xref: /openbmc/linux/drivers/mfd/db8500-prcmu.c (revision 58092dc4)
1 /*
2  * Copyright (C) STMicroelectronics 2009
3  * Copyright (C) ST-Ericsson SA 2010
4  *
5  * License Terms: GNU General Public License v2
6  * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
7  * Author: Sundar Iyer <sundar.iyer@stericsson.com>
8  * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
9  *
10  * U8500 PRCM Unit interface driver
11  *
12  */
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/delay.h>
16 #include <linux/errno.h>
17 #include <linux/err.h>
18 #include <linux/spinlock.h>
19 #include <linux/io.h>
20 #include <linux/slab.h>
21 #include <linux/mutex.h>
22 #include <linux/completion.h>
23 #include <linux/irq.h>
24 #include <linux/jiffies.h>
25 #include <linux/bitops.h>
26 #include <linux/fs.h>
27 #include <linux/of.h>
28 #include <linux/platform_device.h>
29 #include <linux/uaccess.h>
30 #include <linux/mfd/core.h>
31 #include <linux/mfd/dbx500-prcmu.h>
32 #include <linux/mfd/abx500/ab8500.h>
33 #include <linux/regulator/db8500-prcmu.h>
34 #include <linux/regulator/machine.h>
35 #include <linux/cpufreq.h>
36 #include <linux/platform_data/ux500_wdt.h>
37 #include <linux/platform_data/db8500_thermal.h>
38 #include "dbx500-prcmu-regs.h"
39 
40 /* Index of different voltages to be used when accessing AVSData */
41 #define PRCM_AVS_BASE		0x2FC
42 #define PRCM_AVS_VBB_RET	(PRCM_AVS_BASE + 0x0)
43 #define PRCM_AVS_VBB_MAX_OPP	(PRCM_AVS_BASE + 0x1)
44 #define PRCM_AVS_VBB_100_OPP	(PRCM_AVS_BASE + 0x2)
45 #define PRCM_AVS_VBB_50_OPP	(PRCM_AVS_BASE + 0x3)
46 #define PRCM_AVS_VARM_MAX_OPP	(PRCM_AVS_BASE + 0x4)
47 #define PRCM_AVS_VARM_100_OPP	(PRCM_AVS_BASE + 0x5)
48 #define PRCM_AVS_VARM_50_OPP	(PRCM_AVS_BASE + 0x6)
49 #define PRCM_AVS_VARM_RET	(PRCM_AVS_BASE + 0x7)
50 #define PRCM_AVS_VAPE_100_OPP	(PRCM_AVS_BASE + 0x8)
51 #define PRCM_AVS_VAPE_50_OPP	(PRCM_AVS_BASE + 0x9)
52 #define PRCM_AVS_VMOD_100_OPP	(PRCM_AVS_BASE + 0xA)
53 #define PRCM_AVS_VMOD_50_OPP	(PRCM_AVS_BASE + 0xB)
54 #define PRCM_AVS_VSAFE		(PRCM_AVS_BASE + 0xC)
55 
56 #define PRCM_AVS_VOLTAGE		0
57 #define PRCM_AVS_VOLTAGE_MASK		0x3f
58 #define PRCM_AVS_ISSLOWSTARTUP		6
59 #define PRCM_AVS_ISSLOWSTARTUP_MASK	(1 << PRCM_AVS_ISSLOWSTARTUP)
60 #define PRCM_AVS_ISMODEENABLE		7
61 #define PRCM_AVS_ISMODEENABLE_MASK	(1 << PRCM_AVS_ISMODEENABLE)
62 
63 #define PRCM_BOOT_STATUS	0xFFF
64 #define PRCM_ROMCODE_A2P	0xFFE
65 #define PRCM_ROMCODE_P2A	0xFFD
66 #define PRCM_XP70_CUR_PWR_STATE 0xFFC      /* 4 BYTES */
67 
68 #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
69 
70 #define _PRCM_MBOX_HEADER		0xFE8 /* 16 bytes */
71 #define PRCM_MBOX_HEADER_REQ_MB0	(_PRCM_MBOX_HEADER + 0x0)
72 #define PRCM_MBOX_HEADER_REQ_MB1	(_PRCM_MBOX_HEADER + 0x1)
73 #define PRCM_MBOX_HEADER_REQ_MB2	(_PRCM_MBOX_HEADER + 0x2)
74 #define PRCM_MBOX_HEADER_REQ_MB3	(_PRCM_MBOX_HEADER + 0x3)
75 #define PRCM_MBOX_HEADER_REQ_MB4	(_PRCM_MBOX_HEADER + 0x4)
76 #define PRCM_MBOX_HEADER_REQ_MB5	(_PRCM_MBOX_HEADER + 0x5)
77 #define PRCM_MBOX_HEADER_ACK_MB0	(_PRCM_MBOX_HEADER + 0x8)
78 
79 /* Req Mailboxes */
80 #define PRCM_REQ_MB0 0xFDC /* 12 bytes  */
81 #define PRCM_REQ_MB1 0xFD0 /* 12 bytes  */
82 #define PRCM_REQ_MB2 0xFC0 /* 16 bytes  */
83 #define PRCM_REQ_MB3 0xE4C /* 372 bytes  */
84 #define PRCM_REQ_MB4 0xE48 /* 4 bytes  */
85 #define PRCM_REQ_MB5 0xE44 /* 4 bytes  */
86 
87 /* Ack Mailboxes */
88 #define PRCM_ACK_MB0 0xE08 /* 52 bytes  */
89 #define PRCM_ACK_MB1 0xE04 /* 4 bytes */
90 #define PRCM_ACK_MB2 0xE00 /* 4 bytes */
91 #define PRCM_ACK_MB3 0xDFC /* 4 bytes */
92 #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
93 #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
94 
95 /* Mailbox 0 headers */
96 #define MB0H_POWER_STATE_TRANS		0
97 #define MB0H_CONFIG_WAKEUPS_EXE		1
98 #define MB0H_READ_WAKEUP_ACK		3
99 #define MB0H_CONFIG_WAKEUPS_SLEEP	4
100 
101 #define MB0H_WAKEUP_EXE 2
102 #define MB0H_WAKEUP_SLEEP 5
103 
104 /* Mailbox 0 REQs */
105 #define PRCM_REQ_MB0_AP_POWER_STATE	(PRCM_REQ_MB0 + 0x0)
106 #define PRCM_REQ_MB0_AP_PLL_STATE	(PRCM_REQ_MB0 + 0x1)
107 #define PRCM_REQ_MB0_ULP_CLOCK_STATE	(PRCM_REQ_MB0 + 0x2)
108 #define PRCM_REQ_MB0_DO_NOT_WFI		(PRCM_REQ_MB0 + 0x3)
109 #define PRCM_REQ_MB0_WAKEUP_8500	(PRCM_REQ_MB0 + 0x4)
110 #define PRCM_REQ_MB0_WAKEUP_4500	(PRCM_REQ_MB0 + 0x8)
111 
112 /* Mailbox 0 ACKs */
113 #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS	(PRCM_ACK_MB0 + 0x0)
114 #define PRCM_ACK_MB0_READ_POINTER	(PRCM_ACK_MB0 + 0x1)
115 #define PRCM_ACK_MB0_WAKEUP_0_8500	(PRCM_ACK_MB0 + 0x4)
116 #define PRCM_ACK_MB0_WAKEUP_0_4500	(PRCM_ACK_MB0 + 0x8)
117 #define PRCM_ACK_MB0_WAKEUP_1_8500	(PRCM_ACK_MB0 + 0x1C)
118 #define PRCM_ACK_MB0_WAKEUP_1_4500	(PRCM_ACK_MB0 + 0x20)
119 #define PRCM_ACK_MB0_EVENT_4500_NUMBERS	20
120 
121 /* Mailbox 1 headers */
122 #define MB1H_ARM_APE_OPP 0x0
123 #define MB1H_RESET_MODEM 0x2
124 #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
125 #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
126 #define MB1H_RELEASE_USB_WAKEUP 0x5
127 #define MB1H_PLL_ON_OFF 0x6
128 
129 /* Mailbox 1 Requests */
130 #define PRCM_REQ_MB1_ARM_OPP			(PRCM_REQ_MB1 + 0x0)
131 #define PRCM_REQ_MB1_APE_OPP			(PRCM_REQ_MB1 + 0x1)
132 #define PRCM_REQ_MB1_PLL_ON_OFF			(PRCM_REQ_MB1 + 0x4)
133 #define PLL_SOC0_OFF	0x1
134 #define PLL_SOC0_ON	0x2
135 #define PLL_SOC1_OFF	0x4
136 #define PLL_SOC1_ON	0x8
137 
138 /* Mailbox 1 ACKs */
139 #define PRCM_ACK_MB1_CURRENT_ARM_OPP	(PRCM_ACK_MB1 + 0x0)
140 #define PRCM_ACK_MB1_CURRENT_APE_OPP	(PRCM_ACK_MB1 + 0x1)
141 #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS	(PRCM_ACK_MB1 + 0x2)
142 #define PRCM_ACK_MB1_DVFS_STATUS	(PRCM_ACK_MB1 + 0x3)
143 
144 /* Mailbox 2 headers */
145 #define MB2H_DPS	0x0
146 #define MB2H_AUTO_PWR	0x1
147 
148 /* Mailbox 2 REQs */
149 #define PRCM_REQ_MB2_SVA_MMDSP		(PRCM_REQ_MB2 + 0x0)
150 #define PRCM_REQ_MB2_SVA_PIPE		(PRCM_REQ_MB2 + 0x1)
151 #define PRCM_REQ_MB2_SIA_MMDSP		(PRCM_REQ_MB2 + 0x2)
152 #define PRCM_REQ_MB2_SIA_PIPE		(PRCM_REQ_MB2 + 0x3)
153 #define PRCM_REQ_MB2_SGA		(PRCM_REQ_MB2 + 0x4)
154 #define PRCM_REQ_MB2_B2R2_MCDE		(PRCM_REQ_MB2 + 0x5)
155 #define PRCM_REQ_MB2_ESRAM12		(PRCM_REQ_MB2 + 0x6)
156 #define PRCM_REQ_MB2_ESRAM34		(PRCM_REQ_MB2 + 0x7)
157 #define PRCM_REQ_MB2_AUTO_PM_SLEEP	(PRCM_REQ_MB2 + 0x8)
158 #define PRCM_REQ_MB2_AUTO_PM_IDLE	(PRCM_REQ_MB2 + 0xC)
159 
160 /* Mailbox 2 ACKs */
161 #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
162 #define HWACC_PWR_ST_OK 0xFE
163 
164 /* Mailbox 3 headers */
165 #define MB3H_ANC	0x0
166 #define MB3H_SIDETONE	0x1
167 #define MB3H_SYSCLK	0xE
168 
169 /* Mailbox 3 Requests */
170 #define PRCM_REQ_MB3_ANC_FIR_COEFF	(PRCM_REQ_MB3 + 0x0)
171 #define PRCM_REQ_MB3_ANC_IIR_COEFF	(PRCM_REQ_MB3 + 0x20)
172 #define PRCM_REQ_MB3_ANC_SHIFTER	(PRCM_REQ_MB3 + 0x60)
173 #define PRCM_REQ_MB3_ANC_WARP		(PRCM_REQ_MB3 + 0x64)
174 #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN	(PRCM_REQ_MB3 + 0x68)
175 #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF	(PRCM_REQ_MB3 + 0x6C)
176 #define PRCM_REQ_MB3_SYSCLK_MGT		(PRCM_REQ_MB3 + 0x16C)
177 
178 /* Mailbox 4 headers */
179 #define MB4H_DDR_INIT	0x0
180 #define MB4H_MEM_ST	0x1
181 #define MB4H_HOTDOG	0x12
182 #define MB4H_HOTMON	0x13
183 #define MB4H_HOT_PERIOD	0x14
184 #define MB4H_A9WDOG_CONF 0x16
185 #define MB4H_A9WDOG_EN   0x17
186 #define MB4H_A9WDOG_DIS  0x18
187 #define MB4H_A9WDOG_LOAD 0x19
188 #define MB4H_A9WDOG_KICK 0x20
189 
190 /* Mailbox 4 Requests */
191 #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE	(PRCM_REQ_MB4 + 0x0)
192 #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE	(PRCM_REQ_MB4 + 0x1)
193 #define PRCM_REQ_MB4_ESRAM0_ST			(PRCM_REQ_MB4 + 0x3)
194 #define PRCM_REQ_MB4_HOTDOG_THRESHOLD		(PRCM_REQ_MB4 + 0x0)
195 #define PRCM_REQ_MB4_HOTMON_LOW			(PRCM_REQ_MB4 + 0x0)
196 #define PRCM_REQ_MB4_HOTMON_HIGH		(PRCM_REQ_MB4 + 0x1)
197 #define PRCM_REQ_MB4_HOTMON_CONFIG		(PRCM_REQ_MB4 + 0x2)
198 #define PRCM_REQ_MB4_HOT_PERIOD			(PRCM_REQ_MB4 + 0x0)
199 #define HOTMON_CONFIG_LOW			BIT(0)
200 #define HOTMON_CONFIG_HIGH			BIT(1)
201 #define PRCM_REQ_MB4_A9WDOG_0			(PRCM_REQ_MB4 + 0x0)
202 #define PRCM_REQ_MB4_A9WDOG_1			(PRCM_REQ_MB4 + 0x1)
203 #define PRCM_REQ_MB4_A9WDOG_2			(PRCM_REQ_MB4 + 0x2)
204 #define PRCM_REQ_MB4_A9WDOG_3			(PRCM_REQ_MB4 + 0x3)
205 #define A9WDOG_AUTO_OFF_EN			BIT(7)
206 #define A9WDOG_AUTO_OFF_DIS			0
207 #define A9WDOG_ID_MASK				0xf
208 
209 /* Mailbox 5 Requests */
210 #define PRCM_REQ_MB5_I2C_SLAVE_OP	(PRCM_REQ_MB5 + 0x0)
211 #define PRCM_REQ_MB5_I2C_HW_BITS	(PRCM_REQ_MB5 + 0x1)
212 #define PRCM_REQ_MB5_I2C_REG		(PRCM_REQ_MB5 + 0x2)
213 #define PRCM_REQ_MB5_I2C_VAL		(PRCM_REQ_MB5 + 0x3)
214 #define PRCMU_I2C_WRITE(slave) (((slave) << 1) | BIT(6))
215 #define PRCMU_I2C_READ(slave) (((slave) << 1) | BIT(0) | BIT(6))
216 #define PRCMU_I2C_STOP_EN		BIT(3)
217 
218 /* Mailbox 5 ACKs */
219 #define PRCM_ACK_MB5_I2C_STATUS	(PRCM_ACK_MB5 + 0x1)
220 #define PRCM_ACK_MB5_I2C_VAL	(PRCM_ACK_MB5 + 0x3)
221 #define I2C_WR_OK 0x1
222 #define I2C_RD_OK 0x2
223 
224 #define NUM_MB 8
225 #define MBOX_BIT BIT
226 #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
227 
228 /*
229  * Wakeups/IRQs
230  */
231 
232 #define WAKEUP_BIT_RTC BIT(0)
233 #define WAKEUP_BIT_RTT0 BIT(1)
234 #define WAKEUP_BIT_RTT1 BIT(2)
235 #define WAKEUP_BIT_HSI0 BIT(3)
236 #define WAKEUP_BIT_HSI1 BIT(4)
237 #define WAKEUP_BIT_CA_WAKE BIT(5)
238 #define WAKEUP_BIT_USB BIT(6)
239 #define WAKEUP_BIT_ABB BIT(7)
240 #define WAKEUP_BIT_ABB_FIFO BIT(8)
241 #define WAKEUP_BIT_SYSCLK_OK BIT(9)
242 #define WAKEUP_BIT_CA_SLEEP BIT(10)
243 #define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
244 #define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
245 #define WAKEUP_BIT_ANC_OK BIT(13)
246 #define WAKEUP_BIT_SW_ERROR BIT(14)
247 #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
248 #define WAKEUP_BIT_ARM BIT(17)
249 #define WAKEUP_BIT_HOTMON_LOW BIT(18)
250 #define WAKEUP_BIT_HOTMON_HIGH BIT(19)
251 #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
252 #define WAKEUP_BIT_GPIO0 BIT(23)
253 #define WAKEUP_BIT_GPIO1 BIT(24)
254 #define WAKEUP_BIT_GPIO2 BIT(25)
255 #define WAKEUP_BIT_GPIO3 BIT(26)
256 #define WAKEUP_BIT_GPIO4 BIT(27)
257 #define WAKEUP_BIT_GPIO5 BIT(28)
258 #define WAKEUP_BIT_GPIO6 BIT(29)
259 #define WAKEUP_BIT_GPIO7 BIT(30)
260 #define WAKEUP_BIT_GPIO8 BIT(31)
261 
262 static struct {
263 	bool valid;
264 	struct prcmu_fw_version version;
265 } fw_info;
266 
267 static struct irq_domain *db8500_irq_domain;
268 
269 /*
270  * This vector maps irq numbers to the bits in the bit field used in
271  * communication with the PRCMU firmware.
