1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * DB8500 PRCM Unit driver 4 * 5 * Copyright (C) STMicroelectronics 2009 6 * Copyright (C) ST-Ericsson SA 2010 7 * 8 * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com> 9 * Author: Sundar Iyer <sundar.iyer@stericsson.com> 10 * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com> 11 * 12 * U8500 PRCM Unit interface driver 13 */ 14 #include <linux/init.h> 15 #include <linux/export.h> 16 #include <linux/kernel.h> 17 #include <linux/delay.h> 18 #include <linux/errno.h> 19 #include <linux/err.h> 20 #include <linux/spinlock.h> 21 #include <linux/io.h> 22 #include <linux/slab.h> 23 #include <linux/mutex.h> 24 #include <linux/completion.h> 25 #include <linux/irq.h> 26 #include <linux/jiffies.h> 27 #include <linux/bitops.h> 28 #include <linux/fs.h> 29 #include <linux/of.h> 30 #include <linux/of_address.h> 31 #include <linux/of_irq.h> 32 #include <linux/platform_device.h> 33 #include <linux/uaccess.h> 34 #include <linux/mfd/core.h> 35 #include <linux/mfd/dbx500-prcmu.h> 36 #include <linux/mfd/abx500/ab8500.h> 37 #include <linux/regulator/db8500-prcmu.h> 38 #include <linux/regulator/machine.h> 39 #include <linux/platform_data/ux500_wdt.h> 40 #include "dbx500-prcmu-regs.h" 41 42 /* Index of different voltages to be used when accessing AVSData */ 43 #define PRCM_AVS_BASE 0x2FC 44 #define PRCM_AVS_VBB_RET (PRCM_AVS_BASE + 0x0) 45 #define PRCM_AVS_VBB_MAX_OPP (PRCM_AVS_BASE + 0x1) 46 #define PRCM_AVS_VBB_100_OPP (PRCM_AVS_BASE + 0x2) 47 #define PRCM_AVS_VBB_50_OPP (PRCM_AVS_BASE + 0x3) 48 #define PRCM_AVS_VARM_MAX_OPP (PRCM_AVS_BASE + 0x4) 49 #define PRCM_AVS_VARM_100_OPP (PRCM_AVS_BASE + 0x5) 50 #define PRCM_AVS_VARM_50_OPP (PRCM_AVS_BASE + 0x6) 51 #define PRCM_AVS_VARM_RET (PRCM_AVS_BASE + 0x7) 52 #define PRCM_AVS_VAPE_100_OPP (PRCM_AVS_BASE + 0x8) 53 #define PRCM_AVS_VAPE_50_OPP (PRCM_AVS_BASE + 0x9) 54 #define PRCM_AVS_VMOD_100_OPP (PRCM_AVS_BASE + 0xA) 55 #define PRCM_AVS_VMOD_50_OPP (PRCM_AVS_BASE + 0xB) 56 #define PRCM_AVS_VSAFE (PRCM_AVS_BASE + 0xC) 57 58 #define PRCM_AVS_VOLTAGE 0 59 #define PRCM_AVS_VOLTAGE_MASK 0x3f 60 #define PRCM_AVS_ISSLOWSTARTUP 6 61 #define PRCM_AVS_ISSLOWSTARTUP_MASK (1 << PRCM_AVS_ISSLOWSTARTUP) 62 #define PRCM_AVS_ISMODEENABLE 7 63 #define PRCM_AVS_ISMODEENABLE_MASK (1 << PRCM_AVS_ISMODEENABLE) 64 65 #define PRCM_BOOT_STATUS 0xFFF 66 #define PRCM_ROMCODE_A2P 0xFFE 67 #define PRCM_ROMCODE_P2A 0xFFD 68 #define PRCM_XP70_CUR_PWR_STATE 0xFFC /* 4 BYTES */ 69 70 #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */ 71 72 #define _PRCM_MBOX_HEADER 0xFE8 /* 16 bytes */ 73 #define PRCM_MBOX_HEADER_REQ_MB0 (_PRCM_MBOX_HEADER + 0x0) 74 #define PRCM_MBOX_HEADER_REQ_MB1 (_PRCM_MBOX_HEADER + 0x1) 75 #define PRCM_MBOX_HEADER_REQ_MB2 (_PRCM_MBOX_HEADER + 0x2) 76 #define PRCM_MBOX_HEADER_REQ_MB3 (_PRCM_MBOX_HEADER + 0x3) 77 #define PRCM_MBOX_HEADER_REQ_MB4 (_PRCM_MBOX_HEADER + 0x4) 78 #define PRCM_MBOX_HEADER_REQ_MB5 (_PRCM_MBOX_HEADER + 0x5) 79 #define PRCM_MBOX_HEADER_ACK_MB0 (_PRCM_MBOX_HEADER + 0x8) 80 81 /* Req Mailboxes */ 82 #define PRCM_REQ_MB0 0xFDC /* 12 bytes */ 83 #define PRCM_REQ_MB1 0xFD0 /* 12 bytes */ 84 #define PRCM_REQ_MB2 0xFC0 /* 16 bytes */ 85 #define PRCM_REQ_MB3 0xE4C /* 372 bytes */ 86 #define PRCM_REQ_MB4 0xE48 /* 4 bytes */ 87 #define PRCM_REQ_MB5 0xE44 /* 4 bytes */ 88 89 /* Ack Mailboxes */ 90 #define PRCM_ACK_MB0 0xE08 /* 52 bytes */ 91 #define PRCM_ACK_MB1 0xE04 /* 4 bytes */ 92 #define PRCM_ACK_MB2 0xE00 /* 4 bytes */ 93 #define PRCM_ACK_MB3 0xDFC /* 4 bytes */ 94 #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */ 95 #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */ 96 97 /* Mailbox 0 headers */ 98 #define MB0H_POWER_STATE_TRANS 0 99 #define MB0H_CONFIG_WAKEUPS_EXE 1 100 #define MB0H_READ_WAKEUP_ACK 3 101 #define MB0H_CONFIG_WAKEUPS_SLEEP 4 102 103 #define MB0H_WAKEUP_EXE 2 104 #define MB0H_WAKEUP_SLEEP 5 105 106 /* Mailbox 0 REQs */ 107 #define PRCM_REQ_MB0_AP_POWER_STATE (PRCM_REQ_MB0 + 0x0) 108 #define PRCM_REQ_MB0_AP_PLL_STATE (PRCM_REQ_MB0 + 0x1) 109 #define PRCM_REQ_MB0_ULP_CLOCK_STATE (PRCM_REQ_MB0 + 0x2) 110 #define PRCM_REQ_MB0_DO_NOT_WFI (PRCM_REQ_MB0 + 0x3) 111 #define PRCM_REQ_MB0_WAKEUP_8500 (PRCM_REQ_MB0 + 0x4) 112 #define PRCM_REQ_MB0_WAKEUP_4500 (PRCM_REQ_MB0 + 0x8) 113 114 /* Mailbox 0 ACKs */ 115 #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS (PRCM_ACK_MB0 + 0x0) 116 #define PRCM_ACK_MB0_READ_POINTER (PRCM_ACK_MB0 + 0x1) 117 #define PRCM_ACK_MB0_WAKEUP_0_8500 (PRCM_ACK_MB0 + 0x4) 118 #define PRCM_ACK_MB0_WAKEUP_0_4500 (PRCM_ACK_MB0 + 0x8) 119 #define PRCM_ACK_MB0_WAKEUP_1_8500 (PRCM_ACK_MB0 + 0x1C) 120 #define PRCM_ACK_MB0_WAKEUP_1_4500 (PRCM_ACK_MB0 + 0x20) 121 #define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20 122 123 /* Mailbox 1 headers */ 124 #define MB1H_ARM_APE_OPP 0x0 125 #define MB1H_RESET_MODEM 0x2 126 #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3 127 #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4 128 #define MB1H_RELEASE_USB_WAKEUP 0x5 129 #define MB1H_PLL_ON_OFF 0x6 130 131 /* Mailbox 1 Requests */ 132 #define PRCM_REQ_MB1_ARM_OPP (PRCM_REQ_MB1 + 0x0) 133 #define PRCM_REQ_MB1_APE_OPP (PRCM_REQ_MB1 + 0x1) 134 #define PRCM_REQ_MB1_PLL_ON_OFF (PRCM_REQ_MB1 + 0x4) 135 #define PLL_SOC0_OFF 0x1 136 #define PLL_SOC0_ON 0x2 137 #define PLL_SOC1_OFF 0x4 138 #define PLL_SOC1_ON 0x8 139 140 /* Mailbox 1 ACKs */ 141 #define PRCM_ACK_MB1_CURRENT_ARM_OPP (PRCM_ACK_MB1 + 0x0) 142 #define PRCM_ACK_MB1_CURRENT_APE_OPP (PRCM_ACK_MB1 + 0x1) 143 #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2) 144 #define PRCM_ACK_MB1_DVFS_STATUS (PRCM_ACK_MB1 + 0x3) 145 146 /* Mailbox 2 headers */ 147 #define MB2H_DPS 0x0 148 #define MB2H_AUTO_PWR 0x1 149 150 /* Mailbox 2 REQs */ 151 #define PRCM_REQ_MB2_SVA_MMDSP (PRCM_REQ_MB2 + 0x0) 152 #define PRCM_REQ_MB2_SVA_PIPE (PRCM_REQ_MB2 + 0x1) 153 #define PRCM_REQ_MB2_SIA_MMDSP (PRCM_REQ_MB2 + 0x2) 154 #define PRCM_REQ_MB2_SIA_PIPE (PRCM_REQ_MB2 + 0x3) 155 #define PRCM_REQ_MB2_SGA (PRCM_REQ_MB2 + 0x4) 156 #define PRCM_REQ_MB2_B2R2_MCDE (PRCM_REQ_MB2 + 0x5) 157 #define PRCM_REQ_MB2_ESRAM12 (PRCM_REQ_MB2 + 0x6) 158 #define PRCM_REQ_MB2_ESRAM34 (PRCM_REQ_MB2 + 0x7) 159 #define PRCM_REQ_MB2_AUTO_PM_SLEEP (PRCM_REQ_MB2 + 0x8) 160 #define PRCM_REQ_MB2_AUTO_PM_IDLE (PRCM_REQ_MB2 + 0xC) 161 162 /* Mailbox 2 ACKs */ 163 #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0) 164 #define HWACC_PWR_ST_OK 0xFE 165 166 /* Mailbox 3 headers */ 167 #define MB3H_ANC 0x0 168 #define MB3H_SIDETONE 0x1 169 #define MB3H_SYSCLK 0xE 170 171 /* Mailbox 3 Requests */ 172 #define PRCM_REQ_MB3_ANC_FIR_COEFF (PRCM_REQ_MB3 + 0x0) 173 #define PRCM_REQ_MB3_ANC_IIR_COEFF (PRCM_REQ_MB3 + 0x20) 174 #define PRCM_REQ_MB3_ANC_SHIFTER (PRCM_REQ_MB3 + 0x60) 175 #define PRCM_REQ_MB3_ANC_WARP (PRCM_REQ_MB3 + 0x64) 176 #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN (PRCM_REQ_MB3 + 0x68) 177 #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C) 178 #define PRCM_REQ_MB3_SYSCLK_MGT (PRCM_REQ_MB3 + 0x16C) 179 180 /* Mailbox 4 headers */ 181 #define MB4H_DDR_INIT 0x0 182 #define MB4H_MEM_ST 0x1 183 #define MB4H_HOTDOG 0x12 184 #define MB4H_HOTMON 0x13 185 #define MB4H_HOT_PERIOD 0x14 186 #define MB4H_A9WDOG_CONF 0x16 187 #define MB4H_A9WDOG_EN 0x17 188 #define MB4H_A9WDOG_DIS 0x18 189 #define MB4H_A9WDOG_LOAD 0x19 190 #define MB4H_A9WDOG_KICK 0x20 191 192 /* Mailbox 4 Requests */ 193 #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE (PRCM_REQ_MB4 + 0x0) 194 #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE (PRCM_REQ_MB4 + 0x1) 195 #define PRCM_REQ_MB4_ESRAM0_ST (PRCM_REQ_MB4 + 0x3) 196 #define PRCM_REQ_MB4_HOTDOG_THRESHOLD (PRCM_REQ_MB4 + 0x0) 197 #define PRCM_REQ_MB4_HOTMON_LOW (PRCM_REQ_MB4 + 0x0) 198 #define PRCM_REQ_MB4_HOTMON_HIGH (PRCM_REQ_MB4 + 0x1) 199 #define PRCM_REQ_MB4_HOTMON_CONFIG (PRCM_REQ_MB4 + 0x2) 200 #define PRCM_REQ_MB4_HOT_PERIOD (PRCM_REQ_MB4 + 0x0) 201 #define HOTMON_CONFIG_LOW BIT(0) 202 #define HOTMON_CONFIG_HIGH BIT(1) 203 #define PRCM_REQ_MB4_A9WDOG_0 (PRCM_REQ_MB4 + 0x0) 204 #define PRCM_REQ_MB4_A9WDOG_1 (PRCM_REQ_MB4 + 0x1) 205 #define PRCM_REQ_MB4_A9WDOG_2 (PRCM_REQ_MB4 + 0x2) 206 #define PRCM_REQ_MB4_A9WDOG_3 (PRCM_REQ_MB4 + 0x3) 207 #define A9WDOG_AUTO_OFF_EN BIT(7) 208 #define A9WDOG_AUTO_OFF_DIS 0 209 #define A9WDOG_ID_MASK 0xf 210 211 /* Mailbox 5 Requests */ 212 #define PRCM_REQ_MB5_I2C_SLAVE_OP (PRCM_REQ_MB5 + 0x0) 213 #define PRCM_REQ_MB5_I2C_HW_BITS (PRCM_REQ_MB5 + 0x1) 214 #define PRCM_REQ_MB5_I2C_REG (PRCM_REQ_MB5 + 0x2) 215 #define PRCM_REQ_MB5_I2C_VAL (PRCM_REQ_MB5 + 0x3) 216 #define PRCMU_I2C_WRITE(slave) (((slave) << 1) | BIT(6)) 217 #define PRCMU_I2C_READ(slave) (((slave) << 1) | BIT(0) | BIT(6)) 218 #define PRCMU_I2C_STOP_EN BIT(3) 219 220 /* Mailbox 5 ACKs */ 221 #define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1) 222 #define PRCM_ACK_MB5_I2C_VAL (PRCM_ACK_MB5 + 0x3) 223 #define I2C_WR_OK 0x1 224 #define I2C_RD_OK 0x2 225 226 #define NUM_MB 8 227 #define MBOX_BIT BIT 228 #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1) 229 230 /* 231 * Wakeups/IRQs 232 */ 233 234 #define WAKEUP_BIT_RTC BIT(0) 235 #define WAKEUP_BIT_RTT0 BIT(1) 236 #define WAKEUP_BIT_RTT1 BIT(2) 237 #define WAKEUP_BIT_HSI0 BIT(3) 238 #define WAKEUP_BIT_HSI1 BIT(4) 239 #define WAKEUP_BIT_CA_WAKE BIT(5) 240 #define WAKEUP_BIT_USB BIT(6) 241 #define WAKEUP_BIT_ABB BIT(7) 242 #define WAKEUP_BIT_ABB_FIFO BIT(8) 243 #define WAKEUP_BIT_SYSCLK_OK BIT(9) 244 #define WAKEUP_BIT_CA_SLEEP BIT(10) 245 #define WAKEUP_BIT_AC_WAKE_ACK BIT(11) 246 #define WAKEUP_BIT_SIDE_TONE_OK BIT(12) 247 #define WAKEUP_BIT_ANC_OK BIT(13) 248 #define WAKEUP_BIT_SW_ERROR BIT(14) 249 #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15) 250 #define WAKEUP_BIT_ARM BIT(17) 251 #define WAKEUP_BIT_HOTMON_LOW BIT(18) 252 #define WAKEUP_BIT_HOTMON_HIGH BIT(19) 253 #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20) 254 #define WAKEUP_BIT_GPIO0 BIT(23) 255 #define WAKEUP_BIT_GPIO1 BIT(24) 256 #define WAKEUP_BIT_GPIO2 BIT(25) 257 #define WAKEUP_BIT_GPIO3 BIT(26) 258 #define WAKEUP_BIT_GPIO4 BIT(27) 259 #define WAKEUP_BIT_GPIO5 BIT(28) 260 #define WAKEUP_BIT_GPIO6 BIT(29) 261 #define WAKEUP_BIT_GPIO7 BIT(30) 262 #define WAKEUP_BIT_GPIO8 BIT(31) 263 264 static struct { 265 bool valid; 266 struct prcmu_fw_version version; 267 } fw_info; 268 269 static struct irq_domain *db8500_irq_domain; 270 271 /* 272 * This vector maps irq numbers to the bits in the bit field used in 273 * communication with the PRCMU firmware. 274 * 275 * The reason for having this is to keep the irq numbers contiguous even though 276 * the bits in the bit field are not. (The bits also have a tendency to move 277 * around, to further complicate matters.) 278 */ 279 #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name)) 280 #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name) 281 282 #define IRQ_PRCMU_RTC 0 283 #define IRQ_PRCMU_RTT0 1 284 #define IRQ_PRCMU_RTT1 2 285 #define IRQ_PRCMU_HSI0 3 286 #define IRQ_PRCMU_HSI1 4 287 #define IRQ_PRCMU_CA_WAKE 5 288 #define IRQ_PRCMU_USB 6 289 #define IRQ_PRCMU_ABB 7 290 #define IRQ_PRCMU_ABB_FIFO 8 291 #define IRQ_PRCMU_ARM 9 292 #define IRQ_PRCMU_MODEM_SW_RESET_REQ 10 293 #define IRQ_PRCMU_GPIO0 11 294 #define IRQ_PRCMU_GPIO1 12 295 #define IRQ_PRCMU_GPIO2 13 296 #define IRQ_PRCMU_GPIO3 14 297 #define IRQ_PRCMU_GPIO4 15 298 #define IRQ_PRCMU_GPIO5 16 299 #define IRQ_PRCMU_GPIO6 17 300 #define IRQ_PRCMU_GPIO7 18 301 #define IRQ_PRCMU_GPIO8 19 302 #define IRQ_PRCMU_CA_SLEEP 20 303 #define IRQ_PRCMU_HOTMON_LOW 21 304 #define IRQ_PRCMU_HOTMON_HIGH 22 305 #define NUM_PRCMU_WAKEUPS 23 306 307 static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = { 308 IRQ_ENTRY(RTC), 309 IRQ_ENTRY(RTT0), 310 IRQ_ENTRY(RTT1), 311 IRQ_ENTRY(HSI0), 312 IRQ_ENTRY(HSI1), 313 IRQ_ENTRY(CA_WAKE), 314 IRQ_ENTRY(USB), 315 IRQ_ENTRY(ABB), 316 IRQ_ENTRY(ABB_FIFO), 317 IRQ_ENTRY(CA_SLEEP), 318 IRQ_ENTRY(ARM), 319 IRQ_ENTRY(HOTMON_LOW), 320 IRQ_ENTRY(HOTMON_HIGH), 321 IRQ_ENTRY(MODEM_SW_RESET_REQ), 322 IRQ_ENTRY(GPIO0), 323 IRQ_ENTRY(GPIO1), 324 IRQ_ENTRY(GPIO2), 325 IRQ_ENTRY(GPIO3), 326 IRQ_ENTRY(GPIO4), 327 IRQ_ENTRY(GPIO5), 328 IRQ_ENTRY(GPIO6), 329 IRQ_ENTRY(GPIO7), 330 IRQ_ENTRY(GPIO8) 331 }; 332 333 #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1) 334 #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name) 335 static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = { 336 WAKEUP_ENTRY(RTC), 337 WAKEUP_ENTRY(RTT0), 338 WAKEUP_ENTRY(RTT1), 339 WAKEUP_ENTRY(HSI0), 340 WAKEUP_ENTRY(HSI1), 341 WAKEUP_ENTRY(USB), 342 WAKEUP_ENTRY(ABB), 343 WAKEUP_ENTRY(ABB_FIFO), 344 WAKEUP_ENTRY(ARM) 345 }; 346 347 /* 348 * mb0_transfer - state needed for mailbox 0 communication. 