xref: /openbmc/linux/drivers/mfd/db8500-prcmu.c (revision 2d68bb26)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * DB8500 PRCM Unit driver
4  *
5  * Copyright (C) STMicroelectronics 2009
6  * Copyright (C) ST-Ericsson SA 2010
7  *
8  * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
9  * Author: Sundar Iyer <sundar.iyer@stericsson.com>
10  * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
11  *
12  * U8500 PRCM Unit interface driver
13  */
14 #include <linux/init.h>
15 #include <linux/export.h>
16 #include <linux/kernel.h>
17 #include <linux/delay.h>
18 #include <linux/errno.h>
19 #include <linux/err.h>
20 #include <linux/spinlock.h>
21 #include <linux/io.h>
22 #include <linux/slab.h>
23 #include <linux/mutex.h>
24 #include <linux/completion.h>
25 #include <linux/irq.h>
26 #include <linux/jiffies.h>
27 #include <linux/bitops.h>
28 #include <linux/fs.h>
29 #include <linux/of.h>
30 #include <linux/of_address.h>
31 #include <linux/of_irq.h>
32 #include <linux/platform_device.h>
33 #include <linux/uaccess.h>
34 #include <linux/mfd/core.h>
35 #include <linux/mfd/dbx500-prcmu.h>
36 #include <linux/mfd/abx500/ab8500.h>
37 #include <linux/regulator/db8500-prcmu.h>
38 #include <linux/regulator/machine.h>
39 #include <linux/platform_data/ux500_wdt.h>
40 #include "dbx500-prcmu-regs.h"
41 
42 /* Index of different voltages to be used when accessing AVSData */
43 #define PRCM_AVS_BASE		0x2FC
44 #define PRCM_AVS_VBB_RET	(PRCM_AVS_BASE + 0x0)
45 #define PRCM_AVS_VBB_MAX_OPP	(PRCM_AVS_BASE + 0x1)
46 #define PRCM_AVS_VBB_100_OPP	(PRCM_AVS_BASE + 0x2)
47 #define PRCM_AVS_VBB_50_OPP	(PRCM_AVS_BASE + 0x3)
48 #define PRCM_AVS_VARM_MAX_OPP	(PRCM_AVS_BASE + 0x4)
49 #define PRCM_AVS_VARM_100_OPP	(PRCM_AVS_BASE + 0x5)
50 #define PRCM_AVS_VARM_50_OPP	(PRCM_AVS_BASE + 0x6)
51 #define PRCM_AVS_VARM_RET	(PRCM_AVS_BASE + 0x7)
52 #define PRCM_AVS_VAPE_100_OPP	(PRCM_AVS_BASE + 0x8)
53 #define PRCM_AVS_VAPE_50_OPP	(PRCM_AVS_BASE + 0x9)
54 #define PRCM_AVS_VMOD_100_OPP	(PRCM_AVS_BASE + 0xA)
55 #define PRCM_AVS_VMOD_50_OPP	(PRCM_AVS_BASE + 0xB)
56 #define PRCM_AVS_VSAFE		(PRCM_AVS_BASE + 0xC)
57 
58 #define PRCM_AVS_VOLTAGE		0
59 #define PRCM_AVS_VOLTAGE_MASK		0x3f
60 #define PRCM_AVS_ISSLOWSTARTUP		6
61 #define PRCM_AVS_ISSLOWSTARTUP_MASK	(1 << PRCM_AVS_ISSLOWSTARTUP)
62 #define PRCM_AVS_ISMODEENABLE		7
63 #define PRCM_AVS_ISMODEENABLE_MASK	(1 << PRCM_AVS_ISMODEENABLE)
64 
65 #define PRCM_BOOT_STATUS	0xFFF
66 #define PRCM_ROMCODE_A2P	0xFFE
67 #define PRCM_ROMCODE_P2A	0xFFD
68 #define PRCM_XP70_CUR_PWR_STATE 0xFFC      /* 4 BYTES */
69 
70 #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
71 
72 #define _PRCM_MBOX_HEADER		0xFE8 /* 16 bytes */
73 #define PRCM_MBOX_HEADER_REQ_MB0	(_PRCM_MBOX_HEADER + 0x0)
