xref: /openbmc/linux/drivers/mfd/db8500-prcmu.c (revision 840ef8b7cc584a23c4f9d05352f4dbaf8e56e5ab)
1 /*
2  * Copyright (C) STMicroelectronics 2009
3  * Copyright (C) ST-Ericsson SA 2010
4  *
5  * License Terms: GNU General Public License v2
6  * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
7  * Author: Sundar Iyer <sundar.iyer@stericsson.com>
8  * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
9  *
10  * U8500 PRCM Unit interface driver
11  *
12  */
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/delay.h>
16 #include <linux/errno.h>
17 #include <linux/err.h>
18 #include <linux/spinlock.h>
19 #include <linux/io.h>
20 #include <linux/slab.h>
21 #include <linux/mutex.h>
22 #include <linux/completion.h>
23 #include <linux/irq.h>
24 #include <linux/jiffies.h>
25 #include <linux/bitops.h>
26 #include <linux/fs.h>
27 #include <linux/platform_device.h>
28 #include <linux/uaccess.h>
29 #include <linux/irqchip/arm-gic.h>
30 #include <linux/mfd/core.h>
31 #include <linux/mfd/dbx500-prcmu.h>
32 #include <linux/mfd/abx500/ab8500.h>
33 #include <linux/regulator/db8500-prcmu.h>
34 #include <linux/regulator/machine.h>
35 #include <linux/cpufreq.h>
36 #include <linux/platform_data/ux500_wdt.h>
37 #include <mach/hardware.h>
38 #include <mach/irqs.h>
39 #include <mach/db8500-regs.h>
40 #include "dbx500-prcmu-regs.h"
41 
42 /* Index of different voltages to be used when accessing AVSData */
43 #define PRCM_AVS_BASE		0x2FC
44 #define PRCM_AVS_VBB_RET	(PRCM_AVS_BASE + 0x0)
45 #define PRCM_AVS_VBB_MAX_OPP	(PRCM_AVS_BASE + 0x1)
46 #define PRCM_AVS_VBB_100_OPP	(PRCM_AVS_BASE + 0x2)
47 #define PRCM_AVS_VBB_50_OPP	(PRCM_AVS_BASE + 0x3)
48 #define PRCM_AVS_VARM_MAX_OPP	(PRCM_AVS_BASE + 0x4)
49 #define PRCM_AVS_VARM_100_OPP	(PRCM_AVS_BASE + 0x5)
50 #define PRCM_AVS_VARM_50_OPP	(PRCM_AVS_BASE + 0x6)
51 #define PRCM_AVS_VARM_RET	(PRCM_AVS_BASE + 0x7)
52 #define PRCM_AVS_VAPE_100_OPP	(PRCM_AVS_BASE + 0x8)
53 #define PRCM_AVS_VAPE_50_OPP	(PRCM_AVS_BASE + 0x9)
54 #define PRCM_AVS_VMOD_100_OPP	(PRCM_AVS_BASE + 0xA)
55 #define PRCM_AVS_VMOD_50_OPP	(PRCM_AVS_BASE + 0xB)
56 #define PRCM_AVS_VSAFE		(PRCM_AVS_BASE + 0xC)
57 
58 #define PRCM_AVS_VOLTAGE		0
59 #define PRCM_AVS_VOLTAGE_MASK		0x3f
60 #define PRCM_AVS_ISSLOWSTARTUP		6
61 #define PRCM_AVS_ISSLOWSTARTUP_MASK	(1 << PRCM_AVS_ISSLOWSTARTUP)
62 #define PRCM_AVS_ISMODEENABLE		7
63 #define PRCM_AVS_ISMODEENABLE_MASK	(1 << PRCM_AVS_ISMODEENABLE)
64 
65 #define PRCM_BOOT_STATUS	0xFFF
66 #define PRCM_ROMCODE_A2P	0xFFE
67 #define PRCM_ROMCODE_P2A	0xFFD
68 #define PRCM_XP70_CUR_PWR_STATE 0xFFC      /* 4 BYTES */
69 
70 #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
71 
72 #define _PRCM_MBOX_HEADER		0xFE8 /* 16 bytes */
73 #define PRCM_MBOX_HEADER_REQ_MB0	(_PRCM_MBOX_HEADER + 0x0)
74 #define PRCM_MBOX_HEADER_REQ_MB1	(_PRCM_MBOX_HEADER + 0x1)
75 #define PRCM_MBOX_HEADER_REQ_MB2	(_PRCM_MBOX_HEADER + 0x2)
76 #define PRCM_MBOX_HEADER_REQ_MB3	(_PRCM_MBOX_HEADER + 0x3)
77 #define PRCM_MBOX_HEADER_REQ_MB4	(_PRCM_MBOX_HEADER + 0x4)
78 #define PRCM_MBOX_HEADER_REQ_MB5	(_PRCM_MBOX_HEADER + 0x5)
79 #define PRCM_MBOX_HEADER_ACK_MB0	(_PRCM_MBOX_HEADER + 0x8)
80 
81 /* Req Mailboxes */
82 #define PRCM_REQ_MB0 0xFDC /* 12 bytes  */
83 #define PRCM_REQ_MB1 0xFD0 /* 12 bytes  */
84 #define PRCM_REQ_MB2 0xFC0 /* 16 bytes  */
85 #define PRCM_REQ_MB3 0xE4C /* 372 bytes  */
86 #define PRCM_REQ_MB4 0xE48 /* 4 bytes  */
87 #define PRCM_REQ_MB5 0xE44 /* 4 bytes  */
88 
89 /* Ack Mailboxes */
90 #define PRCM_ACK_MB0 0xE08 /* 52 bytes  */
91 #define PRCM_ACK_MB1 0xE04 /* 4 bytes */
92 #define PRCM_ACK_MB2 0xE00 /* 4 bytes */
93 #define PRCM_ACK_MB3 0xDFC /* 4 bytes */
94 #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
95 #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
96 
97 /* Mailbox 0 headers */
98 #define MB0H_POWER_STATE_TRANS		0
99 #define MB0H_CONFIG_WAKEUPS_EXE		1
100 #define MB0H_READ_WAKEUP_ACK		3
101 #define MB0H_CONFIG_WAKEUPS_SLEEP	4
102 
103 #define MB0H_WAKEUP_EXE 2
104 #define MB0H_WAKEUP_SLEEP 5
105 
106 /* Mailbox 0 REQs */
107 #define PRCM_REQ_MB0_AP_POWER_STATE	(PRCM_REQ_MB0 + 0x0)
108 #define PRCM_REQ_MB0_AP_PLL_STATE	(PRCM_REQ_MB0 + 0x1)
109 #define PRCM_REQ_MB0_ULP_CLOCK_STATE	(PRCM_REQ_MB0 + 0x2)
110 #define PRCM_REQ_MB0_DO_NOT_WFI		(PRCM_REQ_MB0 + 0x3)
111 #define PRCM_REQ_MB0_WAKEUP_8500	(PRCM_REQ_MB0 + 0x4)
112 #define PRCM_REQ_MB0_WAKEUP_4500	(PRCM_REQ_MB0 + 0x8)
113 
114 /* Mailbox 0 ACKs */
115 #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS	(PRCM_ACK_MB0 + 0x0)
116 #define PRCM_ACK_MB0_READ_POINTER	(PRCM_ACK_MB0 + 0x1)
117 #define PRCM_ACK_MB0_WAKEUP_0_8500	(PRCM_ACK_MB0 + 0x4)
118 #define PRCM_ACK_MB0_WAKEUP_0_4500	(PRCM_ACK_MB0 + 0x8)
119 #define PRCM_ACK_MB0_WAKEUP_1_8500	(PRCM_ACK_MB0 + 0x1C)
120 #define PRCM_ACK_MB0_WAKEUP_1_4500	(PRCM_ACK_MB0 + 0x20)
121 #define PRCM_ACK_MB0_EVENT_4500_NUMBERS	20
122 
123 /* Mailbox 1 headers */
124 #define MB1H_ARM_APE_OPP 0x0
125 #define MB1H_RESET_MODEM 0x2
126 #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
127 #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
128 #define MB1H_RELEASE_USB_WAKEUP 0x5
129 #define MB1H_PLL_ON_OFF 0x6
130 
131 /* Mailbox 1 Requests */
132 #define PRCM_REQ_MB1_ARM_OPP			(PRCM_REQ_MB1 + 0x0)
133 #define PRCM_REQ_MB1_APE_OPP			(PRCM_REQ_MB1 + 0x1)
134 #define PRCM_REQ_MB1_PLL_ON_OFF			(PRCM_REQ_MB1 + 0x4)
135 #define PLL_SOC0_OFF	0x1
136 #define PLL_SOC0_ON	0x2
137 #define PLL_SOC1_OFF	0x4
138 #define PLL_SOC1_ON	0x8
139 
140 /* Mailbox 1 ACKs */
141 #define PRCM_ACK_MB1_CURRENT_ARM_OPP	(PRCM_ACK_MB1 + 0x0)
142 #define PRCM_ACK_MB1_CURRENT_APE_OPP	(PRCM_ACK_MB1 + 0x1)
143 #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS	(PRCM_ACK_MB1 + 0x2)
144 #define PRCM_ACK_MB1_DVFS_STATUS	(PRCM_ACK_MB1 + 0x3)
145 
146 /* Mailbox 2 headers */
147 #define MB2H_DPS	0x0
148 #define MB2H_AUTO_PWR	0x1
149 
150 /* Mailbox 2 REQs */
151 #define PRCM_REQ_MB2_SVA_MMDSP		(PRCM_REQ_MB2 + 0x0)
152 #define PRCM_REQ_MB2_SVA_PIPE		(PRCM_REQ_MB2 + 0x1)
153 #define PRCM_REQ_MB2_SIA_MMDSP		(PRCM_REQ_MB2 + 0x2)
154 #define PRCM_REQ_MB2_SIA_PIPE		(PRCM_REQ_MB2 + 0x3)
155 #define PRCM_REQ_MB2_SGA		(PRCM_REQ_MB2 + 0x4)
156 #define PRCM_REQ_MB2_B2R2_MCDE		(PRCM_REQ_MB2 + 0x5)
157 #define PRCM_REQ_MB2_ESRAM12		(PRCM_REQ_MB2 + 0x6)
158 #define PRCM_REQ_MB2_ESRAM34		(PRCM_REQ_MB2 + 0x7)
159 #define PRCM_REQ_MB2_AUTO_PM_SLEEP	(PRCM_REQ_MB2 + 0x8)
160 #define PRCM_REQ_MB2_AUTO_PM_IDLE	(PRCM_REQ_MB2 + 0xC)
161 
162 /* Mailbox 2 ACKs */
163 #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
164 #define HWACC_PWR_ST_OK 0xFE
165 
166 /* Mailbox 3 headers */
167 #define MB3H_ANC	0x0
168 #define MB3H_SIDETONE	0x1
169 #define MB3H_SYSCLK	0xE
170 
171 /* Mailbox 3 Requests */
172 #define PRCM_REQ_MB3_ANC_FIR_COEFF	(PRCM_REQ_MB3 + 0x0)
173 #define PRCM_REQ_MB3_ANC_IIR_COEFF	(PRCM_REQ_MB3 + 0x20)
174 #define PRCM_REQ_MB3_ANC_SHIFTER	(PRCM_REQ_MB3 + 0x60)
175 #define PRCM_REQ_MB3_ANC_WARP		(PRCM_REQ_MB3 + 0x64)
176 #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN	(PRCM_REQ_MB3 + 0x68)
177 #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF	(PRCM_REQ_MB3 + 0x6C)
178 #define PRCM_REQ_MB3_SYSCLK_MGT		(PRCM_REQ_MB3 + 0x16C)
179 
180 /* Mailbox 4 headers */
181 #define MB4H_DDR_INIT	0x0
182 #define MB4H_MEM_ST	0x1
183 #define MB4H_HOTDOG	0x12
184 #define MB4H_HOTMON	0x13
185 #define MB4H_HOT_PERIOD	0x14
186 #define MB4H_A9WDOG_CONF 0x16
187 #define MB4H_A9WDOG_EN   0x17
188 #define MB4H_A9WDOG_DIS  0x18
189 #define MB4H_A9WDOG_LOAD 0x19
190 #define MB4H_A9WDOG_KICK 0x20
191 
192 /* Mailbox 4 Requests */
193 #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE	(PRCM_REQ_MB4 + 0x0)
194 #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE	(PRCM_REQ_MB4 + 0x1)
195 #define PRCM_REQ_MB4_ESRAM0_ST			(PRCM_REQ_MB4 + 0x3)
196 #define PRCM_REQ_MB4_HOTDOG_THRESHOLD		(PRCM_REQ_MB4 + 0x0)
197 #define PRCM_REQ_MB4_HOTMON_LOW			(PRCM_REQ_MB4 + 0x0)
198 #define PRCM_REQ_MB4_HOTMON_HIGH		(PRCM_REQ_MB4 + 0x1)
199 #define PRCM_REQ_MB4_HOTMON_CONFIG		(PRCM_REQ_MB4 + 0x2)
200 #define PRCM_REQ_MB4_HOT_PERIOD			(PRCM_REQ_MB4 + 0x0)
201 #define HOTMON_CONFIG_LOW			BIT(0)
202 #define HOTMON_CONFIG_HIGH			BIT(1)
203 #define PRCM_REQ_MB4_A9WDOG_0			(PRCM_REQ_MB4 + 0x0)
204 #define PRCM_REQ_MB4_A9WDOG_1			(PRCM_REQ_MB4 + 0x1)
205 #define PRCM_REQ_MB4_A9WDOG_2			(PRCM_REQ_MB4 + 0x2)
206 #define PRCM_REQ_MB4_A9WDOG_3			(PRCM_REQ_MB4 + 0x3)
207 #define A9WDOG_AUTO_OFF_EN			BIT(7)
208 #define A9WDOG_AUTO_OFF_DIS			0
209 #define A9WDOG_ID_MASK				0xf
210 
211 /* Mailbox 5 Requests */
212 #define PRCM_REQ_MB5_I2C_SLAVE_OP	(PRCM_REQ_MB5 + 0x0)
213 #define PRCM_REQ_MB5_I2C_HW_BITS	(PRCM_REQ_MB5 + 0x1)
214 #define PRCM_REQ_MB5_I2C_REG		(PRCM_REQ_MB5 + 0x2)
215 #define PRCM_REQ_MB5_I2C_VAL		(PRCM_REQ_MB5 + 0x3)
216 #define PRCMU_I2C_WRITE(slave) (((slave) << 1) | BIT(6))
217 #define PRCMU_I2C_READ(slave) (((slave) << 1) | BIT(0) | BIT(6))
218 #define PRCMU_I2C_STOP_EN		BIT(3)
219 
220 /* Mailbox 5 ACKs */
221 #define PRCM_ACK_MB5_I2C_STATUS	(PRCM_ACK_MB5 + 0x1)
222 #define PRCM_ACK_MB5_I2C_VAL	(PRCM_ACK_MB5 + 0x3)
223 #define I2C_WR_OK 0x1
224 #define I2C_RD_OK 0x2
225 
226 #define NUM_MB 8
227 #define MBOX_BIT BIT
228 #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
229 
230 /*
231  * Wakeups/IRQs
232  */
233 
234 #define WAKEUP_BIT_RTC BIT(0)
235 #define WAKEUP_BIT_RTT0 BIT(1)
236 #define WAKEUP_BIT_RTT1 BIT(2)
237 #define WAKEUP_BIT_HSI0 BIT(3)
238 #define WAKEUP_BIT_HSI1 BIT(4)
239 #define WAKEUP_BIT_CA_WAKE BIT(5)
240 #define WAKEUP_BIT_USB BIT(6)
241 #define WAKEUP_BIT_ABB BIT(7)
242 #define WAKEUP_BIT_ABB_FIFO BIT(8)
243 #define WAKEUP_BIT_SYSCLK_OK BIT(9)
244 #define WAKEUP_BIT_CA_SLEEP BIT(10)
245 #define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
246 #define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
247 #define WAKEUP_BIT_ANC_OK BIT(13)
248 #define WAKEUP_BIT_SW_ERROR BIT(14)
249 #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
250 #define WAKEUP_BIT_ARM BIT(17)
251 #define WAKEUP_BIT_HOTMON_LOW BIT(18)
252 #define WAKEUP_BIT_HOTMON_HIGH BIT(19)
253 #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
254 #define WAKEUP_BIT_GPIO0 BIT(23)
255 #define WAKEUP_BIT_GPIO1 BIT(24)
256 #define WAKEUP_BIT_GPIO2 BIT(25)
257 #define WAKEUP_BIT_GPIO3 BIT(26)
258 #define WAKEUP_BIT_GPIO4 BIT(27)
259 #define WAKEUP_BIT_GPIO5 BIT(28)
260 #define WAKEUP_BIT_GPIO6 BIT(29)
261 #define WAKEUP_BIT_GPIO7 BIT(30)
262 #define WAKEUP_BIT_GPIO8 BIT(31)
263 
264 static struct {
265 	bool valid;
266 	struct prcmu_fw_version version;
267 } fw_info;
268 
269 static struct irq_domain *db8500_irq_domain;
270 
271 /*
272  * This vector maps irq numbers to the bits in the bit field used in
273  * communication with the PRCMU firmware.