349 * @lock: The transaction lock. 350 * @dbb_events_lock: A lock used to handle concurrent access to (parts of) 351 * the request data. 352 * @mask_work: Work structure used for (un)masking wakeup interrupts. 353 * @req: Request data that need to persist between requests. 354 */ 355 static struct { 356 spinlock_t lock; 357 spinlock_t dbb_irqs_lock; 358 struct work_struct mask_work; 359 struct mutex ac_wake_lock; 360 struct completion ac_wake_work; 361 struct { 362 u32 dbb_irqs; 363 u32 dbb_wakeups; 364 u32 abb_events; 365 } req; 366 } mb0_transfer; 367 368 /* 369 * mb1_transfer - state needed for mailbox 1 communication. 370 * @lock: The transaction lock. 371 * @work: The transaction completion structure. 372 * @ape_opp: The current APE OPP. 373 * @ack: Reply ("acknowledge") data. 374 */ 375 static struct { 376 struct mutex lock; 377 struct completion work; 378 u8 ape_opp; 379 struct { 380 u8 header; 381 u8 arm_opp; 382 u8 ape_opp; 383 u8 ape_voltage_status; 384 } ack; 385 } mb1_transfer; 386 387 /* 388 * mb2_transfer - state needed for mailbox 2 communication. 389 * @lock: The transaction lock. 390 * @work: The transaction completion structure. 391 * @auto_pm_lock: The autonomous power management configuration lock. 392 * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled. 393 * @req: Request data that need to persist between requests. 394 * @ack: Reply ("acknowledge") data. 395 */ 396 static struct { 397 struct mutex lock; 398 struct completion work; 399 spinlock_t auto_pm_lock; 400 bool auto_pm_enabled; 401 struct { 402 u8 status; 403 } ack; 404 } mb2_transfer; 405 406 /* 407 * mb3_transfer - state needed for mailbox 3 communication. 408 * @lock: The request lock. 409 * @sysclk_lock: A lock used to handle concurrent sysclk requests. 410 * @sysclk_work: Work structure used for sysclk requests. 411 */ 412 static struct { 413 spinlock_t lock; 414 struct mutex sysclk_lock; 415 struct completion sysclk_work; 416 } mb3_transfer; 417 418 /* 419 * mb4_transfer - state needed for mailbox 4 communication. 420 * @lock: The transaction lock. 421 * @work: The transaction completion structure. 422 */ 423 static struct { 424 struct mutex lock; 425 struct completion work; 426 } mb4_transfer; 427 428 /* 429 * mb5_transfer - state needed for mailbox 5 communication. 430 * @lock: The transaction lock. 431 * @work: The transaction completion structure. 432 * @ack: Reply ("acknowledge") data. 433 */ 434 static struct { 435 struct mutex lock; 436 struct completion work; 437 struct { 438 u8 status; 439 u8 value; 440 } ack; 441 } mb5_transfer; 442 443 static atomic_t ac_wake_req_state = ATOMIC_INIT(0); 444 445 /* Spinlocks */ 446 static DEFINE_SPINLOCK(prcmu_lock); 447 static DEFINE_SPINLOCK(clkout_lock); 448 449 /* Global var to runtime determine TCDM base for v2 or v1 */ 450 static __iomem void *tcdm_base; 451 static __iomem void *prcmu_base; 452 453 struct clk_mgt { 454 u32 offset; 455 u32 pllsw; 456 int branch; 457 bool clk38div; 458 }; 459 460 enum { 461 PLL_RAW, 462 PLL_FIX, 463 PLL_DIV 464 }; 465 466 static DEFINE_SPINLOCK(clk_mgt_lock); 467 468 #define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \ 469 { (PRCM_##_name##_MGT), 0 , _branch, _clk38div} 470 static struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = { 471 CLK_MGT_ENTRY(SGACLK, PLL_DIV, false), 472 CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true), 473 CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true), 474 CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true), 475 CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true), 476 CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true), 477 CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true), 478 CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true), 479 CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true), 480 CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true), 481 CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true), 482 CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true), 483 CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true), 484 CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true), 485 CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true), 486 CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true), 487 CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true), 488 CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false), 489 CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true), 490 CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true), 491 CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true), 492 CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true), 493 CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false), 494 CLK_MGT_ENTRY(DMACLK, PLL_DIV, true), 495 CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true), 496 CLK_MGT_ENTRY(TVCLK, PLL_FIX, true), 497 CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true), 498 CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true), 499 CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false), 500 }; 501 502 struct dsiclk { 503 u32 divsel_mask; 504 u32 divsel_shift; 505 u32 divsel; 506 }; 507 508 static struct dsiclk dsiclk[2] = { 509 { 510 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK, 511 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT, 512 .divsel = PRCM_DSI_PLLOUT_SEL_PHI, 513 }, 514 { 515 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK, 516 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT, 517 .divsel = PRCM_DSI_PLLOUT_SEL_PHI, 518 } 519 }; 520 521 struct dsiescclk { 522 u32 en; 523 u32 div_mask; 524 u32 div_shift; 525 }; 526 527 static struct dsiescclk dsiescclk[3] = { 528 { 529 .en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN, 530 .div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK, 531 .div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT, 532 }, 533 { 534 .en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN, 535 .div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK, 536 .div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT, 537 }, 538 { 539 .en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN, 540 .div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK, 541 .div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT, 542 } 543 }; 544 545 546 /* 547 * Used by MCDE to setup all necessary PRCMU registers 548 */ 549 #define PRCMU_RESET_DSIPLL 0x00004000 550 #define PRCMU_UNCLAMP_DSIPLL 0x00400800 551 552 #define PRCMU_CLK_PLL_DIV_SHIFT 0 553 #define PRCMU_CLK_PLL_SW_SHIFT 5 554 #define PRCMU_CLK_38 (1 << 9) 555 #define PRCMU_CLK_38_SRC (1 << 10) 556 #define PRCMU_CLK_38_DIV (1 << 11) 557 558 /* PLLDIV=12, PLLSW=4 (PLLDDR) */ 559 #define PRCMU_DSI_CLOCK_SETTING 0x0000008C 560 561 /* DPI 50000000 Hz */ 562 #define PRCMU_DPI_CLOCK_SETTING ((1 << PRCMU_CLK_PLL_SW_SHIFT) | \ 563 (16 << PRCMU_CLK_PLL_DIV_SHIFT)) 564 #define PRCMU_DSI_LP_CLOCK_SETTING 0x00000E00 565 566 /* D=101, N=1, R=4, SELDIV2=0 */ 567 #define PRCMU_PLLDSI_FREQ_SETTING 0x00040165 568 569 #define PRCMU_ENABLE_PLLDSI 0x00000001 570 #define PRCMU_DISABLE_PLLDSI 0x00000000 571 #define PRCMU_RELEASE_RESET_DSS 0x0000400C 572 #define PRCMU_DSI_PLLOUT_SEL_SETTING 0x00000202 573 /* ESC clk, div0=1, div1=1, div2=3 */ 574 #define PRCMU_ENABLE_ESCAPE_CLOCK_DIV 0x07030101 575 #define PRCMU_DISABLE_ESCAPE_CLOCK_DIV 0x00030101 576 #define PRCMU_DSI_RESET_SW 0x00000007 577 578 #define PRCMU_PLLDSI_LOCKP_LOCKED 0x3 579 580 int db8500_prcmu_enable_dsipll(void) 581 { 582 int i; 583 584 /* Clear DSIPLL_RESETN */ 585 writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR); 586 /* Unclamp DSIPLL in/out */ 587 writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR); 588 589 /* Set DSI PLL FREQ */ 590 writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ); 591 writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL); 592 /* Enable Escape clocks */ 593 writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV); 594 595 /* Start DSI PLL */ 596 writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE); 597 /* Reset DSI PLL */ 598 writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET); 599 for (i = 0; i < 10; i++) { 600 if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED) 601 == PRCMU_PLLDSI_LOCKP_LOCKED) 602 break; 603 udelay(100); 604 } 605 /* Set DSIPLL_RESETN */ 606 writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET); 607 return 0; 608 } 609 610 int db8500_prcmu_disable_dsipll(void) 611 { 612 /* Disable dsi pll */ 613 writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE); 614 /* Disable escapeclock */ 615 writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV); 616 return 0; 617 } 618 619 int db8500_prcmu_set_display_clocks(void) 620 { 621 unsigned long flags; 622 623 spin_lock_irqsave(&clk_mgt_lock, flags); 624 625 /* Grab the HW semaphore. */ 626 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0) 627 cpu_relax(); 628 629 writel(PRCMU_DSI_CLOCK_SETTING, prcmu_base + PRCM_HDMICLK_MGT); 630 writel(PRCMU_DSI_LP_CLOCK_SETTING, prcmu_base + PRCM_TVCLK_MGT); 631 writel(PRCMU_DPI_CLOCK_SETTING, prcmu_base + PRCM_LCDCLK_MGT); 632 633 /* Release the HW semaphore. */ 634 writel(0, PRCM_SEM); 635 636 spin_unlock_irqrestore(&clk_mgt_lock, flags); 637 638 return 0; 639 } 640 641 u32 db8500_prcmu_read(unsigned int reg) 642 { 643 return readl(prcmu_base + reg); 644 } 645 646 void db8500_prcmu_write(unsigned int reg, u32 value) 647 { 648 unsigned long flags; 649 650 spin_lock_irqsave(&prcmu_lock, flags); 651 writel(value, (prcmu_base + reg)); 652 spin_unlock_irqrestore(&prcmu_lock, flags); 653 } 654 655 void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value) 656 { 657 u32 val; 658 unsigned long flags; 659 660 spin_lock_irqsave(&prcmu_lock, flags); 661 val = readl(prcmu_base + reg); 662 val = ((val & ~mask) | (value & mask)); 663 writel(val, (prcmu_base + reg)); 664 spin_unlock_irqrestore(&prcmu_lock, flags); 665 } 666 667 struct prcmu_fw_version *prcmu_get_fw_version(void) 668 { 669 return fw_info.valid ? &fw_info.version : NULL; 670 } 671 672 static bool prcmu_is_ulppll_disabled(void) 673 { 674 struct prcmu_fw_version *ver; 675 676 ver = prcmu_get_fw_version(); 677 return ver && ver->project == PRCMU_FW_PROJECT_U8420_SYSCLK; 678 } 679 680 bool prcmu_has_arm_maxopp(void) 681 { 682 return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) & 683 PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK; 684 } 685 686 /** 687 * prcmu_set_rc_a2p - This function is used to run few power state sequences 688 * @val: Value to be set, i.e. transition requested 689 * Returns: 0 on success, -EINVAL on invalid argument 690 * 691 * This function is used to run the following power state sequences - 692 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep 693 */ 694 int prcmu_set_rc_a2p(enum romcode_write val) 695 { 696 if (val < RDY_2_DS || val > RDY_2_XP70_RST) 697 return -EINVAL; 698 writeb(val, (tcdm_base + PRCM_ROMCODE_A2P)); 699 return 0; 700 } 701 702 /** 703 * prcmu_get_rc_p2a - This function is used to get power state sequences 704 * Returns: the power transition that has last happened 705 * 706 * This function can return the following transitions- 707 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep 708 */ 709 enum romcode_read prcmu_get_rc_p2a(void) 710 { 711 return readb(tcdm_base + PRCM_ROMCODE_P2A); 712 } 713 714 /** 715 * prcmu_get_current_mode - Return the current XP70 power mode 716 * Returns: Returns the current AP(ARM) power mode: init, 717 * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset 718 */ 719 enum ap_pwrst prcmu_get_xp70_current_state(void) 720 { 721 return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE); 722 } 723 724 /** 725 * prcmu_config_clkout - Configure one of the programmable clock outputs. 