock); 2842 init_completion(&mb3_transfer.sysclk_work); 2843 mutex_init(&mb4_transfer.lock); 2844 init_completion(&mb4_transfer.work); 2845 mutex_init(&mb5_transfer.lock); 2846 init_completion(&mb5_transfer.work); 2847 2848 INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work); 2849 } 2850 2851 static void __init init_prcm_registers(void) 2852 { 2853 u32 val; 2854 2855 val = readl(PRCM_A9PL_FORCE_CLKEN); 2856 val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN | 2857 PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN); 2858 writel(val, (PRCM_A9PL_FORCE_CLKEN)); 2859 } 2860 2861 /* 2862 * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC 2863 */ 2864 static struct regulator_consumer_supply db8500_vape_consumers[] = { 2865 REGULATOR_SUPPLY("v-ape", NULL), 2866 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"), 2867 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"), 2868 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"), 2869 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"), 2870 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"), 2871 /* "v-mmc" changed to "vcore" in the mainline kernel */ 2872 REGULATOR_SUPPLY("vcore", "sdi0"), 2873 REGULATOR_SUPPLY("vcore", "sdi1"), 2874 REGULATOR_SUPPLY("vcore", "sdi2"), 2875 REGULATOR_SUPPLY("vcore", "sdi3"), 2876 REGULATOR_SUPPLY("vcore", "sdi4"), 2877 REGULATOR_SUPPLY("v-dma", "dma40.0"), 2878 REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"), 2879 /* "v-uart" changed to "vcore" in the mainline kernel */ 2880 REGULATOR_SUPPLY("vcore", "uart0"), 2881 REGULATOR_SUPPLY("vcore", "uart1"), 2882 REGULATOR_SUPPLY("vcore", "uart2"), 2883 REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"), 2884 REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"), 2885 REGULATOR_SUPPLY("vddvario", "smsc911x.0"), 2886 }; 2887 2888 static struct regulator_consumer_supply db8500_vsmps2_consumers[] = { 2889 REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"), 2890 /* AV8100 regulator */ 2891 REGULATOR_SUPPLY("hdmi_1v8", "0-0070"), 2892 }; 2893 2894 static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = { 2895 REGULATOR_SUPPLY("vsupply", "b2r2_bus"), 2896 REGULATOR_SUPPLY("vsupply", "mcde"), 2897 }; 2898 2899 /* SVA MMDSP regulator switch */ 2900 static struct regulator_consumer_supply db8500_svammdsp_consumers[] = { 2901 REGULATOR_SUPPLY("sva-mmdsp", "cm_control"), 2902 }; 2903 2904 /* SVA pipe regulator switch */ 2905 static struct regulator_consumer_supply db8500_svapipe_consumers[] = { 2906 REGULATOR_SUPPLY("sva-pipe", "cm_control"), 2907 }; 2908 2909 /* SIA MMDSP regulator switch */ 2910 static struct regulator_consumer_supply db8500_siammdsp_consumers[] = { 2911 REGULATOR_SUPPLY("sia-mmdsp", "cm_control"), 2912 }; 2913 2914 /* SIA pipe regulator switch */ 2915 static struct regulator_consumer_supply db8500_siapipe_consumers[] = { 2916 REGULATOR_SUPPLY("sia-pipe", "cm_control"), 2917 }; 2918 2919 static struct regulator_consumer_supply db8500_sga_consumers[] = { 2920 REGULATOR_SUPPLY("v-mali", NULL), 2921 }; 2922 2923 /* ESRAM1 and 2 regulator switch */ 2924 static struct regulator_consumer_supply db8500_esram12_consumers[] = { 2925 REGULATOR_SUPPLY("esram12", "cm_control"), 2926 }; 2927 2928 /* ESRAM3 and 4 regulator switch */ 2929 static struct regulator_consumer_supply db8500_esram34_consumers[] = { 2930 REGULATOR_SUPPLY("v-esram34", "mcde"), 2931 REGULATOR_SUPPLY("esram34", "cm_control"), 2932 REGULATOR_SUPPLY("lcla_esram", "dma40.0"), 2933 }; 2934 2935 static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = { 2936 [DB8500_REGULATOR_VAPE] = { 2937 .constraints = { 2938 .name = "db8500-vape", 2939 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2940 .always_on = true, 2941 }, 2942 .consumer_supplies = db8500_vape_consumers, 2943 .