274  *
275  * The reason for having this is to keep the irq numbers contiguous even though
276  * the bits in the bit field are not. (The bits also have a tendency to move
277  * around, to further complicate matters.)
278  */
279 #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name) - IRQ_PRCMU_BASE)
280 #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
281 static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
282 	IRQ_ENTRY(RTC),
283 	IRQ_ENTRY(RTT0),
284 	IRQ_ENTRY(RTT1),
285 	IRQ_ENTRY(HSI0),
286 	IRQ_ENTRY(HSI1),
287 	IRQ_ENTRY(CA_WAKE),
288 	IRQ_ENTRY(USB),
289 	IRQ_ENTRY(ABB),
290 	IRQ_ENTRY(ABB_FIFO),
291 	IRQ_ENTRY(CA_SLEEP),
292 	IRQ_ENTRY(ARM),
293 	IRQ_ENTRY(HOTMON_LOW),
294 	IRQ_ENTRY(HOTMON_HIGH),
295 	IRQ_ENTRY(MODEM_SW_RESET_REQ),
296 	IRQ_ENTRY(GPIO0),
297 	IRQ_ENTRY(GPIO1),
298 	IRQ_ENTRY(GPIO2),
299 	IRQ_ENTRY(GPIO3),
300 	IRQ_ENTRY(GPIO4),
301 	IRQ_ENTRY(GPIO5),
302 	IRQ_ENTRY(GPIO6),
303 	IRQ_ENTRY(GPIO7),
304 	IRQ_ENTRY(GPIO8)
305 };
306 
307 #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
308 #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
309 static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
310 	WAKEUP_ENTRY(RTC),
311 	WAKEUP_ENTRY(RTT0),
312 	WAKEUP_ENTRY(RTT1),
313 	WAKEUP_ENTRY(HSI0),
314 	WAKEUP_ENTRY(HSI1),
315 	WAKEUP_ENTRY(USB),
316 	WAKEUP_ENTRY(ABB),
317 	WAKEUP_ENTRY(ABB_FIFO),
318 	WAKEUP_ENTRY(ARM)
319 };
320 
321 /*
322  * mb0_transfer - state needed for mailbox 0 communication.
323  * @lock:		The transaction lock.
324  * @dbb_events_lock:	A lock used to handle concurrent access to (parts of)
325  *			the request data.
326  * @mask_work:		Work structure used for (un)masking wakeup interrupts.
327  * @req:		Request data that need to persist between requests.
328  */
329 static struct {
330 	spinlock_t lock;
331 	spinlock_t dbb_irqs_lock;
332 	struct work_struct mask_work;
333 	struct mutex ac_wake_lock;
334 	struct completion ac_wake_work;
335 	struct {
336 		u32 dbb_irqs;
337 		u32 dbb_wakeups;
338 		u32 abb_events;
339 	} req;
340 } mb0_transfer;
341 
342 /*
343  * mb1_transfer - state needed for mailbox 1 communication.
344  * @lock:	The transaction lock.
345  * @work:	The transaction completion structure.
346  * @ape_opp:	The current APE OPP.
347  * @ack:	Reply ("acknowledge") data.
348  */
349 static struct {
350 	struct mutex lock;
351 	struct completion work;
352 	u8 ape_opp;
353 	struct {
354 		u8 header;
355 		u8 arm_opp;
356 		u8 ape_opp;
357 		u8 ape_voltage_status;
358 	} ack;
359 } mb1_transfer;
360 
361 /*
362  * mb2_transfer - state needed for mailbox 2 communication.
363  * @lock:            The transaction lock.
364  * @work:            The transaction completion structure.
365  * @auto_pm_lock:    The autonomous power management configuration lock.
366  * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
367  * @req:             Request data that need to persist between requests.
368  * @ack:             Reply ("acknowledge") data.
369  */
370 static struct {
371 	struct mutex lock;
372 	struct completion work;
373 	spinlock_t auto_pm_lock;
374 	bool auto_pm_enabled;
375 	struct {
376 		u8 status;
377 	} ack;
378 } mb2_transfer;
379 
380 /*
381  * mb3_transfer - state needed for mailbox 3 communication.
382  * @lock:		The request lock.
383  * @sysclk_lock:	A lock used to handle concurrent sysclk requests.
384  * @sysclk_work:	Work structure used for sysclk requests.
385  */
386 static struct {
387 	spinlock_t lock;
388 	struct mutex sysclk_lock;
389 	struct completion sysclk_work;
390 } mb3_transfer;
391 
392 /*
393  * mb4_transfer - state needed for mailbox 4 communication.
394  * @lock:	The transaction lock.
395  * @work:	The transaction completion structure.
396  */
397 static struct {
398 	struct mutex lock;
399 	struct completion work;
400 } mb4_transfer;
401 
402 /*
403  * mb5_transfer - state needed for mailbox 5 communication.
404  * @lock:	The transaction lock.
405  * @work:	The transaction completion structure.
406  * @ack:	Reply ("acknowledge") data.
407  */
408 static struct {
409 	struct mutex lock;
410 	struct completion work;
411 	struct {
412 		u8 status;
413 		u8 value;
414 	} ack;
415 } mb5_transfer;
416 
417 static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
418 
419 /* Spinlocks */
420 static DEFINE_SPINLOCK(prcmu_lock);
421 static DEFINE_SPINLOCK(clkout_lock);
422 
423 /* Global var to runtime determine TCDM base for v2 or v1 */
424 static __iomem void *tcdm_base;
425 
426 struct clk_mgt {
427 	void __iomem *reg;
428 	u32 pllsw;
429 	int branch;
430 	bool clk38div;
431 };
432 
433 enum {
434 	PLL_RAW,
435 	PLL_FIX,
436 	PLL_DIV
437 };
438 
439 static DEFINE_SPINLOCK(clk_mgt_lock);
440 
441 #define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
442 	{ (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
443 struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
444 	CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
445 	CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
446 	CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
447 	CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
448 	CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
449 	CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
450 	CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
451 	CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
452 	CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
453 	CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
454 	CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
455 	CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
456 	CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
457 	CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
458 	CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
459 	CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
460 	CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
461 	CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
462 	CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
463 	CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
464 	CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
465 	CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
466 	CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
467 	CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
468 	CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
469 	CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
470 	CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
471 	CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
472 	CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
473 };
474 
475 struct dsiclk {
476 	u32 divsel_mask;
477 	u32 divsel_shift;
478 	u32 divsel;
479 };
480 
481 static struct dsiclk dsiclk[2] = {
482 	{
483 		.divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
484 		.divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
485 		.divsel = PRCM_DSI_PLLOUT_SEL_PHI,
486 	},
487 	{
488 		.divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
489 		.divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
490 		.divsel = PRCM_DSI_PLLOUT_SEL_PHI,
491 	}
492 };
493 
494 struct dsiescclk {
495 	u32 en;
496 	u32 div_mask;
497 	u32 div_shift;
498 };
499 
500 static struct dsiescclk dsiescclk[3] = {
501 	{
502 		.en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
503 		.div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
504 		.div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
505 	},
506 	{
507 		.en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
508 		.div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
509 		.div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
510 	},
511 	{
512 		.en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
513 		.div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
514 		.div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
515 	}
516 };
517 
518 
519 /*
520 * Used by MCDE to setup all necessary PRCMU registers
521 */
522 #define PRCMU_RESET_DSIPLL		0x00004000
523 #define PRCMU_UNCLAMP_DSIPLL		0x00400800
524 
525 #define PRCMU_CLK_PLL_DIV_SHIFT		0
526 #define PRCMU_CLK_PLL_SW_SHIFT		5
527 #define PRCMU_CLK_38			(1 << 9)
528 #define PRCMU_CLK_38_SRC		(1 << 10)
529 #define PRCMU_CLK_38_DIV		(1 << 11)
530 
531 /* PLLDIV=12, PLLSW=4 (PLLDDR) */
532 #define PRCMU_DSI_CLOCK_SETTING		0x0000008C
533 
534 /* DPI 50000000 Hz */
535 #define PRCMU_DPI_CLOCK_SETTING		((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
536 					  (16 << PRCMU_CLK_PLL_DIV_SHIFT))
537 #define PRCMU_DSI_LP_CLOCK_SETTING	0x00000E00
538 
539 /* D=101, N=1, R=4, SELDIV2=0 */
540 #define PRCMU_PLLDSI_FREQ_SETTING	0x00040165
541 
542 #define PRCMU_ENABLE_PLLDSI		0x00000001
543 #define PRCMU_DISABLE_PLLDSI		0x00000000
544 #define PRCMU_RELEASE_RESET_DSS		0x0000400C
545 #define PRCMU_DSI_PLLOUT_SEL_SETTING	0x00000202
546 /* ESC clk, div0=1, div1=1, div2=3 */
547 #define PRCMU_ENABLE_ESCAPE_CLOCK_DIV	0x07030101
548 #define PRCMU_DISABLE_ESCAPE_CLOCK_DIV	0x00030101
549 #define PRCMU_DSI_RESET_SW		0x00000007
550 
551 #define PRCMU_PLLDSI_LOCKP_LOCKED	0x3
552 
553 int db8500_prcmu_enable_dsipll(void)
554 {
555 	int i;
556 
557 	/* Clear DSIPLL_RESETN */
558 	writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR);
559 	/* Unclamp DSIPLL in/out */
560 	writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR);
561 
562 	/* Set DSI PLL FREQ */
563 	writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ);
564 	writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL);
565 	/* Enable Escape clocks */
566 	writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
567 
568 	/* Start DSI PLL */
569 	writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
570 	/* Reset DSI PLL */
571 	writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET);
572 	for (i = 0; i < 10; i++) {
573 		if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED)
574 					== PRCMU_PLLDSI_LOCKP_LOCKED)
575 			break;
576 		udelay(100);
577 	}
578 	/* Set DSIPLL_RESETN */
579 	writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET);
580 	return 0;
581 }
582 
583 int db8500_prcmu_disable_dsipll(void)
584 {
585 	/* Disable dsi pll */
586 	writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
587 	/* Disable  escapeclock */
588 	writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
589 	return 0;
590 }
591 
592 int db8500_prcmu_set_display_clocks(void)
593 {
594 	unsigned long flags;
595 
596 	spin_lock_irqsave(&clk_mgt_lock, flags);
597 
598 	/* Grab the HW semaphore. */
599 	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
600 		cpu_relax();
601 
602 	writel(PRCMU_DSI_CLOCK_SETTING, PRCM_HDMICLK_MGT);
603 	writel(PRCMU_DSI_LP_CLOCK_SETTING, PRCM_TVCLK_MGT);
604 	writel(PRCMU_DPI_CLOCK_SETTING, PRCM_LCDCLK_MGT);
605 
606 	/* Release the HW semaphore. */
607 	writel(0, PRCM_SEM);
608 
609 	spin_unlock_irqrestore(&clk_mgt_lock, flags);
610 
611 	return 0;
612 }
613 
614 u32 db8500_prcmu_read(unsigned int reg)
615 {
616 	return readl(_PRCMU_BASE + reg);
617 }
618 
619 void db8500_prcmu_write(unsigned int reg, u32 value)
620 {
621 	unsigned long flags;
622 
623 	spin_lock_irqsave(&prcmu_lock, flags);
624 	writel(value, (_PRCMU_BASE + reg));
625 	spin_unlock_irqrestore(&prcmu_lock, flags);
626 }
627 
628 void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
629 {
630 	u32 val;
631 	unsigned long flags;
632 
633 	spin_lock_irqsave(&prcmu_lock, flags);
634 	val = readl(_PRCMU_BASE + reg);
635 	val = ((val & ~mask) | (value & mask));
636 	writel(val, (_PRCMU_BASE + reg));
637 	spin_unlock_irqrestore(&prcmu_lock, flags);
638 }
639 
640 struct prcmu_fw_version *prcmu_get_fw_version(void)
641 {
642 	return fw_info.valid ? &fw_info.version : NULL;
643 }
644 
645 bool prcmu_has_arm_maxopp(void)
646 {
647 	return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
648 		PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
649 }
650 
651 /**
652  * prcmu_get_boot_status - PRCMU boot status checking
653  * Returns: the current PRCMU boot status
654  */
655 int prcmu_get_boot_status(void)
656 {
657 	return readb(tcdm_base + PRCM_BOOT_STATUS);
658 }
659 
660 /**
661  * prcmu_set_rc_a2p - This function is used to run few power state sequences
662  * @val: Value to be set, i.e. transition requested
663  * Returns: 0 on success, -EINVAL on invalid argument
664  *
665  * This function is used to run the following power state sequences -
666  * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
667  */
668 int prcmu_set_rc_a2p(enum romcode_write val)
669 {
670 	if (val < RDY_2_DS || val > RDY_2_XP70_RST)
671 		return -EINVAL;
672 	writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
673 	return 0;
674 }
675 
676 /**
677  * prcmu_get_rc_p2a - This function is used to get power state sequences
678  * Returns: the power transition that has last happened
679  *
680  * This function can return the following transitions-
681  * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
682  */
683 enum romcode_read prcmu_get_rc_p2a(void)
684 {
685 	return readb(tcdm_base + PRCM_ROMCODE_P2A);
686 }
687 
688 /**
689  * prcmu_get_current_mode - Return the current XP70 power mode
690  * Returns: Returns the current AP(ARM) power mode: init,
691  * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
692  */
693 enum ap_pwrst prcmu_get_xp70_current_state(void)
694 {
695 	return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
696 }
697 
698 /**
699  * prcmu_config_clkout - Configure one of the programmable clock outputs.