74 #define PRCM_MBOX_HEADER_REQ_MB1	(_PRCM_MBOX_HEADER + 0x1)
75 #define PRCM_MBOX_HEADER_REQ_MB2	(_PRCM_MBOX_HEADER + 0x2)
76 #define PRCM_MBOX_HEADER_REQ_MB3	(_PRCM_MBOX_HEADER + 0x3)
77 #define PRCM_MBOX_HEADER_REQ_MB4	(_PRCM_MBOX_HEADER + 0x4)
78 #define PRCM_MBOX_HEADER_REQ_MB5	(_PRCM_MBOX_HEADER + 0x5)
79 #define PRCM_MBOX_HEADER_ACK_MB0	(_PRCM_MBOX_HEADER + 0x8)
80 
81 /* Req Mailboxes */
82 #define PRCM_REQ_MB0 0xFDC /* 12 bytes  */
83 #define PRCM_REQ_MB1 0xFD0 /* 12 bytes  */
84 #define PRCM_REQ_MB2 0xFC0 /* 16 bytes  */
85 #define PRCM_REQ_MB3 0xE4C /* 372 bytes  */
86 #define PRCM_REQ_MB4 0xE48 /* 4 bytes  */
87 #define PRCM_REQ_MB5 0xE44 /* 4 bytes  */
88 
89 /* Ack Mailboxes */
90 #define PRCM_ACK_MB0 0xE08 /* 52 bytes  */
91 #define PRCM_ACK_MB1 0xE04 /* 4 bytes */
92 #define PRCM_ACK_MB2 0xE00 /* 4 bytes */
93 #define PRCM_ACK_MB3 0xDFC /* 4 bytes */
94 #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
95 #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
96 
97 /* Mailbox 0 headers */
98 #define MB0H_POWER_STATE_TRANS		0
99 #define MB0H_CONFIG_WAKEUPS_EXE		1
100 #define MB0H_READ_WAKEUP_ACK		3
101 #define MB0H_CONFIG_WAKEUPS_SLEEP	4
102 
103 #define MB0H_WAKEUP_EXE 2
104 #define MB0H_WAKEUP_SLEEP 5
105 
106 /* Mailbox 0 REQs */
107 #define PRCM_REQ_MB0_AP_POWER_STATE	(PRCM_REQ_MB0 + 0x0)
108 #define PRCM_REQ_MB0_AP_PLL_STATE	(PRCM_REQ_MB0 + 0x1)
109 #define PRCM_REQ_MB0_ULP_CLOCK_STATE	(PRCM_REQ_MB0 + 0x2)
110 #define PRCM_REQ_MB0_DO_NOT_WFI		(PRCM_REQ_MB0 + 0x3)
111 #define PRCM_REQ_MB0_WAKEUP_8500	(PRCM_REQ_MB0 + 0x4)
112 #define PRCM_REQ_MB0_WAKEUP_4500	(PRCM_REQ_MB0 + 0x8)
113 
114 /* Mailbox 0 ACKs */
115 #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS	(PRCM_ACK_MB0 + 0x0)
116 #define PRCM_ACK_MB0_READ_POINTER	(PRCM_ACK_MB0 + 0x1)
117 #define PRCM_ACK_MB0_WAKEUP_0_8500	(PRCM_ACK_MB0 + 0x4)
118 #define PRCM_ACK_MB0_WAKEUP_0_4500	(PRCM_ACK_MB0 + 0x8)
119 #define PRCM_ACK_MB0_WAKEUP_1_8500	(PRCM_ACK_MB0 + 0x1C)
120 #define PRCM_ACK_MB0_WAKEUP_1_4500	(PRCM_ACK_MB0 + 0x20)
121 #define PRCM_ACK_MB0_EVENT_4500_NUMBERS	20
122 
123 /* Mailbox 1 headers */
124 #define MB1H_ARM_APE_OPP 0x0
125 #define MB1H_RESET_MODEM 0x2
126 #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
127 #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
128 #define MB1H_RELEASE_USB_WAKEUP 0x5
129 #define MB1H_PLL_ON_OFF 0x6
130 
131 /* Mailbox 1 Requests */
132 #define PRCM_REQ_MB1_ARM_OPP			(PRCM_REQ_MB1 + 0x0)
133 #define PRCM_REQ_MB1_APE_OPP			(PRCM_REQ_MB1 + 0x1)
134 #define PRCM_REQ_MB1_PLL_ON_OFF			(PRCM_REQ_MB1 + 0x4)
135 #define PLL_SOC0_OFF	0x1
136 #define PLL_SOC0_ON	0x2
137 #define PLL_SOC1_OFF	0x4
138 #define PLL_SOC1_ON	0x8
139 
140 /* Mailbox 1 ACKs */