272  *
273  * The reason for having this is to keep the irq numbers contiguous even though
274  * the bits in the bit field are not. (The bits also have a tendency to move
275  * around, to further complicate matters.)
276  */
277 #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name))
278 #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
279 
280 #define IRQ_PRCMU_RTC 0
281 #define IRQ_PRCMU_RTT0 1
282 #define IRQ_PRCMU_RTT1 2
283 #define IRQ_PRCMU_HSI0 3
284 #define IRQ_PRCMU_HSI1 4
285 #define IRQ_PRCMU_CA_WAKE 5
286 #define IRQ_PRCMU_USB 6
287 #define IRQ_PRCMU_ABB 7
288 #define IRQ_PRCMU_ABB_FIFO 8
289 #define IRQ_PRCMU_ARM 9
290 #define IRQ_PRCMU_MODEM_SW_RESET_REQ 10
291 #define IRQ_PRCMU_GPIO0 11
292 #define IRQ_PRCMU_GPIO1 12
293 #define IRQ_PRCMU_GPIO2 13
294 #define IRQ_PRCMU_GPIO3 14
295 #define IRQ_PRCMU_GPIO4 15
296 #define IRQ_PRCMU_GPIO5 16
297 #define IRQ_PRCMU_GPIO6 17
298 #define IRQ_PRCMU_GPIO7 18
299 #define IRQ_PRCMU_GPIO8 19
300 #define IRQ_PRCMU_CA_SLEEP 20
301 #define IRQ_PRCMU_HOTMON_LOW 21
302 #define IRQ_PRCMU_HOTMON_HIGH 22
303 #define NUM_PRCMU_WAKEUPS 23
304 
305 static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
306 	IRQ_ENTRY(RTC),
307 	IRQ_ENTRY(RTT0),
308 	IRQ_ENTRY(RTT1),
309 	IRQ_ENTRY(HSI0),
310 	IRQ_ENTRY(HSI1),
311 	IRQ_ENTRY(CA_WAKE),
312 	IRQ_ENTRY(USB),
313 	IRQ_ENTRY(ABB),
314 	IRQ_ENTRY(ABB_FIFO),
315 	IRQ_ENTRY(CA_SLEEP),
316 	IRQ_ENTRY(ARM),
317 	IRQ_ENTRY(HOTMON_LOW),
318 	IRQ_ENTRY(HOTMON_HIGH),
319 	IRQ_ENTRY(MODEM_SW_RESET_REQ),
320 	IRQ_ENTRY(GPIO0),
321 	IRQ_ENTRY(GPIO1),
322 	IRQ_ENTRY(GPIO2),
323 	IRQ_ENTRY(GPIO3),
324 	IRQ_ENTRY(GPIO4),
325 	IRQ_ENTRY(GPIO5),
326 	IRQ_ENTRY(GPIO6),
327 	IRQ_ENTRY(GPIO7),
328 	IRQ_ENTRY(GPIO8)
329 };
330 
331 #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
332 #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
333 static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
334 	WAKEUP_ENTRY(RTC),
335 	WAKEUP_ENTRY(RTT0),
336 	WAKEUP_ENTRY(RTT1),
337 	WAKEUP_ENTRY(HSI0),
338 	WAKEUP_ENTRY(HSI1),
339 	WAKEUP_ENTRY(USB),
340 	WAKEUP_ENTRY(ABB),
341 	WAKEUP_ENTRY(ABB_FIFO),
342 	WAKEUP_ENTRY(ARM)
343 };
344 
345 /*
346  * mb0_transfer - state needed for mailbox 0 communication.
347  * @lock:		The transaction lock.
348  * @dbb_events_lock:	A lock used to handle concurrent access to (parts of)
349  *			the request data.
350  * @mask_work:		Work structure used for (un)masking wakeup interrupts.
351  * @req:		Request data that need to persist between requests.
352  */
353 static struct {
354 	spinlock_t lock;
355 	spinlock_t dbb_irqs_lock;
356 	struct work_struct mask_work;
357 	struct mutex ac_wake_lock;
358 	struct completion ac_wake_work;
359 	struct {
360 		u32 dbb_irqs;
361 		u32 dbb_wakeups;
362 		u32 abb_events;
363 	} req;
364 } mb0_transfer;
365 
366 /*
367  * mb1_transfer - state needed for mailbox 1 communication.
368  * @lock:	The transaction lock.
369  * @work:	The transaction completion structure.
370  * @ape_opp:	The current APE OPP.
371  * @ack:	Reply ("acknowledge") data.
372  */
373 static struct {
374 	struct mutex lock;
375 	struct completion work;
376 	u8 ape_opp;
377 	struct {
378 		u8 header;
379 		u8 arm_opp;
380 		u8 ape_opp;
381 		u8 ape_voltage_status;
382 	} ack;
383 } mb1_transfer;
384 
385 /*
386  * mb2_transfer - state needed for mailbox 2 communication.
387  * @lock:            The transaction lock.
388  * @work:            The transaction completion structure.
389  * @auto_pm_lock:    The autonomous power management configuration lock.
390  * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
391  * @req:             Request data that need to persist between requests.
392  * @ack:             Reply ("acknowledge") data.
393  */
394 static struct {
395 	struct mutex lock;
396 	struct completion work;
397 	spinlock_t auto_pm_lock;
398 	bool auto_pm_enabled;
399 	struct {
400 		u8 status;
401 	} ack;
402 } mb2_transfer;
403 
404 /*
405  * mb3_transfer - state needed for mailbox 3 communication.
406  * @lock:		The request lock.
407  * @sysclk_lock:	A lock used to handle concurrent sysclk requests.
408  * @sysclk_work:	Work structure used for sysclk requests.
409  */
410 static struct {
411 	spinlock_t lock;
412 	struct mutex sysclk_lock;
413 	struct completion sysclk_work;
414 } mb3_transfer;
415 
416 /*
417  * mb4_transfer - state needed for mailbox 4 communication.
418  * @lock:	The transaction lock.
419  * @work:	The transaction completion structure.
420  */
421 static struct {
422 	struct mutex lock;
423 	struct completion work;
424 } mb4_transfer;
425 
426 /*
427  * mb5_transfer - state needed for mailbox 5 communication.
428  * @lock:	The transaction lock.
429  * @work:	The transaction completion structure.
430  * @ack:	Reply ("acknowledge") data.