700  * @clkout:	The CLKOUT number (0 or 1).
701  * @source:	The clock to be used (one of the PRCMU_CLKSRC_*).
702  * @div:	The divider to be applied.
703  *
704  * Configures one of the programmable clock outputs (CLKOUTs).
705  * @div should be in the range [1,63] to request a configuration, or 0 to
706  * inform that the configuration is no longer requested.
707  */
708 int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
709 {
710 	static int requests[2];
711 	int r = 0;
712 	unsigned long flags;
713 	u32 val;
714 	u32 bits;
715 	u32 mask;
716 	u32 div_mask;
717 
718 	BUG_ON(clkout > 1);
719 	BUG_ON(div > 63);
720 	BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
721 
722 	if (!div && !requests[clkout])
723 		return -EINVAL;
724 
725 	switch (clkout) {
726 	case 0:
727 		div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
728 		mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
729 		bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
730 			(div << PRCM_CLKOCR_CLKODIV0_SHIFT));
731 		break;
732 	case 1:
733 		div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
734 		mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
735 			PRCM_CLKOCR_CLK1TYPE);
736 		bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
737 			(div << PRCM_CLKOCR_CLKODIV1_SHIFT));
738 		break;
739 	}
740 	bits &= mask;
741 
742 	spin_lock_irqsave(&clkout_lock, flags);
743 
744 	val = readl(PRCM_CLKOCR);
745 	if (val & div_mask) {
746 		if (div) {
747 			if ((val & mask) != bits) {
748 				r = -EBUSY;
749 				goto unlock_and_return;
750 			}
751 		} else {
752 			if ((val & mask & ~div_mask) != bits) {
753 				r = -EINVAL;
754 				goto unlock_and_return;
755 			}
756 		}
757 	}
758 	writel((bits | (val & ~mask)), PRCM_CLKOCR);
759 	requests[clkout] += (div ? 1 : -1);
760 
761 unlock_and_return:
762 	spin_unlock_irqrestore(&clkout_lock, flags);
763 
764 	return r;
765 }
766 
767 int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
768 {
769 	unsigned long flags;
770 
771 	BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
772 
773 	spin_lock_irqsave(&mb0_transfer.lock, flags);
774 
775 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
776 		cpu_relax();
777 
778 	writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
779 	writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
780 	writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
781 	writeb((keep_ulp_clk ? 1 : 0),
782 		(tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
783 	writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
784 	writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
785 
786 	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
787 
788 	return 0;
789 }
790 
791 u8 db8500_prcmu_get_power_state_result(void)
792 {
793 	return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
794 }
795 
796 /* This function decouple the gic from the prcmu */
797 int db8500_prcmu_gic_decouple(void)
798 {
799 	u32 val = readl(PRCM_A9_MASK_REQ);
800 
801 	/* Set bit 0 register value to 1 */
802 	writel(val | PRCM_A9_MASK_REQ_PRCM_A9_MASK_REQ,
803 	       PRCM_A9_MASK_REQ);
804 
805 	/* Make sure the register is updated */
806 	readl(PRCM_A9_MASK_REQ);
807 
808 	/* Wait a few cycles for the gic mask completion */
809 	udelay(1);
810 
811 	return 0;
812 }
813 
814 /* This function recouple the gic with the prcmu */
815 int db8500_prcmu_gic_recouple(void)
816 {
817 	u32 val = readl(PRCM_A9_MASK_REQ);
818 
819 	/* Set bit 0 register value to 0 */
820 	writel(val & ~PRCM_A9_MASK_REQ_PRCM_A9_MASK_REQ, PRCM_A9_MASK_REQ);
821 
822 	return 0;
823 }
824 
825 #define PRCMU_GIC_NUMBER_REGS 5
826 
827 /*
828  * This function checks if there are pending irq on the gic. It only
829  * makes sense if the gic has been decoupled before with the
830  * db8500_prcmu_gic_decouple function. Disabling an interrupt only
831  * disables the forwarding of the interrupt to any CPU interface. It
832  * does not prevent the interrupt from changing state, for example
833  * becoming pending, or active and pending if it is already
834  * active. Hence, we have to check the interrupt is pending *and* is
835  * active.
836  */
837 bool db8500_prcmu_gic_pending_irq(void)
838 {
839 	u32 pr; /* Pending register */
840 	u32 er; /* Enable register */
841 	void __iomem *dist_base = __io_address(U8500_GIC_DIST_BASE);
842 	int i;
843 
844         /* 5 registers. STI & PPI not skipped */
845 	for (i = 0; i < PRCMU_GIC_NUMBER_REGS; i++) {
846 
847 		pr = readl_relaxed(dist_base + GIC_DIST_PENDING_SET + i * 4);
848 		er = readl_relaxed(dist_base + GIC_DIST_ENABLE_SET + i * 4);
849 
850 		if (pr & er)
851 			return true; /* There is a pending interrupt */
852 	}
853 
854 	return false;
855 }
856 
857 /*
858  * This function checks if there are pending interrupt on the
859  * prcmu which has been delegated to monitor the irqs with the
860  * db8500_prcmu_copy_gic_settings function.
861  */
862 bool db8500_prcmu_pending_irq(void)
863 {
864 	u32 it, im;
865 	int i;
866 
867 	for (i = 0; i < PRCMU_GIC_NUMBER_REGS - 1; i++) {
868 		it = readl(PRCM_ARMITVAL31TO0 + i * 4);
869 		im = readl(PRCM_ARMITMSK31TO0 + i * 4);
870 		if (it & im)
871 			return true; /* There is a pending interrupt */
872 	}
873 
874 	return false;
875 }
876 
877 /*
878  * This function checks if the specified cpu is in in WFI. It's usage
879  * makes sense only if the gic is decoupled with the db8500_prcmu_gic_decouple
880  * function. Of course passing smp_processor_id() to this function will
881  * always return false...
882  */
883 bool db8500_prcmu_is_cpu_in_wfi(int cpu)
884 {
885 	return readl(PRCM_ARM_WFI_STANDBY) & cpu ? PRCM_ARM_WFI_STANDBY_WFI1 :
886 		     PRCM_ARM_WFI_STANDBY_WFI0;
887 }
888 
889 /*
890  * This function copies the gic SPI settings to the prcmu in order to
891  * monitor them and abort/finish the retention/off sequence or state.
892  */
893 int db8500_prcmu_copy_gic_settings(void)
894 {
895 	u32 er; /* Enable register */
896 	void __iomem *dist_base = __io_address(U8500_GIC_DIST_BASE);
897 	int i;
898 
899         /* We skip the STI and PPI */
900 	for (i = 0; i < PRCMU_GIC_NUMBER_REGS - 1; i++) {
901 		er = readl_relaxed(dist_base +
902 				   GIC_DIST_ENABLE_SET + (i + 1) * 4);
903 		writel(er, PRCM_ARMITMSK31TO0 + i * 4);
904 	}
905 
906 	return 0;
907 }
908 
909 /* This function should only be called while mb0_transfer.lock is held. */
910 static void config_wakeups(void)
911 {
912 	const u8 header[2] = {
913 		MB0H_CONFIG_WAKEUPS_EXE,
914 		MB0H_CONFIG_WAKEUPS_SLEEP
915 	};
916 	static u32 last_dbb_events;
917 	static u32 last_abb_events;
918 	u32 dbb_events;
919 	u32 abb_events;
920 	unsigned int i;
921 
922 	dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
923 	dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
924 
925 	abb_events = mb0_transfer.req.abb_events;
926 
927 	if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
928 		return;
929 
930 	for (i = 0; i < 2; i++) {
931 		while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
932 			cpu_relax();
933 		writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
934 		writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
935 		writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
936 		writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
937 	}
938 	last_dbb_events = dbb_events;
939 	last_abb_events = abb_events;
940 }
941 
942 void db8500_prcmu_enable_wakeups(u32 wakeups)
943 {
944 	unsigned long flags;
945 	u32 bits;
946 	int i;
947 
948 	BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
949 
950 	for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
951 		if (wakeups & BIT(i))
952 			bits |= prcmu_wakeup_bit[i];
953 	}
954 
955 	spin_lock_irqsave(&mb0_transfer.lock, flags);
956 
957 	mb0_transfer.req.dbb_wakeups = bits;
958 	config_wakeups();
959 
960 	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
961 }
962 
963 void db8500_prcmu_config_abb_event_readout(u32 abb_events)
964 {
965 	unsigned long flags;
966 
967 	spin_lock_irqsave(&mb0_transfer.lock, flags);
968 
969 	mb0_transfer.req.abb_events = abb_events;
970 	config_wakeups();
971 
972 	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
973 }
974 
975 void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
976 {
977 	if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
978 		*buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
979 	else
980 		*buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
981 }
982 
983 /**
984  * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
985  * @opp: The new ARM operating point to which transition is to be made
986  * Returns: 0 on success, non-zero on failure
987  *
988  * This function sets the the operating point of the ARM.
989  */
990 int db8500_prcmu_set_arm_opp(u8 opp)
991 {
992 	int r;
993 
994 	if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
995 		return -EINVAL;
996 
997 	r = 0;
998 
999 	mutex_lock(&mb1_transfer.lock);
1000 
1001 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1002 		cpu_relax();
1003 
1004 	writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1005 	writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
1006 	writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
1007 
1008 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1009 	wait_for_completion(&mb1_transfer.work);
1010 
1011 	if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
1012 		(mb1_transfer.ack.arm_opp != opp))
1013 		r = -EIO;
1014 
1015 	mutex_unlock(&mb1_transfer.lock);
1016 
1017 	return r;
1018 }
1019 
1020 /**
1021  * db8500_prcmu_get_arm_opp - get the current ARM OPP
1022  *
1023  * Returns: the current ARM OPP
1024  */
1025 int db8500_prcmu_get_arm_opp(void)
1026 {
1027 	return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
1028 }
1029 
1030 /**
1031  * db8500_prcmu_get_ddr_opp - get the current DDR OPP
1032  *
1033  * Returns: the current DDR OPP
1034  */
1035 int db8500_prcmu_get_ddr_opp(void)
1036 {
1037 	return readb(PRCM_DDR_SUBSYS_APE_MINBW);
1038 }
1039 
1040 /**
1041  * db8500_set_ddr_opp - set the appropriate DDR OPP
1042  * @opp: The new DDR operating point to which transition is to be made
1043  * Returns: 0 on success, non-zero on failure
1044  *
1045  * This function sets the operating point of the DDR.