141 #define PRCM_ACK_MB1_CURRENT_ARM_OPP	(PRCM_ACK_MB1 + 0x0)
142 #define PRCM_ACK_MB1_CURRENT_APE_OPP	(PRCM_ACK_MB1 + 0x1)
143 #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS	(PRCM_ACK_MB1 + 0x2)
144 #define PRCM_ACK_MB1_DVFS_STATUS	(PRCM_ACK_MB1 + 0x3)
145 
146 /* Mailbox 2 headers */
147 #define MB2H_DPS	0x0
148 #define MB2H_AUTO_PWR	0x1
149 
150 /* Mailbox 2 REQs */
151 #define PRCM_REQ_MB2_SVA_MMDSP		(PRCM_REQ_MB2 + 0x0)
152 #define PRCM_REQ_MB2_SVA_PIPE		(PRCM_REQ_MB2 + 0x1)
153 #define PRCM_REQ_MB2_SIA_MMDSP		(PRCM_REQ_MB2 + 0x2)
154 #define PRCM_REQ_MB2_SIA_PIPE		(PRCM_REQ_MB2 + 0x3)
155 #define PRCM_REQ_MB2_SGA		(PRCM_REQ_MB2 + 0x4)
156 #define PRCM_REQ_MB2_B2R2_MCDE		(PRCM_REQ_MB2 + 0x5)
157 #define PRCM_REQ_MB2_ESRAM12		(PRCM_REQ_MB2 + 0x6)
158 #define PRCM_REQ_MB2_ESRAM34		(PRCM_REQ_MB2 + 0x7)
159 #define PRCM_REQ_MB2_AUTO_PM_SLEEP	(PRCM_REQ_MB2 + 0x8)
160 #define PRCM_REQ_MB2_AUTO_PM_IDLE	(PRCM_REQ_MB2 + 0xC)
161 
162 /* Mailbox 2 ACKs */
163 #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
164 #define HWACC_PWR_ST_OK 0xFE
165 
166 /* Mailbox 3 headers */
167 #define MB3H_ANC	0x0
168 #define MB3H_SIDETONE	0x1
169 #define MB3H_SYSCLK	0xE
170 
171 /* Mailbox 3 Requests */
172 #define PRCM_REQ_MB3_ANC_FIR_COEFF	(PRCM_REQ_MB3 + 0x0)
173 #define PRCM_REQ_MB3_ANC_IIR_COEFF	(PRCM_REQ_MB3 + 0x20)
174 #define PRCM_REQ_MB3_ANC_SHIFTER	(PRCM_REQ_MB3 + 0x60)
175 #define PRCM_REQ_MB3_ANC_WARP		(PRCM_REQ_MB3 + 0x64)
176 #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN	(PRCM_REQ_MB3 + 0x68)
177 #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF	(PRCM_REQ_MB3 + 0x6C)
178 #define PRCM_REQ_MB3_SYSCLK_MGT		(PRCM_REQ_MB3 + 0x16C)
179 
180 /* Mailbox 4 headers */
181 #define MB4H_DDR_INIT	0x0
182 #define MB4H_MEM_ST	0x1
183 #define MB4H_HOTDOG	0x12
184 #define MB4H_HOTMON	0x13
185 #define MB4H_HOT_PERIOD	0x14
186 #define MB4H_A9WDOG_CONF 0x16
187 #define MB4H_A9WDOG_EN   0x17
188 #define MB4H_A9WDOG_DIS  0x18
189 #define MB4H_A9WDOG_LOAD 0x19
190 #define MB4H_A9WDOG_KICK 0x20
191 
192 /* Mailbox 4 Requests */
193 #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE	(PRCM_REQ_MB4 + 0x0)
194 #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE	(PRCM_REQ_MB4 + 0x1)
195 #define PRCM_REQ_MB4_ESRAM0_ST			(PRCM_REQ_MB4 + 0x3)
196 #define PRCM_REQ_MB4_HOTDOG_THRESHOLD		(PRCM_REQ_MB4 + 0x0)
197 #define PRCM_REQ_MB4_HOTMON_LOW			(PRCM_REQ_MB4 + 0x0)
198 #define PRCM_REQ_MB4_HOTMON_HIGH		(PRCM_REQ_MB4 + 0x1)
199 #define PRCM_REQ_MB4_HOTMON_CONFIG		(PRCM_REQ_MB4 + 0x2)
200 #define PRCM_REQ_MB4_HOT_PERIOD			(PRCM_REQ_MB4 + 0x0)
201 #define HOTMON_CONFIG_LOW			BIT(0)
202 #define HOTMON_CONFIG_HIGH			BIT(1)
203 #define PRCM_REQ_MB4_A9WDOG_0			(PRCM_REQ_MB4 + 0x0)