431  */
432 static struct {
433 	struct mutex lock;
434 	struct completion work;
435 	struct {
436 		u8 status;
437 		u8 value;
438 	} ack;
439 } mb5_transfer;
440 
441 static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
442 
443 /* Spinlocks */
444 static DEFINE_SPINLOCK(prcmu_lock);
445 static DEFINE_SPINLOCK(clkout_lock);
446 
447 /* Global var to runtime determine TCDM base for v2 or v1 */
448 static __iomem void *tcdm_base;
449 static __iomem void *prcmu_base;
450 
451 struct clk_mgt {
452 	u32 offset;
453 	u32 pllsw;
454 	int branch;
455 	bool clk38div;
456 };
457 
458 enum {
459 	PLL_RAW,
460 	PLL_FIX,
461 	PLL_DIV
462 };
463 
464 static DEFINE_SPINLOCK(clk_mgt_lock);
465 
466 #define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
467 	{ (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
468 static struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
469 	CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
470 	CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
471 	CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
472 	CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
473 	CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
474 	CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
475 	CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
476 	CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
477 	CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
478 	CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
479 	CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
480 	CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
481 	CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
482 	CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
483 	CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
484 	CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
485 	CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
486 	CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
487 	CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
488 	CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
489 	CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
490 	CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
491 	CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
492 	CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
493 	CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
494 	CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
495 	CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
496 	CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
497 	CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
498 };
499 
500 struct dsiclk {
501 	u32 divsel_mask;
502 	u32 divsel_shift;
503 	u32 divsel;
504 };
505 
506 static struct dsiclk dsiclk[2] = {
507 	{
508 		.divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
509 		.divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
510 		.divsel = PRCM_DSI_PLLOUT_SEL_PHI,
511 	},
512 	{
513 		.divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
514 		.divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
515 		.divsel = PRCM_DSI_PLLOUT_SEL_PHI,
516 	}
517 };
518 
519 struct dsiescclk {
520 	u32 en;
521 	u32 div_mask;
522 	u32 div_shift;
523 };
524 
525 static struct dsiescclk dsiescclk[3] = {
526 	{
527 		.en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
528 		.div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
529 		.div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
530 	},
531 	{
532 		.en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
533 		.div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
534 		.div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
535 	},
536 	{
537 		.en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
538 		.div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
539 		.div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
540 	}
541 };
542 
543 
544 /*
545 * Used by MCDE to setup all necessary PRCMU registers
546 */
547 #define PRCMU_RESET_DSIPLL		0x00004000
548 #define PRCMU_UNCLAMP_DSIPLL		0x00400800
549 
550 #define PRCMU_CLK_PLL_DIV_SHIFT		0
551 #define PRCMU_CLK_PLL_SW_SHIFT		5
552 #define PRCMU_CLK_38			(1 << 9)
553 #define PRCMU_CLK_38_SRC		(1 << 10)
554 #define PRCMU_CLK_38_DIV		(1 << 11)
555 
556 /* PLLDIV=12, PLLSW=4 (PLLDDR) */
557 #define PRCMU_DSI_CLOCK_SETTING		0x0000008C
558 
559 /* DPI 50000000 Hz */
560 #define PRCMU_DPI_CLOCK_SETTING		((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
561 					  (16 << PRCMU_CLK_PLL_DIV_SHIFT))
562 #define PRCMU_DSI_LP_CLOCK_SETTING	0x00000E00
563 
564 /* D=101, N=1, R=4, SELDIV2=0 */
565 #define PRCMU_PLLDSI_FREQ_SETTING	0x00040165
566 
567 #define PRCMU_ENABLE_PLLDSI		0x00000001
568 #define PRCMU_DISABLE_PLLDSI		0x00000000
569 #define PRCMU_RELEASE_RESET_DSS		0x0000400C
570 #define PRCMU_DSI_PLLOUT_SEL_SETTING	0x00000202
571 /* ESC clk, div0=1, div1=1, div2=3 */
572 #define PRCMU_ENABLE_ESCAPE_CLOCK_DIV	0x07030101
573 #define PRCMU_DISABLE_ESCAPE_CLOCK_DIV	0x00030101
574 #define PRCMU_DSI_RESET_SW		0x00000007
575 
576 #define PRCMU_PLLDSI_LOCKP_LOCKED	0x3
577 
578 int db8500_prcmu_enable_dsipll(void)
579 {
580 	int i;
581 
582 	/* Clear DSIPLL_RESETN */
583 	writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR);
584 	/* Unclamp DSIPLL in/out */
585 	writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR);
586 
587 	/* Set DSI PLL FREQ */
588 	writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ);
589 	writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL);
590 	/* Enable Escape clocks */
591 	writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
592 
593 	/* Start DSI PLL */
594 	writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
595 	/* Reset DSI PLL */
596 	writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET);
597 	for (i = 0; i < 10; i++) {
598 		if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED)
599 					== PRCMU_PLLDSI_LOCKP_LOCKED)
600 			break;
601 		udelay(100);
602 	}
603 	/* Set DSIPLL_RESETN */
604 	writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET);
605 	return 0;
606 }
607 
608 int db8500_prcmu_disable_dsipll(void)
609 {
610 	/* Disable dsi pll */
611 	writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
612 	/* Disable  escapeclock */
613 	writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
614 	return 0;
615 }
616 
617 int db8500_prcmu_set_display_clocks(void)
618 {
619 	unsigned long flags;
620 
621 	spin_lock_irqsave(&clk_mgt_lock, flags);
622 
623 	/* Grab the HW semaphore. */
624 	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
625 		cpu_relax();
626 
627 	writel(PRCMU_DSI_CLOCK_SETTING, prcmu_base + PRCM_HDMICLK_MGT);
628 	writel(PRCMU_DSI_LP_CLOCK_SETTING, prcmu_base + PRCM_TVCLK_MGT);
629 	writel(PRCMU_DPI_CLOCK_SETTING, prcmu_base + PRCM_LCDCLK_MGT);
630 
631 	/* Release the HW semaphore. */
632 	writel(0, PRCM_SEM);
633 
634 	spin_unlock_irqrestore(&clk_mgt_lock, flags);
635 
636 	return 0;
637 }
638 
639 u32 db8500_prcmu_read(unsigned int reg)
640 {
641 	return readl(prcmu_base + reg);
642 }
643 
644 void db8500_prcmu_write(unsigned int reg, u32 value)
645 {
646 	unsigned long flags;
647 
648 	spin_lock_irqsave(&prcmu_lock, flags);
649 	writel(value, (prcmu_base + reg));
650 	spin_unlock_irqrestore(&prcmu_lock, flags);
651 }
652 
653 void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
654 {
655 	u32 val;
656 	unsigned long flags;
657 
658 	spin_lock_irqsave(&prcmu_lock, flags);
659 	val = readl(prcmu_base + reg);
660 	val = ((val & ~mask) | (value & mask));
661 	writel(val, (prcmu_base + reg));
662 	spin_unlock_irqrestore(&prcmu_lock, flags);
663 }
664 
665 struct prcmu_fw_version *prcmu_get_fw_version(void)
666 {
667 	return fw_info.valid ? &fw_info.version : NULL;
668 }
669 
670 bool prcmu_has_arm_maxopp(void)
671 {
672 	return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
673 		PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
674 }
675 
676 /**
677  * prcmu_get_boot_status - PRCMU boot status checking
678  * Returns: the current PRCMU boot status
679  */
680 int prcmu_get_boot_status(void)
681 {
682 	return readb(tcdm_base + PRCM_BOOT_STATUS);
683 }
684 
685 /**
686  * prcmu_set_rc_a2p - This function is used to run few power state sequences
687  * @val: Value to be set, i.e. transition requested
688  * Returns: 0 on success, -EINVAL on invalid argument
689  *
690  * This function is used to run the following power state sequences -
691  * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
692  */
693 int prcmu_set_rc_a2p(enum romcode_write val)
694 {
695 	if (val < RDY_2_DS || val > RDY_2_XP70_RST)
696 		return -EINVAL;
697 	writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
698 	return 0;
699 }
700 
701 /**
702  * prcmu_get_rc_p2a - This function is used to get power state sequences
703  * Returns: the power transition that has last happened
704  *
705  * This function can return the following transitions-
706  * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
707  */
708 enum romcode_read prcmu_get_rc_p2a(void)
709 {
710 	return readb(tcdm_base + PRCM_ROMCODE_P2A);
711 }
712 
713 /**
714  * prcmu_get_current_mode - Return the current XP70 power mode
715  * Returns: Returns the current AP(ARM) power mode: init,
716  * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
717  */
718 enum ap_pwrst prcmu_get_xp70_current_state(void)
719 {
720 	return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
721 }
722 
723 /**
724  * prcmu_config_clkout - Configure one of the programmable clock outputs.
725  * @clkout:	The CLKOUT number (0 or 1).
726  * @source:	The clock to be used (one of the PRCMU_CLKSRC_*).
727  * @div:	The divider to be applied.
728  *
729  * Configures one of the programmable clock outputs (CLKOUTs).
730  * @div should be in the range [1,63] to request a configuration, or 0 to
731  * inform that the configuration is no longer requested.
732  */
733 int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
734 {
735 	static int requests[2];
736 	int r = 0;
737 	unsigned long flags;
738 	u32 val;
739 	u32 bits;
740 	u32 mask;
741 	u32 div_mask;
742 
743 	BUG_ON(clkout > 1);
744 	BUG_ON(div > 63);
745 	BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
746 
747 	if (!div && !requests[clkout])
748 		return -EINVAL;
749 
750 	switch (clkout) {
751 	case 0:
752 		div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
753 		mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
754 		bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
755 			(div << PRCM_CLKOCR_CLKODIV0_SHIFT));
756 		break;
757 	case 1:
758 		div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
759 		mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
760 			PRCM_CLKOCR_CLK1TYPE);
761 		bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
762 			(div << PRCM_CLKOCR_CLKODIV1_SHIFT));
763 		break;
764 	}
765 	bits &= mask;
766 
767 	spin_lock_irqsave(&clkout_lock, flags);
768 
769 	val = readl(PRCM_CLKOCR);
770 	if (val & div_mask) {
771 		if (div) {
772 			if ((val & mask) != bits) {
773 				r = -EBUSY;
774 				goto unlock_and_return;
775 			}
776 		} else {
777 			if ((val & mask & ~div_mask) != bits) {
778 				r = -EINVAL;
779 				goto unlock_and_return;
780 			}
781 		}
782 	}
783 	writel((bits | (val & ~mask)), PRCM_CLKOCR);
784 	requests[clkout] += (div ? 1 : -1);
785 
786 unlock_and_return:
787 	spin_unlock_irqrestore(&clkout_lock, flags);
788 
789 	return r;
790 }
791 
792 int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
793 {
794 	unsigned long flags;
795 
796 	BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
797 
798 	spin_lock_irqsave(&mb0_transfer.lock, flags);
799 
800 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
801 		cpu_relax();
802 
803 	writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
804 	writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
805 	writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
806 	writeb((keep_ulp_clk ? 1 : 0),
807 		(tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
808 	writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
809 	writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
810 
811 	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
812 
813 	return 0;
814 }
815 
816 u8 db8500_prcmu_get_power_state_result(void)
817 {
818 	return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
819 }
820 
821 /* This function should only be called while mb0_transfer.lock is held. */
822 static void config_wakeups(void)
823 {
824 	const u8 header[2] = {
825 		MB0H_CONFIG_WAKEUPS_EXE,
826 		MB0H_CONFIG_WAKEUPS_SLEEP
827 	};
828 	static u32 last_dbb_events;
829 	static u32 last_abb_events;
830 	u32 dbb_events;
831 	u32 abb_events;
832 	unsigned int i;
833 
834 	dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
835 	dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
836 
837 	abb_events = mb0_transfer.req.abb_events;
838 
839 	if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
840 		return;
841 
842 	for (i = 0; i < 2; i++) {
843 		while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
844 			cpu_relax();
845 		writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
846 		writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
847 		writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
848 		writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
849 	}
850 	last_dbb_events = dbb_events;
851 	last_abb_events = abb_events;
852 }
853 
854 void db8500_prcmu_enable_wakeups(u32 wakeups)
855 {
856 	unsigned long flags;
857 	u32 bits;
858 	int i;
859 
860 	BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
861 
862 	for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
863 		if (wakeups & BIT(i))
864 			bits |= prcmu_wakeup_bit[i];
865 	}
866 
867 	spin_lock_irqsave(&mb0_transfer.lock, flags);
868 
869 	mb0_transfer.req.dbb_wakeups = bits;
870 	config_wakeups();
871 
872 	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
873 }
874 
875 void db8500_prcmu_config_abb_event_readout(u32 abb_events)
876 {
877 	unsigned long flags;
878 
879 	spin_lock_irqsave(&mb0_transfer.lock, flags);
880 
881 	mb0_transfer.req.abb_events = abb_events;
882 	config_wakeups();
883 
884 	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
885 }
886 
887 void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
888 {
889 	if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
890 		*buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
891 	else
892 		*buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
893 }
894 
895 /**
896  * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
897  * @opp: The new ARM operating point to which transition is to be made
898  * Returns: 0 on success, non-zero on failure
899  *
900  * This function sets the the operating point of the ARM.
901  */
902 int db8500_prcmu_set_arm_opp(u8 opp)
903 {
904 	int r;
905 
906 	if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
907 		return -EINVAL;
908 
909 	r = 0;
910 
911 	mutex_lock(&mb1_transfer.lock);
912 
913 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
914 		cpu_relax();
915 
916 	writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
917 	writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
918 	writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
919 
920 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
921 	wait_for_completion(&mb1_transfer.work);
922 
923 	if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
924 		(mb1_transfer.ack.arm_opp != opp))
925 		r = -EIO;
926 
927 	mutex_unlock(&mb1_transfer.lock);
928 
929 	return r;
930 }
931 
932 /**
933  * db8500_prcmu_get_arm_opp - get the current ARM OPP
934  *
935  * Returns: the current ARM OPP
936  */
937 int db8500_prcmu_get_arm_opp(void)
938 {
939 	return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
940 }
941 
942 /**
943  * db8500_prcmu_get_ddr_opp - get the current DDR OPP
944  *
945  * Returns: the current DDR OPP
946  */
947 int db8500_prcmu_get_ddr_opp(void)
948 {
949 	return readb(PRCM_DDR_SUBSYS_APE_MINBW);
950 }
951 
952 /**
953  * db8500_set_ddr_opp - set the appropriate DDR OPP
954  * @opp: The new DDR operating point to which transition is to be made
955  * Returns: 0 on success, non-zero on failure
956  *
957  * This function sets the operating point of the DDR.
958  */
959 static bool enable_set_ddr_opp;
960 int db8500_prcmu_set_ddr_opp(u8 opp)
961 {
962 	if (opp < DDR_100_OPP || opp > DDR_25_OPP)
963 		return -EINVAL;
964 	/* Changing the DDR OPP can hang the hardware pre-v21 */
965 	if (enable_set_ddr_opp)
966 		writeb(opp, PRCM_DDR_SUBSYS_APE_MINBW);
967 
968 	return 0;
969 }
970 
971 /* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
972 static void request_even_slower_clocks(bool enable)
973 {
974 	u32 clock_reg[] = {
975 		PRCM_ACLK_MGT,
976 		PRCM_DMACLK_MGT
977 	};
978 	unsigned long flags;
979 	unsigned int i;
980 
981 	spin_lock_irqsave(&clk_mgt_lock, flags);
982 
983 	/* Grab the HW semaphore. */
984 	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
985 		cpu_relax();
986 
987 	for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
988 		u32 val;
989 		u32 div;
990 
991 		val = readl(prcmu_base + clock_reg[i]);
992 		div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
993 		if (enable) {
994 			if ((div <= 1) || (div > 15)) {
995 				pr_err("prcmu: Bad clock divider %d in %s\n",
996 					div, __func__);
997 				goto unlock_and_return;
998 			}
999 			div <<= 1;
1000 		} else {
1001 			if (div <= 2)
1002 				goto unlock_and_return;
1003 			div >>= 1;
1004 		}
1005 		val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
1006 			(div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
1007 		writel(val, prcmu_base + clock_reg[i]);
1008 	}
1009 
1010 unlock_and_return:
1011 	/* Release the HW semaphore. */
1012 	writel(0, PRCM_SEM);
1013 
1014 	spin_unlock_irqrestore(&clk_mgt_lock, flags);
1015 }
1016 
1017 /**
1018  * db8500_set_ape_opp - set the appropriate APE OPP
1019  * @opp: The new APE operating point to which transition is to be made
1020  * Returns: 0 on success, non-zero on failure
1021  *
1022  * This function sets the operating point of the APE.
1023  */
1024 int db8500_prcmu_set_ape_opp(u8 opp)
1025 {
1026 	int r = 0;
1027 
1028 	if (opp == mb1_transfer.ape_opp)
1029 		return 0;
1030 
1031 	mutex_lock(&mb1_transfer.lock);
1032 
1033 	if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
1034 		request_even_slower_clocks(false);
1035 
1036 	if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
1037 		goto skip_message;
1038 
1039 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1040 		cpu_relax();
1041 
1042 	writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1043 	writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
1044 	writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
1045 		(tcdm_base + PRCM_REQ_MB1_APE_OPP));
1046 
1047 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1048 	wait_for_completion(&mb1_transfer.work);
1049 
1050 	if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
1051 		(mb1_transfer.ack.ape_opp != opp))
1052 		r = -EIO;
1053 
1054 skip_message:
1055 	if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
1056 		(r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
1057 		request_even_slower_clocks(true);
1058 	if (!r)
1059 		mb1_transfer.ape_opp = opp;
1060 
1061 	mutex_unlock(&mb1_transfer.lock);
1062 
1063 	return r;
1064 }
1065 
1066 /**
1067  * db8500_prcmu_get_ape_opp - get the current APE OPP
1068  *
1069  * Returns: the current APE OPP
1070  */
1071 int db8500_prcmu_get_ape_opp(void)
1072 {
1073 	return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
1074 }
1075 
1076 /**
1077  * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
1078  * @enable: true to request the higher voltage, false to drop a request.