1046  */
1047 static bool enable_set_ddr_opp;
1048 int db8500_prcmu_set_ddr_opp(u8 opp)
1049 {
1050 	if (opp < DDR_100_OPP || opp > DDR_25_OPP)
1051 		return -EINVAL;
1052 	/* Changing the DDR OPP can hang the hardware pre-v21 */
1053 	if (enable_set_ddr_opp)
1054 		writeb(opp, PRCM_DDR_SUBSYS_APE_MINBW);
1055 
1056 	return 0;
1057 }
1058 
1059 /* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
1060 static void request_even_slower_clocks(bool enable)
1061 {
1062 	void __iomem *clock_reg[] = {
1063 		PRCM_ACLK_MGT,
1064 		PRCM_DMACLK_MGT
1065 	};
1066 	unsigned long flags;
1067 	unsigned int i;
1068 
1069 	spin_lock_irqsave(&clk_mgt_lock, flags);
1070 
1071 	/* Grab the HW semaphore. */
1072 	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1073 		cpu_relax();
1074 
1075 	for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
1076 		u32 val;
1077 		u32 div;
1078 
1079 		val = readl(clock_reg[i]);
1080 		div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
1081 		if (enable) {
1082 			if ((div <= 1) || (div > 15)) {
1083 				pr_err("prcmu: Bad clock divider %d in %s\n",
1084 					div, __func__);
1085 				goto unlock_and_return;
1086 			}
1087 			div <<= 1;
1088 		} else {
1089 			if (div <= 2)
1090 				goto unlock_and_return;
1091 			div >>= 1;
1092 		}
1093 		val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
1094 			(div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
1095 		writel(val, clock_reg[i]);
1096 	}
1097 
1098 unlock_and_return:
1099 	/* Release the HW semaphore. */
1100 	writel(0, PRCM_SEM);
1101 
1102 	spin_unlock_irqrestore(&clk_mgt_lock, flags);
1103 }
1104 
1105 /**
1106  * db8500_set_ape_opp - set the appropriate APE OPP
1107  * @opp: The new APE operating point to which transition is to be made
1108  * Returns: 0 on success, non-zero on failure
1109  *
1110  * This function sets the operating point of the APE.
1111  */
1112 int db8500_prcmu_set_ape_opp(u8 opp)
1113 {
1114 	int r = 0;
1115 
1116 	if (opp == mb1_transfer.ape_opp)
1117 		return 0;
1118 
1119 	mutex_lock(&mb1_transfer.lock);
1120 
1121 	if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
1122 		request_even_slower_clocks(false);
1123 
1124 	if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
1125 		goto skip_message;
1126 
1127 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1128 		cpu_relax();
1129 
1130 	writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1131 	writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
1132 	writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
1133 		(tcdm_base + PRCM_REQ_MB1_APE_OPP));
1134 
1135 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1136 	wait_for_completion(&mb1_transfer.work);
1137 
1138 	if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
1139 		(mb1_transfer.ack.ape_opp != opp))
1140 		r = -EIO;
1141 
1142 skip_message:
1143 	if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
1144 		(r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
1145 		request_even_slower_clocks(true);
1146 	if (!r)
1147 		mb1_transfer.ape_opp = opp;
1148 
1149 	mutex_unlock(&mb1_transfer.lock);
1150 
1151 	return r;
1152 }
1153 
1154 /**
1155  * db8500_prcmu_get_ape_opp - get the current APE OPP
1156  *
1157  * Returns: the current APE OPP
1158  */
1159 int db8500_prcmu_get_ape_opp(void)
1160 {
1161 	return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
1162 }
1163 
1164 /**
1165  * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
1166  * @enable: true to request the higher voltage, false to drop a request.
1167  *
1168  * Calls to this function to enable and disable requests must be balanced.
1169  */
1170 int db8500_prcmu_request_ape_opp_100_voltage(bool enable)
1171 {
1172 	int r = 0;
1173 	u8 header;
1174 	static unsigned int requests;
1175 
1176 	mutex_lock(&mb1_transfer.lock);
1177 
1178 	if (enable) {
1179 		if (0 != requests++)
1180 			goto unlock_and_return;
1181 		header = MB1H_REQUEST_APE_OPP_100_VOLT;
1182 	} else {
1183 		if (requests == 0) {
1184 			r = -EIO;
1185 			goto unlock_and_return;
1186 		} else if (1 != requests--) {
1187 			goto unlock_and_return;
1188 		}
1189 		header = MB1H_RELEASE_APE_OPP_100_VOLT;
1190 	}
1191 
1192 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1193 		cpu_relax();
1194 
1195 	writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1196 
1197 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1198 	wait_for_completion(&mb1_transfer.work);
1199 
1200 	if ((mb1_transfer.ack.header != header) ||
1201 		((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1202 		r = -EIO;
1203 
1204 unlock_and_return:
1205 	mutex_unlock(&mb1_transfer.lock);
1206 
1207 	return r;
1208 }
1209 
1210 /**
1211  * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
1212  *
1213  * This function releases the power state requirements of a USB wakeup.
1214  */
1215 int prcmu_release_usb_wakeup_state(void)
1216 {
1217 	int r = 0;
1218 
1219 	mutex_lock(&mb1_transfer.lock);
1220 
1221 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1222 		cpu_relax();
1223 
1224 	writeb(MB1H_RELEASE_USB_WAKEUP,
1225 		(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1226 
1227 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1228 	wait_for_completion(&mb1_transfer.work);
1229 
1230 	if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
1231 		((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1232 		r = -EIO;
1233 
1234 	mutex_unlock(&mb1_transfer.lock);
1235 
1236 	return r;
1237 }
1238 
1239 static int request_pll(u8 clock, bool enable)
1240 {
1241 	int r = 0;
1242 
1243 	if (clock == PRCMU_PLLSOC0)
1244 		clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
1245 	else if (clock == PRCMU_PLLSOC1)
1246 		clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
1247 	else
1248 		return -EINVAL;
1249 
1250 	mutex_lock(&mb1_transfer.lock);
1251 
1252 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1253 		cpu_relax();
1254 
1255 	writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1256 	writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
1257 
1258 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1259 	wait_for_completion(&mb1_transfer.work);
1260 
1261 	if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
1262 		r = -EIO;
1263 
1264 	mutex_unlock(&mb1_transfer.lock);
1265 
1266 	return r;
1267 }
1268 
1269 /**
1270  * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
1271  * @epod_id: The EPOD to set
1272  * @epod_state: The new EPOD state
1273  *
1274  * This function sets the state of a EPOD (power domain). It may not be called
1275  * from interrupt context.
1276  */
1277 int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
1278 {
1279 	int r = 0;
1280 	bool ram_retention = false;
1281 	int i;
1282 
1283 	/* check argument */
1284 	BUG_ON(epod_id >= NUM_EPOD_ID);
1285 
1286 	/* set flag if retention is possible */
1287 	switch (epod_id) {
1288 	case EPOD_ID_SVAMMDSP:
1289 	case EPOD_ID_SIAMMDSP:
1290 	case EPOD_ID_ESRAM12:
1291 	case EPOD_ID_ESRAM34:
1292 		ram_retention = true;
1293 		break;
1294 	}
1295 
1296 	/* check argument */
1297 	BUG_ON(epod_state > EPOD_STATE_ON);
1298 	BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
1299 
1300 	/* get lock */
1301 	mutex_lock(&mb2_transfer.lock);
1302 
1303 	/* wait for mailbox */
1304 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
1305 		cpu_relax();
1306 
1307 	/* fill in mailbox */
1308 	for (i = 0; i < NUM_EPOD_ID; i++)
1309 		writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
1310 	writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
1311 
1312 	writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
1313 
1314 	writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
1315 
1316 	/*
1317 	 * The current firmware version does not handle errors correctly,
1318 	 * and we cannot recover if there is an error.
1319 	 * This is expected to change when the firmware is updated.
1320 	 */
1321 	if (!wait_for_completion_timeout(&mb2_transfer.work,
1322 			msecs_to_jiffies(20000))) {
1323 		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1324 			__func__);
1325 		r = -EIO;
1326 		goto unlock_and_return;
1327 	}
1328 
1329 	if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
1330 		r = -EIO;
1331 
1332 unlock_and_return:
1333 	mutex_unlock(&mb2_transfer.lock);
1334 	return r;
1335 }
1336 
1337 /**
1338  * prcmu_configure_auto_pm - Configure autonomous power management.
1339  * @sleep: Configuration for ApSleep.
1340  * @idle:  Configuration for ApIdle.
1341  */
1342 void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
1343 	struct prcmu_auto_pm_config *idle)
1344 {
1345 	u32 sleep_cfg;
1346 	u32 idle_cfg;
1347 	unsigned long flags;
1348 
1349 	BUG_ON((sleep == NULL) || (idle == NULL));
1350 
1351 	sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
1352 	sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
1353 	sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
1354 	sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
1355 	sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
1356 	sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
1357 
1358 	idle_cfg = (idle->sva_auto_pm_enable & 0xF);
1359 	idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
1360 	idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
1361 	idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
1362 	idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
1363 	idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
1364 
1365 	spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
1366 
1367 	/*
1368 	 * The autonomous power management configuration is done through
1369 	 * fields in mailbox 2, but these fields are only used as shared
1370 	 * variables - i.e. there is no need to send a message.
1371 	 */
1372 	writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
1373 	writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
1374 
1375 	mb2_transfer.auto_pm_enabled =
1376 		((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1377 		 (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1378 		 (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1379 		 (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
1380 
1381 	spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
1382 }
1383 EXPORT_SYMBOL(prcmu_configure_auto_pm);
1384 
1385 bool prcmu_is_auto_pm_enabled(void)
1386 {
1387 	return mb2_transfer.auto_pm_enabled;
1388 }
1389 
1390 static int request_sysclk(bool enable)
1391 {
1392 	int r;
1393 	unsigned long flags;
1394 
1395 	r = 0;
1396 
1397 	mutex_lock(&mb3_transfer.sysclk_lock);
1398 
1399 	spin_lock_irqsave(&mb3_transfer.lock, flags);
1400 
1401 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
1402 		cpu_relax();
1403 
1404 	writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
1405 
1406 	writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
1407 	writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
1408 
1409 	spin_unlock_irqrestore(&mb3_transfer.lock, flags);
1410 
1411 	/*
1412 	 * The firmware only sends an ACK if we want to enable the
1413 	 * SysClk, and it succeeds.
1414 	 */
1415 	if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
1416 			msecs_to_jiffies(20000))) {
1417 		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1418 			__func__);
1419 		r = -EIO;
1420 	}
1421 
1422 	mutex_unlock(&mb3_transfer.sysclk_lock);
1423 
1424 	return r;
1425 }
1426 
1427 static int request_timclk(bool enable)
1428 {
1429 	u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
1430 
1431 	if (!enable)
1432 		val |= PRCM_TCR_STOP_TIMERS;
1433 	writel(val, PRCM_TCR);
1434 
1435 	return 0;
1436 }
1437 
1438 static int request_clock(u8 clock, bool enable)
1439 {
1440 	u32 val;
1441 	unsigned long flags;
1442 
1443 	spin_lock_irqsave(&clk_mgt_lock, flags);
1444 
1445 	/* Grab the HW semaphore. */
1446 	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1447 		cpu_relax();
1448 
1449 	val = readl(clk_mgt[clock].reg);
1450 	if (enable) {
1451 		val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
1452 	} else {
1453 		clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1454 		val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
1455 	}
1456 	writel(val, clk_mgt[clock].reg);
1457 
1458 	/* Release the HW semaphore. */
1459 	writel(0, PRCM_SEM);
1460 
1461 	spin_unlock_irqrestore(&clk_mgt_lock, flags);
1462 
1463 	return 0;
1464 }
1465 
1466 static int request_sga_clock(u8 clock, bool enable)
1467 {
1468 	u32 val;
1469 	int ret;
1470 
1471 	if (enable) {
1472 		val = readl(PRCM_CGATING_BYPASS);
1473 		writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1474 	}
1475 
1476 	ret = request_clock(clock, enable);
1477 
1478 	if (!ret && !enable) {
1479 		val = readl(PRCM_CGATING_BYPASS);
1480 		writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1481 	}
1482 
1483 	return ret;
1484 }
1485 
1486 static inline bool plldsi_locked(void)
1487 {
1488 	return (readl(PRCM_PLLDSI_LOCKP) &
1489 		(PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1490 		 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
1491 		(PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1492 		 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
1493 }
1494 
1495 static int request_plldsi(bool enable)
1496 {
1497 	int r = 0;
1498 	u32 val;
1499 
1500 	writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1501 		PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
1502 		PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
1503 
1504 	val = readl(PRCM_PLLDSI_ENABLE);
1505 	if (enable)
1506 		val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1507 	else
1508 		val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1509 	writel(val, PRCM_PLLDSI_ENABLE);
1510 
1511 	if (enable) {
1512 		unsigned int i;
1513 		bool locked = plldsi_locked();
1514 
1515 		for (i = 10; !locked && (i > 0); --i) {
1516 			udelay(100);
1517 			locked = plldsi_locked();
1518 		}
1519 		if (locked) {
1520 			writel(PRCM_APE_RESETN_DSIPLL_RESETN,
1521 				PRCM_APE_RESETN_SET);
1522 		} else {
1523 			writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1524 				PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
1525 				PRCM_MMIP_LS_CLAMP_SET);
1526 			val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1527 			writel(val, PRCM_PLLDSI_ENABLE);
1528 			r = -EAGAIN;
1529 		}
1530 	} else {
1531 		writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
1532 	}
1533 	return r;
1534 }
1535 
1536 static int request_dsiclk(u8 n, bool enable)
1537 {
1538 	u32 val;
1539 
1540 	val = readl(PRCM_DSI_PLLOUT_SEL);
1541 	val &= ~dsiclk[n].divsel_mask;
1542 	val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
1543 		dsiclk[n].divsel_shift);
1544 	writel(val, PRCM_DSI_PLLOUT_SEL);
1545 	return 0;
1546 }
1547 
1548 static int request_dsiescclk(u8 n, bool enable)
1549 {
1550 	u32 val;
1551 
1552 	val = readl(PRCM_DSITVCLK_DIV);
1553 	enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
1554 	writel(val, PRCM_DSITVCLK_DIV);
1555 	return 0;
1556 }
1557 
1558 /**
1559  * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
1560  * @clock:      The clock for which the request is made.