204 #define PRCM_REQ_MB4_A9WDOG_1			(PRCM_REQ_MB4 + 0x1)
205 #define PRCM_REQ_MB4_A9WDOG_2			(PRCM_REQ_MB4 + 0x2)
206 #define PRCM_REQ_MB4_A9WDOG_3			(PRCM_REQ_MB4 + 0x3)
207 #define A9WDOG_AUTO_OFF_EN			BIT(7)
208 #define A9WDOG_AUTO_OFF_DIS			0
209 #define A9WDOG_ID_MASK				0xf
210 
211 /* Mailbox 5 Requests */
212 #define PRCM_REQ_MB5_I2C_SLAVE_OP	(PRCM_REQ_MB5 + 0x0)
213 #define PRCM_REQ_MB5_I2C_HW_BITS	(PRCM_REQ_MB5 + 0x1)
214 #define PRCM_REQ_MB5_I2C_REG		(PRCM_REQ_MB5 + 0x2)
215 #define PRCM_REQ_MB5_I2C_VAL		(PRCM_REQ_MB5 + 0x3)
216 #define PRCMU_I2C_WRITE(slave) (((slave) << 1) | BIT(6))
217 #define PRCMU_I2C_READ(slave) (((slave) << 1) | BIT(0) | BIT(6))
218 #define PRCMU_I2C_STOP_EN		BIT(3)
219 
220 /* Mailbox 5 ACKs */
221 #define PRCM_ACK_MB5_I2C_STATUS	(PRCM_ACK_MB5 + 0x1)
222 #define PRCM_ACK_MB5_I2C_VAL	(PRCM_ACK_MB5 + 0x3)
223 #define I2C_WR_OK 0x1
224 #define I2C_RD_OK 0x2
225 
226 #define NUM_MB 8
227 #define MBOX_BIT BIT
228 #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
229 
230 /*
231  * Wakeups/IRQs
232  */
233 
234 #define WAKEUP_BIT_RTC BIT(0)
235 #define WAKEUP_BIT_RTT0 BIT(1)
236 #define WAKEUP_BIT_RTT1 BIT(2)
237 #define WAKEUP_BIT_HSI0 BIT(3)
238 #define WAKEUP_BIT_HSI1 BIT(4)
239 #define WAKEUP_BIT_CA_WAKE BIT(5)
240 #define WAKEUP_BIT_USB BIT(6)
241 #define WAKEUP_BIT_ABB BIT(7)
242 #define WAKEUP_BIT_ABB_FIFO BIT(8)
243 #define WAKEUP_BIT_SYSCLK_OK BIT(9)
244 #define WAKEUP_BIT_CA_SLEEP BIT(10)
245 #define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
246 #define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
247 #define WAKEUP_BIT_ANC_OK BIT(13)
248 #define WAKEUP_BIT_SW_ERROR BIT(14)
249 #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
250 #define WAKEUP_BIT_ARM BIT(17)
251 #define WAKEUP_BIT_HOTMON_LOW BIT(18)
252 #define WAKEUP_BIT_HOTMON_HIGH BIT(19)
253 #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
254 #define WAKEUP_BIT_GPIO0 BIT(23)
255 #define WAKEUP_BIT_GPIO1 BIT(24)
256 #define WAKEUP_BIT_GPIO2 BIT(25)
257 #define WAKEUP_BIT_GPIO3 BIT(26)
258 #define WAKEUP_BIT_GPIO4 BIT(27)
259 #define WAKEUP_BIT_GPIO5 BIT(28)
260 #define WAKEUP_BIT_GPIO6 BIT(29)
261 #define WAKEUP_BIT_GPIO7 BIT(30)
262 #define WAKEUP_BIT_GPIO8 BIT(31)
263 
264 static struct {
265 	bool valid;
266 	struct prcmu_fw_version version;
267 } fw_info;
268 
269 static struct irq_domain *db8500_irq_domain;
270 
271 /*
272  * This vector maps irq numbers to the bits in the bit field used in
273  * communication with the PRCMU firmware.
274  *
275  * The reason for having this is to keep the irq numbers contiguous even though
276  * the bits in the bit field are not. (The bits also have a tendency to move
277  * around, to further complicate matters.)