1079  *
1080  * Calls to this function to enable and disable requests must be balanced.
1081  */
1082 int db8500_prcmu_request_ape_opp_100_voltage(bool enable)
1083 {
1084 	int r = 0;
1085 	u8 header;
1086 	static unsigned int requests;
1087 
1088 	mutex_lock(&mb1_transfer.lock);
1089 
1090 	if (enable) {
1091 		if (0 != requests++)
1092 			goto unlock_and_return;
1093 		header = MB1H_REQUEST_APE_OPP_100_VOLT;
1094 	} else {
1095 		if (requests == 0) {
1096 			r = -EIO;
1097 			goto unlock_and_return;
1098 		} else if (1 != requests--) {
1099 			goto unlock_and_return;
1100 		}
1101 		header = MB1H_RELEASE_APE_OPP_100_VOLT;
1102 	}
1103 
1104 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1105 		cpu_relax();
1106 
1107 	writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1108 
1109 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1110 	wait_for_completion(&mb1_transfer.work);
1111 
1112 	if ((mb1_transfer.ack.header != header) ||
1113 		((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1114 		r = -EIO;
1115 
1116 unlock_and_return:
1117 	mutex_unlock(&mb1_transfer.lock);
1118 
1119 	return r;
1120 }
1121 
1122 /**
1123  * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
1124  *
1125  * This function releases the power state requirements of a USB wakeup.
1126  */
1127 int prcmu_release_usb_wakeup_state(void)
1128 {
1129 	int r = 0;
1130 
1131 	mutex_lock(&mb1_transfer.lock);
1132 
1133 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1134 		cpu_relax();
1135 
1136 	writeb(MB1H_RELEASE_USB_WAKEUP,
1137 		(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1138 
1139 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1140 	wait_for_completion(&mb1_transfer.work);
1141 
1142 	if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
1143 		((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1144 		r = -EIO;
1145 
1146 	mutex_unlock(&mb1_transfer.lock);
1147 
1148 	return r;
1149 }
1150 
1151 static int request_pll(u8 clock, bool enable)
1152 {
1153 	int r = 0;
1154 
1155 	if (clock == PRCMU_PLLSOC0)
1156 		clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
1157 	else if (clock == PRCMU_PLLSOC1)
1158 		clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
1159 	else
1160 		return -EINVAL;
1161 
1162 	mutex_lock(&mb1_transfer.lock);
1163 
1164 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1165 		cpu_relax();
1166 
1167 	writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1168 	writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
1169 
1170 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1171 	wait_for_completion(&mb1_transfer.work);
1172 
1173 	if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
1174 		r = -EIO;
1175 
1176 	mutex_unlock(&mb1_transfer.lock);
1177 
1178 	return r;
1179 }
1180 
1181 /**
1182  * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
1183  * @epod_id: The EPOD to set
1184  * @epod_state: The new EPOD state
1185  *
1186  * This function sets the state of a EPOD (power domain). It may not be called
1187  * from interrupt context.
1188  */
1189 int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
1190 {
1191 	int r = 0;
1192 	bool ram_retention = false;
1193 	int i;
1194 
1195 	/* check argument */
1196 	BUG_ON(epod_id >= NUM_EPOD_ID);
1197 
1198 	/* set flag if retention is possible */
1199 	switch (epod_id) {
1200 	case EPOD_ID_SVAMMDSP:
1201 	case EPOD_ID_SIAMMDSP:
1202 	case EPOD_ID_ESRAM12:
1203 	case EPOD_ID_ESRAM34:
1204 		ram_retention = true;
1205 		break;
1206 	}
1207 
1208 	/* check argument */
1209 	BUG_ON(epod_state > EPOD_STATE_ON);
1210 	BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
1211 
1212 	/* get lock */
1213 	mutex_lock(&mb2_transfer.lock);
1214 
1215 	/* wait for mailbox */
1216 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
1217 		cpu_relax();
1218 
1219 	/* fill in mailbox */
1220 	for (i = 0; i < NUM_EPOD_ID; i++)
1221 		writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
1222 	writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
1223 
1224 	writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
1225 
1226 	writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
1227 
1228 	/*
1229 	 * The current firmware version does not handle errors correctly,
1230 	 * and we cannot recover if there is an error.
1231 	 * This is expected to change when the firmware is updated.
1232 	 */
1233 	if (!wait_for_completion_timeout(&mb2_transfer.work,
1234 			msecs_to_jiffies(20000))) {
1235 		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1236 			__func__);
1237 		r = -EIO;
1238 		goto unlock_and_return;
1239 	}
1240 
1241 	if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
1242 		r = -EIO;
1243 
1244 unlock_and_return:
1245 	mutex_unlock(&mb2_transfer.lock);
1246 	return r;
1247 }
1248 
1249 /**
1250  * prcmu_configure_auto_pm - Configure autonomous power management.
1251  * @sleep: Configuration for ApSleep.
1252  * @idle:  Configuration for ApIdle.
1253  */
1254 void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
1255 	struct prcmu_auto_pm_config *idle)
1256 {
1257 	u32 sleep_cfg;
1258 	u32 idle_cfg;
1259 	unsigned long flags;
1260 
1261 	BUG_ON((sleep == NULL) || (idle == NULL));
1262 
1263 	sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
1264 	sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
1265 	sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
1266 	sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
1267 	sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
1268 	sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
1269 
1270 	idle_cfg = (idle->sva_auto_pm_enable & 0xF);
1271 	idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
1272 	idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
1273 	idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
1274 	idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
1275 	idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
1276 
1277 	spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
1278 
1279 	/*
1280 	 * The autonomous power management configuration is done through
1281 	 * fields in mailbox 2, but these fields are only used as shared
1282 	 * variables - i.e. there is no need to send a message.
1283 	 */
1284 	writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
1285 	writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
1286 
1287 	mb2_transfer.auto_pm_enabled =
1288 		((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1289 		 (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1290 		 (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1291 		 (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
1292 
1293 	spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
1294 }
1295 EXPORT_SYMBOL(prcmu_configure_auto_pm);
1296 
1297 bool prcmu_is_auto_pm_enabled(void)
1298 {
1299 	return mb2_transfer.auto_pm_enabled;
1300 }
1301 
1302 static int request_sysclk(bool enable)
1303 {
1304 	int r;
1305 	unsigned long flags;
1306 
1307 	r = 0;
1308 
1309 	mutex_lock(&mb3_transfer.sysclk_lock);
1310 
1311 	spin_lock_irqsave(&mb3_transfer.lock, flags);
1312 
1313 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
1314 		cpu_relax();
1315 
1316 	writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
1317 
1318 	writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
1319 	writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
1320 
1321 	spin_unlock_irqrestore(&mb3_transfer.lock, flags);
1322 
1323 	/*
1324 	 * The firmware only sends an ACK if we want to enable the
1325 	 * SysClk, and it succeeds.
1326 	 */
1327 	if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
1328 			msecs_to_jiffies(20000))) {
1329 		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1330 			__func__);
1331 		r = -EIO;
1332 	}
1333 
1334 	mutex_unlock(&mb3_transfer.sysclk_lock);
1335 
1336 	return r;
1337 }
1338 
1339 static int request_timclk(bool enable)
1340 {
1341 	u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
1342 
1343 	if (!enable)
1344 		val |= PRCM_TCR_STOP_TIMERS;
1345 	writel(val, PRCM_TCR);
1346 
1347 	return 0;
1348 }
1349 
1350 static int request_clock(u8 clock, bool enable)
1351 {
1352 	u32 val;
1353 	unsigned long flags;
1354 
1355 	spin_lock_irqsave(&clk_mgt_lock, flags);
1356 
1357 	/* Grab the HW semaphore. */
1358 	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1359 		cpu_relax();
1360 
1361 	val = readl(prcmu_base + clk_mgt[clock].offset);
1362 	if (enable) {
1363 		val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
1364 	} else {
1365 		clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1366 		val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
1367 	}
1368 	writel(val, prcmu_base + clk_mgt[clock].offset);
1369 
1370 	/* Release the HW semaphore. */
1371 	writel(0, PRCM_SEM);
1372 
1373 	spin_unlock_irqrestore(&clk_mgt_lock, flags);
1374 
1375 	return 0;
1376 }
1377 
1378 static int request_sga_clock(u8 clock, bool enable)
1379 {
1380 	u32 val;
1381 	int ret;
1382 
1383 	if (enable) {
1384 		val = readl(PRCM_CGATING_BYPASS);
1385 		writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1386 	}
1387 
1388 	ret = request_clock(clock, enable);
1389 
1390 	if (!ret && !enable) {
1391 		val = readl(PRCM_CGATING_BYPASS);
1392 		writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1393 	}
1394 
1395 	return ret;
1396 }
1397 
1398 static inline bool plldsi_locked(void)
1399 {
1400 	return (readl(PRCM_PLLDSI_LOCKP) &
1401 		(PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1402 		 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
1403 		(PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1404 		 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
1405 }
1406 
1407 static int request_plldsi(bool enable)
1408 {
1409 	int r = 0;
1410 	u32 val;
1411 
1412 	writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1413 		PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
1414 		PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
1415 
1416 	val = readl(PRCM_PLLDSI_ENABLE);
1417 	if (enable)
1418 		val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1419 	else
1420 		val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1421 	writel(val, PRCM_PLLDSI_ENABLE);
1422 
1423 	if (enable) {
1424 		unsigned int i;
1425 		bool locked = plldsi_locked();
1426 
1427 		for (i = 10; !locked && (i > 0); --i) {
1428 			udelay(100);
1429 			locked = plldsi_locked();
1430 		}
1431 		if (locked) {
1432 			writel(PRCM_APE_RESETN_DSIPLL_RESETN,
1433 				PRCM_APE_RESETN_SET);
1434 		} else {
1435 			writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1436 				PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
1437 				PRCM_MMIP_LS_CLAMP_SET);
1438 			val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1439 			writel(val, PRCM_PLLDSI_ENABLE);
1440 			r = -EAGAIN;
1441 		}
1442 	} else {
1443 		writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
1444 	}
1445 	return r;
1446 }
1447 
1448 static int request_dsiclk(u8 n, bool enable)
1449 {
1450 	u32 val;
1451 
1452 	val = readl(PRCM_DSI_PLLOUT_SEL);
1453 	val &= ~dsiclk[n].divsel_mask;
1454 	val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
1455 		dsiclk[n].divsel_shift);
1456 	writel(val, PRCM_DSI_PLLOUT_SEL);
1457 	return 0;
1458 }
1459 
1460 static int request_dsiescclk(u8 n, bool enable)
1461 {
1462 	u32 val;
1463 
1464 	val = readl(PRCM_DSITVCLK_DIV);
1465 	enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
1466 	writel(val, PRCM_DSITVCLK_DIV);
1467 	return 0;
1468 }
1469 
1470 /**
1471  * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
1472  * @clock:      The clock for which the request is made.
1473  * @enable:     Whether the clock should be enabled (true) or disabled (false).
1474  *
1475  * This function should only be used by the clock implementation.
1476  * Do not use it from any other place!