1561  * @enable:     Whether the clock should be enabled (true) or disabled (false).
1562  *
1563  * This function should only be used by the clock implementation.
1564  * Do not use it from any other place!
1565  */
1566 int db8500_prcmu_request_clock(u8 clock, bool enable)
1567 {
1568 	if (clock == PRCMU_SGACLK)
1569 		return request_sga_clock(clock, enable);
1570 	else if (clock < PRCMU_NUM_REG_CLOCKS)
1571 		return request_clock(clock, enable);
1572 	else if (clock == PRCMU_TIMCLK)
1573 		return request_timclk(enable);
1574 	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1575 		return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
1576 	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1577 		return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
1578 	else if (clock == PRCMU_PLLDSI)
1579 		return request_plldsi(enable);
1580 	else if (clock == PRCMU_SYSCLK)
1581 		return request_sysclk(enable);
1582 	else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
1583 		return request_pll(clock, enable);
1584 	else
1585 		return -EINVAL;
1586 }
1587 
1588 static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
1589 	int branch)
1590 {
1591 	u64 rate;
1592 	u32 val;
1593 	u32 d;
1594 	u32 div = 1;
1595 
1596 	val = readl(reg);
1597 
1598 	rate = src_rate;
1599 	rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
1600 
1601 	d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
1602 	if (d > 1)
1603 		div *= d;
1604 
1605 	d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
1606 	if (d > 1)
1607 		div *= d;
1608 
1609 	if (val & PRCM_PLL_FREQ_SELDIV2)
1610 		div *= 2;
1611 
1612 	if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
1613 		(val & PRCM_PLL_FREQ_DIV2EN) &&
1614 		((reg == PRCM_PLLSOC0_FREQ) ||
1615 		 (reg == PRCM_PLLARM_FREQ) ||
1616 		 (reg == PRCM_PLLDDR_FREQ))))
1617 		div *= 2;
1618 
1619 	(void)do_div(rate, div);
1620 
1621 	return (unsigned long)rate;
1622 }
1623 
1624 #define ROOT_CLOCK_RATE 38400000
1625 
1626 static unsigned long clock_rate(u8 clock)
1627 {
1628 	u32 val;
1629 	u32 pllsw;
1630 	unsigned long rate = ROOT_CLOCK_RATE;
1631 
1632 	val = readl(clk_mgt[clock].reg);
1633 
1634 	if (val & PRCM_CLK_MGT_CLK38) {
1635 		if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
1636 			rate /= 2;
1637 		return rate;
1638 	}
1639 
1640 	val |= clk_mgt[clock].pllsw;
1641 	pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1642 
1643 	if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1644 		rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
1645 	else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1646 		rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
1647 	else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
1648 		rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
1649 	else
1650 		return 0;
1651 
1652 	if ((clock == PRCMU_SGACLK) &&
1653 		(val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
1654 		u64 r = (rate * 10);
1655 
1656 		(void)do_div(r, 25);
1657 		return (unsigned long)r;
1658 	}
1659 	val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1660 	if (val)
1661 		return rate / val;
1662 	else
1663 		return 0;
1664 }
1665 
1666 static unsigned long armss_rate(void)
1667 {
1668 	u32 r;
1669 	unsigned long rate;
1670 
1671 	r = readl(PRCM_ARM_CHGCLKREQ);
1672 
1673 	if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) {
1674 		/* External ARMCLKFIX clock */
1675 
1676 		rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX);
1677 
1678 		/* Check PRCM_ARM_CHGCLKREQ divider */
1679 		if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL))
1680 			rate /= 2;
1681 
1682 		/* Check PRCM_ARMCLKFIX_MGT divider */
1683 		r = readl(PRCM_ARMCLKFIX_MGT);
1684 		r &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1685 		rate /= r;
1686 
1687 	} else {/* ARM PLL */
1688 		rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV);
1689 	}
1690 
1691 	return rate;
1692 }
1693 
1694 static unsigned long dsiclk_rate(u8 n)
1695 {
1696 	u32 divsel;
1697 	u32 div = 1;
1698 
1699 	divsel = readl(PRCM_DSI_PLLOUT_SEL);
1700 	divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
1701 
1702 	if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
1703 		divsel = dsiclk[n].divsel;
1704 
1705 	switch (divsel) {
1706 	case PRCM_DSI_PLLOUT_SEL_PHI_4:
1707 		div *= 2;
1708 	case PRCM_DSI_PLLOUT_SEL_PHI_2:
1709 		div *= 2;
1710 	case PRCM_DSI_PLLOUT_SEL_PHI:
1711 		return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1712 			PLL_RAW) / div;
1713 	default:
1714 		return 0;
1715 	}
1716 }
1717 
1718 static unsigned long dsiescclk_rate(u8 n)
1719 {
1720 	u32 div;
1721 
1722 	div = readl(PRCM_DSITVCLK_DIV);
1723 	div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
1724 	return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
1725 }
1726 
1727 unsigned long prcmu_clock_rate(u8 clock)
1728 {
1729 	if (clock < PRCMU_NUM_REG_CLOCKS)
1730 		return clock_rate(clock);
1731 	else if (clock == PRCMU_TIMCLK)
1732 		return ROOT_CLOCK_RATE / 16;
1733 	else if (clock == PRCMU_SYSCLK)
1734 		return ROOT_CLOCK_RATE;
1735 	else if (clock == PRCMU_PLLSOC0)
1736 		return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1737 	else if (clock == PRCMU_PLLSOC1)
1738 		return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1739 	else if (clock == PRCMU_ARMSS)
1740 		return armss_rate();
1741 	else if (clock == PRCMU_PLLDDR)
1742 		return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1743 	else if (clock == PRCMU_PLLDSI)
1744 		return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1745 			PLL_RAW);
1746 	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1747 		return dsiclk_rate(clock - PRCMU_DSI0CLK);
1748 	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1749 		return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
1750 	else
1751 		return 0;
1752 }
1753 
1754 static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
1755 {
1756 	if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
1757 		return ROOT_CLOCK_RATE;
1758 	clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
1759 	if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1760 		return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
1761 	else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1762 		return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
1763 	else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
1764 		return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
1765 	else
1766 		return 0;
1767 }
1768 
1769 static u32 clock_divider(unsigned long src_rate, unsigned long rate)
1770 {
1771 	u32 div;
1772 
1773 	div = (src_rate / rate);
1774 	if (div == 0)
1775 		return 1;
1776 	if (rate < (src_rate / div))
1777 		div++;
1778 	return div;
1779 }
1780 
1781 static long round_clock_rate(u8 clock, unsigned long rate)
1782 {
1783 	u32 val;
1784 	u32 div;
1785 	unsigned long src_rate;
1786 	long rounded_rate;
1787 
1788 	val = readl(clk_mgt[clock].reg);
1789 	src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1790 		clk_mgt[clock].branch);
1791 	div = clock_divider(src_rate, rate);
1792 	if (val & PRCM_CLK_MGT_CLK38) {
1793 		if (clk_mgt[clock].clk38div) {
1794 			if (div > 2)
1795 				div = 2;
1796 		} else {
1797 			div = 1;
1798 		}
1799 	} else if ((clock == PRCMU_SGACLK) && (div == 3)) {
1800 		u64 r = (src_rate * 10);
1801 
1802 		(void)do_div(r, 25);
1803 		if (r <= rate)
1804 			return (unsigned long)r;
1805 	}
1806 	rounded_rate = (src_rate / min(div, (u32)31));
1807 
1808 	return rounded_rate;
1809 }
1810 
1811 /* CPU FREQ table, may be changed due to if MAX_OPP is supported. */
1812 static struct cpufreq_frequency_table db8500_cpufreq_table[] = {
1813 	{ .frequency = 200000, .index = ARM_EXTCLK,},
1814 	{ .frequency = 400000, .index = ARM_50_OPP,},
1815 	{ .frequency = 800000, .index = ARM_100_OPP,},
1816 	{ .frequency = CPUFREQ_TABLE_END,}, /* To be used for MAX_OPP. */
1817 	{ .frequency = CPUFREQ_TABLE_END,},
1818 };
1819 
1820 static long round_armss_rate(unsigned long rate)
1821 {
1822 	long freq = 0;
1823 	int i = 0;
1824 
1825 	/* cpufreq table frequencies is in KHz. */
1826 	rate = rate / 1000;
1827 
1828 	/* Find the corresponding arm opp from the cpufreq table. */
1829 	while (db8500_cpufreq_table[i].frequency != CPUFREQ_TABLE_END) {
1830 		freq = db8500_cpufreq_table[i].frequency;
1831 		if (freq == rate)
1832 			break;
1833 		i++;
1834 	}
1835 
1836 	/* Return the last valid value, even if a match was not found. */
1837 	return freq * 1000;
1838 }
1839 
1840 #define MIN_PLL_VCO_RATE 600000000ULL
1841 #define MAX_PLL_VCO_RATE 1680640000ULL
1842 
1843 static long round_plldsi_rate(unsigned long rate)
1844 {
1845 	long rounded_rate = 0;
1846 	unsigned long src_rate;
1847 	unsigned long rem;
1848 	u32 r;
1849 
1850 	src_rate = clock_rate(PRCMU_HDMICLK);
1851 	rem = rate;
1852 
1853 	for (r = 7; (rem > 0) && (r > 0); r--) {
1854 		u64 d;
1855 
1856 		d = (r * rate);
1857 		(void)do_div(d, src_rate);
1858 		if (d < 6)
1859 			d = 6;
1860 		else if (d > 255)
1861 			d = 255;
1862 		d *= src_rate;
1863 		if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
1864 			((r * MAX_PLL_VCO_RATE) < (2 * d)))
1865 			continue;
1866 		(void)do_div(d, r);
1867 		if (rate < d) {
1868 			if (rounded_rate == 0)
1869 				rounded_rate = (long)d;
1870 			break;
1871 		}
1872 		if ((rate - d) < rem) {
1873 			rem = (rate - d);
1874 			rounded_rate = (long)d;
1875 		}
1876 	}
1877 	return rounded_rate;
1878 }
1879 
1880 static long round_dsiclk_rate(unsigned long rate)
1881 {
1882 	u32 div;
1883 	unsigned long src_rate;
1884 	long rounded_rate;
1885 
1886 	src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1887 		PLL_RAW);
1888 	div = clock_divider(src_rate, rate);
1889 	rounded_rate = (src_rate / ((div > 2) ? 4 : div));
1890 
1891 	return rounded_rate;
1892 }
1893 
1894 static long round_dsiescclk_rate(unsigned long rate)
1895 {
1896 	u32 div;
1897 	unsigned long src_rate;
1898 	long rounded_rate;
1899 
1900 	src_rate = clock_rate(PRCMU_TVCLK);
1901 	div = clock_divider(src_rate, rate);
1902 	rounded_rate = (src_rate / min(div, (u32)255));
1903 
1904 	return rounded_rate;
1905 }
1906 
1907 long prcmu_round_clock_rate(u8 clock, unsigned long rate)
1908 {
1909 	if (clock < PRCMU_NUM_REG_CLOCKS)
1910 		return round_clock_rate(clock, rate);
1911 	else if (clock == PRCMU_ARMSS)
1912 		return round_armss_rate(rate);
1913 	else if (clock == PRCMU_PLLDSI)
1914 		return round_plldsi_rate(rate);
1915 	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1916 		return round_dsiclk_rate(rate);
1917 	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1918 		return round_dsiescclk_rate(rate);
1919 	else
1920 		return (long)prcmu_clock_rate(clock);
1921 }
1922 
1923 static void set_clock_rate(u8 clock, unsigned long rate)
1924 {
1925 	u32 val;
1926 	u32 div;
1927 	unsigned long src_rate;
1928 	unsigned long flags;
1929 
1930 	spin_lock_irqsave(&clk_mgt_lock, flags);
1931 
1932 	/* Grab the HW semaphore. */
1933 	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1934 		cpu_relax();
1935 
1936 	val = readl(clk_mgt[clock].reg);
1937 	src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1938 		clk_mgt[clock].branch);
1939 	div = clock_divider(src_rate, rate);
1940 	if (val & PRCM_CLK_MGT_CLK38) {
1941 		if (clk_mgt[clock].clk38div) {
1942 			if (div > 1)
1943 				val |= PRCM_CLK_MGT_CLK38DIV;
1944 			else
1945 				val &= ~PRCM_CLK_MGT_CLK38DIV;
1946 		}
1947 	} else if (clock == PRCMU_SGACLK) {
1948 		val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
1949 			PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
1950 		if (div == 3) {
1951 			u64 r = (src_rate * 10);
1952 
1953 			(void)do_div(r, 25);
1954 			if (r <= rate) {
1955 				val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
1956 				div = 0;
1957 			}
1958 		}
1959 		val |= min(div, (u32)31);
1960 	} else {
1961 		val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
1962 		val |= min(div, (u32)31);
1963 	}
1964 	writel(val, clk_mgt[clock].reg);
1965 
1966 	/* Release the HW semaphore. */
1967 	writel(0, PRCM_SEM);
1968 
1969 	spin_unlock_irqrestore(&clk_mgt_lock, flags);
1970 }
1971 
1972 static int set_armss_rate(unsigned long rate)
1973 {
1974 	int i = 0;
1975 
1976 	/* cpufreq table frequencies is in KHz. */
1977 	rate = rate / 1000;
1978 