278  */
279 #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name))
280 #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
281 
282 #define IRQ_PRCMU_RTC 0
283 #define IRQ_PRCMU_RTT0 1
284 #define IRQ_PRCMU_RTT1 2
285 #define IRQ_PRCMU_HSI0 3
286 #define IRQ_PRCMU_HSI1 4
287 #define IRQ_PRCMU_CA_WAKE 5
288 #define IRQ_PRCMU_USB 6
289 #define IRQ_PRCMU_ABB 7
290 #define IRQ_PRCMU_ABB_FIFO 8
291 #define IRQ_PRCMU_ARM 9
292 #define IRQ_PRCMU_MODEM_SW_RESET_REQ 10
293 #define IRQ_PRCMU_GPIO0 11
294 #define IRQ_PRCMU_GPIO1 12
295 #define IRQ_PRCMU_GPIO2 13
296 #define IRQ_PRCMU_GPIO3 14
297 #define IRQ_PRCMU_GPIO4 15
298 #define IRQ_PRCMU_GPIO5 16
299 #define IRQ_PRCMU_GPIO6 17
300 #define IRQ_PRCMU_GPIO7 18
301 #define IRQ_PRCMU_GPIO8 19
302 #define IRQ_PRCMU_CA_SLEEP 20
303 #define IRQ_PRCMU_HOTMON_LOW 21
304 #define IRQ_PRCMU_HOTMON_HIGH 22
305 #define NUM_PRCMU_WAKEUPS 23
306 
307 static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
308 	IRQ_ENTRY(RTC),
309 	IRQ_ENTRY(RTT0),
310 	IRQ_ENTRY(RTT1),
311 	IRQ_ENTRY(HSI0),
312 	IRQ_ENTRY(HSI1),
313 	IRQ_ENTRY(CA_WAKE),
314 	IRQ_ENTRY(USB),
315 	IRQ_ENTRY(ABB),
316 	IRQ_ENTRY(ABB_FIFO),
317 	IRQ_ENTRY(CA_SLEEP),
318 	IRQ_ENTRY(ARM),
319 	IRQ_ENTRY(HOTMON_LOW),
320 	IRQ_ENTRY(HOTMON_HIGH),
321 	IRQ_ENTRY(MODEM_SW_RESET_REQ),
322 	IRQ_ENTRY(GPIO0),
323 	IRQ_ENTRY(GPIO1),
324 	IRQ_ENTRY(GPIO2),
325 	IRQ_ENTRY(GPIO3),
326 	IRQ_ENTRY(GPIO4),
327 	IRQ_ENTRY(GPIO5),
328 	IRQ_ENTRY(GPIO6),
329 	IRQ_ENTRY(GPIO7),
330 	IRQ_ENTRY(GPIO8)
331 };
332 
333 #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
334 #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
335 static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
336 	WAKEUP_ENTRY(RTC),
337 	WAKEUP_ENTRY(RTT0),
338 	WAKEUP_ENTRY(RTT1),
339 	WAKEUP_ENTRY(HSI0),
340 	WAKEUP_ENTRY(HSI1),
341 	WAKEUP_ENTRY(USB),
342 	WAKEUP_ENTRY(ABB),
343 	WAKEUP_ENTRY(ABB_FIFO),
344 	WAKEUP_ENTRY(ARM)
345 };
346 
347 /*
348  * mb0_transfer - state needed for mailbox 0 communication.
349  * @lock:		The transaction lock.
350  * @dbb_events_lock:	A lock used to handle concurrent access to (parts of)
351  *			the request data.
352  * @mask_work:		Work structure used for (un)masking wakeup interrupts.
353  * @req:		Request data that need to persist between requests.
354  */
355 static struct {
356 	spinlock_t lock;
357 	spinlock_t dbb_irqs_lock;
358 	struct work_struct mask_work;
359 	struct mutex ac_wake_lock;
360 	struct completion ac_wake_work;
361 	struct {
362 		u32 dbb_irqs;
363 		u32 dbb_wakeups;
364 		u32 abb_events;
365 	} req;
366 } mb0_transfer;
367 
368 /*
369  * mb1_transfer - state needed for mailbox 1 communication.
370  * @lock:	The transaction lock.
371  * @work:	The transaction completion structure.
372  * @ape_opp:	The current APE OPP.
373  * @ack:	Reply ("acknowledge") data.
374  */
375 static struct {
376 	struct mutex lock;
377 	struct completion work;
378 	u8 ape_opp;
379 	struct {
380 		u8 header;
381 		u8 arm_opp;
382 		u8 ape_opp;
383 		u8 ape_voltage_status;
384 	} ack;
385 } mb1_transfer;
386 
387 /*
388  * mb2_transfer - state needed for mailbox 2 communication.
389  * @lock:            The transaction lock.
390  * @work:            The transaction completion structure.
391  * @auto_pm_lock:    The autonomous power management configuration lock.
392  * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
393  * @req:             Request data that need to persist between requests.
394  * @ack:             Reply ("acknowledge") data.
