xref: /openbmc/linux/drivers/mfd/db8500-prcmu.c (revision 3b64b188)
1 /*
2  * Copyright (C) STMicroelectronics 2009
3  * Copyright (C) ST-Ericsson SA 2010
4  *
5  * License Terms: GNU General Public License v2
6  * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
7  * Author: Sundar Iyer <sundar.iyer@stericsson.com>
8  * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
9  *
10  * U8500 PRCM Unit interface driver
11  *
12  */
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/delay.h>
16 #include <linux/errno.h>
17 #include <linux/err.h>
18 #include <linux/spinlock.h>
19 #include <linux/io.h>
20 #include <linux/slab.h>
21 #include <linux/mutex.h>
22 #include <linux/completion.h>
23 #include <linux/irq.h>
24 #include <linux/jiffies.h>
25 #include <linux/bitops.h>
26 #include <linux/fs.h>
27 #include <linux/platform_device.h>
28 #include <linux/uaccess.h>
29 #include <linux/mfd/core.h>
30 #include <linux/mfd/dbx500-prcmu.h>
31 #include <linux/mfd/abx500/ab8500.h>
32 #include <linux/regulator/db8500-prcmu.h>
33 #include <linux/regulator/machine.h>
34 #include <asm/hardware/gic.h>
35 #include <mach/hardware.h>
36 #include <mach/irqs.h>
37 #include <mach/db8500-regs.h>
38 #include <mach/id.h>
39 #include "dbx500-prcmu-regs.h"
40 
41 /* Offset for the firmware version within the TCPM */
42 #define PRCMU_FW_VERSION_OFFSET 0xA4
43 
44 /* Index of different voltages to be used when accessing AVSData */
45 #define PRCM_AVS_BASE		0x2FC
46 #define PRCM_AVS_VBB_RET	(PRCM_AVS_BASE + 0x0)
47 #define PRCM_AVS_VBB_MAX_OPP	(PRCM_AVS_BASE + 0x1)
48 #define PRCM_AVS_VBB_100_OPP	(PRCM_AVS_BASE + 0x2)
49 #define PRCM_AVS_VBB_50_OPP	(PRCM_AVS_BASE + 0x3)
50 #define PRCM_AVS_VARM_MAX_OPP	(PRCM_AVS_BASE + 0x4)
51 #define PRCM_AVS_VARM_100_OPP	(PRCM_AVS_BASE + 0x5)
52 #define PRCM_AVS_VARM_50_OPP	(PRCM_AVS_BASE + 0x6)
53 #define PRCM_AVS_VARM_RET	(PRCM_AVS_BASE + 0x7)
54 #define PRCM_AVS_VAPE_100_OPP	(PRCM_AVS_BASE + 0x8)
55 #define PRCM_AVS_VAPE_50_OPP	(PRCM_AVS_BASE + 0x9)
56 #define PRCM_AVS_VMOD_100_OPP	(PRCM_AVS_BASE + 0xA)
57 #define PRCM_AVS_VMOD_50_OPP	(PRCM_AVS_BASE + 0xB)
58 #define PRCM_AVS_VSAFE		(PRCM_AVS_BASE + 0xC)
59 
60 #define PRCM_AVS_VOLTAGE		0
61 #define PRCM_AVS_VOLTAGE_MASK		0x3f
62 #define PRCM_AVS_ISSLOWSTARTUP		6
63 #define PRCM_AVS_ISSLOWSTARTUP_MASK	(1 << PRCM_AVS_ISSLOWSTARTUP)
64 #define PRCM_AVS_ISMODEENABLE		7
65 #define PRCM_AVS_ISMODEENABLE_MASK	(1 << PRCM_AVS_ISMODEENABLE)
66 
67 #define PRCM_BOOT_STATUS	0xFFF
68 #define PRCM_ROMCODE_A2P	0xFFE
69 #define PRCM_ROMCODE_P2A	0xFFD
70 #define PRCM_XP70_CUR_PWR_STATE 0xFFC      /* 4 BYTES */
71 
72 #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
73 
74 #define _PRCM_MBOX_HEADER		0xFE8 /* 16 bytes */
75 #define PRCM_MBOX_HEADER_REQ_MB0	(_PRCM_MBOX_HEADER + 0x0)
76 #define PRCM_MBOX_HEADER_REQ_MB1	(_PRCM_MBOX_HEADER + 0x1)
77 #define PRCM_MBOX_HEADER_REQ_MB2	(_PRCM_MBOX_HEADER + 0x2)
78 #define PRCM_MBOX_HEADER_REQ_MB3	(_PRCM_MBOX_HEADER + 0x3)
79 #define PRCM_MBOX_HEADER_REQ_MB4	(_PRCM_MBOX_HEADER + 0x4)
80 #define PRCM_MBOX_HEADER_REQ_MB5	(_PRCM_MBOX_HEADER + 0x5)
81 #define PRCM_MBOX_HEADER_ACK_MB0	(_PRCM_MBOX_HEADER + 0x8)
82 
83 /* Req Mailboxes */
84 #define PRCM_REQ_MB0 0xFDC /* 12 bytes  */
85 #define PRCM_REQ_MB1 0xFD0 /* 12 bytes  */
86 #define PRCM_REQ_MB2 0xFC0 /* 16 bytes  */
87 #define PRCM_REQ_MB3 0xE4C /* 372 bytes  */
88 #define PRCM_REQ_MB4 0xE48 /* 4 bytes  */
89 #define PRCM_REQ_MB5 0xE44 /* 4 bytes  */
90 
91 /* Ack Mailboxes */
92 #define PRCM_ACK_MB0 0xE08 /* 52 bytes  */
93 #define PRCM_ACK_MB1 0xE04 /* 4 bytes */
94 #define PRCM_ACK_MB2 0xE00 /* 4 bytes */
95 #define PRCM_ACK_MB3 0xDFC /* 4 bytes */
96 #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
97 #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
98 
99 /* Mailbox 0 headers */
100 #define MB0H_POWER_STATE_TRANS		0
101 #define MB0H_CONFIG_WAKEUPS_EXE		1
102 #define MB0H_READ_WAKEUP_ACK		3
103 #define MB0H_CONFIG_WAKEUPS_SLEEP	4
104 
105 #define MB0H_WAKEUP_EXE 2
106 #define MB0H_WAKEUP_SLEEP 5
107 
108 /* Mailbox 0 REQs */
109 #define PRCM_REQ_MB0_AP_POWER_STATE	(PRCM_REQ_MB0 + 0x0)
110 #define PRCM_REQ_MB0_AP_PLL_STATE	(PRCM_REQ_MB0 + 0x1)
111 #define PRCM_REQ_MB0_ULP_CLOCK_STATE	(PRCM_REQ_MB0 + 0x2)
112 #define PRCM_REQ_MB0_DO_NOT_WFI		(PRCM_REQ_MB0 + 0x3)
113 #define PRCM_REQ_MB0_WAKEUP_8500	(PRCM_REQ_MB0 + 0x4)
114 #define PRCM_REQ_MB0_WAKEUP_4500	(PRCM_REQ_MB0 + 0x8)
115 
116 /* Mailbox 0 ACKs */
117 #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS	(PRCM_ACK_MB0 + 0x0)
118 #define PRCM_ACK_MB0_READ_POINTER	(PRCM_ACK_MB0 + 0x1)
119 #define PRCM_ACK_MB0_WAKEUP_0_8500	(PRCM_ACK_MB0 + 0x4)
120 #define PRCM_ACK_MB0_WAKEUP_0_4500	(PRCM_ACK_MB0 + 0x8)
121 #define PRCM_ACK_MB0_WAKEUP_1_8500	(PRCM_ACK_MB0 + 0x1C)
122 #define PRCM_ACK_MB0_WAKEUP_1_4500	(PRCM_ACK_MB0 + 0x20)
123 #define PRCM_ACK_MB0_EVENT_4500_NUMBERS	20
124 
125 /* Mailbox 1 headers */
126 #define MB1H_ARM_APE_OPP 0x0
127 #define MB1H_RESET_MODEM 0x2
128 #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
129 #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
130 #define MB1H_RELEASE_USB_WAKEUP 0x5
131 #define MB1H_PLL_ON_OFF 0x6
132 
133 /* Mailbox 1 Requests */
134 #define PRCM_REQ_MB1_ARM_OPP			(PRCM_REQ_MB1 + 0x0)
135 #define PRCM_REQ_MB1_APE_OPP			(PRCM_REQ_MB1 + 0x1)
136 #define PRCM_REQ_MB1_PLL_ON_OFF			(PRCM_REQ_MB1 + 0x4)
137 #define PLL_SOC0_OFF	0x1
138 #define PLL_SOC0_ON	0x2
139 #define PLL_SOC1_OFF	0x4
140 #define PLL_SOC1_ON	0x8
141 
142 /* Mailbox 1 ACKs */
143 #define PRCM_ACK_MB1_CURRENT_ARM_OPP	(PRCM_ACK_MB1 + 0x0)
144 #define PRCM_ACK_MB1_CURRENT_APE_OPP	(PRCM_ACK_MB1 + 0x1)
145 #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS	(PRCM_ACK_MB1 + 0x2)
146 #define PRCM_ACK_MB1_DVFS_STATUS	(PRCM_ACK_MB1 + 0x3)
147 
148 /* Mailbox 2 headers */
149 #define MB2H_DPS	0x0
150 #define MB2H_AUTO_PWR	0x1
151 
152 /* Mailbox 2 REQs */
153 #define PRCM_REQ_MB2_SVA_MMDSP		(PRCM_REQ_MB2 + 0x0)
154 #define PRCM_REQ_MB2_SVA_PIPE		(PRCM_REQ_MB2 + 0x1)
155 #define PRCM_REQ_MB2_SIA_MMDSP		(PRCM_REQ_MB2 + 0x2)
156 #define PRCM_REQ_MB2_SIA_PIPE		(PRCM_REQ_MB2 + 0x3)
157 #define PRCM_REQ_MB2_SGA		(PRCM_REQ_MB2 + 0x4)
158 #define PRCM_REQ_MB2_B2R2_MCDE		(PRCM_REQ_MB2 + 0x5)
159 #define PRCM_REQ_MB2_ESRAM12		(PRCM_REQ_MB2 + 0x6)
160 #define PRCM_REQ_MB2_ESRAM34		(PRCM_REQ_MB2 + 0x7)
161 #define PRCM_REQ_MB2_AUTO_PM_SLEEP	(PRCM_REQ_MB2 + 0x8)
162 #define PRCM_REQ_MB2_AUTO_PM_IDLE	(PRCM_REQ_MB2 + 0xC)
163 
164 /* Mailbox 2 ACKs */
165 #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
166 #define HWACC_PWR_ST_OK 0xFE
167 
168 /* Mailbox 3 headers */
169 #define MB3H_ANC	0x0
170 #define MB3H_SIDETONE	0x1
171 #define MB3H_SYSCLK	0xE
172 
173 /* Mailbox 3 Requests */
174 #define PRCM_REQ_MB3_ANC_FIR_COEFF	(PRCM_REQ_MB3 + 0x0)
175 #define PRCM_REQ_MB3_ANC_IIR_COEFF	(PRCM_REQ_MB3 + 0x20)
176 #define PRCM_REQ_MB3_ANC_SHIFTER	(PRCM_REQ_MB3 + 0x60)
177 #define PRCM_REQ_MB3_ANC_WARP		(PRCM_REQ_MB3 + 0x64)
178 #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN	(PRCM_REQ_MB3 + 0x68)
179 #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF	(PRCM_REQ_MB3 + 0x6C)
180 #define PRCM_REQ_MB3_SYSCLK_MGT		(PRCM_REQ_MB3 + 0x16C)
181 
182 /* Mailbox 4 headers */
183 #define MB4H_DDR_INIT	0x0
184 #define MB4H_MEM_ST	0x1
185 #define MB4H_HOTDOG	0x12
186 #define MB4H_HOTMON	0x13
187 #define MB4H_HOT_PERIOD	0x14
188 #define MB4H_A9WDOG_CONF 0x16