1477  */
1478 int db8500_prcmu_request_clock(u8 clock, bool enable)
1479 {
1480 	if (clock == PRCMU_SGACLK)
1481 		return request_sga_clock(clock, enable);
1482 	else if (clock < PRCMU_NUM_REG_CLOCKS)
1483 		return request_clock(clock, enable);
1484 	else if (clock == PRCMU_TIMCLK)
1485 		return request_timclk(enable);
1486 	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1487 		return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
1488 	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1489 		return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
1490 	else if (clock == PRCMU_PLLDSI)
1491 		return request_plldsi(enable);
1492 	else if (clock == PRCMU_SYSCLK)
1493 		return request_sysclk(enable);
1494 	else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
1495 		return request_pll(clock, enable);
1496 	else
1497 		return -EINVAL;
1498 }
1499 
1500 static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
1501 	int branch)
1502 {
1503 	u64 rate;
1504 	u32 val;
1505 	u32 d;
1506 	u32 div = 1;
1507 
1508 	val = readl(reg);
1509 
1510 	rate = src_rate;
1511 	rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
1512 
1513 	d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
1514 	if (d > 1)
1515 		div *= d;
1516 
1517 	d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
1518 	if (d > 1)
1519 		div *= d;
1520 
1521 	if (val & PRCM_PLL_FREQ_SELDIV2)
1522 		div *= 2;
1523 
1524 	if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
1525 		(val & PRCM_PLL_FREQ_DIV2EN) &&
1526 		((reg == PRCM_PLLSOC0_FREQ) ||
1527 		 (reg == PRCM_PLLARM_FREQ) ||
1528 		 (reg == PRCM_PLLDDR_FREQ))))
1529 		div *= 2;
1530 
1531 	(void)do_div(rate, div);
1532 
1533 	return (unsigned long)rate;
1534 }
1535 
1536 #define ROOT_CLOCK_RATE 38400000
1537 
1538 static unsigned long clock_rate(u8 clock)
1539 {
1540 	u32 val;
1541 	u32 pllsw;
1542 	unsigned long rate = ROOT_CLOCK_RATE;
1543 
1544 	val = readl(prcmu_base + clk_mgt[clock].offset);
1545 
1546 	if (val & PRCM_CLK_MGT_CLK38) {
1547 		if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
1548 			rate /= 2;
1549 		return rate;
1550 	}
1551 
1552 	val |= clk_mgt[clock].pllsw;
1553 	pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1554 
1555 	if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1556 		rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
1557 	else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1558 		rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
1559 	else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
1560 		rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
1561 	else
1562 		return 0;
1563 
1564 	if ((clock == PRCMU_SGACLK) &&
1565 		(val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
1566 		u64 r = (rate * 10);
1567 
1568 		(void)do_div(r, 25);
1569 		return (unsigned long)r;
1570 	}
1571 	val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1572 	if (val)
1573 		return rate / val;
1574 	else
1575 		return 0;
1576 }
1577 
1578 static unsigned long armss_rate(void)
1579 {
1580 	u32 r;
1581 	unsigned long rate;
1582 
1583 	r = readl(PRCM_ARM_CHGCLKREQ);
1584 
1585 	if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) {
1586 		/* External ARMCLKFIX clock */
1587 
1588 		rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX);
1589 
1590 		/* Check PRCM_ARM_CHGCLKREQ divider */
1591 		if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL))
1592 			rate /= 2;
1593 
1594 		/* Check PRCM_ARMCLKFIX_MGT divider */
1595 		r = readl(PRCM_ARMCLKFIX_MGT);
1596 		r &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1597 		rate /= r;
1598 
1599 	} else {/* ARM PLL */
1600 		rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV);
1601 	}
1602 
1603 	return rate;
1604 }
1605 
1606 static unsigned long dsiclk_rate(u8 n)
1607 {
1608 	u32 divsel;
1609 	u32 div = 1;
1610 
1611 	divsel = readl(PRCM_DSI_PLLOUT_SEL);
1612 	divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
1613 
1614 	if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
1615 		divsel = dsiclk[n].divsel;
1616 	else
1617 		dsiclk[n].divsel = divsel;
1618 
1619 	switch (divsel) {
1620 	case PRCM_DSI_PLLOUT_SEL_PHI_4:
1621 		div *= 2;
1622 	case PRCM_DSI_PLLOUT_SEL_PHI_2:
1623 		div *= 2;
1624 	case PRCM_DSI_PLLOUT_SEL_PHI:
1625 		return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1626 			PLL_RAW) / div;
1627 	default:
1628 		return 0;
1629 	}
1630 }
1631 
1632 static unsigned long dsiescclk_rate(u8 n)
1633 {
1634 	u32 div;
1635 
1636 	div = readl(PRCM_DSITVCLK_DIV);
1637 	div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
1638 	return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
1639 }
1640 
1641 unsigned long prcmu_clock_rate(u8 clock)
1642 {
1643 	if (clock < PRCMU_NUM_REG_CLOCKS)
1644 		return clock_rate(clock);
1645 	else if (clock == PRCMU_TIMCLK)
1646 		return ROOT_CLOCK_RATE / 16;
1647 	else if (clock == PRCMU_SYSCLK)
1648 		return ROOT_CLOCK_RATE;
1649 	else if (clock == PRCMU_PLLSOC0)
1650 		return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1651 	else if (clock == PRCMU_PLLSOC1)
1652 		return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1653 	else if (clock == PRCMU_ARMSS)
1654 		return armss_rate();
1655 	else if (clock == PRCMU_PLLDDR)
1656 		return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1657 	else if (clock == PRCMU_PLLDSI)
1658 		return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1659 			PLL_RAW);
1660 	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1661 		return dsiclk_rate(clock - PRCMU_DSI0CLK);
1662 	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1663 		return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
1664 	else
1665 		return 0;
1666 }
1667 
1668 static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
1669 {
1670 	if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
1671 		return ROOT_CLOCK_RATE;
1672 	clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
1673 	if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1674 		return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
1675 	else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1676 		return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
1677 	else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
1678 		return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
1679 	else
1680 		return 0;
1681 }
1682 
1683 static u32 clock_divider(unsigned long src_rate, unsigned long rate)
1684 {
1685 	u32 div;
1686 
1687 	div = (src_rate / rate);
1688 	if (div == 0)
1689 		return 1;
1690 	if (rate < (src_rate / div))
1691 		div++;
1692 	return div;
1693 }
1694 
1695 static long round_clock_rate(u8 clock, unsigned long rate)
1696 {
1697 	u32 val;
1698 	u32 div;
1699 	unsigned long src_rate;
1700 	long rounded_rate;
1701 
1702 	val = readl(prcmu_base + clk_mgt[clock].offset);
1703 	src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1704 		clk_mgt[clock].branch);
1705 	div = clock_divider(src_rate, rate);
1706 	if (val & PRCM_CLK_MGT_CLK38) {
1707 		if (clk_mgt[clock].clk38div) {
1708 			if (div > 2)
1709 				div = 2;
1710 		} else {
1711 			div = 1;
1712 		}
1713 	} else if ((clock == PRCMU_SGACLK) && (div == 3)) {
1714 		u64 r = (src_rate * 10);
1715 
1716 		(void)do_div(r, 25);
1717 		if (r <= rate)
1718 			return (unsigned long)r;
1719 	}
1720 	rounded_rate = (src_rate / min(div, (u32)31));
1721 
1722 	return rounded_rate;
1723 }
1724 
1725 /* CPU FREQ table, may be changed due to if MAX_OPP is supported. */
1726 static struct cpufreq_frequency_table db8500_cpufreq_table[] = {
1727 	{ .frequency = 200000, .driver_data = ARM_EXTCLK,},
1728 	{ .frequency = 400000, .driver_data = ARM_50_OPP,},
1729 	{ .frequency = 800000, .driver_data = ARM_100_OPP,},
1730 	{ .frequency = CPUFREQ_TABLE_END,}, /* To be used for MAX_OPP. */
1731 	{ .frequency = CPUFREQ_TABLE_END,},
1732 };
1733 
1734 static long round_armss_rate(unsigned long rate)
1735 {
1736 	long freq = 0;
1737 	int i = 0;
1738 
1739 	/* cpufreq table frequencies is in KHz. */
1740 	rate = rate / 1000;
1741 
1742 	/* Find the corresponding arm opp from the cpufreq table. */
1743 	while (db8500_cpufreq_table[i].frequency != CPUFREQ_TABLE_END) {
1744 		freq = db8500_cpufreq_table[i].frequency;
1745 		if (freq == rate)
1746 			break;
1747 		i++;
1748 	}
1749 
1750 	/* Return the last valid value, even if a match was not found. */
1751 	return freq * 1000;
1752 }
1753 
1754 #define MIN_PLL_VCO_RATE 600000000ULL
1755 #define MAX_PLL_VCO_RATE 1680640000ULL
1756 
1757 static long round_plldsi_rate(unsigned long rate)
1758 {
1759 	long rounded_rate = 0;
1760 	unsigned long src_rate;
1761 	unsigned long rem;
1762 	u32 r;
1763 
1764 	src_rate = clock_rate(PRCMU_HDMICLK);
1765 	rem = rate;
1766 
1767 	for (r = 7; (rem > 0) && (r > 0); r--) {
1768 		u64 d;
1769 
1770 		d = (r * rate);
1771 		(void)do_div(d, src_rate);
1772 		if (d < 6)
1773 			d = 6;
1774 		else if (d > 255)
1775 			d = 255;
1776 		d *= src_rate;
1777 		if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
1778 			((r * MAX_PLL_VCO_RATE) < (2 * d)))
1779 			continue;
1780 		(void)do_div(d, r);
1781 		if (rate < d) {
1782 			if (rounded_rate == 0)
1783 				rounded_rate = (long)d;
1784 			break;
1785 		}
1786 		if ((rate - d) < rem) {
1787 			rem = (rate - d);
1788 			rounded_rate = (long)d;
1789 		}
1790 	}
1791 	return rounded_rate;
1792 }
1793 
1794 static long round_dsiclk_rate(unsigned long rate)
1795 {
1796 	u32 div;
1797 	unsigned long src_rate;
1798 	long rounded_rate;
1799 
1800 	src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1801 		PLL_RAW);
1802 	div = clock_divider(src_rate, rate);
1803 	rounded_rate = (src_rate / ((div > 2) ? 4 : div));
1804 
1805 	return rounded_rate;
1806 }
1807 
1808 static long round_dsiescclk_rate(unsigned long rate)
1809 {
1810 	u32 div;
1811 	unsigned long src_rate;
1812 	long rounded_rate;
1813 
1814 	src_rate = clock_rate(PRCMU_TVCLK);
1815 	div = clock_divider(src_rate, rate);
1816 	rounded_rate = (src_rate / min(div, (u32)255));
1817 
1818 	return rounded_rate;
1819 }
1820 
1821 long prcmu_round_clock_rate(u8 clock, unsigned long rate)
1822 {
1823 	if (clock < PRCMU_NUM_REG_CLOCKS)
1824 		return round_clock_rate(clock, rate);
1825 	else if (clock == PRCMU_ARMSS)
1826 		return round_armss_rate(rate);
1827 	else if (clock == PRCMU_PLLDSI)
1828 		return round_plldsi_rate(rate);
1829 	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1830 		return round_dsiclk_rate(rate);
1831 	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1832 		return round_dsiescclk_rate(rate);
1833 	else
1834 		return (long)prcmu_clock_rate(clock);
1835 }
1836 
1837 static void set_clock_rate(u8 clock, unsigned long rate)
1838 {
1839 	u32 val;
1840 	u32 div;
1841 	unsigned long src_rate;
1842 	unsigned long flags;
1843 
1844 	spin_lock_irqsave(&clk_mgt_lock, flags);
1845 
1846 	/* Grab the HW semaphore. */
1847 	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1848 		cpu_relax();
1849 
1850 	val = readl(prcmu_base + clk_mgt[clock].offset);
1851 	src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1852 		clk_mgt[clock].branch);
1853 	div = clock_divider(src_rate, rate);
1854 	if (val & PRCM_CLK_MGT_CLK38) {
1855 		if (clk_mgt[clock].clk38div) {
1856 			if (div > 1)
1857 				val |= PRCM_CLK_MGT_CLK38DIV;
1858 			else
1859 				val &= ~PRCM_CLK_MGT_CLK38DIV;
1860 		}
1861 	} else if (clock == PRCMU_SGACLK) {
1862 		val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
1863 			PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
1864 		if (div == 3) {
1865 			u64 r = (src_rate * 10);
1866 
1867 			(void)do_div(r, 25);
1868 			if (r <= rate) {
1869 				val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
1870 				div = 0;
1871 			}
1872 		}
1873 		val |= min(div, (u32)31);
1874 	} else {
1875 		val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
1876 		val |= min(div, (u32)31);
1877 	}
1878 	writel(val, prcmu_base + clk_mgt[clock].offset);
1879 
1880 	/* Release the HW semaphore. */
1881 	writel(0, PRCM_SEM);
1882 
1883 	spin_unlock_irqrestore(&clk_mgt_lock, flags);
1884 }
1885 
1886 static int set_armss_rate(unsigned long rate)
1887 {
1888 	int i = 0;
1889 
1890 	/* cpufreq table frequencies is in KHz. */
1891 	rate = rate / 1000;
1892 
1893 	/* Find the corresponding arm opp from the cpufreq table. */
1894 	while (db8500_cpufreq_table[i].frequency != CPUFREQ_TABLE_END) {
1895 		if (db8500_cpufreq_table[i].frequency == rate)
1896 			break;
1897 		i++;
1898 	}
1899 
1900 	if (db8500_cpufreq_table[i].frequency != rate)
1901 		return -EINVAL;
1902 
1903 	/* Set the new arm opp. */
1904 	return db8500_prcmu_set_arm_opp(db8500_cpufreq_table[i].driver_data);
1905 }
1906 
1907 static int set_plldsi_rate(unsigned long rate)
1908 {
1909 	unsigned long src_rate;
1910 	unsigned long rem;
1911 	u32 pll_freq = 0;
1912 	u32 r;
1913 
1914 	src_rate = clock_rate(PRCMU_HDMICLK);
1915 	rem = rate;
1916 
1917 	for (r = 7; (rem > 0) && (r > 0); r--) {
1918 		u64 d;
1919 		u64 hwrate;
1920 
1921 		d = (r * rate);
1922 		(void)do_div(d, src_rate);
1923 		if (d < 6)
1924 			d = 6;
1925 		else if (d > 255)
1926 			d = 255;
1927 		hwrate = (d * src_rate);
1928 		if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
1929 			((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
1930 			continue;
1931 		(void)do_div(hwrate, r);