1979 	/* Find the corresponding arm opp from the cpufreq table. */
1980 	while (db8500_cpufreq_table[i].frequency != CPUFREQ_TABLE_END) {
1981 		if (db8500_cpufreq_table[i].frequency == rate)
1982 			break;
1983 		i++;
1984 	}
1985 
1986 	if (db8500_cpufreq_table[i].frequency != rate)
1987 		return -EINVAL;
1988 
1989 	/* Set the new arm opp. */
1990 	return db8500_prcmu_set_arm_opp(db8500_cpufreq_table[i].index);
1991 }
1992 
1993 static int set_plldsi_rate(unsigned long rate)
1994 {
1995 	unsigned long src_rate;
1996 	unsigned long rem;
1997 	u32 pll_freq = 0;
1998 	u32 r;
1999 
2000 	src_rate = clock_rate(PRCMU_HDMICLK);
2001 	rem = rate;
2002 
2003 	for (r = 7; (rem > 0) && (r > 0); r--) {
2004 		u64 d;
2005 		u64 hwrate;
2006 
2007 		d = (r * rate);
2008 		(void)do_div(d, src_rate);
2009 		if (d < 6)
2010 			d = 6;
2011 		else if (d > 255)
2012 			d = 255;
2013 		hwrate = (d * src_rate);
2014 		if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
2015 			((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
2016 			continue;
2017 		(void)do_div(hwrate, r);
2018 		if (rate < hwrate) {
2019 			if (pll_freq == 0)
2020 				pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
2021 					(r << PRCM_PLL_FREQ_R_SHIFT));
2022 			break;
2023 		}
2024 		if ((rate - hwrate) < rem) {
2025 			rem = (rate - hwrate);
2026 			pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
2027 				(r << PRCM_PLL_FREQ_R_SHIFT));
2028 		}
2029 	}
2030 	if (pll_freq == 0)
2031 		return -EINVAL;
2032 
2033 	pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
2034 	writel(pll_freq, PRCM_PLLDSI_FREQ);
2035 
2036 	return 0;
2037 }
2038 
2039 static void set_dsiclk_rate(u8 n, unsigned long rate)
2040 {
2041 	u32 val;
2042 	u32 div;
2043 
2044 	div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
2045 			clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
2046 
2047 	dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
2048 			   (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
2049 			   /* else */	PRCM_DSI_PLLOUT_SEL_PHI_4;
2050 
2051 	val = readl(PRCM_DSI_PLLOUT_SEL);
2052 	val &= ~dsiclk[n].divsel_mask;
2053 	val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
2054 	writel(val, PRCM_DSI_PLLOUT_SEL);
2055 }
2056 
2057 static void set_dsiescclk_rate(u8 n, unsigned long rate)
2058 {
2059 	u32 val;
2060 	u32 div;
2061 
2062 	div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
2063 	val = readl(PRCM_DSITVCLK_DIV);
2064 	val &= ~dsiescclk[n].div_mask;
2065 	val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
2066 	writel(val, PRCM_DSITVCLK_DIV);
2067 }
2068 
2069 int prcmu_set_clock_rate(u8 clock, unsigned long rate)
2070 {
2071 	if (clock < PRCMU_NUM_REG_CLOCKS)
2072 		set_clock_rate(clock, rate);
2073 	else if (clock == PRCMU_ARMSS)
2074 		return set_armss_rate(rate);
2075 	else if (clock == PRCMU_PLLDSI)
2076 		return set_plldsi_rate(rate);
2077 	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
2078 		set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
2079 	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
2080 		set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
2081 	return 0;
2082 }
2083 
2084 int db8500_prcmu_config_esram0_deep_sleep(u8 state)
2085 {
2086 	if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
2087 	    (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
2088 		return -EINVAL;
2089 
2090 	mutex_lock(&mb4_transfer.lock);
2091 
2092 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2093 		cpu_relax();
2094 
2095 	writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2096 	writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
2097 	       (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
2098 	writeb(DDR_PWR_STATE_ON,
2099 	       (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
2100 	writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
2101 
2102 	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2103 	wait_for_completion(&mb4_transfer.work);
2104 
2105 	mutex_unlock(&mb4_transfer.lock);
2106 
2107 	return 0;
2108 }
2109 
2110 int db8500_prcmu_config_hotdog(u8 threshold)
2111 {
2112 	mutex_lock(&mb4_transfer.lock);
2113 
2114 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2115 		cpu_relax();
2116 
2117 	writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
2118 	writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2119 
2120 	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2121 	wait_for_completion(&mb4_transfer.work);
2122 
2123 	mutex_unlock(&mb4_transfer.lock);
2124 
2125 	return 0;
2126 }
2127 
2128 int db8500_prcmu_config_hotmon(u8 low, u8 high)
2129 {
2130 	mutex_lock(&mb4_transfer.lock);
2131 
2132 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2133 		cpu_relax();
2134 
2135 	writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
2136 	writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
2137 	writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
2138 		(tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
2139 	writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2140 
2141 	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2142 	wait_for_completion(&mb4_transfer.work);
2143 
2144 	mutex_unlock(&mb4_transfer.lock);
2145 
2146 	return 0;
2147 }
2148 
2149 static int config_hot_period(u16 val)
2150 {
2151 	mutex_lock(&mb4_transfer.lock);
2152 
2153 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2154 		cpu_relax();
2155 
2156 	writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
2157 	writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2158 
2159 	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2160 	wait_for_completion(&mb4_transfer.work);
2161 
2162 	mutex_unlock(&mb4_transfer.lock);
2163 
2164 	return 0;
2165 }
2166 
2167 int db8500_prcmu_start_temp_sense(u16 cycles32k)
2168 {
2169 	if (cycles32k == 0xFFFF)
2170 		return -EINVAL;
2171 
2172 	return config_hot_period(cycles32k);
2173 }
2174 
2175 int db8500_prcmu_stop_temp_sense(void)
2176 {
2177 	return config_hot_period(0xFFFF);
2178 }
2179 
2180 static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
2181 {
2182 
2183 	mutex_lock(&mb4_transfer.lock);
2184 
2185 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2186 		cpu_relax();
2187 
2188 	writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
2189 	writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
2190 	writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
2191 	writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
2192 
2193 	writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2194 
2195 	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2196 	wait_for_completion(&mb4_transfer.work);
2197 
2198 	mutex_unlock(&mb4_transfer.lock);
2199 
2200 	return 0;
2201 
2202 }
2203 
2204 int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
2205 {
2206 	BUG_ON(num == 0 || num > 0xf);
2207 	return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
2208 			    sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
2209 			    A9WDOG_AUTO_OFF_DIS);
2210 }
2211 EXPORT_SYMBOL(db8500_prcmu_config_a9wdog);
2212 
2213 int db8500_prcmu_enable_a9wdog(u8 id)
2214 {
2215 	return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
2216 }
2217 EXPORT_SYMBOL(db8500_prcmu_enable_a9wdog);
2218 
2219 int db8500_prcmu_disable_a9wdog(u8 id)
2220 {
2221 	return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
2222 }
2223 EXPORT_SYMBOL(db8500_prcmu_disable_a9wdog);
2224 
2225 int db8500_prcmu_kick_a9wdog(u8 id)
2226 {
2227 	return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
2228 }
2229 EXPORT_SYMBOL(db8500_prcmu_kick_a9wdog);
2230 
2231 /*
2232  * timeout is 28 bit, in ms.
2233  */
2234 int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
2235 {
2236 	return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
2237 			    (id & A9WDOG_ID_MASK) |
2238 			    /*
2239 			     * Put the lowest 28 bits of timeout at
2240 			     * offset 4. Four first bits are used for id.
2241 			     */
2242 			    (u8)((timeout << 4) & 0xf0),
2243 			    (u8)((timeout >> 4) & 0xff),
2244 			    (u8)((timeout >> 12) & 0xff),
2245 			    (u8)((timeout >> 20) & 0xff));
2246 }
2247 EXPORT_SYMBOL(db8500_prcmu_load_a9wdog);
2248 
2249 /**
2250  * prcmu_abb_read() - Read register value(s) from the ABB.
2251  * @slave:	The I2C slave address.
2252  * @reg:	The (start) register address.
2253  * @value:	The read out value(s).
2254  * @size:	The number of registers to read.
2255  *
2256  * Reads register value(s) from the ABB.
2257  * @size has to be 1 for the current firmware version.
2258  */
2259 int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
2260 {
2261 	int r;
2262 
2263 	if (size != 1)
2264 		return -EINVAL;
2265 
2266 	mutex_lock(&mb5_transfer.lock);
2267 
2268 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2269 		cpu_relax();
2270 
2271 	writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2272 	writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2273 	writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2274 	writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2275 	writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2276 
2277 	writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2278 
2279 	if (!wait_for_completion_timeout(&mb5_transfer.work,
2280 				msecs_to_jiffies(20000))) {
2281 		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2282 			__func__);
2283 		r = -EIO;
2284 	} else {
2285 		r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
2286 	}
2287 
2288 	if (!r)
2289 		*value = mb5_transfer.ack.value;
2290 
2291 	mutex_unlock(&mb5_transfer.lock);
2292 
2293 	return r;
2294 }
2295 
2296 /**
2297  * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
2298  * @slave:	The I2C slave address.
2299  * @reg:	The (start) register address.
2300  * @value:	The value(s) to write.
2301  * @mask:	The mask(s) to use.
2302  * @size:	The number of registers to write.
2303  *
2304  * Writes masked register value(s) to the ABB.
2305  * For each @value, only the bits set to 1 in the corresponding @mask
2306  * will be written. The other bits are not changed.
2307  * @size has to be 1 for the current firmware version.
2308  */
2309 int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
2310 {
2311 	int r;
2312 
2313 	if (size != 1)
2314 		return -EINVAL;
2315 
2316 	mutex_lock(&mb5_transfer.lock);
2317 
2318 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2319 		cpu_relax();
2320 
2321 	writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2322 	writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2323 	writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2324 	writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2325 	writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2326 
2327 	writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2328 
2329 	if (!wait_for_completion_timeout(&mb5_transfer.work,
2330 				msecs_to_jiffies(20000))) {
2331 		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2332 			__func__);
2333 		r = -EIO;
2334 	} else {
2335 		r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
2336 	}
2337 
2338 	mutex_unlock(&mb5_transfer.lock);
2339 
2340 	return r;
2341 }
2342 
2343 /**
2344  * prcmu_abb_write() - Write register value(s) to the ABB.
2345  * @slave:	The I2C slave address.
2346  * @reg:	The (start) register address.
2347  * @value:	The value(s) to write.
2348  * @size:	The number of registers to write.
2349  *
2350  * Writes register value(s) to the ABB.
2351  * @size has to be 1 for the current firmware version.
2352  */
2353 int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
2354 {
2355 	u8 mask = ~0;
2356 
2357 	return prcmu_abb_write_masked(slave, reg, value, &mask, size);
2358 }
2359 
2360 /**
2361  * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
2362  */
2363 int prcmu_ac_wake_req(void)
2364 {
2365 	u32 val;
2366 	int ret = 0;
2367 
2368 	mutex_lock(&mb0_transfer.ac_wake_lock);
2369 
2370 	val = readl(PRCM_HOSTACCESS_REQ);
2371 	if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
2372 		goto unlock_and_return;
2373 
2374 	atomic_set(&ac_wake_req_state, 1);
2375 
2376 	/*
2377 	 * Force Modem Wake-up before hostaccess_req ping-pong.
2378 	 * It prevents Modem to enter in Sleep while acking the hostaccess
2379 	 * request. The 31us delay has been calculated by HWI.