395  */
396 static struct {
397 	struct mutex lock;
398 	struct completion work;
399 	spinlock_t auto_pm_lock;
400 	bool auto_pm_enabled;
401 	struct {
402 		u8 status;
403 	} ack;
404 } mb2_transfer;
405 
406 /*
407  * mb3_transfer - state needed for mailbox 3 communication.
408  * @lock:		The request lock.
409  * @sysclk_lock:	A lock used to handle concurrent sysclk requests.
410  * @sysclk_work:	Work structure used for sysclk requests.
411  */
412 static struct {
413 	spinlock_t lock;
414 	struct mutex sysclk_lock;
415 	struct completion sysclk_work;
416 } mb3_transfer;
417 
418 /*
419  * mb4_transfer - state needed for mailbox 4 communication.
420  * @lock:	The transaction lock.
421  * @work:	The transaction completion structure.
422  */
423 static struct {
424 	struct mutex lock;
425 	struct completion work;
426 } mb4_transfer;
427 
428 /*
429  * mb5_transfer - state needed for mailbox 5 communication.
430  * @lock:	The transaction lock.
431  * @work:	The transaction completion structure.
432  * @ack:	Reply ("acknowledge") data.
433  */
434 static struct {
435 	struct mutex lock;
436 	struct completion work;
437 	struct {
438 		u8 status;
439 		u8 value;
440 	} ack;
441 } mb5_transfer;
442 
443 static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
444 
445 /* Spinlocks */
446 static DEFINE_SPINLOCK(prcmu_lock);
447 static DEFINE_SPINLOCK(clkout_lock);
448 
449 /* Global var to runtime determine TCDM base for v2 or v1 */
450 static __iomem void *tcdm_base;
451 static __iomem void *prcmu_base;
452 
453 struct clk_mgt {
454 	u32 offset;
455 	u32 pllsw;
456 	int branch;
457 	bool clk38div;
458 };
459 
460 enum {
461 	PLL_RAW,
462 	PLL_FIX,
463 	PLL_DIV
464 };
465 
466 static DEFINE_SPINLOCK(clk_mgt_lock);
467 
468 #define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
469 	{ (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
470 static struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
471 	CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
472 	CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
473 	CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
474 	CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
475 	CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
476 	CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
477 	CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
478 	CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
479 	CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
480 	CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
481 	CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
482 	CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
483 	CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
484 	CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
485 	CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
486 	CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
487 	CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
488 	CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
489 	CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
490 	CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
491 	CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
492 	CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
493 	CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
494 	CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
495 	CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
496 	CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
497 	CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
498 	CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
499 	CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
500 };
501 
502 struct dsiclk {
503 	u32 divsel_mask;
504 	u32 divsel_shift;
505 	u32 divsel;
506 };
507 
508 static struct dsiclk dsiclk[2] = {
509 	{
510 		.divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
511 		.divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
512 		.divsel = PRCM_DSI_PLLOUT_SEL_PHI,
513 	},
514 	{
515 		.divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
516 		.divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
517 		.divsel = PRCM_DSI_PLLOUT_SEL_PHI,
518 	}
519 };
520 
521 struct dsiescclk {
522 	u32 en;
523 	u32 div_mask;
524 	u32 div_shift;
525 };
526 
527 static struct dsiescclk dsiescclk[3] = {
528 	{
529 		.en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
530 		.div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
531 		.div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
532 	},
533 	{
534 		.en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
535 		.div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
536 		.div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
537 	},
538 	{
539 		.en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
540 		.div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
541 		.div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
542 	}
543 };
544 
545 
546 /*
547 * Used by MCDE to setup all necessary PRCMU registers
548 */
549 #define PRCMU_RESET_DSIPLL		0x00004000
550 #define PRCMU_UNCLAMP_DSIPLL		0x00400800
551 
552 #define PRCMU_CLK_PLL_DIV_SHIFT		0
553 #define PRCMU_CLK_PLL_SW_SHIFT		5
554 #define PRCMU_CLK_38			(1 << 9)
555 #define PRCMU_CLK_38_SRC		(1 << 10)