189 #define MB4H_A9WDOG_EN   0x17
190 #define MB4H_A9WDOG_DIS  0x18
191 #define MB4H_A9WDOG_LOAD 0x19
192 #define MB4H_A9WDOG_KICK 0x20
193 
194 /* Mailbox 4 Requests */
195 #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE	(PRCM_REQ_MB4 + 0x0)
196 #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE	(PRCM_REQ_MB4 + 0x1)
197 #define PRCM_REQ_MB4_ESRAM0_ST			(PRCM_REQ_MB4 + 0x3)
198 #define PRCM_REQ_MB4_HOTDOG_THRESHOLD		(PRCM_REQ_MB4 + 0x0)
199 #define PRCM_REQ_MB4_HOTMON_LOW			(PRCM_REQ_MB4 + 0x0)
200 #define PRCM_REQ_MB4_HOTMON_HIGH		(PRCM_REQ_MB4 + 0x1)
201 #define PRCM_REQ_MB4_HOTMON_CONFIG		(PRCM_REQ_MB4 + 0x2)
202 #define PRCM_REQ_MB4_HOT_PERIOD			(PRCM_REQ_MB4 + 0x0)
203 #define HOTMON_CONFIG_LOW			BIT(0)
204 #define HOTMON_CONFIG_HIGH			BIT(1)
205 #define PRCM_REQ_MB4_A9WDOG_0			(PRCM_REQ_MB4 + 0x0)
206 #define PRCM_REQ_MB4_A9WDOG_1			(PRCM_REQ_MB4 + 0x1)
207 #define PRCM_REQ_MB4_A9WDOG_2			(PRCM_REQ_MB4 + 0x2)
208 #define PRCM_REQ_MB4_A9WDOG_3			(PRCM_REQ_MB4 + 0x3)
209 #define A9WDOG_AUTO_OFF_EN			BIT(7)
210 #define A9WDOG_AUTO_OFF_DIS			0
211 #define A9WDOG_ID_MASK				0xf
212 
213 /* Mailbox 5 Requests */
214 #define PRCM_REQ_MB5_I2C_SLAVE_OP	(PRCM_REQ_MB5 + 0x0)
215 #define PRCM_REQ_MB5_I2C_HW_BITS	(PRCM_REQ_MB5 + 0x1)
216 #define PRCM_REQ_MB5_I2C_REG		(PRCM_REQ_MB5 + 0x2)
217 #define PRCM_REQ_MB5_I2C_VAL		(PRCM_REQ_MB5 + 0x3)
218 #define PRCMU_I2C_WRITE(slave) \
219 	(((slave) << 1) | (cpu_is_u8500v2() ? BIT(6) : 0))
220 #define PRCMU_I2C_READ(slave) \
221 	(((slave) << 1) | BIT(0) | (cpu_is_u8500v2() ? BIT(6) : 0))
222 #define PRCMU_I2C_STOP_EN		BIT(3)
223 
224 /* Mailbox 5 ACKs */
225 #define PRCM_ACK_MB5_I2C_STATUS	(PRCM_ACK_MB5 + 0x1)
226 #define PRCM_ACK_MB5_I2C_VAL	(PRCM_ACK_MB5 + 0x3)
227 #define I2C_WR_OK 0x1
228 #define I2C_RD_OK 0x2
229 
230 #define NUM_MB 8
231 #define MBOX_BIT BIT
232 #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
233 
234 /*
235  * Wakeups/IRQs
236  */
237 
238 #define WAKEUP_BIT_RTC BIT(0)
239 #define WAKEUP_BIT_RTT0 BIT(1)
240 #define WAKEUP_BIT_RTT1 BIT(2)
241 #define WAKEUP_BIT_HSI0 BIT(3)
242 #define WAKEUP_BIT_HSI1 BIT(4)
243 #define WAKEUP_BIT_CA_WAKE BIT(5)
244 #define WAKEUP_BIT_USB BIT(6)
245 #define WAKEUP_BIT_ABB BIT(7)
246 #define WAKEUP_BIT_ABB_FIFO BIT(8)
247 #define WAKEUP_BIT_SYSCLK_OK BIT(9)
248 #define WAKEUP_BIT_CA_SLEEP BIT(10)
249 #define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
250 #define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
251 #define WAKEUP_BIT_ANC_OK BIT(13)
252 #define WAKEUP_BIT_SW_ERROR BIT(14)
253 #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
254 #define WAKEUP_BIT_ARM BIT(17)
255 #define WAKEUP_BIT_HOTMON_LOW BIT(18)
256 #define WAKEUP_BIT_HOTMON_HIGH BIT(19)
257 #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
258 #define WAKEUP_BIT_GPIO0 BIT(23)
259 #define WAKEUP_BIT_GPIO1 BIT(24)
260 #define WAKEUP_BIT_GPIO2 BIT(25)
261 #define WAKEUP_BIT_GPIO3 BIT(26)
262 #define WAKEUP_BIT_GPIO4 BIT(27)
263 #define WAKEUP_BIT_GPIO5 BIT(28)
264 #define WAKEUP_BIT_GPIO6 BIT(29)
265 #define WAKEUP_BIT_GPIO7 BIT(30)
266 #define WAKEUP_BIT_GPIO8 BIT(31)
267 
268 static struct {
269 	bool valid;
270 	struct prcmu_fw_version version;
271 } fw_info;
272 
273 /*
274  * This vector maps irq numbers to the bits in the bit field used in
275  * communication with the PRCMU firmware.
276  *
277  * The reason for having this is to keep the irq numbers contiguous even though
278  * the bits in the bit field are not. (The bits also have a tendency to move
279  * around, to further complicate matters.)
280  */
281 #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name) - IRQ_PRCMU_BASE)
282 #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
283 static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
284 	IRQ_ENTRY(RTC),
285 	IRQ_ENTRY(RTT0),
286 	IRQ_ENTRY(RTT1),
287 	IRQ_ENTRY(HSI0),
288 	IRQ_ENTRY(HSI1),
289 	IRQ_ENTRY(CA_WAKE),
290 	IRQ_ENTRY(USB),
291 	IRQ_ENTRY(ABB),
292 	IRQ_ENTRY(ABB_FIFO),
293 	IRQ_ENTRY(CA_SLEEP),
294 	IRQ_ENTRY(ARM),
295 	IRQ_ENTRY(HOTMON_LOW),
296 	IRQ_ENTRY(HOTMON_HIGH),
297 	IRQ_ENTRY(MODEM_SW_RESET_REQ),
298 	IRQ_ENTRY(GPIO0),
299 	IRQ_ENTRY(GPIO1),
300 	IRQ_ENTRY(GPIO2),
301 	IRQ_ENTRY(GPIO3),
302 	IRQ_ENTRY(GPIO4),
303 	IRQ_ENTRY(GPIO5),
304 	IRQ_ENTRY(GPIO6),
305 	IRQ_ENTRY(GPIO7),
306 	IRQ_ENTRY(GPIO8)
307 };
308 
309 #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
310 #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
311 static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
312 	WAKEUP_ENTRY(RTC),
313 	WAKEUP_ENTRY(RTT0),
314 	WAKEUP_ENTRY(RTT1),
315 	WAKEUP_ENTRY(HSI0),
316 	WAKEUP_ENTRY(HSI1),
317 	WAKEUP_ENTRY(USB),
318 	WAKEUP_ENTRY(ABB),
319 	WAKEUP_ENTRY(ABB_FIFO),
320 	WAKEUP_ENTRY(ARM)
321 };
322 
323 /*
324  * mb0_transfer - state needed for mailbox 0 communication.
325  * @lock:		The transaction lock.
326  * @dbb_events_lock:	A lock used to handle concurrent access to (parts of)
327  *			the request data.
328  * @mask_work:		Work structure used for (un)masking wakeup interrupts.
329  * @req:		Request data that need to persist between requests.
330  */
331 static struct {
332 	spinlock_t lock;
333 	spinlock_t dbb_irqs_lock;
334 	struct work_struct mask_work;
335 	struct mutex ac_wake_lock;
336 	struct completion ac_wake_work;
337 	struct {
338 		u32 dbb_irqs;
339 		u32 dbb_wakeups;
340 		u32 abb_events;
341 	} req;
342 } mb0_transfer;
343 
344 /*
345  * mb1_transfer - state needed for mailbox 1 communication.
346  * @lock:	The transaction lock.
347  * @work:	The transaction completion structure.
348  * @ape_opp:	The current APE OPP.
349  * @ack:	Reply ("acknowledge") data.
350  */
351 static struct {
352 	struct mutex lock;
353 	struct completion work;
354 	u8 ape_opp;
355 	struct {
356 		u8 header;
357 		u8 arm_opp;
358 		u8 ape_opp;
359 		u8 ape_voltage_status;
360 	} ack;
361 } mb1_transfer;
362 
363 /*
364  * mb2_transfer - state needed for mailbox 2 communication.
365  * @lock:            The transaction lock.
366  * @work:            The transaction completion structure.
367  * @auto_pm_lock:    The autonomous power management configuration lock.
368  * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
369  * @req:             Request data that need to persist between requests.
370  * @ack:             Reply ("acknowledge") data.
371  */
372 static struct {
373 	struct mutex lock;
374 	struct completion work;
375 	spinlock_t auto_pm_lock;
376 	bool auto_pm_enabled;
377 	struct {
378 		u8 status;
379 	} ack;
380 } mb2_transfer;
381 
382 /*
383  * mb3_transfer - state needed for mailbox 3 communication.
384  * @lock:		The request lock.
385  * @sysclk_lock:	A lock used to handle concurrent sysclk requests.
386  * @sysclk_work:	Work structure used for sysclk requests.
387  */
388 static struct {
389 	spinlock_t lock;
390 	struct mutex sysclk_lock;
391 	struct completion sysclk_work;
392 } mb3_transfer;
393 
394 /*
395  * mb4_transfer - state needed for mailbox 4 communication.
396  * @lock:	The transaction lock.
397  * @work:	The transaction completion structure.
398  */
399 static struct {
400 	struct mutex lock;
401 	struct completion work;
402 } mb4_transfer;
403 
404 /*
405  * mb5_transfer - state needed for mailbox 5 communication.
406  * @lock:	The transaction lock.
407  * @work:	The transaction completion structure.
408  * @ack:	Reply ("acknowledge") data.