2380 	 */
2381 	val |= PRCM_HOSTACCESS_REQ_WAKE_REQ;
2382 	writel(val, PRCM_HOSTACCESS_REQ);
2383 
2384 	udelay(31);
2385 
2386 	val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ;
2387 	writel(val, PRCM_HOSTACCESS_REQ);
2388 
2389 	if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2390 			msecs_to_jiffies(5000))) {
2391 #if defined(CONFIG_DBX500_PRCMU_DEBUG)
2392 		db8500_prcmu_debug_dump(__func__, true, true);
2393 #endif
2394 		pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2395 			__func__);
2396 		ret = -EFAULT;
2397 	}
2398 
2399 unlock_and_return:
2400 	mutex_unlock(&mb0_transfer.ac_wake_lock);
2401 	return ret;
2402 }
2403 
2404 /**
2405  * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
2406  */
2407 void prcmu_ac_sleep_req()
2408 {
2409 	u32 val;
2410 
2411 	mutex_lock(&mb0_transfer.ac_wake_lock);
2412 
2413 	val = readl(PRCM_HOSTACCESS_REQ);
2414 	if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
2415 		goto unlock_and_return;
2416 
2417 	writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
2418 		PRCM_HOSTACCESS_REQ);
2419 
2420 	if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2421 			msecs_to_jiffies(5000))) {
2422 		pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2423 			__func__);
2424 	}
2425 
2426 	atomic_set(&ac_wake_req_state, 0);
2427 
2428 unlock_and_return:
2429 	mutex_unlock(&mb0_transfer.ac_wake_lock);
2430 }
2431 
2432 bool db8500_prcmu_is_ac_wake_requested(void)
2433 {
2434 	return (atomic_read(&ac_wake_req_state) != 0);
2435 }
2436 
2437 /**
2438  * db8500_prcmu_system_reset - System reset
2439  *
2440  * Saves the reset reason code and then sets the APE_SOFTRST register which
2441  * fires interrupt to fw
2442  */
2443 void db8500_prcmu_system_reset(u16 reset_code)
2444 {
2445 	writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
2446 	writel(1, PRCM_APE_SOFTRST);
2447 }
2448 
2449 /**
2450  * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
2451  *
2452  * Retrieves the reset reason code stored by prcmu_system_reset() before
2453  * last restart.
2454  */
2455 u16 db8500_prcmu_get_reset_code(void)
2456 {
2457 	return readw(tcdm_base + PRCM_SW_RST_REASON);
2458 }
2459 
2460 /**
2461  * db8500_prcmu_reset_modem - ask the PRCMU to reset modem
2462  */
2463 void db8500_prcmu_modem_reset(void)
2464 {
2465 	mutex_lock(&mb1_transfer.lock);
2466 
2467 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
2468 		cpu_relax();
2469 
2470 	writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
2471 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
2472 	wait_for_completion(&mb1_transfer.work);
2473 
2474 	/*
2475 	 * No need to check return from PRCMU as modem should go in reset state
2476 	 * This state is already managed by upper layer
2477 	 */
2478 
2479 	mutex_unlock(&mb1_transfer.lock);
2480 }
2481 
2482 static void ack_dbb_wakeup(void)
2483 {
2484 	unsigned long flags;
2485 
2486 	spin_lock_irqsave(&mb0_transfer.lock, flags);
2487 
2488 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
2489 		cpu_relax();
2490 
2491 	writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
2492 	writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
2493 
2494 	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2495 }
2496 
2497 static inline void print_unknown_header_warning(u8 n, u8 header)
2498 {
2499 	pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n",
2500 		header, n);
2501 }
2502 
2503 static bool read_mailbox_0(void)
2504 {
2505 	bool r;
2506 	u32 ev;
2507 	unsigned int n;
2508 	u8 header;
2509 
2510 	header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
2511 	switch (header) {
2512 	case MB0H_WAKEUP_EXE:
2513 	case MB0H_WAKEUP_SLEEP:
2514 		if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
2515 			ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
2516 		else
2517 			ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
2518 
2519 		if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
2520 			complete(&mb0_transfer.ac_wake_work);
2521 		if (ev & WAKEUP_BIT_SYSCLK_OK)
2522 			complete(&mb3_transfer.sysclk_work);
2523 
2524 		ev &= mb0_transfer.req.dbb_irqs;
2525 
2526 		for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
2527 			if (ev & prcmu_irq_bit[n])
2528 				generic_handle_irq(irq_find_mapping(db8500_irq_domain, n));
2529 		}
2530 		r = true;
2531 		break;
2532 	default:
2533 		print_unknown_header_warning(0, header);
2534 		r = false;
2535 		break;
2536 	}
2537 	writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
2538 	return r;
2539 }
2540 
2541 static bool read_mailbox_1(void)
2542 {
2543 	mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
2544 	mb1_transfer.ack.arm_opp = readb(tcdm_base +
2545 		PRCM_ACK_MB1_CURRENT_ARM_OPP);
2546 	mb1_transfer.ack.ape_opp = readb(tcdm_base +
2547 		PRCM_ACK_MB1_CURRENT_APE_OPP);
2548 	mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
2549 		PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
2550 	writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
2551 	complete(&mb1_transfer.work);
2552 	return false;
2553 }
2554 
2555 static bool read_mailbox_2(void)
2556 {
2557 	mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
2558 	writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
2559 	complete(&mb2_transfer.work);
2560 	return false;
2561 }
2562 
2563 static bool read_mailbox_3(void)
2564 {
2565 	writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
2566 	return false;
2567 }
2568 
2569 static bool read_mailbox_4(void)
2570 {
2571 	u8 header;
2572 	bool do_complete = true;
2573 
2574 	header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
2575 	switch (header) {
2576 	case MB4H_MEM_ST:
2577 	case MB4H_HOTDOG:
2578 	case MB4H_HOTMON:
2579 	case MB4H_HOT_PERIOD:
2580 	case MB4H_A9WDOG_CONF:
2581 	case MB4H_A9WDOG_EN:
2582 	case MB4H_A9WDOG_DIS:
2583 	case MB4H_A9WDOG_LOAD:
2584 	case MB4H_A9WDOG_KICK:
2585 		break;
2586 	default:
2587 		print_unknown_header_warning(4, header);
2588 		do_complete = false;
2589 		break;
2590 	}
2591 
2592 	writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
2593 
2594 	if (do_complete)
2595 		complete(&mb4_transfer.work);
2596 
2597 	return false;
2598 }
2599 
2600 static bool read_mailbox_5(void)
2601 {
2602 	mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
2603 	mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
2604 	writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
2605 	complete(&mb5_transfer.work);
2606 	return false;
2607 }
2608 
2609 static bool read_mailbox_6(void)
2610 {
2611 	writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
2612 	return false;
2613 }
2614 
2615 static bool read_mailbox_7(void)
2616 {
2617 	writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
2618 	return false;
2619 }
2620 
2621 static bool (* const read_mailbox[NUM_MB])(void) = {
2622 	read_mailbox_0,
2623 	read_mailbox_1,
2624 	read_mailbox_2,
2625 	read_mailbox_3,
2626 	read_mailbox_4,
2627 	read_mailbox_5,
2628 	read_mailbox_6,
2629 	read_mailbox_7
2630 };
2631 
2632 static irqreturn_t prcmu_irq_handler(int irq, void *data)
2633 {
2634 	u32 bits;
2635 	u8 n;
2636 	irqreturn_t r;
2637 
2638 	bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
2639 	if (unlikely(!bits))
2640 		return IRQ_NONE;
2641 
2642 	r = IRQ_HANDLED;
2643 	for (n = 0; bits; n++) {
2644 		if (bits & MBOX_BIT(n)) {
2645 			bits -= MBOX_BIT(n);
2646 			if (read_mailbox[n]())
2647 				r = IRQ_WAKE_THREAD;
2648 		}
2649 	}
2650 	return r;
2651 }
2652 
2653 static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
2654 {
2655 	ack_dbb_wakeup();
2656 	return IRQ_HANDLED;
2657 }
2658 
2659 static void prcmu_mask_work(struct work_struct *work)
2660 {
2661 	unsigned long flags;
2662 
2663 	spin_lock_irqsave(&mb0_transfer.lock, flags);
2664 
2665 	config_wakeups();
2666 
2667 	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2668 }
2669 
2670 static void prcmu_irq_mask(struct irq_data *d)
2671 {
2672 	unsigned long flags;
2673 
2674 	spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2675 
2676 	mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq];
2677 
2678 	spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2679 
2680 	if (d->irq != IRQ_PRCMU_CA_SLEEP)
2681 		schedule_work(&mb0_transfer.mask_work);
2682 }
2683 
2684 static void prcmu_irq_unmask(struct irq_data *d)
2685 {
2686 	unsigned long flags;
2687 
2688 	spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2689 
2690 	mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq];
2691 
2692 	spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2693 
2694 	if (d->irq != IRQ_PRCMU_CA_SLEEP)
2695 		schedule_work(&mb0_transfer.mask_work);
2696 }
2697 
2698 static void noop(struct irq_data *d)
2699 {
2700 }
2701 
2702 static struct irq_chip prcmu_irq_chip = {
2703 	.name		= "prcmu",
2704 	.irq_disable	= prcmu_irq_mask,
2705 	.irq_ack	= noop,
2706 	.irq_mask	= prcmu_irq_mask,
2707 	.irq_unmask	= prcmu_irq_unmask,
2708 };
2709 
2710 static __init char *fw_project_name(u32 project)
2711 {
2712 	switch (project) {
2713 	case PRCMU_FW_PROJECT_U8500:
2714 		return "U8500";
2715 	case PRCMU_FW_PROJECT_U8400:
2716 		return "U8400";
2717 	case PRCMU_FW_PROJECT_U9500:
2718 		return "U9500";
2719 	case PRCMU_FW_PROJECT_U8500_MBB:
2720 		return "U8500 MBB";
2721 	case PRCMU_FW_PROJECT_U8500_C1:
2722 		return "U8500 C1";
2723 	case PRCMU_FW_PROJECT_U8500_C2:
2724 		return "U8500 C2";
2725 	case PRCMU_FW_PROJECT_U8500_C3:
2726 		return "U8500 C3";
2727 	case PRCMU_FW_PROJECT_U8500_C4:
2728 		return "U8500 C4";
2729 	case PRCMU_FW_PROJECT_U9500_MBL:
2730 		return "U9500 MBL";
2731 	case PRCMU_FW_PROJECT_U8500_MBL:
2732 		return "U8500 MBL";
2733 	case PRCMU_FW_PROJECT_U8500_MBL2:
2734 		return "U8500 MBL2";
2735 	case PRCMU_FW_PROJECT_U8520:
2736 		return "U8520 MBL";
2737 	case PRCMU_FW_PROJECT_U8420:
2738 		return "U8420";
2739 	case PRCMU_FW_PROJECT_U9540:
2740 		return "U9540";
2741 	case PRCMU_FW_PROJECT_A9420:
2742 		return "A9420";
2743 	case PRCMU_FW_PROJECT_L8540:
2744 		return "L8540";
2745 	case PRCMU_FW_PROJECT_L8580:
2746 		return "L8580";
2747 	default:
2748 		return "Unknown";
2749 	}
2750 }
2751 
2752 static int db8500_irq_map(struct irq_domain *d, unsigned int virq,
2753 				irq_hw_number_t hwirq)
2754 {
2755 	irq_set_chip_and_handler(virq, &prcmu_irq_chip,
2756 				handle_simple_irq);
2757 	set_irq_flags(virq, IRQF_VALID);
2758 
2759 	return 0;
2760 }
2761 
2762 static struct irq_domain_ops db8500_irq_ops = {
2763 	.map    = db8500_irq_map,
2764 	.xlate  = irq_domain_xlate_twocell,
2765 };
2766 
2767 static int db8500_irq_init(struct device_node *np)
2768 {
2769 	int irq_base = 0;
2770 	int i;
2771 
2772 	/* In the device tree case, just take some IRQs */
2773 	if (!np)
2774 		irq_base = IRQ_PRCMU_BASE;
2775 
2776 	db8500_irq_domain = irq_domain_add_simple(
2777 		np, NUM_PRCMU_WAKEUPS, irq_base,
2778 		&db8500_irq_ops, NULL);
2779 
2780 	if (!db8500_irq_domain) {
2781 		pr_err("Failed to create irqdomain\n");
2782 		return -ENOSYS;
2783 	}
2784 
2785 	/* All wakeups will be used, so create mappings for all */
2786 	for (i = 0; i < NUM_PRCMU_WAKEUPS; i++)
2787 		irq_create_mapping(db8500_irq_domain, i);
2788 
2789 	return 0;
2790 }
2791 
2792 static void dbx500_fw_version_init(struct platform_device *pdev,
2793 			    u32 version_offset)
2794 {
2795 	struct resource *res;
2796 	void __iomem *tcpm_base;
2797 
2798 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
2799 					   "prcmu-tcpm");
2800 	if (!res) {
2801 		dev_err(&pdev->dev,
2802 			"Error: no prcmu tcpm memory region provided\n");
2803 		return;
2804 	}
2805 	tcpm_base = ioremap(res->start, resource_size(res));
2806 	if (tcpm_base != NULL) {
2807 		u32 version;
2808 
2809 		version = readl(tcpm_base + version_offset);
2810 		fw_info.version.project = (version & 0xFF);
2811 		fw_info.version.api_version = (version >> 8) & 0xFF;
2812 		fw_info.version.func_version = (version >> 16) & 0xFF;
2813 		fw_info.version.errata = (version >> 24) & 0xFF;
2814 		strncpy(fw_info.version.project_name,
2815 			fw_project_name(fw_info.version.project),
2816 			PRCMU_FW_PROJECT_NAME_LEN);
2817 		fw_info.valid = true;
2818 		pr_info("PRCMU firmware: %s(%d), version %d.%d.%d\n",
2819 			fw_info.version.project_name,
2820 			fw_info.version.project,
2821 			fw_info.version.api_version,
2822 			fw_info.version.func_version,
2823 			fw_info.version.errata);
2824 		iounmap(tcpm_base);
2825 	}
2826 }
2827 
2828 void __init db8500_prcmu_early_init(void)
2829 {
2830 	spin_lock_init(&mb0_transfer.lock);
2831 	spin_lock_init(&mb0_transfer.dbb_irqs_lock);
2832 	mutex_init(&mb0_transfer.ac_wake_lock);
2833 	init_completion(&mb0_transfer.ac_wake_work);
2834 	mutex_init(&mb1_transfer.lock);
2835 	init_completion(&mb1_transfer.work);
2836 	mb1_transfer.ape_opp = APE_NO_CHANGE;
2837 	mutex_init(&mb2_transfer.lock);
2838 	init_completion(&mb2_transfer.work);
2839 	spin_lock_init(&mb2_transfer.auto_pm_lock);
2840 	spin_lock_init(&mb3_transfer.lock);
2841 	mutex_init(&mb3_transfer.sysclk_lock);
2842 	init_completion(&mb3_transfer.sysclk_work);
2843 	mutex_init(&mb4_transfer.lock);
2844 	init_completion(&mb4_transfer.work);