726 * @clkout: The CLKOUT number (0 or 1). 727 * @source: The clock to be used (one of the PRCMU_CLKSRC_*). 728 * @div: The divider to be applied. 729 * 730 * Configures one of the programmable clock outputs (CLKOUTs). 731 * @div should be in the range [1,63] to request a configuration, or 0 to 732 * inform that the configuration is no longer requested. 733 */ 734 int prcmu_config_clkout(u8 clkout, u8 source, u8 div) 735 { 736 static int requests[2]; 737 int r = 0; 738 unsigned long flags; 739 u32 val; 740 u32 bits; 741 u32 mask; 742 u32 div_mask; 743 744 BUG_ON(clkout > 1); 745 BUG_ON(div > 63); 746 BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009)); 747 748 if (!div && !requests[clkout]) 749 return -EINVAL; 750 751 if (clkout == 0) { 752 div_mask = PRCM_CLKOCR_CLKODIV0_MASK; 753 mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK); 754 bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) | 755 (div << PRCM_CLKOCR_CLKODIV0_SHIFT)); 756 } else { 757 div_mask = PRCM_CLKOCR_CLKODIV1_MASK; 758 mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK | 759 PRCM_CLKOCR_CLK1TYPE); 760 bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) | 761 (div << PRCM_CLKOCR_CLKODIV1_SHIFT)); 762 } 763 bits &= mask; 764 765 spin_lock_irqsave(&clkout_lock, flags); 766 767 val = readl(PRCM_CLKOCR); 768 if (val & div_mask) { 769 if (div) { 770 if ((val & mask) != bits) { 771 r = -EBUSY; 772 goto unlock_and_return; 773 } 774 } else { 775 if ((val & mask & ~div_mask) != bits) { 776 r = -EINVAL; 777 goto unlock_and_return; 778 } 779 } 780 } 781 writel((bits | (val & ~mask)), PRCM_CLKOCR); 782 requests[clkout] += (div ? 1 : -1); 783 784 unlock_and_return: 785 spin_unlock_irqrestore(&clkout_lock, flags); 786 787 return r; 788 } 789 790 int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll) 791 { 792 unsigned long flags; 793 794 BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state)); 795 796 spin_lock_irqsave(&mb0_transfer.lock, flags); 797 798 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0)) 799 cpu_relax(); 800 801 writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0)); 802 writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE)); 803 writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE)); 804 writeb((keep_ulp_clk ? 1 : 0), 805 (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE)); 806 writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI)); 807 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET); 808 809 spin_unlock_irqrestore(&mb0_transfer.lock, flags); 810 811 return 0; 812 } 813 814 u8 db8500_prcmu_get_power_state_result(void) 815 { 816 return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS); 817 } 818 819 /* This function should only be called while mb0_transfer.lock is held. */ 820 static void config_wakeups(void) 821 { 822 const u8 header[2] = { 823 MB0H_CONFIG_WAKEUPS_EXE, 824 MB0H_CONFIG_WAKEUPS_SLEEP 825 }; 826 static u32 last_dbb_events; 827 static u32 last_abb_events; 828 u32 dbb_events; 829 u32 abb_events; 830 unsigned int i; 831 832 dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups; 833 dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK); 834 835 abb_events = mb0_transfer.req.abb_events; 836 837 if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events)) 838 return; 839 840 for (i = 0; i < 2; i++) { 841 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0)) 842 cpu_relax(); 843 writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500)); 844 writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500)); 845 writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0)); 846 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET); 847 } 848 last_dbb_events = dbb_events; 849 last_abb_events = abb_events; 850 } 851 852 void db8500_prcmu_enable_wakeups(u32 wakeups) 853 { 854 unsigned long flags; 855 u32 bits; 856 int i; 857 858 BUG_ON(wakeups != (wakeups & VALID_WAKEUPS)); 859 860 for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) { 861 if (wakeups & BIT(i)) 862 bits |= prcmu_wakeup_bit[i]; 863 } 864 865 spin_lock_irqsave(&mb0_transfer.lock, flags); 866 867 mb0_transfer.req.dbb_wakeups = bits; 868 config_wakeups(); 869 870 spin_unlock_irqrestore(&mb0_transfer.lock, flags); 871 } 872 873 void db8500_prcmu_config_abb_event_readout(u32 abb_events) 874 { 875 unsigned long flags; 876 877 spin_lock_irqsave(&mb0_transfer.lock, flags); 878 879 mb0_transfer.req.abb_events = abb_events; 880 config_wakeups(); 881 882 spin_unlock_irqrestore(&mb0_transfer.lock, flags); 883 } 884 885 void db8500_prcmu_get_abb_event_buffer(void __iomem **buf) 886 { 887 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1) 888 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500); 889 else 890 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500); 891 } 892 893 /** 894 * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP 895 * @opp: The new ARM operating point to which transition is to be made 896 * Returns: 0 on success, non-zero on failure 897 * 898 * This function sets the the operating point of the ARM. 899 */ 900 int db8500_prcmu_set_arm_opp(u8 opp) 901 { 902 int r; 903 904 if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK) 905 return -EINVAL; 906 907 r = 0; 908 909 mutex_lock(&mb1_transfer.lock); 910 911 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1)) 912 cpu_relax(); 913 914 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1)); 915 writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP)); 916 writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP)); 917 918 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET); 919 wait_for_completion(&mb1_transfer.work); 920 921 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) || 922 (mb1_transfer.ack.arm_opp != opp)) 923 r = -EIO; 924 925 mutex_unlock(&mb1_transfer.lock); 926 927 return r; 928 } 929 930 /** 931 * db8500_prcmu_get_arm_opp - get the current ARM OPP 932 * 933 * Returns: the current ARM OPP 934 */ 935 int db8500_prcmu_get_arm_opp(void) 936 { 937 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP); 938 } 939 940 /** 941 * db8500_prcmu_get_ddr_opp - get the current DDR OPP 942 * 943 * Returns: the current DDR OPP 944 */ 945 int db8500_prcmu_get_ddr_opp(void) 946 { 947 return readb(PRCM_DDR_SUBSYS_APE_MINBW); 948 } 949 950 /* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */ 951 static void request_even_slower_clocks(bool enable) 952 { 953 u32 clock_reg[] = { 954 PRCM_ACLK_MGT, 955 PRCM_DMACLK_MGT 956 }; 957 unsigned long flags; 958 unsigned int i; 959 960 spin_lock_irqsave(&clk_mgt_lock, flags); 961 962 /* Grab the HW semaphore. */ 963 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0) 964 cpu_relax(); 965 966 for (i = 0; i < ARRAY_SIZE(clock_reg); i++) { 967 u32 val; 968 u32 div; 969 970 val = readl(prcmu_base + clock_reg[i]); 971 div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK); 972 if (enable) { 973 if ((div <= 1) || (div > 15)) { 974 pr_err("prcmu: Bad clock divider %d in %s\n", 975 div, __func__); 976 goto unlock_and_return; 977 } 978 div <<= 1; 979 } else { 980 if (div <= 2) 981 goto unlock_and_return; 982 div >>= 1; 983 } 984 val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) | 985 (div & PRCM_CLK_MGT_CLKPLLDIV_MASK)); 986 writel(val, prcmu_base + clock_reg[i]); 987 } 988 989 unlock_and_return: 990 /* Release the HW semaphore. */ 991 writel(0, PRCM_SEM); 992 993 spin_unlock_irqrestore(&clk_mgt_lock, flags); 994 } 995 996 /** 997 * db8500_set_ape_opp - set the appropriate APE OPP 998 * @opp: The new APE operating point to which transition is to be made 999 * Returns: 0 on success, non-zero on failure 1000 * 1001 * This function sets the operating point of the APE. 1002 */ 1003 int db8500_prcmu_set_ape_opp(u8 opp) 1004 { 1005 int r = 0; 1006 1007 if (opp == mb1_transfer.ape_opp) 1008 return 0; 1009 1010 mutex_lock(&mb1_transfer.lock); 1011 1012 if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP) 1013 request_even_slower_clocks(false); 1014 1015 if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP)) 1016 goto skip_message; 1017 1018 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1)) 1019 cpu_relax(); 1020 1021 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1)); 1022 writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP)); 1023 writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp), 1024 (tcdm_base + PRCM_REQ_MB1_APE_OPP)); 1025 1026 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET); 1027 wait_for_completion(&mb1_transfer.work); 1028 1029 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) || 1030 (mb1_transfer.ack.ape_opp != opp)) 1031 r = -EIO; 1032 1033 skip_message: 1034 if ((!r && (opp == APE_50_PARTLY_25_OPP)) || 1035 (r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP))) 1036 request_even_slower_clocks(true); 1037 if (!r) 1038 mb1_transfer.ape_opp = opp; 1039 1040 mutex_unlock(&mb1_transfer.lock); 1041 1042 return r; 1043 } 1044 1045 /** 1046 * db8500_prcmu_get_ape_opp - get the current APE OPP 1047 * 1048 * Returns: the current APE OPP 1049 */ 1050 int db8500_prcmu_get_ape_opp(void) 1051 { 1052 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP); 1053 } 1054 1055 /** 1056 * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage 1057 * @enable: true to request the higher voltage, false to drop a request. 1058 * 1059 * Calls to this function to enable and disable requests must be balanced. 1060 */ 1061 int db8500_prcmu_request_ape_opp_100_voltage(bool enable) 1062 { 1063 int r = 0; 1064 u8 header; 1065 static unsigned int requests; 1066 1067 mutex_lock(&mb1_transfer.lock); 1068 1069 if (enable) { 1070 if (0 != requests++) 1071 goto unlock_and_return; 1072 header = MB1H_REQUEST_APE_OPP_100_VOLT; 1073 } else { 1074 if (requests == 0) { 1075 r = -EIO; 1076 goto unlock_and_return; 1077 } else if (1 != requests--) { 1078 goto unlock_and_return; 1079 } 1080 header = MB1H_RELEASE_APE_OPP_100_VOLT; 1081 } 1082 1083 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1)) 1084 cpu_relax(); 1085 1086 writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1)); 1087 1088 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET); 1089 wait_for_completion(&mb1_transfer.work); 1090 1091 if ((mb1_transfer.ack.header != header) || 1092 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0)) 1093 r = -EIO; 1094 1095 unlock_and_return: 1096 mutex_unlock(&mb1_transfer.lock); 1097 1098 return r; 1099 } 1100 1101 /** 1102 * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup 1103 * 1104 * This function releases the power state requirements of a USB wakeup. 1105 */ 1106 int prcmu_release_usb_wakeup_state(void) 1107 { 1108 int r = 0; 1109 1110 mutex_lock(&mb1_transfer.lock); 1111 1112 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1)) 1113 cpu_relax(); 1114 1115 writeb(MB1H_RELEASE_USB_WAKEUP, 1116 (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1)); 1117 1118 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET); 1119 wait_for_completion(&mb1_transfer.work); 1120 1121 if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) || 1122 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0)) 1123 r = -EIO; 1124 1125 mutex_unlock(&mb1_transfer.lock); 1126 1127 return r; 1128 } 1129 1130 static int request_pll(u8 clock, bool enable) 1131 { 1132 int r = 0; 1133 1134 if (clock == PRCMU_PLLSOC0) 1135 clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF); 1136 else if (clock == PRCMU_PLLSOC1) 1137 clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF); 1138 else 1139 return -EINVAL; 1140 1141 mutex_lock(&mb1_transfer.lock); 1142 1143 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1)) 1144 cpu_relax(); 1145 1146 writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1)); 1147 writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF)); 1148 1149 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET); 1150 wait_for_completion(&mb1_transfer.work); 1151 1152 if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF) 1153 r = -EIO; 1154 1155 mutex_unlock(&mb1_transfer.lock); 1156 1157 return r; 1158 } 1159 1160 /** 1161 * db8500_prcmu_set_epod - set the state of a EPOD (power domain) 1162 * @epod_id: The EPOD to set 1163 * @epod_state: The new EPOD state 1164 * 1165 * This function sets the state of a EPOD (power domain). It may not be called 1166 * from interrupt context. 