409  */
410 static struct {
411 	struct mutex lock;
412 	struct completion work;
413 	struct {
414 		u8 status;
415 		u8 value;
416 	} ack;
417 } mb5_transfer;
418 
419 static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
420 
421 /* Functions definition */
422 static void compute_armss_rate(void);
423 
424 /* Spinlocks */
425 static DEFINE_SPINLOCK(prcmu_lock);
426 static DEFINE_SPINLOCK(clkout_lock);
427 
428 /* Global var to runtime determine TCDM base for v2 or v1 */
429 static __iomem void *tcdm_base;
430 
431 struct clk_mgt {
432 	void __iomem *reg;
433 	u32 pllsw;
434 	int branch;
435 	bool clk38div;
436 };
437 
438 enum {
439 	PLL_RAW,
440 	PLL_FIX,
441 	PLL_DIV
442 };
443 
444 static DEFINE_SPINLOCK(clk_mgt_lock);
445 
446 #define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
447 	{ (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
448 struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
449 	CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
450 	CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
451 	CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
452 	CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
453 	CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
454 	CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
455 	CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
456 	CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
457 	CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
458 	CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
459 	CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
460 	CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
461 	CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
462 	CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
463 	CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
464 	CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
465 	CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
466 	CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
467 	CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
468 	CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
469 	CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
470 	CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
471 	CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
472 	CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
473 	CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
474 	CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
475 	CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
476 	CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
477 	CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
478 };
479 
480 struct dsiclk {
481 	u32 divsel_mask;
482 	u32 divsel_shift;
483 	u32 divsel;
484 };
485 
486 static struct dsiclk dsiclk[2] = {
487 	{
488 		.divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
489 		.divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
490 		.divsel = PRCM_DSI_PLLOUT_SEL_PHI,
491 	},
492 	{
493 		.divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
494 		.divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
495 		.divsel = PRCM_DSI_PLLOUT_SEL_PHI,
496 	}
497 };
498 
499 struct dsiescclk {
500 	u32 en;
501 	u32 div_mask;
502 	u32 div_shift;
503 };
504 
505 static struct dsiescclk dsiescclk[3] = {
506 	{
507 		.en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
508 		.div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
509 		.div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
510 	},
511 	{
512 		.en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
513 		.div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
514 		.div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
515 	},
516 	{
517 		.en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
518 		.div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
519 		.div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
520 	}
521 };
522 
523 
524 /*
525 * Used by MCDE to setup all necessary PRCMU registers
526 */
527 #define PRCMU_RESET_DSIPLL		0x00004000
528 #define PRCMU_UNCLAMP_DSIPLL		0x00400800
529 
530 #define PRCMU_CLK_PLL_DIV_SHIFT		0
531 #define PRCMU_CLK_PLL_SW_SHIFT		5
532 #define PRCMU_CLK_38			(1 << 9)
533 #define PRCMU_CLK_38_SRC		(1 << 10)
534 #define PRCMU_CLK_38_DIV		(1 << 11)
535 
536 /* PLLDIV=12, PLLSW=4 (PLLDDR) */
537 #define PRCMU_DSI_CLOCK_SETTING		0x0000008C
538 
539 /* DPI 50000000 Hz */
540 #define PRCMU_DPI_CLOCK_SETTING		((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
541 					  (16 << PRCMU_CLK_PLL_DIV_SHIFT))
542 #define PRCMU_DSI_LP_CLOCK_SETTING	0x00000E00
543 
544 /* D=101, N=1, R=4, SELDIV2=0 */
545 #define PRCMU_PLLDSI_FREQ_SETTING	0x00040165
546 
547 #define PRCMU_ENABLE_PLLDSI		0x00000001
548 #define PRCMU_DISABLE_PLLDSI		0x00000000
549 #define PRCMU_RELEASE_RESET_DSS		0x0000400C
550 #define PRCMU_DSI_PLLOUT_SEL_SETTING	0x00000202
551 /* ESC clk, div0=1, div1=1, div2=3 */
552 #define PRCMU_ENABLE_ESCAPE_CLOCK_DIV	0x07030101
553 #define PRCMU_DISABLE_ESCAPE_CLOCK_DIV	0x00030101
554 #define PRCMU_DSI_RESET_SW		0x00000007
555 
556 #define PRCMU_PLLDSI_LOCKP_LOCKED	0x3
557 
558 int db8500_prcmu_enable_dsipll(void)
559 {
560 	int i;
561 
562 	/* Clear DSIPLL_RESETN */
563 	writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR);
564 	/* Unclamp DSIPLL in/out */
565 	writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR);
566 
567 	/* Set DSI PLL FREQ */
568 	writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ);
569 	writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL);
570 	/* Enable Escape clocks */
571 	writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
572 
573 	/* Start DSI PLL */
574 	writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
575 	/* Reset DSI PLL */
576 	writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET);
577 	for (i = 0; i < 10; i++) {
578 		if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED)
579 					== PRCMU_PLLDSI_LOCKP_LOCKED)
580 			break;
581 		udelay(100);
582 	}
583 	/* Set DSIPLL_RESETN */
584 	writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET);
585 	return 0;
586 }
587 
588 int db8500_prcmu_disable_dsipll(void)
589 {
590 	/* Disable dsi pll */
591 	writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
592 	/* Disable  escapeclock */
593 	writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
594 	return 0;
595 }
596 
597 int db8500_prcmu_set_display_clocks(void)
598 {
599 	unsigned long flags;
600 
601 	spin_lock_irqsave(&clk_mgt_lock, flags);
602 
603 	/* Grab the HW semaphore. */
604 	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
605 		cpu_relax();
606 
607 	writel(PRCMU_DSI_CLOCK_SETTING, PRCM_HDMICLK_MGT);
608 	writel(PRCMU_DSI_LP_CLOCK_SETTING, PRCM_TVCLK_MGT);
609 	writel(PRCMU_DPI_CLOCK_SETTING, PRCM_LCDCLK_MGT);
610 
611 	/* Release the HW semaphore. */
612 	writel(0, PRCM_SEM);
613 
614 	spin_unlock_irqrestore(&clk_mgt_lock, flags);
615 
616 	return 0;
617 }
618 
619 u32 db8500_prcmu_read(unsigned int reg)
620 {
621 	return readl(_PRCMU_BASE + reg);
622 }
623 
624 void db8500_prcmu_write(unsigned int reg, u32 value)
625 {
626 	unsigned long flags;
627 
628 	spin_lock_irqsave(&prcmu_lock, flags);
629 	writel(value, (_PRCMU_BASE + reg));
630 	spin_unlock_irqrestore(&prcmu_lock, flags);
631 }
632 
633 void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
634 {
635 	u32 val;
636 	unsigned long flags;
637 
638 	spin_lock_irqsave(&prcmu_lock, flags);
639 	val = readl(_PRCMU_BASE + reg);
640 	val = ((val & ~mask) | (value & mask));
641 	writel(val, (_PRCMU_BASE + reg));
642 	spin_unlock_irqrestore(&prcmu_lock, flags);
643 }
644 
645 struct prcmu_fw_version *prcmu_get_fw_version(void)
646 {
647 	return fw_info.valid ? &fw_info.version : NULL;
648 }
649 
650 bool prcmu_has_arm_maxopp(void)
651 {
652 	return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
653 		PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
654 }
655 
656 /**
657  * prcmu_get_boot_status - PRCMU boot status checking
658  * Returns: the current PRCMU boot status
659  */
660 int prcmu_get_boot_status(void)
661 {
662 	return readb(tcdm_base + PRCM_BOOT_STATUS);
663 }
664 
665 /**
666  * prcmu_set_rc_a2p - This function is used to run few power state sequences
667  * @val: Value to be set, i.e. transition requested
668  * Returns: 0 on success, -EINVAL on invalid argument
669  *
670  * This function is used to run the following power state sequences -
671  * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
672  */
673 int prcmu_set_rc_a2p(enum romcode_write val)
674 {
675 	if (val < RDY_2_DS || val > RDY_2_XP70_RST)
676 		return -EINVAL;
677 	writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
678 	return 0;
679 }
680 
681 /**
682  * prcmu_get_rc_p2a - This function is used to get power state sequences
683  * Returns: the power transition that has last happened
684  *
685  * This function can return the following transitions-
686  * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
687  */
688 enum romcode_read prcmu_get_rc_p2a(void)
689 {
690 	return readb(tcdm_base + PRCM_ROMCODE_P2A);
691 }
692 
693 /**
694  * prcmu_get_current_mode - Return the current XP70 power mode
695  * Returns: Returns the current AP(ARM) power mode: init,
696  * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
697  */
698 enum ap_pwrst prcmu_get_xp70_current_state(void)
699 {
700 	return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
701 }
702 
703 /**
704  * prcmu_config_clkout - Configure one of the programmable clock outputs.
705  * @clkout:	The CLKOUT number (0 or 1).
706  * @source:	The clock to be used (one of the PRCMU_CLKSRC_*).
707  * @div:	The divider to be applied.
708  *
709  * Configures one of the programmable clock outputs (CLKOUTs).
710  * @div should be in the range [1,63] to request a configuration, or 0 to
711  * inform that the configuration is no longer requested.
712  */
713 int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
714 {
715 	static int requests[2];
716 	int r = 0;
717 	unsigned long flags;
718 	u32 val;
719 	u32 bits;
720 	u32 mask;
721 	u32 div_mask;
722 
723 	BUG_ON(clkout > 1);
724 	BUG_ON(div > 63);
725 	BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
726 
727 	if (!div && !requests[clkout])
728 		return -EINVAL;
729 
730 	switch (clkout) {
731 	case 0:
732 		div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
733 		mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
734 		bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
735 			(div << PRCM_CLKOCR_CLKODIV0_SHIFT));
736 		break;
737 	case 1:
738 		div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
739 		mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
740 			PRCM_CLKOCR_CLK1TYPE);
741 		bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
742 			(div << PRCM_CLKOCR_CLKODIV1_SHIFT));
743 		break;
744 	}
745 	bits &= mask;
746 
747 	spin_lock_irqsave(&clkout_lock, flags);
748 
749 	val = readl(PRCM_CLKOCR);
750 	if (val & div_mask) {
751 		if (div) {
752 			if ((val & mask) != bits) {
753 				r = -EBUSY;
754 				goto unlock_and_return;
755 			}
756 		} else {
757 			if ((val & mask & ~div_mask) != bits) {
758 				r = -EINVAL;
759 				goto unlock_and_return;
760 			}
761 		}
762 	}
763 	writel((bits | (val & ~mask)), PRCM_CLKOCR);
764 	requests[clkout] += (div ? 1 : -1);
765 
766 unlock_and_return:
767 	spin_unlock_irqrestore(&clkout_lock, flags);
768 
769 	return r;
770 }
771 
772 int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
773 {
774 	unsigned long flags;
775 
776 	BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
777 
778 	spin_lock_irqsave(&mb0_transfer.lock, flags);
779 
780 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
781 		cpu_relax();
782 
783 	writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
784 	writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
785 	writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
786 	writeb((keep_ulp_clk ? 1 : 0),
787 		(tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
788 	writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
789 	writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
790 
791 	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
792 
793 	return 0;
794 }
795 
796 u8 db8500_prcmu_get_power_state_result(void)
797 {
798 	return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
799 }
800 
801 /* This function decouple the gic from the prcmu */
802 int db8500_prcmu_gic_decouple(void)
803 {
804 	u32 val = readl(PRCM_A9_MASK_REQ);
805 
806 	/* Set bit 0 register value to 1 */
807 	writel(val | PRCM_A9_MASK_REQ_PRCM_A9_MASK_REQ,
808 	       PRCM_A9_MASK_REQ);
809 
810 	/* Make sure the register is updated */
811 	readl(PRCM_A9_MASK_REQ);
812 
813 	/* Wait a few cycles for the gic mask completion */
814 	udelay(1);
815 
816 	return 0;
817 }
818 
819 /* This function recouple the gic with the prcmu */
820 int db8500_prcmu_gic_recouple(void)
821 {
822 	u32 val = readl(PRCM_A9_MASK_REQ);
823 
824 	/* Set bit 0 register value to 0 */
825 	writel(val & ~PRCM_A9_MASK_REQ_PRCM_A9_MASK_REQ, PRCM_A9_MASK_REQ);
826 
827 	return 0;
828 }
829 
830 #define PRCMU_GIC_NUMBER_REGS 5
831 
832 /*
833  * This function checks if there are pending irq on the gic. It only
834  * makes sense if the gic has been decoupled before with the
835  * db8500_prcmu_gic_decouple function. Disabling an interrupt only
836  * disables the forwarding of the interrupt to any CPU interface. It
837  * does not prevent the interrupt from changing state, for example
838  * becoming pending, or active and pending if it is already
839  * active. Hence, we have to check the interrupt is pending *and* is
840  * active.
841  */
842 bool db8500_prcmu_gic_pending_irq(void)
843 {
844 	u32 pr; /* Pending register */
845 	u32 er; /* Enable register */
846 	void __iomem *dist_base = __io_address(U8500_GIC_DIST_BASE);
847 	int i;
848 
849         /* 5 registers. STI & PPI not skipped */
850 	for (i = 0; i < PRCMU_GIC_NUMBER_REGS; i++) {
851 
852 		pr = readl_relaxed(dist_base + GIC_DIST_PENDING_SET + i * 4);
853 		er = readl_relaxed(dist_base + GIC_DIST_ENABLE_SET + i * 4);
854 
855 		if (pr & er)
856 			return true; /* There is a pending interrupt */
857 	}
858 
859 	return false;
860 }
861 
862 /*
863  * This function checks if there are pending interrupt on the
864  * prcmu which has been delegated to monitor the irqs with the
865  * db8500_prcmu_copy_gic_settings function.
866  */
867 bool db8500_prcmu_pending_irq(void)
868 {
869 	u32 it, im;
870 	int i;
871 
872 	for (i = 0; i < PRCMU_GIC_NUMBER_REGS - 1; i++) {
873 		it = readl(PRCM_ARMITVAL31TO0 + i * 4);
874 		im = readl(PRCM_ARMITMSK31TO0 + i * 4);
875 		if (it & im)
876 			return true; /* There is a pending interrupt */
877 	}
878 
879 	return false;
880 }
881 
882 /*
883  * This function checks if the specified cpu is in in WFI. It's usage
884  * makes sense only if the gic is decoupled with the db8500_prcmu_gic_decouple
885  * function. Of course passing smp_processor_id() to this function will
886  * always return false...
887  */
888 bool db8500_prcmu_is_cpu_in_wfi(int cpu)
889 {
890 	return readl(PRCM_ARM_WFI_STANDBY) & cpu ? PRCM_ARM_WFI_STANDBY_WFI1 :
891 		     PRCM_ARM_WFI_STANDBY_WFI0;
892 }
893 
894 /*
895  * This function copies the gic SPI settings to the prcmu in order to
896  * monitor them and abort/finish the retention/off sequence or state.
897  */
898 int db8500_prcmu_copy_gic_settings(void)
899 {
900 	u32 er; /* Enable register */
901 	void __iomem *dist_base = __io_address(U8500_GIC_DIST_BASE);
902 	int i;
903 
904         /* We skip the STI and PPI */
905 	for (i = 0; i < PRCMU_GIC_NUMBER_REGS - 1; i++) {
906 		er = readl_relaxed(dist_base +
907 				   GIC_DIST_ENABLE_SET + (i + 1) * 4);
908 		writel(er, PRCM_ARMITMSK31TO0 + i * 4);
909 	}
910 
911 	return 0;
912 }
913 
914 /* This function should only be called while mb0_transfer.lock is held. */
915 static void config_wakeups(void)
916 {
917 	const u8 header[2] = {
918 		MB0H_CONFIG_WAKEUPS_EXE,
919 		MB0H_CONFIG_WAKEUPS_SLEEP
920 	};
921 	static u32 last_dbb_events;
922 	static u32 last_abb_events;
923 	u32 dbb_events;
924 	u32 abb_events;
925 	unsigned int i;
926 
927 	dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
928 	dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
929 
930 	abb_events = mb0_transfer.req.abb_events;
931 
932 	if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
933 		return;
934 
935 	for (i = 0; i < 2; i++) {
936 		while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
937 			cpu_relax();
938 		writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
939 		writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
940 		writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
941 		writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
942 	}
943 	last_dbb_events = dbb_events;
944 	last_abb_events = abb_events;
945 }
946 
947 void db8500_prcmu_enable_wakeups(u32 wakeups)
948 {
949 	unsigned long flags;
950 	u32 bits;
951 	int i;
952 
953 	BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
954 
955 	for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
956 		if (wakeups & BIT(i))
957 			bits |= prcmu_wakeup_bit[i];
958 	}
959 
960 	spin_lock_irqsave(&mb0_transfer.lock, flags);
961 
962 	mb0_transfer.req.dbb_wakeups = bits;
963 	config_wakeups();
964 
965 	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
966 }
967 
968 void db8500_prcmu_config_abb_event_readout(u32 abb_events)
969 {
970 	unsigned long flags;
971 
972 	spin_lock_irqsave(&mb0_transfer.lock, flags);
973 
974 	mb0_transfer.req.abb_events = abb_events;
975 	config_wakeups();
976 
977 	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
978 }
979 
980 void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
981 {
982 	if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
983 		*buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
984 	else
985 		*buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
986 }
987 
988 /**
989  * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
990  * @opp: The new ARM operating point to which transition is to be made
991  * Returns: 0 on success, non-zero on failure
992  *
993  * This function sets the the operating point of the ARM.