1932 		if (rate < hwrate) {
1933 			if (pll_freq == 0)
1934 				pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1935 					(r << PRCM_PLL_FREQ_R_SHIFT));
1936 			break;
1937 		}
1938 		if ((rate - hwrate) < rem) {
1939 			rem = (rate - hwrate);
1940 			pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1941 				(r << PRCM_PLL_FREQ_R_SHIFT));
1942 		}
1943 	}
1944 	if (pll_freq == 0)
1945 		return -EINVAL;
1946 
1947 	pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
1948 	writel(pll_freq, PRCM_PLLDSI_FREQ);
1949 
1950 	return 0;
1951 }
1952 
1953 static void set_dsiclk_rate(u8 n, unsigned long rate)
1954 {
1955 	u32 val;
1956 	u32 div;
1957 
1958 	div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
1959 			clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
1960 
1961 	dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
1962 			   (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
1963 			   /* else */	PRCM_DSI_PLLOUT_SEL_PHI_4;
1964 
1965 	val = readl(PRCM_DSI_PLLOUT_SEL);
1966 	val &= ~dsiclk[n].divsel_mask;
1967 	val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
1968 	writel(val, PRCM_DSI_PLLOUT_SEL);
1969 }
1970 
1971 static void set_dsiescclk_rate(u8 n, unsigned long rate)
1972 {
1973 	u32 val;
1974 	u32 div;
1975 
1976 	div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
1977 	val = readl(PRCM_DSITVCLK_DIV);
1978 	val &= ~dsiescclk[n].div_mask;
1979 	val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
1980 	writel(val, PRCM_DSITVCLK_DIV);
1981 }
1982 
1983 int prcmu_set_clock_rate(u8 clock, unsigned long rate)
1984 {
1985 	if (clock < PRCMU_NUM_REG_CLOCKS)
1986 		set_clock_rate(clock, rate);
1987 	else if (clock == PRCMU_ARMSS)
1988 		return set_armss_rate(rate);
1989 	else if (clock == PRCMU_PLLDSI)
1990 		return set_plldsi_rate(rate);
1991 	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1992 		set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
1993 	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1994 		set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
1995 	return 0;
1996 }
1997 
1998 int db8500_prcmu_config_esram0_deep_sleep(u8 state)
1999 {
2000 	if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
2001 	    (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
2002 		return -EINVAL;
2003 
2004 	mutex_lock(&mb4_transfer.lock);
2005 
2006 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2007 		cpu_relax();
2008 
2009 	writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2010 	writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
2011 	       (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
2012 	writeb(DDR_PWR_STATE_ON,
2013 	       (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
2014 	writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
2015 
2016 	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2017 	wait_for_completion(&mb4_transfer.work);
2018 
2019 	mutex_unlock(&mb4_transfer.lock);
2020 
2021 	return 0;
2022 }
2023 
2024 int db8500_prcmu_config_hotdog(u8 threshold)
2025 {
2026 	mutex_lock(&mb4_transfer.lock);
2027 
2028 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2029 		cpu_relax();
2030 
2031 	writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
2032 	writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2033 
2034 	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2035 	wait_for_completion(&mb4_transfer.work);
2036 
2037 	mutex_unlock(&mb4_transfer.lock);
2038 
2039 	return 0;
2040 }
2041 
2042 int db8500_prcmu_config_hotmon(u8 low, u8 high)
2043 {
2044 	mutex_lock(&mb4_transfer.lock);
2045 
2046 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2047 		cpu_relax();
2048 
2049 	writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
2050 	writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
2051 	writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
2052 		(tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
2053 	writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2054 
2055 	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2056 	wait_for_completion(&mb4_transfer.work);
2057 
2058 	mutex_unlock(&mb4_transfer.lock);
2059 
2060 	return 0;
2061 }
2062 
2063 static int config_hot_period(u16 val)
2064 {
2065 	mutex_lock(&mb4_transfer.lock);
2066 
2067 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2068 		cpu_relax();
2069 
2070 	writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
2071 	writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2072 
2073 	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2074 	wait_for_completion(&mb4_transfer.work);
2075 
2076 	mutex_unlock(&mb4_transfer.lock);
2077 
2078 	return 0;
2079 }
2080 
2081 int db8500_prcmu_start_temp_sense(u16 cycles32k)
2082 {
2083 	if (cycles32k == 0xFFFF)
2084 		return -EINVAL;
2085 
2086 	return config_hot_period(cycles32k);
2087 }
2088 
2089 int db8500_prcmu_stop_temp_sense(void)
2090 {
2091 	return config_hot_period(0xFFFF);
2092 }
2093 
2094 static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
2095 {
2096 
2097 	mutex_lock(&mb4_transfer.lock);
2098 
2099 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2100 		cpu_relax();
2101 
2102 	writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
2103 	writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
2104 	writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
2105 	writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
2106 
2107 	writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2108 
2109 	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2110 	wait_for_completion(&mb4_transfer.work);
2111 
2112 	mutex_unlock(&mb4_transfer.lock);
2113 
2114 	return 0;
2115 
2116 }
2117 
2118 int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
2119 {
2120 	BUG_ON(num == 0 || num > 0xf);
2121 	return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
2122 			    sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
2123 			    A9WDOG_AUTO_OFF_DIS);
2124 }
2125 EXPORT_SYMBOL(db8500_prcmu_config_a9wdog);
2126 
2127 int db8500_prcmu_enable_a9wdog(u8 id)
2128 {
2129 	return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
2130 }
2131 EXPORT_SYMBOL(db8500_prcmu_enable_a9wdog);
2132 
2133 int db8500_prcmu_disable_a9wdog(u8 id)
2134 {
2135 	return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
2136 }
2137 EXPORT_SYMBOL(db8500_prcmu_disable_a9wdog);
2138 
2139 int db8500_prcmu_kick_a9wdog(u8 id)
2140 {
2141 	return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
2142 }
2143 EXPORT_SYMBOL(db8500_prcmu_kick_a9wdog);
2144 
2145 /*
2146  * timeout is 28 bit, in ms.
2147  */
2148 int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
2149 {
2150 	return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
2151 			    (id & A9WDOG_ID_MASK) |
2152 			    /*
2153 			     * Put the lowest 28 bits of timeout at
2154 			     * offset 4. Four first bits are used for id.
2155 			     */
2156 			    (u8)((timeout << 4) & 0xf0),
2157 			    (u8)((timeout >> 4) & 0xff),
2158 			    (u8)((timeout >> 12) & 0xff),
2159 			    (u8)((timeout >> 20) & 0xff));
2160 }
2161 EXPORT_SYMBOL(db8500_prcmu_load_a9wdog);
2162 
2163 /**
2164  * prcmu_abb_read() - Read register value(s) from the ABB.
2165  * @slave:	The I2C slave address.
2166  * @reg:	The (start) register address.
2167  * @value:	The read out value(s).
2168  * @size:	The number of registers to read.
2169  *
2170  * Reads register value(s) from the ABB.
2171  * @size has to be 1 for the current firmware version.
2172  */
2173 int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
2174 {
2175 	int r;
2176 
2177 	if (size != 1)
2178 		return -EINVAL;
2179 
2180 	mutex_lock(&mb5_transfer.lock);
2181 
2182 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2183 		cpu_relax();
2184 
2185 	writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2186 	writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2187 	writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2188 	writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2189 	writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2190 
2191 	writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2192 
2193 	if (!wait_for_completion_timeout(&mb5_transfer.work,
2194 				msecs_to_jiffies(20000))) {
2195 		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2196 			__func__);
2197 		r = -EIO;
2198 	} else {
2199 		r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
2200 	}
2201 
2202 	if (!r)
2203 		*value = mb5_transfer.ack.value;
2204 
2205 	mutex_unlock(&mb5_transfer.lock);
2206 
2207 	return r;
2208 }
2209 
2210 /**
2211  * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
2212  * @slave:	The I2C slave address.
2213  * @reg:	The (start) register address.
2214  * @value:	The value(s) to write.
2215  * @mask:	The mask(s) to use.
2216  * @size:	The number of registers to write.
2217  *
2218  * Writes masked register value(s) to the ABB.
2219  * For each @value, only the bits set to 1 in the corresponding @mask
2220  * will be written. The other bits are not changed.
2221  * @size has to be 1 for the current firmware version.
2222  */
2223 int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
2224 {
2225 	int r;
2226 
2227 	if (size != 1)
2228 		return -EINVAL;
2229 
2230 	mutex_lock(&mb5_transfer.lock);
2231 
2232 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2233 		cpu_relax();
2234 
2235 	writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2236 	writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2237 	writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2238 	writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2239 	writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2240 
2241 	writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2242 
2243 	if (!wait_for_completion_timeout(&mb5_transfer.work,
2244 				msecs_to_jiffies(20000))) {
2245 		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2246 			__func__);
2247 		r = -EIO;
2248 	} else {
2249 		r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
2250 	}
2251 
2252 	mutex_unlock(&mb5_transfer.lock);
2253 
2254 	return r;
2255 }
2256 
2257 /**
2258  * prcmu_abb_write() - Write register value(s) to the ABB.
2259  * @slave:	The I2C slave address.
2260  * @reg:	The (start) register address.
2261  * @value:	The value(s) to write.
2262  * @size:	The number of registers to write.
2263  *
2264  * Writes register value(s) to the ABB.
2265  * @size has to be 1 for the current firmware version.
2266  */
2267 int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
2268 {
2269 	u8 mask = ~0;
2270 
2271 	return prcmu_abb_write_masked(slave, reg, value, &mask, size);
2272 }
2273 
2274 /**
2275  * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
2276  */
2277 int prcmu_ac_wake_req(void)
2278 {
2279 	u32 val;
2280 	int ret = 0;
2281 
2282 	mutex_lock(&mb0_transfer.ac_wake_lock);
2283 
2284 	val = readl(PRCM_HOSTACCESS_REQ);
2285 	if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
2286 		goto unlock_and_return;
2287 
2288 	atomic_set(&ac_wake_req_state, 1);
2289 
2290 	/*
2291 	 * Force Modem Wake-up before hostaccess_req ping-pong.
2292 	 * It prevents Modem to enter in Sleep while acking the hostaccess
2293 	 * request. The 31us delay has been calculated by HWI.
2294 	 */
2295 	val |= PRCM_HOSTACCESS_REQ_WAKE_REQ;
2296 	writel(val, PRCM_HOSTACCESS_REQ);
2297 
2298 	udelay(31);
2299 
2300 	val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ;
2301 	writel(val, PRCM_HOSTACCESS_REQ);
2302 
2303 	if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2304 			msecs_to_jiffies(5000))) {
2305 #if defined(CONFIG_DBX500_PRCMU_DEBUG)
2306 		db8500_prcmu_debug_dump(__func__, true, true);
2307 #endif
2308 		pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2309 			__func__);
2310 		ret = -EFAULT;
2311 	}
2312 
2313 unlock_and_return:
2314 	mutex_unlock(&mb0_transfer.ac_wake_lock);
2315 	return ret;
2316 }
2317 
2318 /**
2319  * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
2320  */
2321 void prcmu_ac_sleep_req(void)
2322 {
2323 	u32 val;
2324 
2325 	mutex_lock(&mb0_transfer.ac_wake_lock);
2326 
2327 	val = readl(PRCM_HOSTACCESS_REQ);
2328 	if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
2329 		goto unlock_and_return;
2330 
2331 	writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
2332 		PRCM_HOSTACCESS_REQ);
2333 
2334 	if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2335 			msecs_to_jiffies(5000))) {
2336 		pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2337 			__func__);
2338 	}
2339 
2340 	atomic_set(&ac_wake_req_state, 0);
2341 
2342 unlock_and_return:
2343 	mutex_unlock(&mb0_transfer.ac_wake_lock);
2344 }
2345 
2346 bool db8500_prcmu_is_ac_wake_requested(void)
2347 {
2348 	return (atomic_read(&ac_wake_req_state) != 0);
2349 }
2350 
2351 /**
2352  * db8500_prcmu_system_reset - System reset
2353  *
2354  * Saves the reset reason code and then sets the APE_SOFTRST register which
2355  * fires interrupt to fw
2356  */
2357 void db8500_prcmu_system_reset(u16 reset_code)
2358 {
2359 	writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
2360 	writel(1, PRCM_APE_SOFTRST);
2361 }
2362 
2363 /**
2364  * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
2365  *
2366  * Retrieves the reset reason code stored by prcmu_system_reset() before
2367  * last restart.