556 #define PRCMU_CLK_38_DIV		(1 << 11)
557 
558 /* PLLDIV=12, PLLSW=4 (PLLDDR) */
559 #define PRCMU_DSI_CLOCK_SETTING		0x0000008C
560 
561 /* DPI 50000000 Hz */
562 #define PRCMU_DPI_CLOCK_SETTING		((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
563 					  (16 << PRCMU_CLK_PLL_DIV_SHIFT))
564 #define PRCMU_DSI_LP_CLOCK_SETTING	0x00000E00
565 
566 /* D=101, N=1, R=4, SELDIV2=0 */
567 #define PRCMU_PLLDSI_FREQ_SETTING	0x00040165
568 
569 #define PRCMU_ENABLE_PLLDSI		0x00000001
570 #define PRCMU_DISABLE_PLLDSI		0x00000000
571 #define PRCMU_RELEASE_RESET_DSS		0x0000400C
572 #define PRCMU_DSI_PLLOUT_SEL_SETTING	0x00000202
573 /* ESC clk, div0=1, div1=1, div2=3 */
574 #define PRCMU_ENABLE_ESCAPE_CLOCK_DIV	0x07030101
575 #define PRCMU_DISABLE_ESCAPE_CLOCK_DIV	0x00030101
576 #define PRCMU_DSI_RESET_SW		0x00000007
577 
578 #define PRCMU_PLLDSI_LOCKP_LOCKED	0x3
579 
580 int db8500_prcmu_enable_dsipll(void)
581 {
582 	int i;
583 
584 	/* Clear DSIPLL_RESETN */
585 	writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR);
586 	/* Unclamp DSIPLL in/out */
587 	writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR);
588 
589 	/* Set DSI PLL FREQ */
590 	writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ);
591 	writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL);
592 	/* Enable Escape clocks */
593 	writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
594 
595 	/* Start DSI PLL */
596 	writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
597 	/* Reset DSI PLL */
598 	writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET);
599 	for (i = 0; i < 10; i++) {
600 		if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED)
601 					== PRCMU_PLLDSI_LOCKP_LOCKED)
602 			break;
603 		udelay(100);
604 	}
605 	/* Set DSIPLL_RESETN */
606 	writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET);
607 	return 0;
608 }
609 
610 int db8500_prcmu_disable_dsipll(void)
611 {
612 	/* Disable dsi pll */
613 	writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
614 	/* Disable  escapeclock */
615 	writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
616 	return 0;
617 }
618 
619 int db8500_prcmu_set_display_clocks(void)
620 {
621 	unsigned long flags;
622 
623 	spin_lock_irqsave(&clk_mgt_lock, flags);
624 
625 	/* Grab the HW semaphore. */
626 	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
627 		cpu_relax();
628 
629 	writel(PRCMU_DSI_CLOCK_SETTING, prcmu_base + PRCM_HDMICLK_MGT);
630 	writel(PRCMU_DSI_LP_CLOCK_SETTING, prcmu_base + PRCM_TVCLK_MGT);
631 	writel(PRCMU_DPI_CLOCK_SETTING, prcmu_base + PRCM_LCDCLK_MGT);
632 
633 	/* Release the HW semaphore. */
634 	writel(0, PRCM_SEM);
635 
636 	spin_unlock_irqrestore(&clk_mgt_lock, flags);
637 
638 	return 0;
639 }
640 
641 u32 db8500_prcmu_read(unsigned int reg)
642 {
643 	return readl(prcmu_base + reg);
644 }
645 
646 void db8500_prcmu_write(unsigned int reg, u32 value)
647 {
648 	unsigned long flags;
649 
650 	spin_lock_irqsave(&prcmu_lock, flags);
651 	writel(value, (prcmu_base + reg));
652 	spin_unlock_irqrestore(&prcmu_lock, flags);
653 }
654 
655 void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
656 {
657 	u32 val;
658 	unsigned long flags;
659 
660 	spin_lock_irqsave(&prcmu_lock, flags);
661 	val = readl(prcmu_base + reg);
662 	val = ((val & ~mask) | (value & mask));
663 	writel(val, (prcmu_base + reg));
664 	spin_unlock_irqrestore(&prcmu_lock, flags);
665 }
666 
667 struct prcmu_fw_version *prcmu_get_fw_version(void)
668 {
669 	return fw_info.valid ? &fw_info.version : NULL;
670 }
671 
672 static bool prcmu_is_ulppll_disabled(void)
673 {
674 	struct prcmu_fw_version *ver;
675 
676 	ver = prcmu_get_fw_version();
677 	return ver && ver->project == PRCMU_FW_PROJECT_U8420_SYSCLK;
678 }
679 
680 bool prcmu_has_arm_maxopp(void)
681 {
682 	return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
683 		PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
684 }
685 
686 /**
687  * prcmu_set_rc_a2p - This function is used to run few power state sequences
688  * @val: Value to be set, i.e. transition requested
689  * Returns: 0 on success, -EINVAL on invalid argument
690  *
691  * This function is used to run the following power state sequences -
692  * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
693  */
694 int prcmu_set_rc_a2p(enum romcode_write val)
695 {
696 	if (val < RDY_2_DS || val > RDY_2_XP70_RST)
697 		return -EINVAL;
698 	writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
699 	return 0;
700 }
701 
702 /**
703  * prcmu_get_rc_p2a - This function is used to get power state sequences
704  * Returns: the power transition that has last happened
705  *
706  * This function can return the following transitions-
707  * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
708  */
709 enum romcode_read prcmu_get_rc_p2a(void)
710 {
711 	return readb(tcdm_base + PRCM_ROMCODE_P2A);
712 }
713 
714 /**
715  * prcmu_get_current_mode - Return the current XP70 power mode
716  * Returns: Returns the current AP(ARM) power mode: init,
717  * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
718  */
719 enum ap_pwrst prcmu_get_xp70_current_state(void)
720 {
721 	return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
722 }
723 
724 /**
725  * prcmu_config_clkout - Configure one of the programmable clock outputs.