994  */
995 int db8500_prcmu_set_arm_opp(u8 opp)
996 {
997 	int r;
998 
999 	if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
1000 		return -EINVAL;
1001 
1002 	r = 0;
1003 
1004 	mutex_lock(&mb1_transfer.lock);
1005 
1006 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1007 		cpu_relax();
1008 
1009 	writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1010 	writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
1011 	writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
1012 
1013 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1014 	wait_for_completion(&mb1_transfer.work);
1015 
1016 	if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
1017 		(mb1_transfer.ack.arm_opp != opp))
1018 		r = -EIO;
1019 
1020 	compute_armss_rate();
1021 	mutex_unlock(&mb1_transfer.lock);
1022 
1023 	return r;
1024 }
1025 
1026 /**
1027  * db8500_prcmu_get_arm_opp - get the current ARM OPP
1028  *
1029  * Returns: the current ARM OPP
1030  */
1031 int db8500_prcmu_get_arm_opp(void)
1032 {
1033 	return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
1034 }
1035 
1036 /**
1037  * db8500_prcmu_get_ddr_opp - get the current DDR OPP
1038  *
1039  * Returns: the current DDR OPP
1040  */
1041 int db8500_prcmu_get_ddr_opp(void)
1042 {
1043 	return readb(PRCM_DDR_SUBSYS_APE_MINBW);
1044 }
1045 
1046 /**
1047  * db8500_set_ddr_opp - set the appropriate DDR OPP
1048  * @opp: The new DDR operating point to which transition is to be made
1049  * Returns: 0 on success, non-zero on failure
1050  *
1051  * This function sets the operating point of the DDR.
1052  */
1053 int db8500_prcmu_set_ddr_opp(u8 opp)
1054 {
1055 	if (opp < DDR_100_OPP || opp > DDR_25_OPP)
1056 		return -EINVAL;
1057 	/* Changing the DDR OPP can hang the hardware pre-v21 */
1058 	if (cpu_is_u8500v20_or_later() && !cpu_is_u8500v20())
1059 		writeb(opp, PRCM_DDR_SUBSYS_APE_MINBW);
1060 
1061 	return 0;
1062 }
1063 
1064 /* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
1065 static void request_even_slower_clocks(bool enable)
1066 {
1067 	void __iomem *clock_reg[] = {
1068 		PRCM_ACLK_MGT,
1069 		PRCM_DMACLK_MGT
1070 	};
1071 	unsigned long flags;
1072 	unsigned int i;
1073 
1074 	spin_lock_irqsave(&clk_mgt_lock, flags);
1075 
1076 	/* Grab the HW semaphore. */
1077 	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1078 		cpu_relax();
1079 
1080 	for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
1081 		u32 val;
1082 		u32 div;
1083 
1084 		val = readl(clock_reg[i]);
1085 		div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
1086 		if (enable) {
1087 			if ((div <= 1) || (div > 15)) {
1088 				pr_err("prcmu: Bad clock divider %d in %s\n",
1089 					div, __func__);
1090 				goto unlock_and_return;
1091 			}
1092 			div <<= 1;
1093 		} else {
1094 			if (div <= 2)
1095 				goto unlock_and_return;
1096 			div >>= 1;
1097 		}
1098 		val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
1099 			(div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
1100 		writel(val, clock_reg[i]);
1101 	}
1102 
1103 unlock_and_return:
1104 	/* Release the HW semaphore. */
1105 	writel(0, PRCM_SEM);
1106 
1107 	spin_unlock_irqrestore(&clk_mgt_lock, flags);
1108 }
1109 
1110 /**
1111  * db8500_set_ape_opp - set the appropriate APE OPP
1112  * @opp: The new APE operating point to which transition is to be made
1113  * Returns: 0 on success, non-zero on failure
1114  *
1115  * This function sets the operating point of the APE.
1116  */
1117 int db8500_prcmu_set_ape_opp(u8 opp)
1118 {
1119 	int r = 0;
1120 
1121 	if (opp == mb1_transfer.ape_opp)
1122 		return 0;
1123 
1124 	mutex_lock(&mb1_transfer.lock);
1125 
1126 	if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
1127 		request_even_slower_clocks(false);
1128 
1129 	if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
1130 		goto skip_message;
1131 
1132 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1133 		cpu_relax();
1134 
1135 	writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1136 	writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
1137 	writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
1138 		(tcdm_base + PRCM_REQ_MB1_APE_OPP));
1139 
1140 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1141 	wait_for_completion(&mb1_transfer.work);
1142 
1143 	if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
1144 		(mb1_transfer.ack.ape_opp != opp))
1145 		r = -EIO;
1146 
1147 skip_message:
1148 	if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
1149 		(r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
1150 		request_even_slower_clocks(true);
1151 	if (!r)
1152 		mb1_transfer.ape_opp = opp;
1153 
1154 	mutex_unlock(&mb1_transfer.lock);
1155 
1156 	return r;
1157 }
1158 
1159 /**
1160  * db8500_prcmu_get_ape_opp - get the current APE OPP
1161  *
1162  * Returns: the current APE OPP
1163  */
1164 int db8500_prcmu_get_ape_opp(void)
1165 {
1166 	return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
1167 }
1168 
1169 /**
1170  * prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
1171  * @enable: true to request the higher voltage, false to drop a request.
1172  *
1173  * Calls to this function to enable and disable requests must be balanced.
1174  */
1175 int prcmu_request_ape_opp_100_voltage(bool enable)
1176 {
1177 	int r = 0;
1178 	u8 header;
1179 	static unsigned int requests;
1180 
1181 	mutex_lock(&mb1_transfer.lock);
1182 
1183 	if (enable) {
1184 		if (0 != requests++)
1185 			goto unlock_and_return;
1186 		header = MB1H_REQUEST_APE_OPP_100_VOLT;
1187 	} else {
1188 		if (requests == 0) {
1189 			r = -EIO;
1190 			goto unlock_and_return;
1191 		} else if (1 != requests--) {
1192 			goto unlock_and_return;
1193 		}
1194 		header = MB1H_RELEASE_APE_OPP_100_VOLT;
1195 	}
1196 
1197 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1198 		cpu_relax();
1199 
1200 	writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1201 
1202 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1203 	wait_for_completion(&mb1_transfer.work);
1204 
1205 	if ((mb1_transfer.ack.header != header) ||
1206 		((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1207 		r = -EIO;
1208 
1209 unlock_and_return:
1210 	mutex_unlock(&mb1_transfer.lock);
1211 
1212 	return r;
1213 }
1214 
1215 /**
1216  * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
1217  *
1218  * This function releases the power state requirements of a USB wakeup.
1219  */
1220 int prcmu_release_usb_wakeup_state(void)
1221 {
1222 	int r = 0;
1223 
1224 	mutex_lock(&mb1_transfer.lock);
1225 
1226 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1227 		cpu_relax();
1228 
1229 	writeb(MB1H_RELEASE_USB_WAKEUP,
1230 		(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1231 
1232 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1233 	wait_for_completion(&mb1_transfer.work);
1234 
1235 	if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
1236 		((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1237 		r = -EIO;
1238 
1239 	mutex_unlock(&mb1_transfer.lock);
1240 
1241 	return r;
1242 }
1243 
1244 static int request_pll(u8 clock, bool enable)
1245 {
1246 	int r = 0;
1247 
1248 	if (clock == PRCMU_PLLSOC0)
1249 		clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
1250 	else if (clock == PRCMU_PLLSOC1)
1251 		clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
1252 	else
1253 		return -EINVAL;
1254 
1255 	mutex_lock(&mb1_transfer.lock);
1256 
1257 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1258 		cpu_relax();
1259 
1260 	writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1261 	writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
1262 
1263 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1264 	wait_for_completion(&mb1_transfer.work);
1265 
1266 	if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
1267 		r = -EIO;
1268 
1269 	mutex_unlock(&mb1_transfer.lock);
1270 
1271 	return r;
1272 }
1273 
1274 /**
1275  * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
1276  * @epod_id: The EPOD to set
1277  * @epod_state: The new EPOD state
1278  *
1279  * This function sets the state of a EPOD (power domain). It may not be called
1280  * from interrupt context.
1281  */
1282 int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
1283 {
1284 	int r = 0;
1285 	bool ram_retention = false;
1286 	int i;
1287 
1288 	/* check argument */
1289 	BUG_ON(epod_id >= NUM_EPOD_ID);
1290 
1291 	/* set flag if retention is possible */
1292 	switch (epod_id) {
1293 	case EPOD_ID_SVAMMDSP:
1294 	case EPOD_ID_SIAMMDSP:
1295 	case EPOD_ID_ESRAM12:
1296 	case EPOD_ID_ESRAM34:
1297 		ram_retention = true;
1298 		break;
1299 	}
1300 
1301 	/* check argument */
1302 	BUG_ON(epod_state > EPOD_STATE_ON);
1303 	BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
1304 
1305 	/* get lock */
1306 	mutex_lock(&mb2_transfer.lock);
1307 
1308 	/* wait for mailbox */
1309 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
1310 		cpu_relax();
1311 
1312 	/* fill in mailbox */
1313 	for (i = 0; i < NUM_EPOD_ID; i++)
1314 		writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
1315 	writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
1316 
1317 	writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
1318 
1319 	writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
1320 
1321 	/*
1322 	 * The current firmware version does not handle errors correctly,
1323 	 * and we cannot recover if there is an error.
1324 	 * This is expected to change when the firmware is updated.
1325 	 */
1326 	if (!wait_for_completion_timeout(&mb2_transfer.work,
1327 			msecs_to_jiffies(20000))) {
1328 		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1329 			__func__);
1330 		r = -EIO;
1331 		goto unlock_and_return;
1332 	}
1333 
1334 	if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
1335 		r = -EIO;
1336 
1337 unlock_and_return:
1338 	mutex_unlock(&mb2_transfer.lock);
1339 	return r;
1340 }
1341 
1342 /**
1343  * prcmu_configure_auto_pm - Configure autonomous power management.
1344  * @sleep: Configuration for ApSleep.
1345  * @idle:  Configuration for ApIdle.
1346  */
1347 void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
1348 	struct prcmu_auto_pm_config *idle)
1349 {
1350 	u32 sleep_cfg;
1351 	u32 idle_cfg;
1352 	unsigned long flags;
1353 
1354 	BUG_ON((sleep == NULL) || (idle == NULL));
1355 
1356 	sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
1357 	sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
1358 	sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
1359 	sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
1360 	sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
1361 	sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
1362 
1363 	idle_cfg = (idle->sva_auto_pm_enable & 0xF);
1364 	idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
1365 	idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
1366 	idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
1367 	idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
1368 	idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
1369 
1370 	spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
1371 
1372 	/*
1373 	 * The autonomous power management configuration is done through
1374 	 * fields in mailbox 2, but these fields are only used as shared
1375 	 * variables - i.e. there is no need to send a message.
1376 	 */
1377 	writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
1378 	writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
1379 
1380 	mb2_transfer.auto_pm_enabled =
1381 		((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1382 		 (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1383 		 (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1384 		 (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
1385 
1386 	spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
1387 }
1388 EXPORT_SYMBOL(prcmu_configure_auto_pm);
1389 
1390 bool prcmu_is_auto_pm_enabled(void)
1391 {
1392 	return mb2_transfer.auto_pm_enabled;
1393 }
1394 
1395 static int request_sysclk(bool enable)
1396 {
1397 	int r;
1398 	unsigned long flags;
1399 
1400 	r = 0;
1401 
1402 	mutex_lock(&mb3_transfer.sysclk_lock);
1403 
1404 	spin_lock_irqsave(&mb3_transfer.lock, flags);
1405 
1406 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
1407 		cpu_relax();
1408 
1409 	writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
1410 
1411 	writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
1412 	writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
1413 
1414 	spin_unlock_irqrestore(&mb3_transfer.lock, flags);
1415 
1416 	/*
1417 	 * The firmware only sends an ACK if we want to enable the
1418 	 * SysClk, and it succeeds.