2845 	mutex_init(&mb5_transfer.lock);
2846 	init_completion(&mb5_transfer.work);
2847 
2848 	INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
2849 }
2850 
2851 static void __init init_prcm_registers(void)
2852 {
2853 	u32 val;
2854 
2855 	val = readl(PRCM_A9PL_FORCE_CLKEN);
2856 	val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
2857 		PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
2858 	writel(val, (PRCM_A9PL_FORCE_CLKEN));
2859 }
2860 
2861 /*
2862  * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
2863  */
2864 static struct regulator_consumer_supply db8500_vape_consumers[] = {
2865 	REGULATOR_SUPPLY("v-ape", NULL),
2866 	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2867 	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2868 	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2869 	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
2870 	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
2871 	/* "v-mmc" changed to "vcore" in the mainline kernel */
2872 	REGULATOR_SUPPLY("vcore", "sdi0"),
2873 	REGULATOR_SUPPLY("vcore", "sdi1"),
2874 	REGULATOR_SUPPLY("vcore", "sdi2"),
2875 	REGULATOR_SUPPLY("vcore", "sdi3"),
2876 	REGULATOR_SUPPLY("vcore", "sdi4"),
2877 	REGULATOR_SUPPLY("v-dma", "dma40.0"),
2878 	REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2879 	/* "v-uart" changed to "vcore" in the mainline kernel */
2880 	REGULATOR_SUPPLY("vcore", "uart0"),
2881 	REGULATOR_SUPPLY("vcore", "uart1"),
2882 	REGULATOR_SUPPLY("vcore", "uart2"),
2883 	REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
2884 	REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
2885 	REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
2886 };
2887 
2888 static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
2889 	REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2890 	/* AV8100 regulator */
2891 	REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2892 };
2893 
2894 static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
2895 	REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
2896 	REGULATOR_SUPPLY("vsupply", "mcde"),
2897 };
2898 
2899 /* SVA MMDSP regulator switch */
2900 static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
2901 	REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2902 };
2903 
2904 /* SVA pipe regulator switch */
2905 static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
2906 	REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2907 };
2908 
2909 /* SIA MMDSP regulator switch */
2910 static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
2911 	REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2912 };
2913 
2914 /* SIA pipe regulator switch */
2915 static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
2916 	REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2917 };
2918 
2919 static struct regulator_consumer_supply db8500_sga_consumers[] = {
2920 	REGULATOR_SUPPLY("v-mali", NULL),
2921 };
2922 
2923 /* ESRAM1 and 2 regulator switch */
2924 static struct regulator_consumer_supply db8500_esram12_consumers[] = {
2925 	REGULATOR_SUPPLY("esram12", "cm_control"),
2926 };
2927 
2928 /* ESRAM3 and 4 regulator switch */
2929 static struct regulator_consumer_supply db8500_esram34_consumers[] = {
2930 	REGULATOR_SUPPLY("v-esram34", "mcde"),
2931 	REGULATOR_SUPPLY("esram34", "cm_control"),
2932 	REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
2933 };
2934 
2935 static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
2936 	[DB8500_REGULATOR_VAPE] = {
2937 		.constraints = {
2938 			.name = "db8500-vape",
2939 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2940 			.always_on = true,
2941 		},
2942 		.consumer_supplies = db8500_vape_consumers,
2943 		.num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
2944 	},
2945 	[DB8500_REGULATOR_VARM] = {
2946 		.constraints = {
2947 			.name = "db8500-varm",
2948 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2949 		},
2950 	},
2951 	[DB8500_REGULATOR_VMODEM] = {
2952 		.constraints = {
2953 			.name = "db8500-vmodem",
2954 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2955 		},
2956 	},
2957 	[DB8500_REGULATOR_VPLL] = {
2958 		.constraints = {
2959 			.name = "db8500-vpll",
2960 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2961 		},
2962 	},
2963 	[DB8500_REGULATOR_VSMPS1] = {
2964 		.constraints = {
2965 			.name = "db8500-vsmps1",
2966 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2967 		},
2968 	},
2969 	[DB8500_REGULATOR_VSMPS2] = {
2970 		.constraints = {
2971 			.name = "db8500-vsmps2",
2972 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2973 		},
2974 		.consumer_supplies = db8500_vsmps2_consumers,
2975 		.num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
2976 	},
2977 	[DB8500_REGULATOR_VSMPS3] = {
2978 		.constraints = {
2979 			.name = "db8500-vsmps3",
2980 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2981 		},
2982 	},
2983 	[DB8500_REGULATOR_VRF1] = {
2984 		.constraints = {
2985 			.name = "db8500-vrf1",
2986 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2987 		},
2988 	},
2989 	[DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
2990 		/* dependency to u8500-vape is handled outside regulator framework */
2991 		.constraints = {
2992 			.name = "db8500-sva-mmdsp",
2993 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2994 		},
2995 		.consumer_supplies = db8500_svammdsp_consumers,
2996 		.num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
2997 	},
2998 	[DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
2999 		.constraints = {
3000 			/* "ret" means "retention" */
3001 			.name = "db8500-sva-mmdsp-ret",
3002 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
3003 		},
3004 	},
3005 	[DB8500_REGULATOR_SWITCH_SVAPIPE] = {
3006 		/* dependency to u8500-vape is handled outside regulator framework */
3007 		.constraints = {
3008 			.name = "db8500-sva-pipe",
3009 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
3010 		},
3011 		.consumer_supplies = db8500_svapipe_consumers,
3012 		.num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
3013 	},
3014 	[DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
3015 		/* dependency to u8500-vape is handled outside regulator framework */
3016 		.constraints = {
3017 			.name = "db8500-sia-mmdsp",
3018 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
3019 		},
3020 		.consumer_supplies = db8500_siammdsp_consumers,
3021 		.num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
3022 	},
3023 	[DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
3024 		.constraints = {
3025 			.name = "db8500-sia-mmdsp-ret",
3026 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
3027 		},
3028 	},
3029 	[DB8500_REGULATOR_SWITCH_SIAPIPE] = {
3030 		/* dependency to u8500-vape is handled outside regulator framework */
3031 		.constraints = {
3032 			.name = "db8500-sia-pipe",
3033 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
3034 		},
3035 		.consumer_supplies = db8500_siapipe_consumers,
3036 		.num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
3037 	},
3038 	[DB8500_REGULATOR_SWITCH_SGA] = {
3039 		.supply_regulator = "db8500-vape",
3040 		.constraints = {
3041 			.name = "db8500-sga",
3042 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
3043 		},
3044 		.consumer_supplies = db8500_sga_consumers,
3045 		.num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
3046 
3047 	},
3048 	[DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
3049 		.supply_regulator = "db8500-vape",
3050 		.constraints = {
3051 			.name = "db8500-b2r2-mcde",
3052 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
3053 		},
3054 		.consumer_supplies = db8500_b2r2_mcde_consumers,
3055 		.num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
3056 	},
3057 	[DB8500_REGULATOR_SWITCH_ESRAM12] = {
3058 		/*
3059 		 * esram12 is set in retention and supplied by Vsafe when Vape is off,
3060 		 * no need to hold Vape
3061 		 */
3062 		.constraints = {
3063 			.name = "db8500-esram12",
3064 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
3065 		},
3066 		.consumer_supplies = db8500_esram12_consumers,
3067 		.num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
3068 	},
3069 	[DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
3070 		.constraints = {
3071 			.name = "db8500-esram12-ret",
3072 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
3073 		},
3074 	},
3075 	[DB8500_REGULATOR_SWITCH_ESRAM34] = {
3076 		/*
3077 		 * esram34 is set in retention and supplied by Vsafe when Vape is off,
3078 		 * no need to hold Vape
3079 		 */
3080 		.constraints = {
3081 			.name = "db8500-esram34",
3082 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
3083 		},
3084 		.consumer_supplies = db8500_esram34_consumers,
3085 		.num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
3086 	},
3087 	[DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
3088 		.constraints = {
3089 			.name = "db8500-esram34-ret",
3090 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
3091 		},
3092 	},
3093 };
3094 
3095 static struct resource ab8500_resources[] = {
3096 	[0] = {
3097 		.start	= IRQ_DB8500_AB8500,
3098 		.end	= IRQ_DB8500_AB8500,
3099 		.flags	= IORESOURCE_IRQ
3100 	}
3101 };
3102 
3103 static struct ux500_wdt_data db8500_wdt_pdata = {
3104 	.timeout = 600, /* 10 minutes */
3105 	.has_28_bits_resolution = true,
3106 };
3107 
3108 static struct mfd_cell db8500_prcmu_devs[] = {
3109 	{
3110 		.name = "db8500-prcmu-regulators",
3111 		.of_compatible = "stericsson,db8500-prcmu-regulator",
3112 		.platform_data = &db8500_regulators,
3113 		.pdata_size = sizeof(db8500_regulators),
3114 	},
3115 	{
3116 		.name = "cpufreq-ux500",
3117 		.of_compatible = "stericsson,cpufreq-ux500",
3118 		.platform_data = &db8500_cpufreq_table,
3119 		.pdata_size = sizeof(db8500_cpufreq_table),
3120 	},
3121 	{
3122 		.name = "ux500_wdt",
3123 		.platform_data = &db8500_wdt_pdata,
3124 		.pdata_size = sizeof(db8500_wdt_pdata),
3125 		.id = -1,
3126 	},
3127 	{
3128 		.name = "ab8500-core",
3129 		.of_compatible = "stericsson,ab8500",
3130 		.num_resources = ARRAY_SIZE(ab8500_resources),
3131 		.resources = ab8500_resources,
3132 		.id = AB8500_VERSION_AB8500,
3133 	},
3134 };
3135 
3136 static void db8500_prcmu_update_cpufreq(void)
3137 {
3138 	if (prcmu_has_arm_maxopp()) {
3139 		db8500_cpufreq_table[3].frequency = 1000000;
3140 		db8500_cpufreq_table[3].index = ARM_MAX_OPP;
3141 	}
3142 }
3143 
3144 /**
3145  * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
3146  *
3147  */
3148 static int db8500_prcmu_probe(struct platform_device *pdev)
3149 {
3150 	struct device_node *np = pdev->dev.of_node;
3151 	struct prcmu_pdata *pdata = dev_get_platdata(&pdev->dev);
3152 	int irq = 0, err = 0, i;
3153 	struct resource *res;
3154 
3155 	init_prcm_registers();
3156 
3157 	dbx500_fw_version_init(pdev, pdata->version_offset);
3158 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu-tcdm");
3159 	if (!res) {
3160 		dev_err(&pdev->dev, "no prcmu tcdm region provided\n");
3161 		return -ENOENT;
3162 	}
3163 	tcdm_base = devm_ioremap(&pdev->dev, res->start,
3164 			resource_size(res));
3165 
3166 	/* Clean up the mailbox interrupts after pre-kernel code. */
3167 	writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
3168 
3169 	irq = platform_get_irq(pdev, 0);
3170 	if (irq <= 0) {
3171 		dev_err(&pdev->dev, "no prcmu irq provided\n");
3172 		return -ENOENT;
3173 	}
3174 
3175 	err = request_threaded_irq(irq, prcmu_irq_handler,
3176 	        prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
3177 	if (err < 0) {
3178 		pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
3179 		err = -EBUSY;
3180 		goto no_irq_return;
3181 	}
3182 
3183 	db8500_irq_init(np);
3184 
3185 	for (i = 0; i < ARRAY_SIZE(db8500_prcmu_devs); i++) {
3186 		if (!strcmp(db8500_prcmu_devs[i].name, "ab8500-core")) {
3187 			db8500_prcmu_devs[i].platform_data = pdata->ab_platdata;
3188 			db8500_prcmu_devs[i].pdata_size = sizeof(struct ab8500_platform_data);
3189 		}
3190 	}
3191 
3192 	prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
3193 
3194 	db8500_prcmu_update_cpufreq();
3195 
3196 	err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
3197 			      ARRAY_SIZE(db8500_prcmu_devs), NULL, 0, NULL);
3198 	if (err) {
3199 		pr_err("prcmu: Failed to add subdevices\n");
3200 		return err;
3201 	}
3202 
3203 	pr_info("DB8500 PRCMU initialized\n");
3204 
3205 no_irq_return:
3206 	return err;
3207 }
3208 static const struct of_device_id db8500_prcmu_match[] = {
3209 	{ .compatible = "stericsson,db8500-prcmu"},
3210 	{ },
3211 };
3212 
3213 static struct platform_driver db8500_prcmu_driver = {
3214 	.driver = {
3215 		.name = "db8500-prcmu",
3216 		.owner = THIS_MODULE,
3217 		.of_match_table = db8500_prcmu_match,
3218 	},
3219 	.probe = db8500_prcmu_probe,
3220 };
3221 
3222 static int __init db8500_prcmu_init(void)
3223 {
3224 	return platform_driver_register(&db8500_prcmu_driver);
3225 }
3226 
3227 core_initcall(db8500_prcmu_init);
3228 
3229 MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>");
3230 MODULE_DESCRIPTION("DB8500 PRCM Unit driver");
3231 MODULE_LICENSE("GPL v2");
3232