2368  */
2369 u16 db8500_prcmu_get_reset_code(void)
2370 {
2371 	return readw(tcdm_base + PRCM_SW_RST_REASON);
2372 }
2373 
2374 /**
2375  * db8500_prcmu_reset_modem - ask the PRCMU to reset modem
2376  */
2377 void db8500_prcmu_modem_reset(void)
2378 {
2379 	mutex_lock(&mb1_transfer.lock);
2380 
2381 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
2382 		cpu_relax();
2383 
2384 	writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
2385 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
2386 	wait_for_completion(&mb1_transfer.work);
2387 
2388 	/*
2389 	 * No need to check return from PRCMU as modem should go in reset state
2390 	 * This state is already managed by upper layer
2391 	 */
2392 
2393 	mutex_unlock(&mb1_transfer.lock);
2394 }
2395 
2396 static void ack_dbb_wakeup(void)
2397 {
2398 	unsigned long flags;
2399 
2400 	spin_lock_irqsave(&mb0_transfer.lock, flags);
2401 
2402 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
2403 		cpu_relax();
2404 
2405 	writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
2406 	writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
2407 
2408 	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2409 }
2410 
2411 static inline void print_unknown_header_warning(u8 n, u8 header)
2412 {
2413 	pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n",
2414 		header, n);
2415 }
2416 
2417 static bool read_mailbox_0(void)
2418 {
2419 	bool r;
2420 	u32 ev;
2421 	unsigned int n;
2422 	u8 header;
2423 
2424 	header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
2425 	switch (header) {
2426 	case MB0H_WAKEUP_EXE:
2427 	case MB0H_WAKEUP_SLEEP:
2428 		if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
2429 			ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
2430 		else
2431 			ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
2432 
2433 		if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
2434 			complete(&mb0_transfer.ac_wake_work);
2435 		if (ev & WAKEUP_BIT_SYSCLK_OK)
2436 			complete(&mb3_transfer.sysclk_work);
2437 
2438 		ev &= mb0_transfer.req.dbb_irqs;
2439 
2440 		for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
2441 			if (ev & prcmu_irq_bit[n])
2442 				generic_handle_irq(irq_find_mapping(db8500_irq_domain, n));
2443 		}
2444 		r = true;
2445 		break;
2446 	default:
2447 		print_unknown_header_warning(0, header);
2448 		r = false;
2449 		break;
2450 	}
2451 	writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
2452 	return r;
2453 }
2454 
2455 static bool read_mailbox_1(void)
2456 {
2457 	mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
2458 	mb1_transfer.ack.arm_opp = readb(tcdm_base +
2459 		PRCM_ACK_MB1_CURRENT_ARM_OPP);
2460 	mb1_transfer.ack.ape_opp = readb(tcdm_base +
2461 		PRCM_ACK_MB1_CURRENT_APE_OPP);
2462 	mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
2463 		PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
2464 	writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
2465 	complete(&mb1_transfer.work);
2466 	return false;
2467 }
2468 
2469 static bool read_mailbox_2(void)
2470 {
2471 	mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
2472 	writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
2473 	complete(&mb2_transfer.work);
2474 	return false;
2475 }
2476 
2477 static bool read_mailbox_3(void)
2478 {
2479 	writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
2480 	return false;
2481 }
2482 
2483 static bool read_mailbox_4(void)
2484 {
2485 	u8 header;
2486 	bool do_complete = true;
2487 
2488 	header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
2489 	switch (header) {
2490 	case MB4H_MEM_ST:
2491 	case MB4H_HOTDOG:
2492 	case MB4H_HOTMON:
2493 	case MB4H_HOT_PERIOD:
2494 	case MB4H_A9WDOG_CONF:
2495 	case MB4H_A9WDOG_EN:
2496 	case MB4H_A9WDOG_DIS:
2497 	case MB4H_A9WDOG_LOAD:
2498 	case MB4H_A9WDOG_KICK:
2499 		break;
2500 	default:
2501 		print_unknown_header_warning(4, header);
2502 		do_complete = false;
2503 		break;
2504 	}
2505 
2506 	writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
2507 
2508 	if (do_complete)
2509 		complete(&mb4_transfer.work);
2510 
2511 	return false;
2512 }
2513 
2514 static bool read_mailbox_5(void)
2515 {
2516 	mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
2517 	mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
2518 	writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
2519 	complete(&mb5_transfer.work);
2520 	return false;
2521 }
2522 
2523 static bool read_mailbox_6(void)
2524 {
2525 	writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
2526 	return false;
2527 }
2528 
2529 static bool read_mailbox_7(void)
2530 {
2531 	writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
2532 	return false;
2533 }
2534 
2535 static bool (* const read_mailbox[NUM_MB])(void) = {
2536 	read_mailbox_0,
2537 	read_mailbox_1,
2538 	read_mailbox_2,
2539 	read_mailbox_3,
2540 	read_mailbox_4,
2541 	read_mailbox_5,
2542 	read_mailbox_6,
2543 	read_mailbox_7
2544 };
2545 
2546 static irqreturn_t prcmu_irq_handler(int irq, void *data)
2547 {
2548 	u32 bits;
2549 	u8 n;
2550 	irqreturn_t r;
2551 
2552 	bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
2553 	if (unlikely(!bits))
2554 		return IRQ_NONE;
2555 
2556 	r = IRQ_HANDLED;
2557 	for (n = 0; bits; n++) {
2558 		if (bits & MBOX_BIT(n)) {
2559 			bits -= MBOX_BIT(n);
2560 			if (read_mailbox[n]())
2561 				r = IRQ_WAKE_THREAD;
2562 		}
2563 	}
2564 	return r;
2565 }
2566 
2567 static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
2568 {
2569 	ack_dbb_wakeup();
2570 	return IRQ_HANDLED;
2571 }
2572 
2573 static void prcmu_mask_work(struct work_struct *work)
2574 {
2575 	unsigned long flags;
2576 
2577 	spin_lock_irqsave(&mb0_transfer.lock, flags);
2578 
2579 	config_wakeups();
2580 
2581 	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2582 }
2583 
2584 static void prcmu_irq_mask(struct irq_data *d)
2585 {
2586 	unsigned long flags;
2587 
2588 	spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2589 
2590 	mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq];
2591 
2592 	spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2593 
2594 	if (d->irq != IRQ_PRCMU_CA_SLEEP)
2595 		schedule_work(&mb0_transfer.mask_work);
2596 }
2597 
2598 static void prcmu_irq_unmask(struct irq_data *d)
2599 {
2600 	unsigned long flags;
2601 
2602 	spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2603 
2604 	mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq];
2605 
2606 	spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2607 
2608 	if (d->irq != IRQ_PRCMU_CA_SLEEP)
2609 		schedule_work(&mb0_transfer.mask_work);
2610 }
2611 
2612 static void noop(struct irq_data *d)
2613 {
2614 }
2615 
2616 static struct irq_chip prcmu_irq_chip = {
2617 	.name		= "prcmu",
2618 	.irq_disable	= prcmu_irq_mask,
2619 	.irq_ack	= noop,
2620 	.irq_mask	= prcmu_irq_mask,
2621 	.irq_unmask	= prcmu_irq_unmask,
2622 };
2623 
2624 static __init char *fw_project_name(u32 project)
2625 {
2626 	switch (project) {
2627 	case PRCMU_FW_PROJECT_U8500:
2628 		return "U8500";
2629 	case PRCMU_FW_PROJECT_U8400:
2630 		return "U8400";
2631 	case PRCMU_FW_PROJECT_U9500:
2632 		return "U9500";
2633 	case PRCMU_FW_PROJECT_U8500_MBB:
2634 		return "U8500 MBB";
2635 	case PRCMU_FW_PROJECT_U8500_C1:
2636 		return "U8500 C1";
2637 	case PRCMU_FW_PROJECT_U8500_C2:
2638 		return "U8500 C2";
2639 	case PRCMU_FW_PROJECT_U8500_C3:
2640 		return "U8500 C3";
2641 	case PRCMU_FW_PROJECT_U8500_C4:
2642 		return "U8500 C4";
2643 	case PRCMU_FW_PROJECT_U9500_MBL:
2644 		return "U9500 MBL";
2645 	case PRCMU_FW_PROJECT_U8500_MBL:
2646 		return "U8500 MBL";
2647 	case PRCMU_FW_PROJECT_U8500_MBL2:
2648 		return "U8500 MBL2";
2649 	case PRCMU_FW_PROJECT_U8520:
2650 		return "U8520 MBL";
2651 	case PRCMU_FW_PROJECT_U8420:
2652 		return "U8420";
2653 	case PRCMU_FW_PROJECT_U9540:
2654 		return "U9540";
2655 	case PRCMU_FW_PROJECT_A9420:
2656 		return "A9420";
2657 	case PRCMU_FW_PROJECT_L8540:
2658 		return "L8540";
2659 	case PRCMU_FW_PROJECT_L8580:
2660 		return "L8580";
2661 	default:
2662 		return "Unknown";
2663 	}
2664 }
2665 
2666 static int db8500_irq_map(struct irq_domain *d, unsigned int virq,
2667 				irq_hw_number_t hwirq)
2668 {
2669 	irq_set_chip_and_handler(virq, &prcmu_irq_chip,
2670 				handle_simple_irq);
2671 	set_irq_flags(virq, IRQF_VALID);
2672 
2673 	return 0;
2674 }
2675 
2676 static struct irq_domain_ops db8500_irq_ops = {
2677 	.map    = db8500_irq_map,
2678 	.xlate  = irq_domain_xlate_twocell,
2679 };
2680 
2681 static int db8500_irq_init(struct device_node *np, int irq_base)
2682 {
2683 	int i;
2684 
2685 	/* In the device tree case, just take some IRQs */
2686 	if (np)
2687 		irq_base = 0;
2688 
2689 	db8500_irq_domain = irq_domain_add_simple(
2690 		np, NUM_PRCMU_WAKEUPS, irq_base,
2691 		&db8500_irq_ops, NULL);
2692 
2693 	if (!db8500_irq_domain) {
2694 		pr_err("Failed to create irqdomain\n");
2695 		return -ENOSYS;
2696 	}
2697 
2698 	/* All wakeups will be used, so create mappings for all */
2699 	for (i = 0; i < NUM_PRCMU_WAKEUPS; i++)
2700 		irq_create_mapping(db8500_irq_domain, i);
2701 
2702 	return 0;
2703 }
2704 
2705 static void dbx500_fw_version_init(struct platform_device *pdev,
2706 			    u32 version_offset)
2707 {
2708 	struct resource *res;
2709 	void __iomem *tcpm_base;
2710 	u32 version;
2711 
2712 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
2713 					   "prcmu-tcpm");
2714 	if (!res) {
2715 		dev_err(&pdev->dev,
2716 			"Error: no prcmu tcpm memory region provided\n");
2717 		return;
2718 	}
2719 	tcpm_base = ioremap(res->start, resource_size(res));
2720 	if (!tcpm_base) {
2721 		dev_err(&pdev->dev, "no prcmu tcpm mem region provided\n");
2722 		return;
2723 	}
2724 
2725 	version = readl(tcpm_base + version_offset);
2726 	fw_info.version.project = (version & 0xFF);
2727 	fw_info.version.api_version = (version >> 8) & 0xFF;
2728 	fw_info.version.func_version = (version >> 16) & 0xFF;
2729 	fw_info.version.errata = (version >> 24) & 0xFF;
2730 	strncpy(fw_info.version.project_name,
2731 		fw_project_name(fw_info.version.project),
2732 		PRCMU_FW_PROJECT_NAME_LEN);
2733 	fw_info.valid = true;
2734 	pr_info("PRCMU firmware: %s(%d), version %d.%d.%d\n",
2735 		fw_info.version.project_name,
2736 		fw_info.version.project,
2737 		fw_info.version.api_version,
2738 		fw_info.version.func_version,
2739 		fw_info.version.errata);
2740 	iounmap(tcpm_base);
2741 }
2742 
2743 void __init db8500_prcmu_early_init(u32 phy_base, u32 size)
2744 {
2745 	/*
2746 	 * This is a temporary remap to bring up the clocks. It is
2747 	 * subsequently replaces with a real remap. After the merge of
2748 	 * the mailbox subsystem all of this early code goes away, and the
2749 	 * clock driver can probe independently. An early initcall will
2750 	 * still be needed, but it can be diverted into drivers/clk/ux500.