1419 	 */
1420 	if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
1421 			msecs_to_jiffies(20000))) {
1422 		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1423 			__func__);
1424 		r = -EIO;
1425 	}
1426 
1427 	mutex_unlock(&mb3_transfer.sysclk_lock);
1428 
1429 	return r;
1430 }
1431 
1432 static int request_timclk(bool enable)
1433 {
1434 	u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
1435 
1436 	if (!enable)
1437 		val |= PRCM_TCR_STOP_TIMERS;
1438 	writel(val, PRCM_TCR);
1439 
1440 	return 0;
1441 }
1442 
1443 static int request_clock(u8 clock, bool enable)
1444 {
1445 	u32 val;
1446 	unsigned long flags;
1447 
1448 	spin_lock_irqsave(&clk_mgt_lock, flags);
1449 
1450 	/* Grab the HW semaphore. */
1451 	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1452 		cpu_relax();
1453 
1454 	val = readl(clk_mgt[clock].reg);
1455 	if (enable) {
1456 		val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
1457 	} else {
1458 		clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1459 		val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
1460 	}
1461 	writel(val, clk_mgt[clock].reg);
1462 
1463 	/* Release the HW semaphore. */
1464 	writel(0, PRCM_SEM);
1465 
1466 	spin_unlock_irqrestore(&clk_mgt_lock, flags);
1467 
1468 	return 0;
1469 }
1470 
1471 static int request_sga_clock(u8 clock, bool enable)
1472 {
1473 	u32 val;
1474 	int ret;
1475 
1476 	if (enable) {
1477 		val = readl(PRCM_CGATING_BYPASS);
1478 		writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1479 	}
1480 
1481 	ret = request_clock(clock, enable);
1482 
1483 	if (!ret && !enable) {
1484 		val = readl(PRCM_CGATING_BYPASS);
1485 		writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1486 	}
1487 
1488 	return ret;
1489 }
1490 
1491 static inline bool plldsi_locked(void)
1492 {
1493 	return (readl(PRCM_PLLDSI_LOCKP) &
1494 		(PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1495 		 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
1496 		(PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1497 		 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
1498 }
1499 
1500 static int request_plldsi(bool enable)
1501 {
1502 	int r = 0;
1503 	u32 val;
1504 
1505 	writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1506 		PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
1507 		PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
1508 
1509 	val = readl(PRCM_PLLDSI_ENABLE);
1510 	if (enable)
1511 		val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1512 	else
1513 		val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1514 	writel(val, PRCM_PLLDSI_ENABLE);
1515 
1516 	if (enable) {
1517 		unsigned int i;
1518 		bool locked = plldsi_locked();
1519 
1520 		for (i = 10; !locked && (i > 0); --i) {
1521 			udelay(100);
1522 			locked = plldsi_locked();
1523 		}
1524 		if (locked) {
1525 			writel(PRCM_APE_RESETN_DSIPLL_RESETN,
1526 				PRCM_APE_RESETN_SET);
1527 		} else {
1528 			writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1529 				PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
1530 				PRCM_MMIP_LS_CLAMP_SET);
1531 			val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1532 			writel(val, PRCM_PLLDSI_ENABLE);
1533 			r = -EAGAIN;
1534 		}
1535 	} else {
1536 		writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
1537 	}
1538 	return r;
1539 }
1540 
1541 static int request_dsiclk(u8 n, bool enable)
1542 {
1543 	u32 val;
1544 
1545 	val = readl(PRCM_DSI_PLLOUT_SEL);
1546 	val &= ~dsiclk[n].divsel_mask;
1547 	val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
1548 		dsiclk[n].divsel_shift);
1549 	writel(val, PRCM_DSI_PLLOUT_SEL);
1550 	return 0;
1551 }
1552 
1553 static int request_dsiescclk(u8 n, bool enable)
1554 {
1555 	u32 val;
1556 
1557 	val = readl(PRCM_DSITVCLK_DIV);
1558 	enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
1559 	writel(val, PRCM_DSITVCLK_DIV);
1560 	return 0;
1561 }
1562 
1563 /**
1564  * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
1565  * @clock:      The clock for which the request is made.
1566  * @enable:     Whether the clock should be enabled (true) or disabled (false).
1567  *
1568  * This function should only be used by the clock implementation.
1569  * Do not use it from any other place!
1570  */
1571 int db8500_prcmu_request_clock(u8 clock, bool enable)
1572 {
1573 	if (clock == PRCMU_SGACLK)
1574 		return request_sga_clock(clock, enable);
1575 	else if (clock < PRCMU_NUM_REG_CLOCKS)
1576 		return request_clock(clock, enable);
1577 	else if (clock == PRCMU_TIMCLK)
1578 		return request_timclk(enable);
1579 	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1580 		return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
1581 	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1582 		return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
1583 	else if (clock == PRCMU_PLLDSI)
1584 		return request_plldsi(enable);
1585 	else if (clock == PRCMU_SYSCLK)
1586 		return request_sysclk(enable);
1587 	else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
1588 		return request_pll(clock, enable);
1589 	else
1590 		return -EINVAL;
1591 }
1592 
1593 static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
1594 	int branch)
1595 {
1596 	u64 rate;
1597 	u32 val;
1598 	u32 d;
1599 	u32 div = 1;
1600 
1601 	val = readl(reg);
1602 
1603 	rate = src_rate;
1604 	rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
1605 
1606 	d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
1607 	if (d > 1)
1608 		div *= d;
1609 
1610 	d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
1611 	if (d > 1)
1612 		div *= d;
1613 
1614 	if (val & PRCM_PLL_FREQ_SELDIV2)
1615 		div *= 2;
1616 
1617 	if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
1618 		(val & PRCM_PLL_FREQ_DIV2EN) &&
1619 		((reg == PRCM_PLLSOC0_FREQ) ||
1620 		 (reg == PRCM_PLLARM_FREQ) ||
1621 		 (reg == PRCM_PLLDDR_FREQ))))
1622 		div *= 2;
1623 
1624 	(void)do_div(rate, div);
1625 
1626 	return (unsigned long)rate;
1627 }
1628 
1629 #define ROOT_CLOCK_RATE 38400000
1630 
1631 static unsigned long clock_rate(u8 clock)
1632 {
1633 	u32 val;
1634 	u32 pllsw;
1635 	unsigned long rate = ROOT_CLOCK_RATE;
1636 
1637 	val = readl(clk_mgt[clock].reg);
1638 
1639 	if (val & PRCM_CLK_MGT_CLK38) {
1640 		if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
1641 			rate /= 2;
1642 		return rate;
1643 	}
1644 
1645 	val |= clk_mgt[clock].pllsw;
1646 	pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1647 
1648 	if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1649 		rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
1650 	else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1651 		rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
1652 	else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
1653 		rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
1654 	else
1655 		return 0;
1656 
1657 	if ((clock == PRCMU_SGACLK) &&
1658 		(val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
1659 		u64 r = (rate * 10);
1660 
1661 		(void)do_div(r, 25);
1662 		return (unsigned long)r;
1663 	}
1664 	val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1665 	if (val)
1666 		return rate / val;
1667 	else
1668 		return 0;
1669 }
1670 static unsigned long latest_armss_rate;
1671 static unsigned long armss_rate(void)
1672 {
1673 	return latest_armss_rate;
1674 }
1675 
1676 static void compute_armss_rate(void)
1677 {
1678 	u32 r;
1679 	unsigned long rate;
1680 
1681 	r = readl(PRCM_ARM_CHGCLKREQ);
1682 
1683 	if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) {
1684 		/* External ARMCLKFIX clock */
1685 
1686 		rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX);
1687 
1688 		/* Check PRCM_ARM_CHGCLKREQ divider */
1689 		if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL))
1690 			rate /= 2;
1691 
1692 		/* Check PRCM_ARMCLKFIX_MGT divider */
1693 		r = readl(PRCM_ARMCLKFIX_MGT);
1694 		r &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1695 		rate /= r;
1696 
1697 	} else {/* ARM PLL */
1698 		rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV);
1699 	}
1700 
1701 	latest_armss_rate = rate;
1702 }
1703 
1704 static unsigned long dsiclk_rate(u8 n)
1705 {
1706 	u32 divsel;
1707 	u32 div = 1;
1708 
1709 	divsel = readl(PRCM_DSI_PLLOUT_SEL);
1710 	divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
1711 
1712 	if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
1713 		divsel = dsiclk[n].divsel;
1714 
1715 	switch (divsel) {
1716 	case PRCM_DSI_PLLOUT_SEL_PHI_4:
1717 		div *= 2;
1718 	case PRCM_DSI_PLLOUT_SEL_PHI_2:
1719 		div *= 2;
1720 	case PRCM_DSI_PLLOUT_SEL_PHI:
1721 		return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1722 			PLL_RAW) / div;
1723 	default:
1724 		return 0;
1725 	}
1726 }
1727 
1728 static unsigned long dsiescclk_rate(u8 n)
1729 {
1730 	u32 div;
1731 
1732 	div = readl(PRCM_DSITVCLK_DIV);
1733 	div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
1734 	return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
1735 }
1736 
1737 unsigned long prcmu_clock_rate(u8 clock)
1738 {
1739 	if (clock < PRCMU_NUM_REG_CLOCKS)
1740 		return clock_rate(clock);
1741 	else if (clock == PRCMU_TIMCLK)
1742 		return ROOT_CLOCK_RATE / 16;
1743 	else if (clock == PRCMU_SYSCLK)
1744 		return ROOT_CLOCK_RATE;
1745 	else if (clock == PRCMU_PLLSOC0)
1746 		return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1747 	else if (clock == PRCMU_PLLSOC1)
1748 		return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1749 	else if (clock == PRCMU_ARMSS)
1750 		return armss_rate();
1751 	else if (clock == PRCMU_PLLDDR)
1752 		return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1753 	else if (clock == PRCMU_PLLDSI)
1754 		return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1755 			PLL_RAW);
1756 	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1757 		return dsiclk_rate(clock - PRCMU_DSI0CLK);
1758 	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1759 		return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
1760 	else
1761 		return 0;
1762 }
1763 
1764 static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
1765 {
1766 	if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
1767 		return ROOT_CLOCK_RATE;
1768 	clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
1769 	if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1770 		return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
1771 	else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1772 		return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
1773 	else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
1774 		return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
1775 	else
1776 		return 0;
1777 }
1778 
1779 static u32 clock_divider(unsigned long src_rate, unsigned long rate)
1780 {
1781 	u32 div;
1782 
1783 	div = (src_rate / rate);
1784 	if (div == 0)
1785 		return 1;
1786 	if (rate < (src_rate / div))
1787 		div++;
1788 	return div;
1789 }
1790 
1791 static long round_clock_rate(u8 clock, unsigned long rate)
1792 {
1793 	u32 val;
1794 	u32 div;
1795 	unsigned long src_rate;
1796 	long rounded_rate;
1797 
1798 	val = readl(clk_mgt[clock].reg);
1799 	src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1800 		clk_mgt[clock].branch);
1801 	div = clock_divider(src_rate, rate);
1802 	if (val & PRCM_CLK_MGT_CLK38) {
1803 		if (clk_mgt[clock].clk38div) {
1804 			if (div > 2)
1805 				div = 2;
1806 		} else {
1807 			div = 1;
1808 		}
1809 	} else if ((clock == PRCMU_SGACLK) && (div == 3)) {
1810 		u64 r = (src_rate * 10);
1811 
1812 		(void)do_div(r, 25);
1813 		if (r <= rate)
1814 			return (unsigned long)r;
1815 	}
1816 	rounded_rate = (src_rate / min(div, (u32)31));
1817 
1818 	return rounded_rate;
1819 }
1820 
1821 #define MIN_PLL_VCO_RATE 600000000ULL
1822 #define MAX_PLL_VCO_RATE 1680640000ULL
1823 
1824 static long round_plldsi_rate(unsigned long rate)
1825 {
1826 	long rounded_rate = 0;
1827 	unsigned long src_rate;
1828 	unsigned long rem;
1829 	u32 r;
1830 
1831 	src_rate = clock_rate(PRCMU_HDMICLK);
1832 	rem = rate;
1833 
1834 	for (r = 7; (rem > 0) && (r > 0); r--) {
1835 		u64 d;
1836 
1837 		d = (r * rate);
1838 		(void)do_div(d, src_rate);
1839 		if (d < 6)
1840 			d = 6;
1841 		else if (d > 255)
1842 			d = 255;
1843 		d *= src_rate;
1844 		if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
1845 			((r * MAX_PLL_VCO_RATE) < (2 * d)))
1846 			continue;
1847 		(void)do_div(d, r);
1848 		if (rate < d) {
1849 			if (rounded_rate == 0)
1850 				rounded_rate = (long)d;
1851 			break;
1852 		}
1853 		if ((rate - d) < rem) {
1854 			rem = (rate - d);
1855 			rounded_rate = (long)d;
1856 		}
1857 	}
1858 	return rounded_rate;
1859 }
1860 
1861 static long round_dsiclk_rate(unsigned long rate)
1862 {
1863 	u32 div;
1864 	unsigned long src_rate;
1865 	long rounded_rate;
1866 
1867 	src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1868 		PLL_RAW);
1869 	div = clock_divider(src_rate, rate);
1870 	rounded_rate = (src_rate / ((div > 2) ? 4 : div));