1167 */ 1168 int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state) 1169 { 1170 int r = 0; 1171 bool ram_retention = false; 1172 int i; 1173 1174 /* check argument */ 1175 BUG_ON(epod_id >= NUM_EPOD_ID); 1176 1177 /* set flag if retention is possible */ 1178 switch (epod_id) { 1179 case EPOD_ID_SVAMMDSP: 1180 case EPOD_ID_SIAMMDSP: 1181 case EPOD_ID_ESRAM12: 1182 case EPOD_ID_ESRAM34: 1183 ram_retention = true; 1184 break; 1185 } 1186 1187 /* check argument */ 1188 BUG_ON(epod_state > EPOD_STATE_ON); 1189 BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention); 1190 1191 /* get lock */ 1192 mutex_lock(&mb2_transfer.lock); 1193 1194 /* wait for mailbox */ 1195 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2)) 1196 cpu_relax(); 1197 1198 /* fill in mailbox */ 1199 for (i = 0; i < NUM_EPOD_ID; i++) 1200 writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i)); 1201 writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id)); 1202 1203 writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2)); 1204 1205 writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET); 1206 1207 /* 1208 * The current firmware version does not handle errors correctly, 1209 * and we cannot recover if there is an error. 1210 * This is expected to change when the firmware is updated. 1211 */ 1212 if (!wait_for_completion_timeout(&mb2_transfer.work, 1213 msecs_to_jiffies(20000))) { 1214 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n", 1215 __func__); 1216 r = -EIO; 1217 goto unlock_and_return; 1218 } 1219 1220 if (mb2_transfer.ack.status != HWACC_PWR_ST_OK) 1221 r = -EIO; 1222 1223 unlock_and_return: 1224 mutex_unlock(&mb2_transfer.lock); 1225 return r; 1226 } 1227 1228 /** 1229 * prcmu_configure_auto_pm - Configure autonomous power management. 1230 * @sleep: Configuration for ApSleep. 1231 * @idle: Configuration for ApIdle. 1232 */ 1233 void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep, 1234 struct prcmu_auto_pm_config *idle) 1235 { 1236 u32 sleep_cfg; 1237 u32 idle_cfg; 1238 unsigned long flags; 1239 1240 BUG_ON((sleep == NULL) || (idle == NULL)); 1241 1242 sleep_cfg = (sleep->sva_auto_pm_enable & 0xF); 1243 sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF)); 1244 sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF)); 1245 sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF)); 1246 sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF)); 1247 sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF)); 1248 1249 idle_cfg = (idle->sva_auto_pm_enable & 0xF); 1250 idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF)); 1251 idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF)); 1252 idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF)); 1253 idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF)); 1254 idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF)); 1255 1256 spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags); 1257 1258 /* 1259 * The autonomous power management configuration is done through 1260 * fields in mailbox 2, but these fields are only used as shared 1261 * variables - i.e. there is no need to send a message. 1262 */ 1263 writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP)); 1264 writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE)); 1265 1266 mb2_transfer.auto_pm_enabled = 1267 ((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) || 1268 (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) || 1269 (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) || 1270 (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON)); 1271 1272 spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags); 1273 } 1274 EXPORT_SYMBOL(prcmu_configure_auto_pm); 1275 1276 bool prcmu_is_auto_pm_enabled(void) 1277 { 1278 return mb2_transfer.auto_pm_enabled; 1279 } 1280 1281 static int request_sysclk(bool enable) 1282 { 1283 int r; 1284 unsigned long flags; 1285 1286 r = 0; 1287 1288 mutex_lock(&mb3_transfer.sysclk_lock); 1289 1290 spin_lock_irqsave(&mb3_transfer.lock, flags); 1291 1292 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3)) 1293 cpu_relax(); 1294 1295 writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT)); 1296 1297 writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3)); 1298 writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET); 1299 1300 spin_unlock_irqrestore(&mb3_transfer.lock, flags); 1301 1302 /* 1303 * The firmware only sends an ACK if we want to enable the 1304 * SysClk, and it succeeds. 1305 */ 1306 if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work, 1307 msecs_to_jiffies(20000))) { 1308 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n", 1309 __func__); 1310 r = -EIO; 1311 } 1312 1313 mutex_unlock(&mb3_transfer.sysclk_lock); 1314 1315 return r; 1316 } 1317 1318 static int request_timclk(bool enable) 1319 { 1320 u32 val; 1321 1322 /* 1323 * On the U8420_CLKSEL firmware, the ULP (Ultra Low Power) 1324 * PLL is disabled so we cannot use doze mode, this will 1325 * stop the clock on this firmware. 1326 */ 1327 if (prcmu_is_ulppll_disabled()) 1328 val = 0; 1329 else 1330 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK); 1331 1332 if (!enable) 1333 val |= PRCM_TCR_STOP_TIMERS | 1334 PRCM_TCR_DOZE_MODE | 1335 PRCM_TCR_TENSEL_MASK; 1336 1337 writel(val, PRCM_TCR); 1338 1339 return 0; 1340 } 1341 1342 static int request_clock(u8 clock, bool enable) 1343 { 1344 u32 val; 1345 unsigned long flags; 1346 1347 spin_lock_irqsave(&clk_mgt_lock, flags); 1348 1349 /* Grab the HW semaphore. */ 1350 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0) 1351 cpu_relax(); 1352 1353 val = readl(prcmu_base + clk_mgt[clock].offset); 1354 if (enable) { 1355 val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw); 1356 } else { 1357 clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK); 1358 val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK); 1359 } 1360 writel(val, prcmu_base + clk_mgt[clock].offset); 1361 1362 /* Release the HW semaphore. */ 1363 writel(0, PRCM_SEM); 1364 1365 spin_unlock_irqrestore(&clk_mgt_lock, flags); 1366 1367 return 0; 1368 } 1369 1370 static int request_sga_clock(u8 clock, bool enable) 1371 { 1372 u32 val; 1373 int ret; 1374 1375 if (enable) { 1376 val = readl(PRCM_CGATING_BYPASS); 1377 writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS); 1378 } 1379 1380 ret = request_clock(clock, enable); 1381 1382 if (!ret && !enable) { 1383 val = readl(PRCM_CGATING_BYPASS); 1384 writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS); 1385 } 1386 1387 return ret; 1388 } 1389 1390 static inline bool plldsi_locked(void) 1391 { 1392 return (readl(PRCM_PLLDSI_LOCKP) & 1393 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 | 1394 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) == 1395 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 | 1396 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3); 1397 } 1398 1399 static int request_plldsi(bool enable) 1400 { 1401 int r = 0; 1402 u32 val; 1403 1404 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP | 1405 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ? 1406 PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET)); 1407 1408 val = readl(PRCM_PLLDSI_ENABLE); 1409 if (enable) 1410 val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE; 1411 else 1412 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE; 1413 writel(val, PRCM_PLLDSI_ENABLE); 1414 1415 if (enable) { 1416 unsigned int i; 1417 bool locked = plldsi_locked(); 1418 1419 for (i = 10; !locked && (i > 0); --i) { 1420 udelay(100); 1421 locked = plldsi_locked(); 1422 } 1423 if (locked) { 1424 writel(PRCM_APE_RESETN_DSIPLL_RESETN, 1425 PRCM_APE_RESETN_SET); 1426 } else { 1427 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP | 1428 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), 1429 PRCM_MMIP_LS_CLAMP_SET); 1430 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE; 1431 writel(val, PRCM_PLLDSI_ENABLE); 1432 r = -EAGAIN; 1433 } 1434 } else { 1435 writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR); 1436 } 1437 return r; 1438 } 1439 1440 static int request_dsiclk(u8 n, bool enable) 1441 { 1442 u32 val; 1443 1444 val = readl(PRCM_DSI_PLLOUT_SEL); 1445 val &= ~dsiclk[n].divsel_mask; 1446 val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) << 1447 dsiclk[n].divsel_shift); 1448 writel(val, PRCM_DSI_PLLOUT_SEL); 1449 return 0; 1450 } 1451 1452 static int request_dsiescclk(u8 n, bool enable) 1453 { 1454 u32 val; 1455 1456 val = readl(PRCM_DSITVCLK_DIV); 1457 enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en); 1458 writel(val, PRCM_DSITVCLK_DIV); 1459 return 0; 1460 } 1461 1462 /** 1463 * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled. 1464 * @clock: The clock for which the request is made. 1465 * @enable: Whether the clock should be enabled (true) or disabled (false). 1466 * 1467 * This function should only be used by the clock implementation. 1468 * Do not use it from any other place! 1469 */ 1470 int db8500_prcmu_request_clock(u8 clock, bool enable) 1471 { 1472 if (clock == PRCMU_SGACLK) 1473 return request_sga_clock(clock, enable); 1474 else if (clock < PRCMU_NUM_REG_CLOCKS) 1475 return request_clock(clock, enable); 1476 else if (clock == PRCMU_TIMCLK) 1477 return request_timclk(enable); 1478 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK)) 1479 return request_dsiclk((clock - PRCMU_DSI0CLK), enable); 1480 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK)) 1481 return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable); 1482 else if (clock == PRCMU_PLLDSI) 1483 return request_plldsi(enable); 1484 else if (clock == PRCMU_SYSCLK) 1485 return request_sysclk(enable); 1486 else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1)) 1487 return request_pll(clock, enable); 1488 else 1489 return -EINVAL; 1490 } 1491 1492 static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate, 1493 int branch) 1494 { 1495 u64 rate; 1496 u32 val; 1497 u32 d; 1498 u32 div = 1; 1499 1500 val = readl(reg); 1501 1502 rate = src_rate; 1503 rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT); 1504 1505 d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT); 1506 if (d > 1) 1507 div *= d; 1508 1509 d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT); 1510 if (d > 1) 1511 div *= d; 1512 1513 if (val & PRCM_PLL_FREQ_SELDIV2) 1514 div *= 2; 1515 1516 if ((branch == PLL_FIX) || ((branch == PLL_DIV) && 1517 (val & PRCM_PLL_FREQ_DIV2EN) && 1518 ((reg == PRCM_PLLSOC0_FREQ) || 1519 (reg == PRCM_PLLARM_FREQ) || 1520 (reg == PRCM_PLLDDR_FREQ)))) 1521 div *= 2; 1522 1523 (void)do_div(rate, div); 1524 1525 return (unsigned long)rate; 1526 } 1527 1528 #define ROOT_CLOCK_RATE 38400000 1529 1530 static unsigned long clock_rate(u8 clock) 1531 { 1532 u32 val; 1533 u32 pllsw; 1534 unsigned long rate = ROOT_CLOCK_RATE; 1535 1536 val = readl(prcmu_base + clk_mgt[clock].offset); 1537 1538 if (val & PRCM_CLK_MGT_CLK38) { 1539 if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV)) 1540 rate /= 2; 1541 return rate; 1542 } 1543 1544 val |= clk_mgt[clock].pllsw; 1545 pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK); 1546 1547 if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0) 1548 rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch); 1549 else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1) 1550 rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch); 1551 