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers), 2944 }, 2945 [DB8500_REGULATOR_VARM] = { 2946 .constraints = { 2947 .name = "db8500-varm", 2948 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2949 }, 2950 }, 2951 [DB8500_REGULATOR_VMODEM] = { 2952 .constraints = { 2953 .name = "db8500-vmodem", 2954 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2955 }, 2956 }, 2957 [DB8500_REGULATOR_VPLL] = { 2958 .constraints = { 2959 .name = "db8500-vpll", 2960 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2961 }, 2962 }, 2963 [DB8500_REGULATOR_VSMPS1] = { 2964 .constraints = { 2965 .name = "db8500-vsmps1", 2966 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2967 }, 2968 }, 2969 [DB8500_REGULATOR_VSMPS2] = { 2970 .constraints = { 2971 .name = "db8500-vsmps2", 2972 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2973 }, 2974 .consumer_supplies = db8500_vsmps2_consumers, 2975 .num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers), 2976 }, 2977 [DB8500_REGULATOR_VSMPS3] = { 2978 .constraints = { 2979 .name = "db8500-vsmps3", 2980 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2981 }, 2982 }, 2983 [DB8500_REGULATOR_VRF1] = { 2984 .constraints = { 2985 .name = "db8500-vrf1", 2986 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2987 }, 2988 }, 2989 [DB8500_REGULATOR_SWITCH_SVAMMDSP] = { 2990 /* dependency to u8500-vape is handled outside regulator framework */ 2991 .constraints = { 2992 .name = "db8500-sva-mmdsp", 2993 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2994 }, 2995 .consumer_supplies = db8500_svammdsp_consumers, 2996 .num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers), 2997 }, 2998 [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = { 2999 .constraints = { 3000 /* "ret" means "retention" */ 3001 .name = "db8500-sva-mmdsp-ret", 3002 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 3003 }, 3004 }, 3005 [DB8500_REGULATOR_SWITCH_SVAPIPE] = { 3006 /* dependency to u8500-vape is handled outside regulator framework */ 3007 .constraints = { 3008 .name = "db8500-sva-pipe", 3009 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 3010 }, 3011 .consumer_supplies = db8500_svapipe_consumers, 3012 .num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers), 3013 }, 3014 [DB8500_REGULATOR_SWITCH_SIAMMDSP] = { 3015 /* dependency to u8500-vape is handled outside regulator framework */ 3016 .constraints = { 3017 .name = "db8500-sia-mmdsp", 3018 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 3019 }, 3020 .consumer_supplies = db8500_siammdsp_consumers, 3021 .num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers), 3022 }, 3023 [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = { 3024 .constraints = { 3025 .name = "db8500-sia-mmdsp-ret", 3026 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 3027 }, 3028 }, 3029 [DB8500_REGULATOR_SWITCH_SIAPIPE] = { 3030 /* dependency to u8500-vape is handled outside regulator framework */ 3031 .constraints = { 3032 .name = "db8500-sia-pipe", 3033 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 3034 }, 3035 .consumer_supplies = db8500_siapipe_consumers, 3036 .num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers), 3037 }, 3038 [DB8500_REGULATOR_SWITCH_SGA] = { 3039 .supply_regulator = "db8500-vape", 3040 .constraints = { 3041 .name = "db8500-sga", 3042 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 3043 }, 3044 .consumer_supplies = db8500_sga_consumers, 3045 .num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers), 3046 3047 }, 3048 [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = { 3049 .supply_regulator = "db8500-vape", 3050 .constraints = { 3051 .name = "db8500-b2r2-mcde", 3052 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 3053 }, 3054 .consumer_supplies = db8500_b2r2_mcde_consumers, 3055 .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers), 3056 }, 3057 [DB8500_REGULATOR_SWITCH_ESRAM12] = { 3058 /* 3059 * esram12 is set in retention and supplied by Vsafe when Vape is off, 3060 * no need to hold Vape 3061 */ 3062 .constraints = { 3063 .name = "db8500-esram12", 3064 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 3065 }, 3066 .consumer_supplies = db8500_esram12_consumers, 3067 .num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers), 3068 }, 3069 [DB8500_REGULATOR_SWITCH_ESRAM12RET] = { 3070 .constraints = { 3071 .name = "db8500-esram12-ret", 3072 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 3073 }, 3074 }, 3075 [DB8500_REGULATOR_SWITCH_ESRAM34] = { 3076 /* 3077 * esram34 is set in retention and supplied by Vsafe when Vape is off, 3078 * no need to hold Vape 3079 */ 3080 .constraints = { 3081 .name = "db8500-esram34", 3082 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 3083 }, 3084 .consumer_supplies = db8500_esram34_consumers, 3085 .num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers), 3086 }, 3087 [DB8500_REGULATOR_SWITCH_ESRAM34RET] = { 3088 .constraints = { 3089 .name = "db8500-esram34-ret", 3090 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 3091 }, 3092 }, 3093 }; 3094 3095 static struct resource ab8500_resources[] = { 3096 [0] = { 3097 .start = IRQ_DB8500_AB8500, 3098 .end = IRQ_DB8500_AB8500, 3099 .flags = IORESOURCE_IRQ 3100 } 3101 }; 3102 3103 static struct ux500_wdt_data db8500_wdt_pdata = { 3104 .timeout = 600, /* 10 minutes */ 3105 .has_28_bits_resolution = true, 3106 }; 3107 3108 static struct mfd_cell db8500_prcmu_devs[] = { 3109 { 3110 .name = "db8500-prcmu-regulators", 3111 .of_compatible = "stericsson,db8500-prcmu-regulator", 3112 .platform_data = &db8500_regulators, 3113 .pdata_size = sizeof(db8500_regulators), 3114 }, 3115 { 3116 .name = "cpufreq-ux500", 3117 .of_compatible = "stericsson,cpufreq-ux500", 3118 .platform_data = &db8500_cpufreq_table, 3119 .pdata_size = sizeof(db8500_cpufreq_table), 3120 }, 3121 { 3122 .name = "ux500_wdt", 3123 .platform_data = &db8500_wdt_pdata, 3124 .pdata_size = sizeof(db8500_wdt_pdata), 3125 .id = -1, 3126 }, 3127 { 3128 .name = "ab8500-core", 3129 .of_compatible = "stericsson,ab8500", 3130 .num_resources = ARRAY_SIZE(ab8500_resources), 3131 .resources = ab8500_resources, 3132 .id = AB8500_VERSION_AB8500, 3133 }, 3134 }; 3135 3136 static void db8500_prcmu_update_cpufreq(void) 3137 { 3138 if (prcmu_has_arm_maxopp()) { 3139 db8500_cpufreq_table[3].frequency = 1000000; 3140 db8500_cpufreq_table[3].index = ARM_MAX_OPP; 3141 } 3142 } 3143 3144 /** 3145 * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic 3146 * 3147 */ 3148 static int db8500_prcmu_probe(struct platform_device *pdev) 3149 { 3150 struct device_node *np = pdev->dev.of_node; 3151 struct prcmu_pdata *pdata = dev_get_platdata(&pdev->dev); 3152 int irq = 0, err = 0, i; 3153 struct resource *res; 3154 3155 init_prcm_registers(); 3156 3157 dbx500_fw_version_init(pdev, pdata->version_offset); 3158 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu-tcdm"); 3159 if (!res) { 3160 dev_err(&pdev->dev, "no prcmu tcdm region provided\n"); 3161 return -ENOENT; 3162 } 3163 tcdm_base = devm_ioremap(&pdev->dev, res->start, 3164 resource_size(res)); 3165 3166 /* Clean up the mailbox interrupts after pre-kernel code. */ 3167 writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR); 3168 3169 irq = platform_get_irq(pdev, 0); 3170 if (irq <= 0) { 3171 dev_err(&pdev->dev, "no prcmu irq provided\n"); 3172 return -ENOENT; 3173 } 3174 3175 err = request_threaded_irq(irq, prcmu_irq_handler, 3176 prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL); 3177 if (err < 0) { 3178 pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n"); 3179 err = -EBUSY; 3180 goto no_irq_return; 3181 } 3182 3183 db8500_irq_init(np); 3184 3185 for (i = 0; i < ARRAY_SIZE(db8500_prcmu_devs); i++) { 3186 if (!strcmp(db8500_prcmu_devs[i].name, "ab8500-core")) { 3187 db8500_prcmu_devs[i].platform_data = pdata->ab_platdata; 3188 db8500_prcmu_devs[i].pdata_size = sizeof(struct ab8500_platform_data); 3189 } 3190 } 3191 3192 prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET); 3193 3194 db8500_prcmu_update_cpufreq(); 3195 3196 err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs, 3197 ARRAY_SIZE(db8500_prcmu_devs), NULL, 0, NULL); 3198 if (err) { 3199 pr_err("prcmu: Failed to add subdevices\n"); 3200 return err; 3201 } 3202 3203 pr_info("DB8500 PRCMU initialized\n"); 3204 3205 no_irq_return: 3206 return err; 3207 } 3208 static const struct of_device_id db8500_prcmu_match[] = { 3209 { .compatible = "stericsson,db8500-prcmu"}, 3210 { }, 3211 }; 3212 3213 static struct platform_driver db8500_prcmu_driver = { 3214 .driver = { 3215 .name = "db8500-prcmu", 3216 .owner = THIS_MODULE, 3217 .of_match_table = db8500_prcmu_match, 3218 }, 3219 .probe = db8500_prcmu_probe, 3220 }; 3221 3222 static int __init db8500_prcmu_init(void) 3223 { 3224 return platform_driver_register(&db8500_prcmu_driver); 3225 } 3226 3227 core_initcall(db8500_prcmu_init); 3228 3229 MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>"); 3230 MODULE_DESCRIPTION("DB8500 PRCM Unit driver"); 3231 MODULE_LICENSE("GPL v2"); 3232