1871 
1872 	return rounded_rate;
1873 }
1874 
1875 static long round_dsiescclk_rate(unsigned long rate)
1876 {
1877 	u32 div;
1878 	unsigned long src_rate;
1879 	long rounded_rate;
1880 
1881 	src_rate = clock_rate(PRCMU_TVCLK);
1882 	div = clock_divider(src_rate, rate);
1883 	rounded_rate = (src_rate / min(div, (u32)255));
1884 
1885 	return rounded_rate;
1886 }
1887 
1888 long prcmu_round_clock_rate(u8 clock, unsigned long rate)
1889 {
1890 	if (clock < PRCMU_NUM_REG_CLOCKS)
1891 		return round_clock_rate(clock, rate);
1892 	else if (clock == PRCMU_PLLDSI)
1893 		return round_plldsi_rate(rate);
1894 	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1895 		return round_dsiclk_rate(rate);
1896 	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1897 		return round_dsiescclk_rate(rate);
1898 	else
1899 		return (long)prcmu_clock_rate(clock);
1900 }
1901 
1902 static void set_clock_rate(u8 clock, unsigned long rate)
1903 {
1904 	u32 val;
1905 	u32 div;
1906 	unsigned long src_rate;
1907 	unsigned long flags;
1908 
1909 	spin_lock_irqsave(&clk_mgt_lock, flags);
1910 
1911 	/* Grab the HW semaphore. */
1912 	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1913 		cpu_relax();
1914 
1915 	val = readl(clk_mgt[clock].reg);
1916 	src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1917 		clk_mgt[clock].branch);
1918 	div = clock_divider(src_rate, rate);
1919 	if (val & PRCM_CLK_MGT_CLK38) {
1920 		if (clk_mgt[clock].clk38div) {
1921 			if (div > 1)
1922 				val |= PRCM_CLK_MGT_CLK38DIV;
1923 			else
1924 				val &= ~PRCM_CLK_MGT_CLK38DIV;
1925 		}
1926 	} else if (clock == PRCMU_SGACLK) {
1927 		val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
1928 			PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
1929 		if (div == 3) {
1930 			u64 r = (src_rate * 10);
1931 
1932 			(void)do_div(r, 25);
1933 			if (r <= rate) {
1934 				val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
1935 				div = 0;
1936 			}
1937 		}
1938 		val |= min(div, (u32)31);
1939 	} else {
1940 		val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
1941 		val |= min(div, (u32)31);
1942 	}
1943 	writel(val, clk_mgt[clock].reg);
1944 
1945 	/* Release the HW semaphore. */
1946 	writel(0, PRCM_SEM);
1947 
1948 	spin_unlock_irqrestore(&clk_mgt_lock, flags);
1949 }
1950 
1951 static int set_plldsi_rate(unsigned long rate)
1952 {
1953 	unsigned long src_rate;
1954 	unsigned long rem;
1955 	u32 pll_freq = 0;
1956 	u32 r;
1957 
1958 	src_rate = clock_rate(PRCMU_HDMICLK);
1959 	rem = rate;
1960 
1961 	for (r = 7; (rem > 0) && (r > 0); r--) {
1962 		u64 d;
1963 		u64 hwrate;
1964 
1965 		d = (r * rate);
1966 		(void)do_div(d, src_rate);
1967 		if (d < 6)
1968 			d = 6;
1969 		else if (d > 255)
1970 			d = 255;
1971 		hwrate = (d * src_rate);
1972 		if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
1973 			((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
1974 			continue;
1975 		(void)do_div(hwrate, r);
1976 		if (rate < hwrate) {
1977 			if (pll_freq == 0)
1978 				pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1979 					(r << PRCM_PLL_FREQ_R_SHIFT));
1980 			break;
1981 		}
1982 		if ((rate - hwrate) < rem) {
1983 			rem = (rate - hwrate);
1984 			pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1985 				(r << PRCM_PLL_FREQ_R_SHIFT));
1986 		}
1987 	}
1988 	if (pll_freq == 0)
1989 		return -EINVAL;
1990 
1991 	pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
1992 	writel(pll_freq, PRCM_PLLDSI_FREQ);
1993 
1994 	return 0;
1995 }
1996 
1997 static void set_dsiclk_rate(u8 n, unsigned long rate)
1998 {
1999 	u32 val;
2000 	u32 div;
2001 
2002 	div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
2003 			clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
2004 
2005 	dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
2006 			   (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
2007 			   /* else */	PRCM_DSI_PLLOUT_SEL_PHI_4;
2008 
2009 	val = readl(PRCM_DSI_PLLOUT_SEL);
2010 	val &= ~dsiclk[n].divsel_mask;
2011 	val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
2012 	writel(val, PRCM_DSI_PLLOUT_SEL);
2013 }
2014 
2015 static void set_dsiescclk_rate(u8 n, unsigned long rate)
2016 {
2017 	u32 val;
2018 	u32 div;
2019 
2020 	div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
2021 	val = readl(PRCM_DSITVCLK_DIV);
2022 	val &= ~dsiescclk[n].div_mask;
2023 	val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
2024 	writel(val, PRCM_DSITVCLK_DIV);
2025 }
2026 
2027 int prcmu_set_clock_rate(u8 clock, unsigned long rate)
2028 {
2029 	if (clock < PRCMU_NUM_REG_CLOCKS)
2030 		set_clock_rate(clock, rate);
2031 	else if (clock == PRCMU_PLLDSI)
2032 		return set_plldsi_rate(rate);
2033 	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
2034 		set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
2035 	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
2036 		set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
2037 	return 0;
2038 }
2039 
2040 int db8500_prcmu_config_esram0_deep_sleep(u8 state)
2041 {
2042 	if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
2043 	    (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
2044 		return -EINVAL;
2045 
2046 	mutex_lock(&mb4_transfer.lock);
2047 
2048 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2049 		cpu_relax();
2050 
2051 	writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2052 	writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
2053 	       (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
2054 	writeb(DDR_PWR_STATE_ON,
2055 	       (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
2056 	writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
2057 
2058 	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2059 	wait_for_completion(&mb4_transfer.work);
2060 
2061 	mutex_unlock(&mb4_transfer.lock);
2062 
2063 	return 0;
2064 }
2065 
2066 int db8500_prcmu_config_hotdog(u8 threshold)
2067 {
2068 	mutex_lock(&mb4_transfer.lock);
2069 
2070 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2071 		cpu_relax();
2072 
2073 	writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
2074 	writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2075 
2076 	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2077 	wait_for_completion(&mb4_transfer.work);
2078 
2079 	mutex_unlock(&mb4_transfer.lock);
2080 
2081 	return 0;
2082 }
2083 
2084 int db8500_prcmu_config_hotmon(u8 low, u8 high)
2085 {
2086 	mutex_lock(&mb4_transfer.lock);
2087 
2088 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2089 		cpu_relax();
2090 
2091 	writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
2092 	writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
2093 	writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
2094 		(tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
2095 	writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2096 
2097 	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2098 	wait_for_completion(&mb4_transfer.work);
2099 
2100 	mutex_unlock(&mb4_transfer.lock);
2101 
2102 	return 0;
2103 }
2104 
2105 static int config_hot_period(u16 val)
2106 {
2107 	mutex_lock(&mb4_transfer.lock);
2108 
2109 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2110 		cpu_relax();
2111 
2112 	writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
2113 	writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2114 
2115 	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2116 	wait_for_completion(&mb4_transfer.work);
2117 
2118 	mutex_unlock(&mb4_transfer.lock);
2119 
2120 	return 0;
2121 }
2122 
2123 int db8500_prcmu_start_temp_sense(u16 cycles32k)
2124 {
2125 	if (cycles32k == 0xFFFF)
2126 		return -EINVAL;
2127 
2128 	return config_hot_period(cycles32k);
2129 }
2130 
2131 int db8500_prcmu_stop_temp_sense(void)
2132 {
2133 	return config_hot_period(0xFFFF);
2134 }
2135 
2136 static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
2137 {
2138 
2139 	mutex_lock(&mb4_transfer.lock);
2140 
2141 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2142 		cpu_relax();
2143 
2144 	writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
2145 	writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
2146 	writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
2147 	writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
2148 
2149 	writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2150 
2151 	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2152 	wait_for_completion(&mb4_transfer.work);
2153 
2154 	mutex_unlock(&mb4_transfer.lock);
2155 
2156 	return 0;
2157 
2158 }
2159 
2160 int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
2161 {
2162 	BUG_ON(num == 0 || num > 0xf);
2163 	return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
2164 			    sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
2165 			    A9WDOG_AUTO_OFF_DIS);
2166 }
2167 
2168 int db8500_prcmu_enable_a9wdog(u8 id)
2169 {
2170 	return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
2171 }
2172 
2173 int db8500_prcmu_disable_a9wdog(u8 id)
2174 {
2175 	return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
2176 }
2177 
2178 int db8500_prcmu_kick_a9wdog(u8 id)
2179 {
2180 	return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
2181 }
2182 
2183 /*
2184  * timeout is 28 bit, in ms.
2185  */
2186 int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
2187 {
2188 	return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
2189 			    (id & A9WDOG_ID_MASK) |
2190 			    /*
2191 			     * Put the lowest 28 bits of timeout at
2192 			     * offset 4. Four first bits are used for id.
2193 			     */
2194 			    (u8)((timeout << 4) & 0xf0),
2195 			    (u8)((timeout >> 4) & 0xff),
2196 			    (u8)((timeout >> 12) & 0xff),
2197 			    (u8)((timeout >> 20) & 0xff));
2198 }
2199 
2200 /**
2201  * prcmu_abb_read() - Read register value(s) from the ABB.
2202  * @slave:	The I2C slave address.
2203  * @reg:	The (start) register address.
2204  * @value:	The read out value(s).
2205  * @size:	The number of registers to read.
2206  *
2207  * Reads register value(s) from the ABB.
2208  * @size has to be 1 for the current firmware version.
2209  */
2210 int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
2211 {
2212 	int r;
2213 
2214 	if (size != 1)
2215 		return -EINVAL;
2216 
2217 	mutex_lock(&mb5_transfer.lock);
2218 
2219 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2220 		cpu_relax();
2221 
2222 	writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2223 	writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2224 	writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2225 	writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2226 	writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2227 
2228 	writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2229 
2230 	if (!wait_for_completion_timeout(&mb5_transfer.work,
2231 				msecs_to_jiffies(20000))) {
2232 		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2233 			__func__);
2234 		r = -EIO;
2235 	} else {
2236 		r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
2237 	}
2238 
2239 	if (!r)
2240 		*value = mb5_transfer.ack.value;
2241 
2242 	mutex_unlock(&mb5_transfer.lock);
2243 
2244 	return r;
2245 }
2246 
2247 /**
2248  * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
2249  * @slave:	The I2C slave address.
2250  * @reg:	The (start) register address.
2251  * @value:	The value(s) to write.
2252  * @mask:	The mask(s) to use.
2253  * @size:	The number of registers to write.
2254  *
2255  * Writes masked register value(s) to the ABB.
2256  * For each @value, only the bits set to 1 in the corresponding @mask
2257  * will be written. The other bits are not changed.
2258  * @size has to be 1 for the current firmware version.
2259  */
2260 int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
2261 {
2262 	int r;
2263 
2264 	if (size != 1)
2265 		return -EINVAL;
2266 
2267 	mutex_lock(&mb5_transfer.lock);
2268 
2269 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2270 		cpu_relax();
2271 
2272 	writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2273 	writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2274 	writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2275 	writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2276 	writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2277 
2278 	writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2279 
2280 	if (!wait_for_completion_timeout(&mb5_transfer.work,
2281 				msecs_to_jiffies(20000))) {
2282 		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2283 			__func__);
2284 		r = -EIO;
2285 	} else {
2286 		r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
2287 	}
2288 
2289 	mutex_unlock(&mb5_transfer.lock);
2290 
2291 	return r;
2292 }
2293 
2294 /**
2295  * prcmu_abb_write() - Write register value(s) to the ABB.
2296  * @slave:	The I2C slave address.
2297  * @reg:	The (start) register address.
2298  * @value:	The value(s) to write.