else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR) 1552 rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch); 1553 else 1554 return 0; 1555 1556 if ((clock == PRCMU_SGACLK) && 1557 (val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) { 1558 u64 r = (rate * 10); 1559 1560 (void)do_div(r, 25); 1561 return (unsigned long)r; 1562 } 1563 val &= PRCM_CLK_MGT_CLKPLLDIV_MASK; 1564 if (val) 1565 return rate / val; 1566 else 1567 return 0; 1568 } 1569 1570 static unsigned long armss_rate(void) 1571 { 1572 u32 r; 1573 unsigned long rate; 1574 1575 r = readl(PRCM_ARM_CHGCLKREQ); 1576 1577 if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) { 1578 /* External ARMCLKFIX clock */ 1579 1580 rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX); 1581 1582 /* Check PRCM_ARM_CHGCLKREQ divider */ 1583 if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL)) 1584 rate /= 2; 1585 1586 /* Check PRCM_ARMCLKFIX_MGT divider */ 1587 r = readl(PRCM_ARMCLKFIX_MGT); 1588 r &= PRCM_CLK_MGT_CLKPLLDIV_MASK; 1589 rate /= r; 1590 1591 } else {/* ARM PLL */ 1592 rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV); 1593 } 1594 1595 return rate; 1596 } 1597 1598 static unsigned long dsiclk_rate(u8 n) 1599 { 1600 u32 divsel; 1601 u32 div = 1; 1602 1603 divsel = readl(PRCM_DSI_PLLOUT_SEL); 1604 divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift); 1605 1606 if (divsel == PRCM_DSI_PLLOUT_SEL_OFF) 1607 divsel = dsiclk[n].divsel; 1608 else 1609 dsiclk[n].divsel = divsel; 1610 1611 switch (divsel) { 1612 case PRCM_DSI_PLLOUT_SEL_PHI_4: 1613 div *= 2; 1614 /* Fall through */ 1615 case PRCM_DSI_PLLOUT_SEL_PHI_2: 1616 div *= 2; 1617 /* Fall through */ 1618 case PRCM_DSI_PLLOUT_SEL_PHI: 1619 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK), 1620 PLL_RAW) / div; 1621 default: 1622 return 0; 1623 } 1624 } 1625 1626 static unsigned long dsiescclk_rate(u8 n) 1627 { 1628 u32 div; 1629 1630 div = readl(PRCM_DSITVCLK_DIV); 1631 div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift)); 1632 return clock_rate(PRCMU_TVCLK) / max((u32)1, div); 1633 } 1634 1635 unsigned long prcmu_clock_rate(u8 clock) 1636 { 1637 if (clock < PRCMU_NUM_REG_CLOCKS) 1638 return clock_rate(clock); 1639 else if (clock == PRCMU_TIMCLK) 1640 return prcmu_is_ulppll_disabled() ? 1641 32768 : ROOT_CLOCK_RATE / 16; 1642 else if (clock == PRCMU_SYSCLK) 1643 return ROOT_CLOCK_RATE; 1644 else if (clock == PRCMU_PLLSOC0) 1645 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW); 1646 else if (clock == PRCMU_PLLSOC1) 1647 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW); 1648 else if (clock == PRCMU_ARMSS) 1649 return armss_rate(); 1650 else if (clock == PRCMU_PLLDDR) 1651 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW); 1652 else if (clock == PRCMU_PLLDSI) 1653 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK), 1654 PLL_RAW); 1655 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK)) 1656 return dsiclk_rate(clock - PRCMU_DSI0CLK); 1657 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK)) 1658 return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK); 1659 else 1660 return 0; 1661 } 1662 1663 static unsigned long clock_source_rate(u32 clk_mgt_val, int branch) 1664 { 1665 if (clk_mgt_val & PRCM_CLK_MGT_CLK38) 1666 return ROOT_CLOCK_RATE; 1667 clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK; 1668 if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0) 1669 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch); 1670 else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1) 1671 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch); 1672 else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR) 1673 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch); 1674 else 1675 return 0; 1676 } 1677 1678 static u32 clock_divider(unsigned long src_rate, unsigned long rate) 1679 { 1680 u32 div; 1681 1682 div = (src_rate / rate); 1683 if (div == 0) 1684 return 1; 1685 if (rate < (src_rate / div)) 1686 div++; 1687 return div; 1688 } 1689 1690 static long round_clock_rate(u8 clock, unsigned long rate) 1691 { 1692 u32 val; 1693 u32 div; 1694 unsigned long src_rate; 1695 long rounded_rate; 1696 1697 val = readl(prcmu_base + clk_mgt[clock].offset); 1698 src_rate = clock_source_rate((val | clk_mgt[clock].pllsw), 1699 clk_mgt[clock].branch); 1700 div = clock_divider(src_rate, rate); 1701 if (val & PRCM_CLK_MGT_CLK38) { 1702 if (clk_mgt[clock].clk38div) { 1703 if (div > 2) 1704 div = 2; 1705 } else { 1706 div = 1; 1707 } 1708 } else if ((clock == PRCMU_SGACLK) && (div == 3)) { 1709 u64 r = (src_rate * 10); 1710 1711 (void)do_div(r, 25); 1712 if (r <= rate) 1713 return (unsigned long)r; 1714 } 1715 rounded_rate = (src_rate / min(div, (u32)31)); 1716 1717 return rounded_rate; 1718 } 1719 1720 static const unsigned long db8500_armss_freqs[] = { 1721 200000000, 1722 400000000, 1723 800000000, 1724 998400000 1725 }; 1726 1727 /* The DB8520 has slightly higher ARMSS max frequency */ 1728 static const unsigned long db8520_armss_freqs[] = { 1729 200000000, 1730 400000000, 1731 800000000, 1732 1152000000 1733 }; 1734 1735 1736 1737 static long round_armss_rate(unsigned long rate) 1738 { 1739 unsigned long freq = 0; 1740 const unsigned long *freqs; 1741 int nfreqs; 1742 int i; 1743 1744 if (fw_info.version.project == PRCMU_FW_PROJECT_U8520) { 1745 freqs = db8520_armss_freqs; 1746 nfreqs = ARRAY_SIZE(db8520_armss_freqs); 1747 } else { 1748 freqs = db8500_armss_freqs; 1749 nfreqs = ARRAY_SIZE(db8500_armss_freqs); 1750 } 1751 1752 /* Find the corresponding arm opp from the cpufreq table. */ 1753 for (i = 0; i < nfreqs; i++) { 1754 freq = freqs[i]; 1755 if (rate <= freq) 1756 break; 1757 } 1758 1759 /* Return the last valid value, even if a match was not found. */ 1760 return freq; 1761 } 1762 1763 #define MIN_PLL_VCO_RATE 600000000ULL 1764 #define MAX_PLL_VCO_RATE 1680640000ULL 1765 1766 static long round_plldsi_rate(unsigned long rate) 1767 { 1768 long rounded_rate = 0; 1769 unsigned long src_rate; 1770 unsigned long rem; 1771 u32 r; 1772 1773 src_rate = clock_rate(PRCMU_HDMICLK); 1774 rem = rate; 1775 1776 for (r = 7; (rem > 0) && (r > 0); r--) { 1777 u64 d; 1778 1779 d = (r * rate); 1780 (void)do_div(d, src_rate); 1781 if (d < 6) 1782 d = 6; 1783 else if (d > 255) 1784 d = 255; 1785 d *= src_rate; 1786 if (((2 * d) < (r * MIN_PLL_VCO_RATE)) || 1787 ((r * MAX_PLL_VCO_RATE) < (2 * d))) 1788 continue; 1789 (void)do_div(d, r); 1790 if (rate < d) { 1791 if (rounded_rate == 0) 1792 rounded_rate = (long)d; 1793 break; 1794 } 1795 if ((rate - d) < rem) { 1796 rem = (rate - d); 1797 rounded_rate = (long)d; 1798 } 1799 } 1800 return rounded_rate; 1801 } 1802 1803 static long round_dsiclk_rate(unsigned long rate) 1804 { 1805 u32 div; 1806 unsigned long src_rate; 1807 long rounded_rate; 1808 1809 src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK), 1810 PLL_RAW); 1811 div = clock_divider(src_rate, rate); 1812 rounded_rate = (src_rate / ((div > 2) ? 4 : div)); 1813 1814 return rounded_rate; 1815 } 1816 1817 static long round_dsiescclk_rate(unsigned long rate) 1818 { 1819 u32 div; 1820 unsigned long src_rate; 1821 long rounded_rate; 1822 1823 src_rate = clock_rate(PRCMU_TVCLK); 1824 div = clock_divider(src_rate, rate); 1825 rounded_rate = (src_rate / min(div, (u32)255)); 1826 1827 return rounded_rate; 1828 } 1829 1830 long prcmu_round_clock_rate(u8 clock, unsigned long rate) 1831 { 1832 if (clock < PRCMU_NUM_REG_CLOCKS) 1833 return round_clock_rate(clock, rate); 1834 else if (clock == PRCMU_ARMSS) 1835 return round_armss_rate(rate); 1836 else if (clock == PRCMU_PLLDSI) 1837 return round_plldsi_rate(rate); 1838 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK)) 1839 return round_dsiclk_rate(rate); 1840 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK)) 1841 return round_dsiescclk_rate(rate); 1842 else 1843 return (long)prcmu_clock_rate(clock); 1844 } 1845 1846 static void set_clock_rate(u8 clock, unsigned long rate) 1847 { 1848 u32 val; 1849 u32 div; 1850 unsigned long src_rate; 1851 unsigned long flags; 1852 1853 spin_lock_irqsave(&clk_mgt_lock, flags); 1854 1855 /* Grab the HW semaphore. */ 1856 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0) 1857 cpu_relax(); 1858 1859 val = readl(prcmu_base + clk_mgt[clock].offset); 1860 src_rate = clock_source_rate((val | clk_mgt[clock].pllsw), 1861 clk_mgt[clock].branch); 1862 div = clock_divider(src_rate, rate); 1863 if (val & PRCM_CLK_MGT_CLK38) { 1864 if (clk_mgt[clock].clk38div) { 1865 if (div > 1) 1866 val |= PRCM_CLK_MGT_CLK38DIV; 1867 else 1868 val &= ~PRCM_CLK_MGT_CLK38DIV; 1869 } 1870 } else if (clock == PRCMU_SGACLK) { 1871 val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK | 1872 PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN); 1873 if (div == 3) { 1874 u64 r = (src_rate * 10); 1875 1876 (void)do_div(r, 25); 1877 if (r <= rate) { 1878 val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN; 1879 div = 0; 1880 } 1881 } 1882 val |= min(div, (u32)31); 1883 } else { 1884 val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK; 1885 val |= min(div, (u32)31); 1886 } 1887 writel(val, prcmu_base + clk_mgt[clock].offset); 1888 1889 /* Release the HW semaphore. */ 1890 writel(0, PRCM_SEM); 1891 1892 spin_unlock_irqrestore(&clk_mgt_lock, flags); 1893 } 1894 1895 static int set_armss_rate(unsigned long rate) 1896 { 1897 unsigned long freq; 1898 u8 opps[] = { ARM_EXTCLK, ARM_50_OPP, ARM_100_OPP, ARM_MAX_OPP }; 1899 const unsigned long *freqs; 1900 int nfreqs; 1901 int i; 1902 1903 if (fw_info.version.project == PRCMU_FW_PROJECT_U8520) { 1904 freqs = db8520_armss_freqs; 1905 nfreqs = ARRAY_SIZE(db8520_armss_freqs); 1906 } else { 1907 freqs = db8500_armss_freqs; 1908 nfreqs = ARRAY_SIZE(db8500_armss_freqs); 1909 } 1910 1911 /* Find the corresponding arm opp from the cpufreq table. */ 1912 for (i = 0; i < nfreqs; i++) { 1913 freq = freqs[i]; 1914 if (rate == freq) 1915 break; 1916 } 1917 1918 if (rate != freq) 1919 return -EINVAL; 1920 1921 /* Set the new arm opp. */ 1922 pr_debug("SET ARM OPP 0x%02x\n", opps[i]); 1923 return db8500_prcmu_set_arm_opp(opps[i]); 1924 } 1925 1926 static int set_plldsi_rate(unsigned long rate) 1927 { 1928 unsigned long src_rate; 1929 unsigned long rem; 1930 u32 pll_freq = 0; 1931 u32 r; 1932 1933 src_rate = clock_rate(PRCMU_HDMICLK); 1934 rem = rate; 1935 1936 for (r = 7; (rem > 0) && (r > 0); r--) { 1937 u64 d; 1938 u64 hwrate; 1939 1940 d = (r * rate); 1941 (void)do_div(d, src_rate); 1942 if (d < 6) 1943 d = 6; 1944 else if (d > 255) 1945 d = 255; 1946 hwrate = (d * src_rate); 1947 if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) || 1948 ((r * MAX_PLL_VCO_RATE) < (2 * hwrate))) 1949 continue; 1950 (void)do_div(hwrate, r); 1951 if (rate < hwrate) { 1952 if (pll_freq == 0) 1953 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) | 1954 (r << PRCM_PLL_FREQ_R_SHIFT)); 1955 break; 1956 } 1957 if ((rate - hwrate) < rem) { 1958 rem = (rate - hwrate); 1959 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) | 1960 (r << PRCM_PLL_FREQ_R_SHIFT)); 1961 } 1962 } 1963 if (pll_freq == 0) 1964 return -EINVAL; 1965 1966 pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT); 1967 writel(pll_freq, PRCM_PLLDSI_FREQ); 1968 1969 return 0; 1970 } 1971 1972 static void set_dsiclk_rate(u8 n, unsigned long rate) 1973 { 1974 u32 val; 1975 u32 div; 1976 1977 div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ, 1978 clock_rate(PRCMU_HDMICLK), PLL_RAW), rate); 1979 1980 dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI : 1981 (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 : 1982 /* else */ PRCM_DSI_PLLOUT_SEL_PHI_4; 1983 1984 val = readl(PRCM_DSI_PLLOUT_SEL); 1985 val &= ~dsiclk[n].divsel_mask; 1986 val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift); 1987 writel(val, PRCM_DSI_PLLOUT_SEL); 1988 } 1989 1990 static void set_dsiescclk_rate(u8 n, unsigned long rate) 1991 { 1992 u32 val; 1993 u32 div; 1994 1995 div = clock_divider(clock_rate(PRCMU_TVCLK), rate); 1996 val = readl(PRCM_DSITVCLK_DIV); 1997 val &= ~dsiescclk[n].div_mask; 1998 val |= (min(div, (u32)255) << dsiescclk[n].div_shift); 1999 writel(val, PRCM_DSITVCLK_DIV); 2000 } 2001 2002 int prcmu_set_clock_rate(u8 clock, unsigned long rate) 2003 { 2004 if (clock < PRCMU_NUM_REG_CLOCKS) 2005 set_clock_rate(clock, rate); 2006 else if (clock == PRCMU_ARMSS) 2007 return set_armss_rate(rate); 2008 else if (clock == PRCMU_PLLDSI) 2009 return set_plldsi_rate(rate); 2010 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK)) 2011 set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate); 2012 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK)) 2013 set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate); 2014 return 0; 2015 } 2016 2017 int db8500_prcmu_config_esram0_deep_sleep(u8 state) 2018 { 2019 if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) || 2020 (state < ESRAM0_DEEP_SLEEP_STATE_OFF)) 2021 return -EINVAL; 2022 2023 mutex_lock(&mb4_transfer.lock); 2024 2025 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4)) 2026 cpu_relax(); 2027 2028 writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4)); 2029 writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON), 2030 (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE)); 2031 writeb(DDR_PWR_STATE_ON, 2032 (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE)); 2033 writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST)); 2034 2035 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET); 2036 wait_for_completion(&mb4_transfer.work); 2037 2038 mutex_unlock(&mb4_transfer.lock); 2039 2040 return 0; 2041 } 2042 2043 int db8500_prcmu_config_hotdog(u8 threshold) 2044 { 2045 mutex_lock(&mb4_transfer.lock); 2046 2047 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4)) 2048 cpu_relax(); 2049 2050 writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD)); 2051 writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4)); 2052 2053 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET); 2054 wait_for_completion(&mb4_transfer.work); 2055 2056 mutex_unlock(&mb4_transfer.lock); 2057 2058 return 0; 2059 } 2060 2061 int db8500_prcmu_config_hotmon(u8 low, u8 high) 2062 { 2063 mutex_lock(&mb4_transfer.lock); 2064 2065 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4)) 2066 cpu_relax(); 2067 2068 writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW)); 2069 writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH)); 2070 writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH), 2071 (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG)); 2072 writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4)); 2073 2074 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET); 2075 wait_for_completion(&mb4_transfer.work); 2076 2077 mutex_unlock(&mb4_transfer.lock); 2078 2079 return 0; 2080 } 2081 EXPORT_SYMBOL_GPL(db8500_prcmu_config_hotmon); 2082 2083 static int config_hot_period(u16 val) 2084 { 2085 mutex_lock(&mb4_transfer.lock); 2086 2087 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4)) 2088 cpu_relax(); 2089 2090 writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD)); 2091 writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4)); 2092 2093 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET); 2094 wait_for_completion(&mb4_transfer.work); 2095 2096 mutex_unlock(&mb4_transfer.lock); 2097 2098 return 0; 2099 } 2100 2101 int db8500_prcmu_start_temp_sense(u16 cycles32k) 2102 { 2103 if (cycles32k == 0xFFFF) 2104 return -EINVAL; 2105 2106 return config_hot_period(cycles32k); 2107 } 2108 EXPORT_SYMBOL_GPL(db8500_prcmu_start_temp_sense); 2109 2110 int db8500_prcmu_stop_temp_sense(void) 2111 { 2112 return config_hot_period(0xFFFF); 2113 } 2114 EXPORT_SYMBOL_GPL(db8500_prcmu_stop_temp_sense); 2115 2116 static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3) 2117 { 2118 2119 mutex_lock(&mb4_transfer.lock); 2120 2121 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4)) 2122 cpu_relax(); 2123 2124 writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0)); 2125 writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1)); 2126 writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2)); 2127 writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3)); 2128 2129 writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4)); 2130 2131 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET); 2132 wait_for_completion(&mb4_transfer.work); 2133 2134 mutex_unlock(&mb4_transfer.lock); 2135 2136 return 0; 2137 2138 } 2139 2140 int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off) 2141 { 2142 BUG_ON(num == 0 || num > 0xf); 2143 return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0, 2144 sleep_auto_off ? A9WDOG_AUTO_OFF_EN : 2145 A9WDOG_AUTO_OFF_DIS); 2146 } 2147 EXPORT_SYMBOL(db8500_prcmu_config_a9wdog); 2148 2149 int db8500_prcmu_enable_a9wdog(u8 id) 2150 { 2151 return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0); 2152 } 2153 EXPORT_SYMBOL(db8500_prcmu_enable_a9wdog); 2154 2155 int db8500_prcmu_disable_a9wdog(u8 id) 2156 { 2157 return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0); 2158 } 2159 EXPORT_SYMBOL(db8500_prcmu_disable_a9wdog); 2160 2161 int db8500_prcmu_kick_a9wdog(u8 id) 2162 { 2163 return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0); 2164 } 2165 EXPORT_SYMBOL(db8500_prcmu_kick_a9wdog); 2166 2167 /* 2168 * timeout is 28 bit, in ms. 2169 */ 2170 int db8500_prcmu_load_a9wdog(u8 id, u32 timeout) 2171 { 2172 return prcmu_a9wdog(MB4H_A9WDOG_LOAD, 2173 (id & A9WDOG_ID_MASK) | 2174 /* 2175 * Put the lowest 28 bits of timeout at 2176 * offset 4. Four first bits are used for id. 2177 */ 2178 (u8)((timeout << 4) & 0xf0), 2179 (u8)((timeout >> 4) & 0xff), 2180 (u8)((timeout >> 12) & 0xff), 2181 (u8)((timeout >> 20) & 0xff)); 2182 } 2183 EXPORT_SYMBOL(db8500_prcmu_load_a9wdog); 2184 2185 /** 2186 * prcmu_abb_read() - Read register value(s) from the ABB. 2187 * @slave: The I2C slave address. 2188 * @reg: The (start) register address. 2189 * @value: The read out value(s). 2190 * @size: The number of registers to read. 2191 * 2192 * Reads register value(s) from the ABB. 2193 * @size has to be 1 for the current firmware version. 2194 */ 2195 int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size) 2196 { 2197 int r; 2198 2199 if (size != 1) 2200 return -EINVAL; 2201 2202 mutex_lock(&mb5_transfer.lock); 2203 2204 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5)) 2205 cpu_relax(); 2206 2207 writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5)); 2208 writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP)); 2209 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS)); 2210 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG)); 2211 writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL)); 2212 2213 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET); 2214 2215 if (!wait_for_completion_timeout(&mb5_transfer.work, 2216 msecs_to_jiffies(20000))) { 2217 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n", 2218 __func__); 2219 r = -EIO; 2220 } else { 2221 r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO); 2222 } 2223 2224 if (!r) 2225 *value = mb5_transfer.ack.value; 2226 2227 mutex_unlock(&mb5_transfer.lock); 2228 2229 return r; 2230 } 2231 2232 /** 2233 * prcmu_abb_write_masked() - Write masked register value(s) to the ABB. 2234 * @slave: The I2C slave address. 2235 * @reg: The (start) register address. 2236 * @value: The value(s) to write. 2237 * @mask: The mask(s) to use. 2238 * @size: The number of registers to write. 2239 * 2240 * Writes masked register value(s) to the ABB. 2241 * For each @value, only the bits set to 1 in the corresponding @mask 2242 * will be written. The other bits are not changed. 2243 * @size has to be 1 for the current firmware version. 2244 */ 2245 int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size) 2246 { 2247 int r; 2248 2249 if (size != 1) 2250 return -EINVAL; 2251 2252 mutex_lock(&mb5_transfer.lock); 2253 2254 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5)) 2255 cpu_relax(); 2256 2257 writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5)); 2258 writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP)); 2259 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS)); 2260 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG)); 2261 writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL)); 2262 2263 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET); 2264 2265 if (!wait_for_completion_timeout(&mb5_transfer.work, 2266 msecs_to_jiffies(20000))) { 2267 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n", 2268 __func__); 2269 r = -EIO; 2270 } else { 2271 r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO); 2272 } 2273 2274 mutex_unlock(&mb5_transfer.lock); 2275 2276 return r; 2277 } 2278 2279 /** 2280 * prcmu_abb_write() - Write register value(s) to the ABB. 2281 * @slave: The I2C slave address. 2282 * @reg: The (start) register address. 2283 * @value: The value(s) to write. 2284 * @size: The number of registers to write. 2285 * 2286 * Writes register value(s) to the ABB. 2287 * @size has to be 1 for the current firmware version. 2288 */ 2289 int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size) 2290 { 2291 u8 mask = ~0; 2292 2293 return prcmu_abb_write_masked(slave, reg, value, &mask, size); 2294 } 2295 2296 /** 2297 * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem 2298 */ 2299 int prcmu_ac_wake_req(void) 2300 { 2301 u32 val; 2302 int ret = 0; 2303 2304 mutex_lock(&mb0_transfer.ac_wake_lock); 2305 2306 val = readl(PRCM_HOSTACCESS_REQ); 2307 if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ) 2308 goto unlock_and_return; 2309 2310 atomic_set(&ac_wake_req_state, 1); 2311 2312 /* 2313 * Force Modem Wake-up before hostaccess_req ping-pong. 2314 * It prevents Modem to enter in Sleep while acking the hostaccess 2315 * request. The 31us delay has been calculated by HWI. 2316 */ 2317 val |= PRCM_HOSTACCESS_REQ_WAKE_REQ; 2318 writel(val, PRCM_HOSTACCESS_REQ); 2319 2320 udelay(31); 2321 2322 val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ; 2323 writel(val, PRCM_HOSTACCESS_REQ); 2324 2325 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work, 2326 msecs_to_jiffies(5000))) { 2327 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n", 2328 __func__); 2329 ret = -EFAULT; 2330 } 2331 2332 unlock_and_return: 2333 mutex_unlock(&mb0_transfer.ac_wake_lock); 2334 return ret; 2335 } 2336 2337 /** 2338 * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem 2339 */ 2340 void prcmu_ac_sleep_req(void) 2341 { 2342 u32 val; 2343 2344 mutex_lock(&mb0_transfer.ac_wake_lock); 2345 2346 val = readl(PRCM_HOSTACCESS_REQ); 2347 if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)) 2348 goto unlock_and_return; 2349 2350 writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ), 2351 PRCM_HOSTACCESS_REQ); 2352 2353 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work, 2354 msecs_to_jiffies(5000))) { 2355 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n", 2356 __func__); 2357 } 2358 2359 atomic_set(&ac_wake_req_state, 0); 2360 2361 unlock_and_return: 2362 mutex_unlock(&mb0_transfer.ac_wake_lock); 2363 } 2364 2365 bool db8500_prcmu_is_ac_wake_requested(void) 2366 { 2367 return (atomic_read(&ac_wake_req_state) != 0); 2368 } 2369 2370 /** 2371 * db8500_prcmu_system_reset - System reset 2372 * 2373 * Saves the reset reason code and then sets the APE_SOFTRST register which 2374 * fires interrupt to fw 2375 */ 2376 void db8500_prcmu_system_reset(u16 reset_code) 2377 { 2378 writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON)); 2379 writel(1, PRCM_APE_SOFTRST); 2380 } 2381 2382 /** 2383 * db8500_prcmu_get_reset_code - Retrieve SW reset reason code 2384 * 2385 * Retrieves the reset reason code stored by prcmu_system_reset() before 2386 * last restart. 