2751 	 */
2752 	prcmu_base = ioremap(phy_base, size);
2753 	if (!prcmu_base)
2754 		pr_err("%s: ioremap() of prcmu registers failed!\n", __func__);
2755 
2756 	spin_lock_init(&mb0_transfer.lock);
2757 	spin_lock_init(&mb0_transfer.dbb_irqs_lock);
2758 	mutex_init(&mb0_transfer.ac_wake_lock);
2759 	init_completion(&mb0_transfer.ac_wake_work);
2760 	mutex_init(&mb1_transfer.lock);
2761 	init_completion(&mb1_transfer.work);
2762 	mb1_transfer.ape_opp = APE_NO_CHANGE;
2763 	mutex_init(&mb2_transfer.lock);
2764 	init_completion(&mb2_transfer.work);
2765 	spin_lock_init(&mb2_transfer.auto_pm_lock);
2766 	spin_lock_init(&mb3_transfer.lock);
2767 	mutex_init(&mb3_transfer.sysclk_lock);
2768 	init_completion(&mb3_transfer.sysclk_work);
2769 	mutex_init(&mb4_transfer.lock);
2770 	init_completion(&mb4_transfer.work);
2771 	mutex_init(&mb5_transfer.lock);
2772 	init_completion(&mb5_transfer.work);
2773 
2774 	INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
2775 }
2776 
2777 static void __init init_prcm_registers(void)
2778 {
2779 	u32 val;
2780 
2781 	val = readl(PRCM_A9PL_FORCE_CLKEN);
2782 	val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
2783 		PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
2784 	writel(val, (PRCM_A9PL_FORCE_CLKEN));
2785 }
2786 
2787 /*
2788  * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
2789  */
2790 static struct regulator_consumer_supply db8500_vape_consumers[] = {
2791 	REGULATOR_SUPPLY("v-ape", NULL),
2792 	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2793 	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2794 	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2795 	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
2796 	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
2797 	/* "v-mmc" changed to "vcore" in the mainline kernel */
2798 	REGULATOR_SUPPLY("vcore", "sdi0"),
2799 	REGULATOR_SUPPLY("vcore", "sdi1"),
2800 	REGULATOR_SUPPLY("vcore", "sdi2"),
2801 	REGULATOR_SUPPLY("vcore", "sdi3"),
2802 	REGULATOR_SUPPLY("vcore", "sdi4"),
2803 	REGULATOR_SUPPLY("v-dma", "dma40.0"),
2804 	REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2805 	/* "v-uart" changed to "vcore" in the mainline kernel */
2806 	REGULATOR_SUPPLY("vcore", "uart0"),
2807 	REGULATOR_SUPPLY("vcore", "uart1"),
2808 	REGULATOR_SUPPLY("vcore", "uart2"),
2809 	REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
2810 	REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
2811 	REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
2812 };
2813 
2814 static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
2815 	REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2816 	/* AV8100 regulator */
2817 	REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2818 };
2819 
2820 static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
2821 	REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
2822 	REGULATOR_SUPPLY("vsupply", "mcde"),
2823 };
2824 
2825 /* SVA MMDSP regulator switch */
2826 static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
2827 	REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2828 };
2829 
2830 /* SVA pipe regulator switch */
2831 static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
2832 	REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2833 };
2834 
2835 /* SIA MMDSP regulator switch */
2836 static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
2837 	REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2838 };
2839 
2840 /* SIA pipe regulator switch */
2841 static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
2842 	REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2843 };
2844 
2845 static struct regulator_consumer_supply db8500_sga_consumers[] = {
2846 	REGULATOR_SUPPLY("v-mali", NULL),
2847 };
2848 
2849 /* ESRAM1 and 2 regulator switch */
2850 static struct regulator_consumer_supply db8500_esram12_consumers[] = {
2851 	REGULATOR_SUPPLY("esram12", "cm_control"),
2852 };
2853 
2854 /* ESRAM3 and 4 regulator switch */
2855 static struct regulator_consumer_supply db8500_esram34_consumers[] = {
2856 	REGULATOR_SUPPLY("v-esram34", "mcde"),
2857 	REGULATOR_SUPPLY("esram34", "cm_control"),
2858 	REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
2859 };
2860 
2861 static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
2862 	[DB8500_REGULATOR_VAPE] = {
2863 		.constraints = {
2864 			.name = "db8500-vape",
2865 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2866 			.always_on = true,
2867 		},
2868 		.consumer_supplies = db8500_vape_consumers,
2869 		.num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
2870 	},
2871 	[DB8500_REGULATOR_VARM] = {
2872 		.constraints = {
2873 			.name = "db8500-varm",
2874 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2875 		},
2876 	},
2877 	[DB8500_REGULATOR_VMODEM] = {
2878 		.constraints = {
2879 			.name = "db8500-vmodem",
2880 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2881 		},
2882 	},
2883 	[DB8500_REGULATOR_VPLL] = {
2884 		.constraints = {
2885 			.name = "db8500-vpll",
2886 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2887 		},
2888 	},
2889 	[DB8500_REGULATOR_VSMPS1] = {
2890 		.constraints = {
2891 			.name = "db8500-vsmps1",
2892 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2893 		},
2894 	},
2895 	[DB8500_REGULATOR_VSMPS2] = {
2896 		.constraints = {
2897 			.name = "db8500-vsmps2",
2898 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2899 		},
2900 		.consumer_supplies = db8500_vsmps2_consumers,
2901 		.num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
2902 	},
2903 	[DB8500_REGULATOR_VSMPS3] = {
2904 		.constraints = {
2905 			.name = "db8500-vsmps3",
2906 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2907 		},
2908 	},
2909 	[DB8500_REGULATOR_VRF1] = {
2910 		.constraints = {
2911 			.name = "db8500-vrf1",
2912 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2913 		},
2914 	},
2915 	[DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
2916 		/* dependency to u8500-vape is handled outside regulator framework */
2917 		.constraints = {
2918 			.name = "db8500-sva-mmdsp",
2919 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2920 		},
2921 		.consumer_supplies = db8500_svammdsp_consumers,
2922 		.num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
2923 	},
2924 	[DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
2925 		.constraints = {
2926 			/* "ret" means "retention" */
2927 			.name = "db8500-sva-mmdsp-ret",
2928 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2929 		},
2930 	},
2931 	[DB8500_REGULATOR_SWITCH_SVAPIPE] = {
2932 		/* dependency to u8500-vape is handled outside regulator framework */
2933 		.constraints = {
2934 			.name = "db8500-sva-pipe",
2935 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2936 		},
2937 		.consumer_supplies = db8500_svapipe_consumers,
2938 		.num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
2939 	},
2940 	[DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
2941 		/* dependency to u8500-vape is handled outside regulator framework */
2942 		.constraints = {
2943 			.name = "db8500-sia-mmdsp",
2944 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2945 		},
2946 		.consumer_supplies = db8500_siammdsp_consumers,
2947 		.num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
2948 	},
2949 	[DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
2950 		.constraints = {
2951 			.name = "db8500-sia-mmdsp-ret",
2952 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2953 		},
2954 	},
2955 	[DB8500_REGULATOR_SWITCH_SIAPIPE] = {
2956 		/* dependency to u8500-vape is handled outside regulator framework */
2957 		.constraints = {
2958 			.name = "db8500-sia-pipe",
2959 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2960 		},
2961 		.consumer_supplies = db8500_siapipe_consumers,
2962 		.num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
2963 	},
2964 	[DB8500_REGULATOR_SWITCH_SGA] = {
2965 		.supply_regulator = "db8500-vape",
2966 		.constraints = {
2967 			.name = "db8500-sga",
2968 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2969 		},
2970 		.consumer_supplies = db8500_sga_consumers,
2971 		.num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
2972 
2973 	},
2974 	[DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
2975 		.supply_regulator = "db8500-vape",
2976 		.constraints = {
2977 			.name = "db8500-b2r2-mcde",
2978 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2979 		},
2980 		.consumer_supplies = db8500_b2r2_mcde_consumers,
2981 		.num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
2982 	},
2983 	[DB8500_REGULATOR_SWITCH_ESRAM12] = {
2984 		/*
2985 		 * esram12 is set in retention and supplied by Vsafe when Vape is off,
2986 		 * no need to hold Vape
2987 		 */
2988 		.constraints = {
2989 			.name = "db8500-esram12",
2990 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2991 		},
2992 		.consumer_supplies = db8500_esram12_consumers,
2993 		.num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
2994 	},
2995 	[DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
2996 		.constraints = {
2997 			.name = "db8500-esram12-ret",
2998 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2999 		},
3000 	},
3001 	[DB8500_REGULATOR_SWITCH_ESRAM34] = {
3002 		/*
3003 		 * esram34 is set in retention and supplied by Vsafe when Vape is off,
3004 		 * no need to hold Vape
3005 		 */
3006 		.constraints = {
3007 			.name = "db8500-esram34",
3008 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
3009 		},
3010 		.consumer_supplies = db8500_esram34_consumers,
3011 		.num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
3012 	},
3013 	[DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
3014 		.constraints = {
3015 			.name = "db8500-esram34-ret",
3016 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
3017 		},
3018 	},
3019 };
3020 
3021 static struct ux500_wdt_data db8500_wdt_pdata = {
3022 	.timeout = 600, /* 10 minutes */
3023 	.has_28_bits_resolution = true,
3024 };
3025 /*
3026  * Thermal Sensor
3027  */
3028 
3029 static struct resource db8500_thsens_resources[] = {
3030 	{
3031 		.name = "IRQ_HOTMON_LOW",
3032 		.start  = IRQ_PRCMU_HOTMON_LOW,
3033 		.end    = IRQ_PRCMU_HOTMON_LOW,
3034 		.flags  = IORESOURCE_IRQ,
3035 	},
3036 	{
3037 		.name = "IRQ_HOTMON_HIGH",
3038 		.start  = IRQ_PRCMU_HOTMON_HIGH,
3039 		.end    = IRQ_PRCMU_HOTMON_HIGH,
3040 		.flags  = IORESOURCE_IRQ,
3041 	},
3042 };
3043 
3044 static struct db8500_thsens_platform_data db8500_thsens_data = {
3045 	.trip_points[0] = {
3046 		.temp = 70000,
3047 		.type = THERMAL_TRIP_ACTIVE,
3048 		.cdev_name = {
3049 			[0] = "thermal-cpufreq-0",
3050 		},
3051 	},
3052 	.trip_points[1] = {
3053 		.temp = 75000,
3054 		.type = THERMAL_TRIP_ACTIVE,
3055 		.cdev_name = {
3056 			[0] = "thermal-cpufreq-0",
3057 		},
3058 	},
3059 	.trip_points[2] = {
3060 		.temp = 80000,
3061 		.type = THERMAL_TRIP_ACTIVE,
3062 		.cdev_name = {
3063 			[0] = "thermal-cpufreq-0",
3064 		},
3065 	},
3066 	.trip_points[3] = {
3067 		.temp = 85000,
3068 		.type = THERMAL_TRIP_CRITICAL,
3069 	},
3070 	.num_trips = 4,
3071 };
3072 
3073 static struct mfd_cell common_prcmu_devs[] = {
3074 	{
3075 		.name = "ux500_wdt",
3076 		.platform_data = &db8500_wdt_pdata,
3077 		.pdata_size = sizeof(db8500_wdt_pdata),
3078 		.id = -1,
3079 	},
3080 };
3081 
3082 static struct mfd_cell db8500_prcmu_devs[] = {
3083 	{
3084 		.name = "db8500-prcmu-regulators",
3085 		.of_compatible = "stericsson,db8500-prcmu-regulator",
3086 		.platform_data = &db8500_regulators,
3087 		.pdata_size = sizeof(db8500_regulators),
3088 	},
3089 	{
3090 		.name = "cpufreq-ux500",
3091 		.of_compatible = "stericsson,cpufreq-ux500",
3092 		.platform_data = &db8500_cpufreq_table,
3093 		.pdata_size = sizeof(db8500_cpufreq_table),
3094 	},
3095 	{
3096 		.name = "cpuidle-dbx500",
3097 		.of_compatible = "stericsson,cpuidle-dbx500",
3098 	},
3099 	{
3100 		.name = "db8500-thermal",
3101 		.num_resources = ARRAY_SIZE(db8500_thsens_resources),
3102 		.resources = db8500_thsens_resources,
3103 		.platform_data = &db8500_thsens_data,
3104 		.pdata_size = sizeof(db8500_thsens_data),
3105 	},
3106 };
3107 
3108 static void db8500_prcmu_update_cpufreq(void)
3109 {
3110 	if (prcmu_has_arm_maxopp()) {
3111 		db8500_cpufreq_table[3].frequency = 1000000;
3112 		db8500_cpufreq_table[3].driver_data = ARM_MAX_OPP;
3113 	}
3114 }
3115 
3116 static int db8500_prcmu_register_ab8500(struct device *parent,
3117 					struct ab8500_platform_data *pdata,
3118 					int irq)
3119 {
3120 	struct resource ab8500_resource = DEFINE_RES_IRQ(irq);
3121 	struct mfd_cell ab8500_cell = {
3122 		.name = "ab8500-core",
3123 		.of_compatible = "stericsson,ab8500",
3124 		.id = AB8500_VERSION_AB8500,
3125 		.platform_data = pdata,
3126 		.pdata_size = sizeof(struct ab8500_platform_data),
3127 		.resources = &ab8500_resource,
3128 		.num_resources = 1,
3129 	};
3130 
3131 	return mfd_add_devices(parent, 0, &ab8500_cell, 1, NULL, 0, NULL);
3132 }
3133 
3134 /**
3135  * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
3136  *
3137  */
3138 static int db8500_prcmu_probe(struct platform_device *pdev)
3139 {
3140 	struct device_node *np = pdev->dev.of_node;
3141 	struct prcmu_pdata *pdata = dev_get_platdata(&pdev->dev);
3142 	int irq = 0, err = 0;
3143 	struct resource *res;
3144 
3145 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu");
3146 	if (!res) {
3147 		dev_err(&pdev->dev, "no prcmu memory region provided\n");
3148 		return -ENOENT;
3149 	}
3150 	prcmu_base = devm_ioremap(&pdev->dev, res->start, resource_size(res));
3151 	if (!prcmu_base) {
3152 		dev_err(&pdev->dev,
3153 			"failed to ioremap prcmu register memory\n");
3154 		return -ENOENT;
3155 	}
3156 	init_prcm_registers();
3157 	dbx500_fw_version_init(pdev, pdata->version_offset);
3158 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu-tcdm");
3159 	if (!res) {
3160 		dev_err(&pdev->dev, "no prcmu tcdm region provided\n");
3161 		return -ENOENT;
3162 	}
3163 	tcdm_base = devm_ioremap(&pdev->dev, res->start,
3164 			resource_size(res));
3165 
3166 	/* Clean up the mailbox interrupts after pre-kernel code. */
3167 	writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
3168 
3169 	irq = platform_get_irq(pdev, 0);
3170 	if (irq <= 0) {
3171 		dev_err(&pdev->dev, "no prcmu irq provided\n");
3172 		return -ENOENT;
3173 	}
3174 
3175 	err = request_threaded_irq(irq, prcmu_irq_handler,
3176 	        prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
3177 	if (err < 0) {
3178 		pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
3179 		err = -EBUSY;
3180 		goto no_irq_return;
3181 	}
3182 
3183 	db8500_irq_init(np, pdata->irq_base);
3184 
3185 	prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
3186 
3187 	db8500_prcmu_update_cpufreq();
3188 
3189 	err = mfd_add_devices(&pdev->dev, 0, common_prcmu_devs,
3190 			      ARRAY_SIZE(common_prcmu_devs), NULL, 0, db8500_irq_domain);
3191 	if (err) {
3192 		pr_err("prcmu: Failed to add subdevices\n");
3193 		return err;
3194 	}
3195 
3196 	/* TODO: Remove restriction when clk definitions are available. */
3197 	if (!of_machine_is_compatible("st-ericsson,u8540")) {
3198 		err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
3199 				      ARRAY_SIZE(db8500_prcmu_devs), NULL, 0,
3200 				      db8500_irq_domain);
3201 		if (err) {
3202 			mfd_remove_devices(&pdev->dev);
3203 			pr_err("prcmu: Failed to add subdevices\n");
3204 			goto no_irq_return;
3205 		}
3206 	}
3207 
3208 	err = db8500_prcmu_register_ab8500(&pdev->dev, pdata->ab_platdata,
3209 					   pdata->ab_irq);
3210 	if (err) {
3211 		mfd_remove_devices(&pdev->dev);
3212 		pr_err("prcmu: Failed to add ab8500 subdevice\n");
3213 		goto no_irq_return;
3214 	}
3215 
3216 	pr_info("DB8500 PRCMU initialized\n");
3217 
3218 no_irq_return:
3219 	return err;
3220 }
3221 static const struct of_device_id db8500_prcmu_match[] = {
3222 	{ .compatible = "stericsson,db8500-prcmu"},
3223 	{ },
3224 };
3225 
3226 static struct platform_driver db8500_prcmu_driver = {
3227 	.driver = {
3228 		.name = "db8500-prcmu",
3229 		.owner = THIS_MODULE,
3230 		.of_match_table = db8500_prcmu_match,
3231 	},
3232 	.probe = db8500_prcmu_probe,
3233 };
3234 
3235 static int __init db8500_prcmu_init(void)
3236 {
3237 	return platform_driver_register(&db8500_prcmu_driver);
3238 }
3239 
3240 core_initcall(db8500_prcmu_init);
3241 
3242 MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>");
3243 MODULE_DESCRIPTION("DB8500 PRCM Unit driver");
3244 MODULE_LICENSE("GPL v2");
3245