2299  * @size:	The number of registers to write.
2300  *
2301  * Writes register value(s) to the ABB.
2302  * @size has to be 1 for the current firmware version.
2303  */
2304 int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
2305 {
2306 	u8 mask = ~0;
2307 
2308 	return prcmu_abb_write_masked(slave, reg, value, &mask, size);
2309 }
2310 
2311 /**
2312  * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
2313  */
2314 int prcmu_ac_wake_req(void)
2315 {
2316 	u32 val;
2317 	int ret = 0;
2318 
2319 	mutex_lock(&mb0_transfer.ac_wake_lock);
2320 
2321 	val = readl(PRCM_HOSTACCESS_REQ);
2322 	if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
2323 		goto unlock_and_return;
2324 
2325 	atomic_set(&ac_wake_req_state, 1);
2326 
2327 	/*
2328 	 * Force Modem Wake-up before hostaccess_req ping-pong.
2329 	 * It prevents Modem to enter in Sleep while acking the hostaccess
2330 	 * request. The 31us delay has been calculated by HWI.
2331 	 */
2332 	val |= PRCM_HOSTACCESS_REQ_WAKE_REQ;
2333 	writel(val, PRCM_HOSTACCESS_REQ);
2334 
2335 	udelay(31);
2336 
2337 	val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ;
2338 	writel(val, PRCM_HOSTACCESS_REQ);
2339 
2340 	if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2341 			msecs_to_jiffies(5000))) {
2342 #if defined(CONFIG_DBX500_PRCMU_DEBUG)
2343 		db8500_prcmu_debug_dump(__func__, true, true);
2344 #endif
2345 		pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2346 			__func__);
2347 		ret = -EFAULT;
2348 	}
2349 
2350 unlock_and_return:
2351 	mutex_unlock(&mb0_transfer.ac_wake_lock);
2352 	return ret;
2353 }
2354 
2355 /**
2356  * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
2357  */
2358 void prcmu_ac_sleep_req()
2359 {
2360 	u32 val;
2361 
2362 	mutex_lock(&mb0_transfer.ac_wake_lock);
2363 
2364 	val = readl(PRCM_HOSTACCESS_REQ);
2365 	if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
2366 		goto unlock_and_return;
2367 
2368 	writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
2369 		PRCM_HOSTACCESS_REQ);
2370 
2371 	if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2372 			msecs_to_jiffies(5000))) {
2373 		pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2374 			__func__);
2375 	}
2376 
2377 	atomic_set(&ac_wake_req_state, 0);
2378 
2379 unlock_and_return:
2380 	mutex_unlock(&mb0_transfer.ac_wake_lock);
2381 }
2382 
2383 bool db8500_prcmu_is_ac_wake_requested(void)
2384 {
2385 	return (atomic_read(&ac_wake_req_state) != 0);
2386 }
2387 
2388 /**
2389  * db8500_prcmu_system_reset - System reset
2390  *
2391  * Saves the reset reason code and then sets the APE_SOFTRST register which
2392  * fires interrupt to fw
2393  */
2394 void db8500_prcmu_system_reset(u16 reset_code)
2395 {
2396 	writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
2397 	writel(1, PRCM_APE_SOFTRST);
2398 }
2399 
2400 /**
2401  * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
2402  *
2403  * Retrieves the reset reason code stored by prcmu_system_reset() before
2404  * last restart.
2405  */
2406 u16 db8500_prcmu_get_reset_code(void)
2407 {
2408 	return readw(tcdm_base + PRCM_SW_RST_REASON);
2409 }
2410 
2411 /**
2412  * db8500_prcmu_reset_modem - ask the PRCMU to reset modem
2413  */
2414 void db8500_prcmu_modem_reset(void)
2415 {
2416 	mutex_lock(&mb1_transfer.lock);
2417 
2418 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
2419 		cpu_relax();
2420 
2421 	writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
2422 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
2423 	wait_for_completion(&mb1_transfer.work);
2424 
2425 	/*
2426 	 * No need to check return from PRCMU as modem should go in reset state
2427 	 * This state is already managed by upper layer
2428 	 */
2429 
2430 	mutex_unlock(&mb1_transfer.lock);
2431 }
2432 
2433 static void ack_dbb_wakeup(void)
2434 {
2435 	unsigned long flags;
2436 
2437 	spin_lock_irqsave(&mb0_transfer.lock, flags);
2438 
2439 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
2440 		cpu_relax();
2441 
2442 	writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
2443 	writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
2444 
2445 	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2446 }
2447 
2448 static inline void print_unknown_header_warning(u8 n, u8 header)
2449 {
2450 	pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n",
2451 		header, n);
2452 }
2453 
2454 static bool read_mailbox_0(void)
2455 {
2456 	bool r;
2457 	u32 ev;
2458 	unsigned int n;
2459 	u8 header;
2460 
2461 	header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
2462 	switch (header) {
2463 	case MB0H_WAKEUP_EXE:
2464 	case MB0H_WAKEUP_SLEEP:
2465 		if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
2466 			ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
2467 		else
2468 			ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
2469 
2470 		if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
2471 			complete(&mb0_transfer.ac_wake_work);
2472 		if (ev & WAKEUP_BIT_SYSCLK_OK)
2473 			complete(&mb3_transfer.sysclk_work);
2474 
2475 		ev &= mb0_transfer.req.dbb_irqs;
2476 
2477 		for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
2478 			if (ev & prcmu_irq_bit[n])
2479 				generic_handle_irq(IRQ_PRCMU_BASE + n);
2480 		}
2481 		r = true;
2482 		break;
2483 	default:
2484 		print_unknown_header_warning(0, header);
2485 		r = false;
2486 		break;
2487 	}
2488 	writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
2489 	return r;
2490 }
2491 
2492 static bool read_mailbox_1(void)
2493 {
2494 	mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
2495 	mb1_transfer.ack.arm_opp = readb(tcdm_base +
2496 		PRCM_ACK_MB1_CURRENT_ARM_OPP);
2497 	mb1_transfer.ack.ape_opp = readb(tcdm_base +
2498 		PRCM_ACK_MB1_CURRENT_APE_OPP);
2499 	mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
2500 		PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
2501 	writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
2502 	complete(&mb1_transfer.work);
2503 	return false;
2504 }
2505 
2506 static bool read_mailbox_2(void)
2507 {
2508 	mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
2509 	writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
2510 	complete(&mb2_transfer.work);
2511 	return false;
2512 }
2513 
2514 static bool read_mailbox_3(void)
2515 {
2516 	writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
2517 	return false;
2518 }
2519 
2520 static bool read_mailbox_4(void)
2521 {
2522 	u8 header;
2523 	bool do_complete = true;
2524 
2525 	header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
2526 	switch (header) {
2527 	case MB4H_MEM_ST:
2528 	case MB4H_HOTDOG:
2529 	case MB4H_HOTMON:
2530 	case MB4H_HOT_PERIOD:
2531 	case MB4H_A9WDOG_CONF:
2532 	case MB4H_A9WDOG_EN:
2533 	case MB4H_A9WDOG_DIS:
2534 	case MB4H_A9WDOG_LOAD:
2535 	case MB4H_A9WDOG_KICK:
2536 		break;
2537 	default:
2538 		print_unknown_header_warning(4, header);
2539 		do_complete = false;
2540 		break;
2541 	}
2542 
2543 	writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
2544 
2545 	if (do_complete)
2546 		complete(&mb4_transfer.work);
2547 
2548 	return false;
2549 }
2550 
2551 static bool read_mailbox_5(void)
2552 {
2553 	mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
2554 	mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
2555 	writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
2556 	complete(&mb5_transfer.work);
2557 	return false;
2558 }
2559 
2560 static bool read_mailbox_6(void)
2561 {
2562 	writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
2563 	return false;
2564 }
2565 
2566 static bool read_mailbox_7(void)
2567 {
2568 	writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
2569 	return false;
2570 }
2571 
2572 static bool (* const read_mailbox[NUM_MB])(void) = {
2573 	read_mailbox_0,
2574 	read_mailbox_1,
2575 	read_mailbox_2,
2576 	read_mailbox_3,
2577 	read_mailbox_4,
2578 	read_mailbox_5,
2579 	read_mailbox_6,
2580 	read_mailbox_7
2581 };
2582 
2583 static irqreturn_t prcmu_irq_handler(int irq, void *data)
2584 {
2585 	u32 bits;
2586 	u8 n;
2587 	irqreturn_t r;
2588 
2589 	bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
2590 	if (unlikely(!bits))
2591 		return IRQ_NONE;
2592 
2593 	r = IRQ_HANDLED;
2594 	for (n = 0; bits; n++) {
2595 		if (bits & MBOX_BIT(n)) {
2596 			bits -= MBOX_BIT(n);
2597 			if (read_mailbox[n]())
2598 				r = IRQ_WAKE_THREAD;
2599 		}
2600 	}
2601 	return r;
2602 }
2603 
2604 static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
2605 {
2606 	ack_dbb_wakeup();
2607 	return IRQ_HANDLED;
2608 }
2609 
2610 static void prcmu_mask_work(struct work_struct *work)
2611 {
2612 	unsigned long flags;
2613 
2614 	spin_lock_irqsave(&mb0_transfer.lock, flags);
2615 
2616 	config_wakeups();
2617 
2618 	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2619 }
2620 
2621 static void prcmu_irq_mask(struct irq_data *d)
2622 {
2623 	unsigned long flags;
2624 
2625 	spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2626 
2627 	mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->irq - IRQ_PRCMU_BASE];
2628 
2629 	spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2630 
2631 	if (d->irq != IRQ_PRCMU_CA_SLEEP)
2632 		schedule_work(&mb0_transfer.mask_work);
2633 }
2634 
2635 static void prcmu_irq_unmask(struct irq_data *d)
2636 {
2637 	unsigned long flags;
2638 
2639 	spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2640 
2641 	mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->irq - IRQ_PRCMU_BASE];
2642 
2643 	spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2644 
2645 	if (d->irq != IRQ_PRCMU_CA_SLEEP)
2646 		schedule_work(&mb0_transfer.mask_work);
2647 }
2648 
2649 static void noop(struct irq_data *d)
2650 {
2651 }
2652 
2653 static struct irq_chip prcmu_irq_chip = {
2654 	.name		= "prcmu",
2655 	.irq_disable	= prcmu_irq_mask,
2656 	.irq_ack	= noop,
2657 	.irq_mask	= prcmu_irq_mask,
2658 	.irq_unmask	= prcmu_irq_unmask,
2659 };
2660 
2661 static char *fw_project_name(u8 project)
2662 {
2663 	switch (project) {
2664 	case PRCMU_FW_PROJECT_U8500:
2665 		return "U8500";
2666 	case PRCMU_FW_PROJECT_U8500_C2:
2667 		return "U8500 C2";
2668 	case PRCMU_FW_PROJECT_U9500:
2669 		return "U9500";
2670 	case PRCMU_FW_PROJECT_U9500_C2:
2671 		return "U9500 C2";
2672 	case PRCMU_FW_PROJECT_U8520:
2673 		return "U8520";
2674 	case PRCMU_FW_PROJECT_U8420:
2675 		return "U8420";
2676 	default:
2677 		return "Unknown";
2678 	}
2679 }
2680 
2681 void __init db8500_prcmu_early_init(void)
2682 {
2683 	unsigned int i;
2684 	if (cpu_is_u8500v2()) {
2685 		void *tcpm_base = ioremap_nocache(U8500_PRCMU_TCPM_BASE, SZ_4K);
2686 
2687 		if (tcpm_base != NULL) {
2688 			u32 version;
2689 			version = readl(tcpm_base + PRCMU_FW_VERSION_OFFSET);
2690 			fw_info.version.project = version & 0xFF;
2691 			fw_info.version.api_version = (version >> 8) & 0xFF;
2692 			fw_info.version.func_version = (version >> 16) & 0xFF;
2693 			fw_info.version.errata = (version >> 24) & 0xFF;
2694 			fw_info.valid = true;
2695 			pr_info("PRCMU firmware: %s, version %d.%d.%d\n",
2696 				fw_project_name(fw_info.version.project),
2697 				(version >> 8) & 0xFF, (version >> 16) & 0xFF,
2698 				(version >> 24) & 0xFF);
2699 			iounmap(tcpm_base);
2700 		}
2701 
2702 		tcdm_base = __io_address(U8500_PRCMU_TCDM_BASE);
2703 	} else {
2704 		pr_err("prcmu: Unsupported chip version\n");
2705 		BUG();
2706 	}
2707 
2708 	spin_lock_init(&mb0_transfer.lock);
2709 	spin_lock_init(&mb0_transfer.dbb_irqs_lock);
2710 	mutex_init(&mb0_transfer.ac_wake_lock);
2711 	init_completion(&mb0_transfer.ac_wake_work);
2712 	mutex_init(&mb1_transfer.lock);
2713 	init_completion(&mb1_transfer.work);
2714 	mb1_transfer.ape_opp = APE_NO_CHANGE;
2715 	mutex_init(&mb2_transfer.lock);
2716 	init_completion(&mb2_transfer.work);
2717 	spin_lock_init(&mb2_transfer.auto_pm_lock);
2718 	spin_lock_init(&mb3_transfer.lock);
2719 	mutex_init(&mb3_transfer.sysclk_lock);
2720 	init_completion(&mb3_transfer.sysclk_work);
2721 	mutex_init(&mb4_transfer.lock);
2722 	init_completion(&mb4_transfer.work);
2723 	mutex_init(&mb5_transfer.lock);
2724 	init_completion(&mb5_transfer.work);
2725 
2726 	INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
2727 
2728 	/* Initalize irqs. */
2729 	for (i = 0; i < NUM_PRCMU_WAKEUPS; i++) {