2387 */ 2388 u16 db8500_prcmu_get_reset_code(void) 2389 { 2390 return readw(tcdm_base + PRCM_SW_RST_REASON); 2391 } 2392 2393 /** 2394 * db8500_prcmu_reset_modem - ask the PRCMU to reset modem 2395 */ 2396 void db8500_prcmu_modem_reset(void) 2397 { 2398 mutex_lock(&mb1_transfer.lock); 2399 2400 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1)) 2401 cpu_relax(); 2402 2403 writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1)); 2404 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET); 2405 wait_for_completion(&mb1_transfer.work); 2406 2407 /* 2408 * No need to check return from PRCMU as modem should go in reset state 2409 * This state is already managed by upper layer 2410 */ 2411 2412 mutex_unlock(&mb1_transfer.lock); 2413 } 2414 2415 static void ack_dbb_wakeup(void) 2416 { 2417 unsigned long flags; 2418 2419 spin_lock_irqsave(&mb0_transfer.lock, flags); 2420 2421 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0)) 2422 cpu_relax(); 2423 2424 writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0)); 2425 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET); 2426 2427 spin_unlock_irqrestore(&mb0_transfer.lock, flags); 2428 } 2429 2430 static inline void print_unknown_header_warning(u8 n, u8 header) 2431 { 2432 pr_warn("prcmu: Unknown message header (%d) in mailbox %d\n", 2433 header, n); 2434 } 2435 2436 static bool read_mailbox_0(void) 2437 { 2438 bool r; 2439 u32 ev; 2440 unsigned int n; 2441 u8 header; 2442 2443 header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0); 2444 switch (header) { 2445 case MB0H_WAKEUP_EXE: 2446 case MB0H_WAKEUP_SLEEP: 2447 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1) 2448 ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500); 2449 else 2450 ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500); 2451 2452 if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK)) 2453 complete(&mb0_transfer.ac_wake_work); 2454 if (ev & WAKEUP_BIT_SYSCLK_OK) 2455 complete(&mb3_transfer.sysclk_work); 2456 2457 ev &= mb0_transfer.req.dbb_irqs; 2458 2459 for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) { 2460 if (ev & prcmu_irq_bit[n]) 2461 generic_handle_irq(irq_find_mapping(db8500_irq_domain, n)); 2462 } 2463 r = true; 2464 break; 2465 default: 2466 print_unknown_header_warning(0, header); 2467 r = false; 2468 break; 2469 } 2470 writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR); 2471 return r; 2472 } 2473 2474 static bool read_mailbox_1(void) 2475 { 2476 mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1); 2477 mb1_transfer.ack.arm_opp = readb(tcdm_base + 2478 PRCM_ACK_MB1_CURRENT_ARM_OPP); 2479 mb1_transfer.ack.ape_opp = readb(tcdm_base + 2480 PRCM_ACK_MB1_CURRENT_APE_OPP); 2481 mb1_transfer.ack.ape_voltage_status = readb(tcdm_base + 2482 PRCM_ACK_MB1_APE_VOLTAGE_STATUS); 2483 writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR); 2484 complete(&mb1_transfer.work); 2485 return false; 2486 } 2487 2488 static bool read_mailbox_2(void) 2489 { 2490 mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS); 2491 writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR); 2492 complete(&mb2_transfer.work); 2493 return false; 2494 } 2495 2496 static bool read_mailbox_3(void) 2497 { 2498 writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR); 2499 return false; 2500 } 2501 2502 static bool read_mailbox_4(void) 2503 { 2504 u8 header; 2505 bool do_complete = true; 2506 2507 header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4); 2508 switch (header) { 2509 case MB4H_MEM_ST: 2510 case MB4H_HOTDOG: 2511 case MB4H_HOTMON: 2512 case MB4H_HOT_PERIOD: 2513 case MB4H_A9WDOG_CONF: 2514 case MB4H_A9WDOG_EN: 2515 case MB4H_A9WDOG_DIS: 2516 case MB4H_A9WDOG_LOAD: 2517 case MB4H_A9WDOG_KICK: 2518 break; 2519 default: 2520 print_unknown_header_warning(4, header); 2521 do_complete = false; 2522 break; 2523 } 2524 2525 writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR); 2526 2527 if (do_complete) 2528 complete(&mb4_transfer.work); 2529 2530 return false; 2531 } 2532 2533 static bool read_mailbox_5(void) 2534 { 2535 mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS); 2536 mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL); 2537 writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR); 2538 complete(&mb5_transfer.work); 2539 return false; 2540 } 2541 2542 static bool read_mailbox_6(void) 2543 { 2544 writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR); 2545 return false; 2546 } 2547 2548 static bool read_mailbox_7(void) 2549 { 2550 writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR); 2551 return false; 2552 } 2553 2554 static bool (* const read_mailbox[NUM_MB])(void) = { 2555 read_mailbox_0, 2556 read_mailbox_1, 2557 read_mailbox_2, 2558 read_mailbox_3, 2559 read_mailbox_4, 2560 read_mailbox_5, 2561 read_mailbox_6, 2562 read_mailbox_7 2563 }; 2564 2565 static irqreturn_t prcmu_irq_handler(int irq, void *data) 2566 { 2567 u32 bits; 2568 u8 n; 2569 irqreturn_t r; 2570 2571 bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS); 2572 if (unlikely(!bits)) 2573 return IRQ_NONE; 2574 2575 r = IRQ_HANDLED; 2576 for (n = 0; bits; n++) { 2577 if (bits & MBOX_BIT(n)) { 2578 bits -= MBOX_BIT(n); 2579 if (read_mailbox[n]()) 2580 r = IRQ_WAKE_THREAD; 2581 } 2582 } 2583 return r; 2584 } 2585 2586 static irqreturn_t prcmu_irq_thread_fn(int irq, void *data) 2587 { 2588 ack_dbb_wakeup(); 2589 return IRQ_HANDLED; 2590 } 2591 2592 static void prcmu_mask_work(struct work_struct *work) 2593 { 2594 unsigned long flags; 2595 2596 spin_lock_irqsave(&mb0_transfer.lock, flags); 2597 2598 config_wakeups(); 2599 2600 spin_unlock_irqrestore(&mb0_transfer.lock, flags); 2601 } 2602 2603 static void prcmu_irq_mask(struct irq_data *d) 2604 { 2605 unsigned long flags; 2606 2607 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags); 2608 2609 mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq]; 2610 2611 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags); 2612 2613 if (d->irq != IRQ_PRCMU_CA_SLEEP) 2614 schedule_work(&mb0_transfer.mask_work); 2615 } 2616 2617 static void prcmu_irq_unmask(struct irq_data *d) 2618 { 2619 unsigned long flags; 2620 2621 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags); 2622 2623 mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq]; 2624 2625 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags); 2626 2627 if (d->irq != IRQ_PRCMU_CA_SLEEP) 2628 schedule_work(&mb0_transfer.mask_work); 2629 } 2630 2631 static void noop(struct irq_data *d) 2632 { 2633 } 2634 2635 static struct irq_chip prcmu_irq_chip = { 2636 .name = "prcmu", 2637 .irq_disable = prcmu_irq_mask, 2638 .irq_ack = noop, 2639 .irq_mask = prcmu_irq_mask, 2640 .irq_unmask = prcmu_irq_unmask, 2641 }; 2642 2643 static char *fw_project_name(u32 project) 2644 { 2645 switch (project) { 2646 case PRCMU_FW_PROJECT_U8500: 2647 return "U8500"; 2648 case PRCMU_FW_PROJECT_U8400: 2649 return "U8400"; 2650 case PRCMU_FW_PROJECT_U9500: 2651 return "U9500"; 2652 case PRCMU_FW_PROJECT_U8500_MBB: 2653 return "U8500 MBB"; 2654 case PRCMU_FW_PROJECT_U8500_C1: 2655 return "U8500 C1"; 2656 case PRCMU_FW_PROJECT_U8500_C2: 2657 return "U8500 C2"; 2658 case PRCMU_FW_PROJECT_U8500_C3: 2659 return "U8500 C3"; 2660 case PRCMU_FW_PROJECT_U8500_C4: 2661 return "U8500 C4"; 2662 case PRCMU_FW_PROJECT_U9500_MBL: 2663 return "U9500 MBL"; 2664 case PRCMU_FW_PROJECT_U8500_MBL: 2665 return "U8500 MBL"; 2666 case PRCMU_FW_PROJECT_U8500_MBL2: 2667 return "U8500 MBL2"; 2668 case PRCMU_FW_PROJECT_U8520: 2669 return "U8520 MBL"; 2670 case PRCMU_FW_PROJECT_U8420: 2671 return "U8420"; 2672 case PRCMU_FW_PROJECT_U8420_SYSCLK: 2673 return "U8420-sysclk"; 2674 case PRCMU_FW_PROJECT_U9540: 2675 return "U9540"; 2676 case PRCMU_FW_PROJECT_A9420: 2677 return "A9420"; 2678 case PRCMU_FW_PROJECT_L8540: 2679 return "L8540"; 2680 case PRCMU_FW_PROJECT_L8580: 2681 return "L8580"; 2682 default: 2683 return "Unknown"; 2684 } 2685 } 2686 2687 static int db8500_irq_map(struct irq_domain *d, unsigned int virq, 2688 irq_hw_number_t hwirq) 2689 { 2690 irq_set_chip_and_handler(virq, &prcmu_irq_chip, 2691 handle_simple_irq); 2692 2693 return 0; 2694 } 2695 2696 static const struct irq_domain_ops db8500_irq_ops = { 2697 .map = db8500_irq_map, 2698 .xlate = irq_domain_xlate_twocell, 2699 }; 2700 2701 static int db8500_irq_init(struct device_node *np) 2702 { 2703 int i; 2704 2705 db8500_irq_domain = irq_domain_add_simple( 2706 np, NUM_PRCMU_WAKEUPS, 0, 2707 &db8500_irq_ops, NULL); 2708 2709 if (!db8500_irq_domain) { 2710 pr_err("Failed to create irqdomain\n"); 2711 return -ENOSYS; 2712 } 2713 2714 /* All wakeups will be used, so create mappings for all */ 2715 for (i = 0; i < NUM_PRCMU_WAKEUPS; i++) 2716 irq_create_mapping(db8500_irq_domain, i); 2717 2718 return 0; 2719 } 2720 2721 static void dbx500_fw_version_init(struct device_node *np) 2722 { 2723 void __iomem *tcpm_base; 2724 u32 version; 2725 2726 tcpm_base = of_iomap(np, 1); 2727 if (!tcpm_base) { 2728 pr_err("no prcmu tcpm mem region provided\n"); 2729 return; 2730 } 2731 2732 version = readl(tcpm_base + DB8500_PRCMU_FW_VERSION_OFFSET); 2733 fw_info.version.project = (version & 0xFF); 2734 fw_info.version.api_version = (version >> 8) & 0xFF; 2735 fw_info.version.func_version = (version >> 16) & 0xFF; 2736 fw_info.version.errata = (version >> 24) & 0xFF; 2737 strncpy(fw_info.version.project_name, 2738 fw_project_name(fw_info.version.project), 2739 PRCMU_FW_PROJECT_NAME_LEN); 2740 fw_info.valid = true; 2741 pr_info("PRCMU firmware: %s(%d), version %d.%d.%d\n", 2742 fw_info.version.project_name, 2743 fw_info.version.project, 2744 fw_info.version.api_version, 2745 fw_info.version.func_version, 2746 fw_info.version.errata); 2747 iounmap(tcpm_base); 2748 } 2749 2750 void __init db8500_prcmu_early_init(void) 2751 { 2752 /* 2753 * This is a temporary remap to bring up the clocks. It is 2754 * subsequently replaces with a real remap. After the merge of 2755 * the mailbox subsystem all of this early code goes away, and the 2756 * clock driver can probe independently. An early initcall will 2757 * still be needed, but it can be diverted into drivers/clk/ux500. 2758 */ 2759 struct device_node *np; 2760 2761 np = of_find_compatible_node(NULL, NULL, "stericsson,db8500-prcmu"); 2762 prcmu_base = of_iomap(np, 0); 2763 if (!prcmu_base) { 2764 of_node_put(np); 2765 pr_err("%s: ioremap() of prcmu registers failed!\n", __func__); 2766 return; 2767 } 2768 dbx500_fw_version_init(np); 2769 of_node_put(np); 2770 2771 spin_lock_init(&mb0_transfer.lock); 2772 spin_lock_init(&mb0_transfer.dbb_irqs_lock); 2773 mutex_init(&mb0_transfer.ac_wake_lock); 2774 init_completion(&mb0_transfer.ac_wake_work); 2775 mutex_init(&mb1_transfer.lock); 2776 init_completion(&mb1_transfer.work); 2777 mb1_transfer.ape_opp = APE_NO_CHANGE; 2778 mutex_init(&mb2_transfer.lock); 2779 init_completion(&mb2_transfer.work); 2780 spin_lock_init(&mb2_transfer.auto_pm_lock); 2781 spin_lock_init(&mb3_transfer.lock); 2782 mutex_init(&mb3_transfer.sysclk_lock); 2783 init_completion(&mb3_transfer.sysclk_work); 2784 mutex_init(&mb4_transfer.lock); 2785 init_completion(&mb4_transfer.work); 2786 mutex_init(&mb5_transfer.lock); 2787 init_completion(&mb5_transfer.work); 2788 2789 INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work); 2790 } 2791 2792 static void init_prcm_registers(void) 2793 { 2794 u32 val; 2795 2796 val = readl(PRCM_A9PL_FORCE_CLKEN); 2797 val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN | 2798 PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN); 2799 writel(val, (PRCM_A9PL_FORCE_CLKEN)); 2800 } 2801 2802 /* 2803 * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC 2804 */ 2805 static struct regulator_consumer_supply db8500_vape_consumers[] = { 2806 REGULATOR_SUPPLY("v-ape", NULL), 2807 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"), 2808 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"), 2809 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"), 2810 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"), 2811 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"), 2812 /* "v-mmc" changed to "vcore" in the mainline kernel */ 2813 REGULATOR_SUPPLY("vcore", "sdi0"), 2814 REGULATOR_SUPPLY("vcore", "sdi1"), 2815 REGULATOR_SUPPLY("vcore", "sdi2"), 2816 REGULATOR_SUPPLY("vcore", "sdi3"), 2817 REGULATOR_SUPPLY("vcore", "sdi4"), 2818 REGULATOR_SUPPLY("v-dma", "dma40.0"), 2819 REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"), 2820 /* "v-uart" changed to "vcore" in the mainline kernel */ 2821 REGULATOR_SUPPLY("vcore", "uart0"), 2822 REGULATOR_SUPPLY("vcore", "uart1"), 2823 REGULATOR_SUPPLY("vcore", "uart2"), 2824 REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"), 2825 REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"), 2826 REGULATOR_SUPPLY("vddvario", "smsc911x.0"), 2827 }; 2828 2829 static struct regulator_consumer_supply db8500_vsmps2_consumers[] = { 2830 REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"), 2831 /* AV8100 regulator */ 2832 REGULATOR_SUPPLY("hdmi_1v8", "0-0070"), 2833 }; 2834 2835 static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = { 2836 REGULATOR_SUPPLY("vsupply", "b2r2_bus"), 2837 REGULATOR_SUPPLY("vsupply", "mcde"), 2838 }; 2839 2840 /* SVA MMDSP regulator switch */ 2841 static struct regulator_consumer_supply db8500_svammdsp_consumers[] = { 2842 REGULATOR_SUPPLY("sva-mmdsp", "cm_control"), 2843 }; 2844 2845 /* SVA pipe regulator switch */ 2846 static struct regulator_consumer_supply db8500_svapipe_consumers[] = { 2847 REGULATOR_SUPPLY("sva-pipe", "cm_control"), 2848 }; 2849 2850 /* SIA MMDSP regulator switch */ 2851 static struct regulator_consumer_supply db8500_siammdsp_consumers[] = { 2852 REGULATOR_SUPPLY("sia-mmdsp", "cm_control"), 2853 }; 2854 2855 /* SIA pipe regulator switch */ 2856 static struct regulator_consumer_supply db8500_siapipe_consumers[] = { 2857 REGULATOR_SUPPLY("sia-pipe", "cm_control"), 2858 }; 2859 2860 static struct regulator_consumer_supply db8500_sga_consumers[] = { 2861 REGULATOR_SUPPLY("v-mali", NULL), 2862 }; 2863 2864 /* ESRAM1 and 2 regulator switch */ 2865 static struct regulator_consumer_supply db8500_esram12_consumers[] = { 2866 REGULATOR_SUPPLY("esram12", "cm_control"), 2867 }; 2868 2869 /* ESRAM3 and 4 regulator switch */ 2870 static struct regulator_consumer_supply db8500_esram34_consumers[] = { 2871 REGULATOR_SUPPLY("v-esram34", "mcde"), 2872 REGULATOR_SUPPLY("esram34", "cm_control"), 2873 REGULATOR_SUPPLY("lcla_esram", "dma40.0"), 2874 }; 2875 2876 static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = { 2877 [DB8500_REGULATOR_VAPE] = { 2878 .constraints = { 2879 .name = "db8500-vape", 2880 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2881 .always_on = true, 2882 }, 2883 .consumer_supplies = db8500_vape_consumers, 2884 .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers), 2885 }, 2886 [DB8500_REGULATOR_VARM] = { 2887 .constraints = { 2888 .name = "db8500-varm", 2889 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2890 }, 2891 }, 2892 [DB8500_REGULATOR_VMODEM] = { 2893 .constraints = { 2894 .name = "db8500-vmodem", 2895 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2896 }, 2897 }, 2898 [DB8500_REGULATOR_VPLL] = { 2899 .constraints = { 2900 .name = "db8500-vpll", 2901 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2902 }, 2903 }, 2904 [DB8500_REGULATOR_VSMPS1] = { 2905 .constraints = { 2906 .name = "db8500-vsmps1", 2907 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2908 }, 2909 }, 2910 [DB8500_REGULATOR_VSMPS2] = { 2911 .constraints = { 2912 .name = "db8500-vsmps2", 2913 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2914 }, 2915 .consumer_supplies = db8500_vsmps2_consumers, 2916 .num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers), 2917 }, 2918 [DB8500_REGULATOR_VSMPS3] = { 2919 .constraints = { 2920 .name = "db8500-vsmps3", 2921 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2922 }, 2923 }, 2924 [DB8500_REGULATOR_VRF1] = { 2925 .constraints = { 2926 .name = "db8500-vrf1", 2927 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2928 }, 2929 }, 2930 [DB8500_REGULATOR_SWITCH_SVAMMDSP] = { 2931 /* dependency to u8500-vape is handled outside regulator framework */ 2932 .constraints = { 2933 .name = "db8500-sva-mmdsp", 2934 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2935 }, 2936 .consumer_supplies = db8500_svammdsp_consumers, 2937 .num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers), 2938 }, 2939 [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = { 2940 .constraints = { 2941 /* "ret" means "retention" */ 2942 .name = "db8500-sva-mmdsp-ret", 2943 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2944 }, 2945 }, 2946 [DB8500_REGULATOR_SWITCH_SVAPIPE] = { 2947 /* dependency to u8500-vape is handled outside regulator framework */ 2948 .constraints = { 2949 .name = "db8500-sva-pipe", 2950 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2951 }, 2952 .consumer_supplies = db8500_svapipe_consumers, 2953 .num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers), 2954 }, 2955 [DB8500_REGULATOR_SWITCH_SIAMMDSP] = { 2956 /* dependency to u8500-vape is handled outside regulator framework */ 2957 .constraints = { 2958 .name = "db8500-sia-mmdsp", 2959 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2960 }, 2961 .consumer_supplies = db8500_siammdsp_consumers, 2962 .num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers), 2963 }, 2964 [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = { 2965 .constraints = { 2966 .name = "db8500-sia-mmdsp-ret", 2967 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2968 }, 2969 }, 2970 [DB8500_REGULATOR_SWITCH_SIAPIPE] = { 2971 /* dependency to u8500-vape is handled outside regulator framework */ 2972 .constraints = { 2973 .name = "db8500-sia-pipe", 2974 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2975 }, 2976 .consumer_supplies = db8500_siapipe_consumers, 2977 .num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers), 2978 }, 2979 [DB8500_REGULATOR_SWITCH_SGA] = { 2980 .supply_regulator = "db8500-vape", 2981 .constraints = { 2982 .name = "db8500-sga", 2983 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2984 }, 2985 .consumer_supplies = db8500_sga_consumers, 2986 .num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers), 2987 2988 }, 2989 [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = { 2990 .supply_regulator = "db8500-vape", 2991 .constraints = { 2992 .name = "db8500-b2r2-mcde", 2993 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2994 }, 2995 .consumer_supplies = db8500_b2r2_mcde_consumers, 2996 .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers), 2997 }, 2998 [DB8500_REGULATOR_SWITCH_ESRAM12] = { 2999 /* 3000 * esram12 is set in retention and supplied by Vsafe when Vape is off, 3001 * no need to hold Vape 3002 */ 3003 .constraints = { 3004 .name = "db8500-esram12", 3005 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 3006 }, 3007 .consumer_supplies = db8500_esram12_consumers, 3008 .num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers), 3009 }, 3010 [DB8500_REGULATOR_SWITCH_ESRAM12RET] = { 3011 .constraints = { 3012 .name = "db8500-esram12-ret", 3013 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 3014 }, 3015 }, 3016 [DB8500_REGULATOR_SWITCH_ESRAM34] = { 3017 /* 3018 * esram34 is set in retention and supplied by Vsafe when Vape is off, 3019 * no need to hold Vape 3020 */ 3021 .constraints = { 3022 .name = "db8500-esram34", 3023 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 3024 }, 3025 .consumer_supplies = db8500_esram34_consumers, 3026 .num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers), 3027 }, 3028 [DB8500_REGULATOR_SWITCH_ESRAM34RET] = { 3029 .constraints = { 3030 .name = "db8500-esram34-ret", 3031 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 3032 }, 3033 }, 3034 }; 3035 3036 static struct ux500_wdt_data db8500_wdt_pdata = { 3037 .timeout = 600, /* 10 minutes */ 3038 .has_28_bits_resolution = true, 3039 }; 3040 3041 static const struct mfd_cell common_prcmu_devs[] = { 3042 { 3043 .name = "ux500_wdt", 3044 .platform_data = &db8500_wdt_pdata, 3045 .pdata_size = sizeof(db8500_wdt_pdata), 3046 .id = -1, 3047 }, 3048 }; 3049 3050 static const struct mfd_cell db8500_prcmu_devs[] = { 3051 OF_MFD_CELL("db8500-prcmu-regulators", NULL, 3052 &db8500_regulators, sizeof(db8500_regulators), 0, 3053 "stericsson,db8500-prcmu-regulator"), 3054 OF_MFD_CELL("cpuidle-dbx500", 3055 NULL, NULL, 0, 0, "stericsson,cpuidle-dbx500"), 3056 OF_MFD_CELL("db8500-thermal", 3057 NULL, NULL, 0, 0, "stericsson,db8500-thermal"), 3058 }; 3059 3060 static int db8500_prcmu_register_ab8500(struct device *parent) 3061 { 3062 struct device_node *np; 3063 struct resource ab8500_resource; 3064 const struct mfd_cell ab8500_cell = { 3065 .name = "ab8500-core", 3066 .of_compatible = "stericsson,ab8500", 3067 .id = AB8500_VERSION_AB8500, 3068 .resources = &ab8500_resource, 3069 .num_resources = 1, 3070 }; 3071 3072 if (!parent->of_node) 3073 return -ENODEV; 3074 3075 /* Look up the device node, sneak the IRQ out of it */ 3076 for_each_child_of_node(parent->of_node, np) { 3077 if (of_device_is_compatible(np, ab8500_cell.of_compatible)) 3078 break; 3079 } 3080 if (!np) { 3081 dev_info(parent, "could not find AB8500 node in the device tree\n"); 3082 return -ENODEV; 3083 } 3084 of_irq_to_resource_table(np, &ab8500_resource, 1); 3085 3086 return mfd_add_devices(parent, 0, &ab8500_cell, 1, NULL, 0, NULL); 3087 } 3088 3089 /** 3090 * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic 3091 * 3092 */ 3093 static int db8500_prcmu_probe(struct platform_device *pdev) 3094 { 3095 struct device_node *np = pdev->dev.of_node; 3096 int irq = 0, err = 0; 3097 struct resource *res; 3098 3099 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu"); 3100 if (!res) { 3101 dev_err(&pdev->dev, "no prcmu memory region provided\n"); 3102 return -EINVAL; 3103 } 3104 prcmu_base = devm_ioremap(&pdev->dev, res->start, resource_size(res)); 3105 if (!prcmu_base) { 3106 dev_err(&pdev->dev, 3107 "failed to ioremap prcmu register memory\n"); 3108 return -ENOMEM; 3109 } 3110 init_prcm_registers(); 3111 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu-tcdm"); 3112 if (!res) { 3113 dev_err(&pdev->dev, "no prcmu tcdm region provided\n"); 3114 return -EINVAL; 3115 } 3116 tcdm_base = devm_ioremap(&pdev->dev, res->start, 3117 resource_size(res)); 3118 if (!tcdm_base) { 3119 dev_err(&pdev->dev, 3120 "failed to ioremap prcmu-tcdm register memory\n"); 3121 return -ENOMEM; 3122 } 3123 3124 /* Clean up the mailbox interrupts after pre-kernel code. */ 3125 writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR); 3126 3127 irq = platform_get_irq(pdev, 0); 3128 if (irq <= 0) 3129 return irq; 3130 3131 err = request_threaded_irq(irq, prcmu_irq_handler, 3132 prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL); 3133 if (err < 0) { 3134 pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n"); 3135 return err; 3136 } 3137 3138 db8500_irq_init(np); 3139 3140 prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET); 3141 3142 err = mfd_add_devices(&pdev->dev, 0, common_prcmu_devs, 3143 ARRAY_SIZE(common_prcmu_devs), NULL, 0, db8500_irq_domain); 3144 if (err) { 3145 pr_err("prcmu: Failed to add subdevices\n"); 3146 return err; 3147 } 3148 3149 /* TODO: Remove restriction when clk definitions are available. */ 3150 if (!of_machine_is_compatible("st-ericsson,u8540")) { 3151 err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs, 3152 ARRAY_SIZE(db8500_prcmu_devs), NULL, 0, 3153 db8500_irq_domain); 3154 if (err) { 3155 mfd_remove_devices(&pdev->dev); 3156 pr_err("prcmu: Failed to add subdevices\n"); 3157 return err; 3158 } 3159 } 3160 3161 err = db8500_prcmu_register_ab8500(&pdev->dev); 3162 if (err) { 3163 mfd_remove_devices(&pdev->dev); 3164 pr_err("prcmu: Failed to add ab8500 subdevice\n"); 3165 return err; 3166 } 3167 3168 pr_info("DB8500 PRCMU initialized\n"); 3169 return err; 3170 } 3171 static const struct of_device_id db8500_prcmu_match[] = { 3172 { .compatible = "stericsson,db8500-prcmu"}, 3173 { }, 3174 }; 3175 3176 static struct platform_driver db8500_prcmu_driver = { 3177 .driver = { 3178 .name = "db8500-prcmu", 3179 .of_match_table = db8500_prcmu_match, 3180 }, 3181 .probe = db8500_prcmu_probe, 3182 }; 3183 3184 static int __init db8500_prcmu_init(void) 3185 { 3186 return platform_driver_register(&db8500_prcmu_driver); 3187 } 3188 core_initcall(db8500_prcmu_init); 3189