2730 		unsigned int irq;
2731 
2732 		irq = IRQ_PRCMU_BASE + i;
2733 		irq_set_chip_and_handler(irq, &prcmu_irq_chip,
2734 					 handle_simple_irq);
2735 		set_irq_flags(irq, IRQF_VALID);
2736 	}
2737 	compute_armss_rate();
2738 }
2739 
2740 static void __init init_prcm_registers(void)
2741 {
2742 	u32 val;
2743 
2744 	val = readl(PRCM_A9PL_FORCE_CLKEN);
2745 	val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
2746 		PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
2747 	writel(val, (PRCM_A9PL_FORCE_CLKEN));
2748 }
2749 
2750 /*
2751  * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
2752  */
2753 static struct regulator_consumer_supply db8500_vape_consumers[] = {
2754 	REGULATOR_SUPPLY("v-ape", NULL),
2755 	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2756 	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2757 	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2758 	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
2759 	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
2760 	/* "v-mmc" changed to "vcore" in the mainline kernel */
2761 	REGULATOR_SUPPLY("vcore", "sdi0"),
2762 	REGULATOR_SUPPLY("vcore", "sdi1"),
2763 	REGULATOR_SUPPLY("vcore", "sdi2"),
2764 	REGULATOR_SUPPLY("vcore", "sdi3"),
2765 	REGULATOR_SUPPLY("vcore", "sdi4"),
2766 	REGULATOR_SUPPLY("v-dma", "dma40.0"),
2767 	REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2768 	/* "v-uart" changed to "vcore" in the mainline kernel */
2769 	REGULATOR_SUPPLY("vcore", "uart0"),
2770 	REGULATOR_SUPPLY("vcore", "uart1"),
2771 	REGULATOR_SUPPLY("vcore", "uart2"),
2772 	REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
2773 	REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
2774 	REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
2775 };
2776 
2777 static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
2778 	REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2779 	/* AV8100 regulator */
2780 	REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2781 };
2782 
2783 static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
2784 	REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
2785 	REGULATOR_SUPPLY("vsupply", "mcde"),
2786 };
2787 
2788 /* SVA MMDSP regulator switch */
2789 static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
2790 	REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2791 };
2792 
2793 /* SVA pipe regulator switch */
2794 static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
2795 	REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2796 };
2797 
2798 /* SIA MMDSP regulator switch */
2799 static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
2800 	REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2801 };
2802 
2803 /* SIA pipe regulator switch */
2804 static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
2805 	REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2806 };
2807 
2808 static struct regulator_consumer_supply db8500_sga_consumers[] = {
2809 	REGULATOR_SUPPLY("v-mali", NULL),
2810 };
2811 
2812 /* ESRAM1 and 2 regulator switch */
2813 static struct regulator_consumer_supply db8500_esram12_consumers[] = {
2814 	REGULATOR_SUPPLY("esram12", "cm_control"),
2815 };
2816 
2817 /* ESRAM3 and 4 regulator switch */
2818 static struct regulator_consumer_supply db8500_esram34_consumers[] = {
2819 	REGULATOR_SUPPLY("v-esram34", "mcde"),
2820 	REGULATOR_SUPPLY("esram34", "cm_control"),
2821 	REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
2822 };
2823 
2824 static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
2825 	[DB8500_REGULATOR_VAPE] = {
2826 		.constraints = {
2827 			.name = "db8500-vape",
2828 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2829 			.always_on = true,
2830 		},
2831 		.consumer_supplies = db8500_vape_consumers,
2832 		.num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
2833 	},
2834 	[DB8500_REGULATOR_VARM] = {
2835 		.constraints = {
2836 			.name = "db8500-varm",
2837 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2838 		},
2839 	},
2840 	[DB8500_REGULATOR_VMODEM] = {
2841 		.constraints = {
2842 			.name = "db8500-vmodem",
2843 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2844 		},
2845 	},
2846 	[DB8500_REGULATOR_VPLL] = {
2847 		.constraints = {
2848 			.name = "db8500-vpll",
2849 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2850 		},
2851 	},
2852 	[DB8500_REGULATOR_VSMPS1] = {
2853 		.constraints = {
2854 			.name = "db8500-vsmps1",
2855 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2856 		},
2857 	},
2858 	[DB8500_REGULATOR_VSMPS2] = {
2859 		.constraints = {
2860 			.name = "db8500-vsmps2",
2861 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2862 		},
2863 		.consumer_supplies = db8500_vsmps2_consumers,
2864 		.num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
2865 	},
2866 	[DB8500_REGULATOR_VSMPS3] = {
2867 		.constraints = {
2868 			.name = "db8500-vsmps3",
2869 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2870 		},
2871 	},
2872 	[DB8500_REGULATOR_VRF1] = {
2873 		.constraints = {
2874 			.name = "db8500-vrf1",
2875 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2876 		},
2877 	},
2878 	[DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
2879 		/* dependency to u8500-vape is handled outside regulator framework */
2880 		.constraints = {
2881 			.name = "db8500-sva-mmdsp",
2882 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2883 		},
2884 		.consumer_supplies = db8500_svammdsp_consumers,
2885 		.num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
2886 	},
2887 	[DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
2888 		.constraints = {
2889 			/* "ret" means "retention" */
2890 			.name = "db8500-sva-mmdsp-ret",
2891 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2892 		},
2893 	},
2894 	[DB8500_REGULATOR_SWITCH_SVAPIPE] = {
2895 		/* dependency to u8500-vape is handled outside regulator framework */
2896 		.constraints = {
2897 			.name = "db8500-sva-pipe",
2898 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2899 		},
2900 		.consumer_supplies = db8500_svapipe_consumers,
2901 		.num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
2902 	},
2903 	[DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
2904 		/* dependency to u8500-vape is handled outside regulator framework */
2905 		.constraints = {
2906 			.name = "db8500-sia-mmdsp",
2907 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2908 		},
2909 		.consumer_supplies = db8500_siammdsp_consumers,
2910 		.num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
2911 	},
2912 	[DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
2913 		.constraints = {
2914 			.name = "db8500-sia-mmdsp-ret",
2915 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2916 		},
2917 	},
2918 	[DB8500_REGULATOR_SWITCH_SIAPIPE] = {
2919 		/* dependency to u8500-vape is handled outside regulator framework */
2920 		.constraints = {
2921 			.name = "db8500-sia-pipe",
2922 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2923 		},
2924 		.consumer_supplies = db8500_siapipe_consumers,
2925 		.num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
2926 	},
2927 	[DB8500_REGULATOR_SWITCH_SGA] = {
2928 		.supply_regulator = "db8500-vape",
2929 		.constraints = {
2930 			.name = "db8500-sga",
2931 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2932 		},
2933 		.consumer_supplies = db8500_sga_consumers,
2934 		.num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
2935 
2936 	},
2937 	[DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
2938 		.supply_regulator = "db8500-vape",
2939 		.constraints = {
2940 			.name = "db8500-b2r2-mcde",
2941 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2942 		},
2943 		.consumer_supplies = db8500_b2r2_mcde_consumers,
2944 		.num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
2945 	},
2946 	[DB8500_REGULATOR_SWITCH_ESRAM12] = {
2947 		/*
2948 		 * esram12 is set in retention and supplied by Vsafe when Vape is off,
2949 		 * no need to hold Vape
2950 		 */
2951 		.constraints = {
2952 			.name = "db8500-esram12",
2953 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2954 		},
2955 		.consumer_supplies = db8500_esram12_consumers,
2956 		.num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
2957 	},
2958 	[DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
2959 		.constraints = {
2960 			.name = "db8500-esram12-ret",
2961 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2962 		},
2963 	},
2964 	[DB8500_REGULATOR_SWITCH_ESRAM34] = {
2965 		/*
2966 		 * esram34 is set in retention and supplied by Vsafe when Vape is off,
2967 		 * no need to hold Vape
2968 		 */
2969 		.constraints = {
2970 			.name = "db8500-esram34",
2971 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2972 		},
2973 		.consumer_supplies = db8500_esram34_consumers,
2974 		.num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
2975 	},
2976 	[DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
2977 		.constraints = {
2978 			.name = "db8500-esram34-ret",
2979 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2980 		},
2981 	},
2982 };
2983 
2984 static struct resource ab8500_resources[] = {
2985 	[0] = {
2986 		.start	= IRQ_DB8500_AB8500,
2987 		.end	= IRQ_DB8500_AB8500,
2988 		.flags	= IORESOURCE_IRQ
2989 	}
2990 };
2991 
2992 static struct mfd_cell db8500_prcmu_devs[] = {
2993 	{
2994 		.name = "db8500-prcmu-regulators",
2995 		.of_compatible = "stericsson,db8500-prcmu-regulator",
2996 		.platform_data = &db8500_regulators,
2997 		.pdata_size = sizeof(db8500_regulators),
2998 	},
2999 	{
3000 		.name = "cpufreq-u8500",
3001 		.of_compatible = "stericsson,cpufreq-u8500",
3002 	},
3003 	{
3004 		.name = "ab8500-core",
3005 		.of_compatible = "stericsson,ab8500",
3006 		.num_resources = ARRAY_SIZE(ab8500_resources),
3007 		.resources = ab8500_resources,
3008 		.id = AB8500_VERSION_AB8500,
3009 	},
3010 };
3011 
3012 /**
3013  * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
3014  *
3015  */
3016 static int __devinit db8500_prcmu_probe(struct platform_device *pdev)
3017 {
3018 	struct ab8500_platform_data *ab8500_platdata = pdev->dev.platform_data;
3019 	struct device_node *np = pdev->dev.of_node;
3020 	int irq = 0, err = 0, i;
3021 
3022 	if (ux500_is_svp())
3023 		return -ENODEV;
3024 
3025 	init_prcm_registers();
3026 
3027 	/* Clean up the mailbox interrupts after pre-kernel code. */
3028 	writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
3029 
3030 	if (np)
3031 		irq = platform_get_irq(pdev, 0);
3032 
3033 	if (!np || irq <= 0)
3034 		irq = IRQ_DB8500_PRCMU1;
3035 
3036 	err = request_threaded_irq(irq, prcmu_irq_handler,
3037 	        prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
3038 	if (err < 0) {
3039 		pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
3040 		err = -EBUSY;
3041 		goto no_irq_return;
3042 	}
3043 
3044 	for (i = 0; i < ARRAY_SIZE(db8500_prcmu_devs); i++) {
3045 		if (!strcmp(db8500_prcmu_devs[i].name, "ab8500-core")) {
3046 			db8500_prcmu_devs[i].platform_data = ab8500_platdata;
3047 			db8500_prcmu_devs[i].pdata_size = sizeof(struct ab8500_platform_data);
3048 		}
3049 	}
3050 
3051 	if (cpu_is_u8500v20_or_later())
3052 		prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
3053 
3054 	err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
3055 			      ARRAY_SIZE(db8500_prcmu_devs), NULL, 0, NULL);
3056 	if (err) {
3057 		pr_err("prcmu: Failed to add subdevices\n");
3058 		return err;
3059 	}
3060 
3061 	pr_info("DB8500 PRCMU initialized\n");
3062 
3063 no_irq_return:
3064 	return err;
3065 }
3066 static const struct of_device_id db8500_prcmu_match[] = {
3067 	{ .compatible = "stericsson,db8500-prcmu"},
3068 	{ },
3069 };
3070 
3071 static struct platform_driver db8500_prcmu_driver = {
3072 	.driver = {
3073 		.name = "db8500-prcmu",
3074 		.owner = THIS_MODULE,
3075 		.of_match_table = db8500_prcmu_match,
3076 	},
3077 	.probe = db8500_prcmu_probe,
3078 };
3079 
3080 static int __init db8500_prcmu_init(void)
3081 {
3082 	return platform_driver_register(&db8500_prcmu_driver);
3083 }
3084 
3085 core_initcall(db8500_prcmu_init);
3086 
3087 MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>");
3088 MODULE_DESCRIPTION("DB8500 PRCM Unit driver");
3089 MODULE_LICENSE("GPL v2");
3090