726  * @clkout:	The CLKOUT number (0 or 1).
727  * @source:	The clock to be used (one of the PRCMU_CLKSRC_*).
728  * @div:	The divider to be applied.
729  *
730  * Configures one of the programmable clock outputs (CLKOUTs).
731  * @div should be in the range [1,63] to request a configuration, or 0 to
732  * inform that the configuration is no longer requested.
733  */
734 int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
735 {
736 	static int requests[2];
737 	int r = 0;
738 	unsigned long flags;
739 	u32 val;
740 	u32 bits;
741 	u32 mask;
742 	u32 div_mask;
743 
744 	BUG_ON(clkout > 1);
745 	BUG_ON(div > 63);
746 	BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
747 
748 	if (!div && !requests[clkout])
749 		return -EINVAL;
750 
751 	if (clkout == 0) {
752 		div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
753 		mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
754 		bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
755 			(div << PRCM_CLKOCR_CLKODIV0_SHIFT));
756 	} else {
757 		div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
758 		mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
759 			PRCM_CLKOCR_CLK1TYPE);
760 		bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
761 			(div << PRCM_CLKOCR_CLKODIV1_SHIFT));
762 	}
763 	bits &= mask;
764 
765 	spin_lock_irqsave(&clkout_lock, flags);
766 
767 	val = readl(PRCM_CLKOCR);
768 	if (val & div_mask) {
769 		if (div) {
770 			if ((val & mask) != bits) {
771 				r = -EBUSY;
772 				goto unlock_and_return;
773 			}
774 		} else {
775 			if ((val & mask & ~div_mask) != bits) {
776 				r = -EINVAL;
777 				goto unlock_and_return;
778 			}
779 		}
780 	}
781 	writel((bits | (val & ~mask)), PRCM_CLKOCR);
782 	requests[clkout] += (div ? 1 : -1);
783 
784 unlock_and_return:
785 	spin_unlock_irqrestore(&clkout_lock, flags);
786 
787 	return r;
788 }
789 
790 int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
791 {
792 	unsigned long flags;
793 
794 	BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
795 
796 	spin_lock_irqsave(&mb0_transfer.lock, flags);
797 
798 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
799 		cpu_relax();
800 
801 	writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
802 	writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
803 	writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
804 	writeb((keep_ulp_clk ? 1 : 0),
805 		(tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
806 	writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
807 	writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
808 
809 	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
810 
811 	return 0;
812 }
813 
814 u8 db8500_prcmu_get_power_state_result(void)
815 {
816 	return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
817 }
818 
819 /* This function should only be called while mb0_transfer.lock is held. */
820 static void config_wakeups(void)
821 {
822 	const u8 header[2] = {
823 		MB0H_CONFIG_WAKEUPS_EXE,
824 		MB0H_CONFIG_WAKEUPS_SLEEP
825 	};
826 	static u32 last_dbb_events;
827 	static u32 last_abb_events;
828 	u32 dbb_events;
829 	u32 abb_events;
830 	unsigned int i;
831 
832 	dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
833 	dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
834 
835 	abb_events = mb0_transfer.req.abb_events;
836 
837 	if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
838 		return;
839 
840 	for (i = 0; i < 2; i++) {
841 		while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
842 			cpu_relax();
843 		writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
844 		writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
845 		writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
846 		writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
847 	}
848 	last_dbb_events = dbb_events;
849 	last_abb_events = abb_events;
850 }
851 
852 void db8500_prcmu_enable_wakeups(u32 wakeups)
853 {
854 	unsigned long flags;
855 	u32 bits;
856 	int i;
857 
858 	BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
859 
860 	for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
861 		if (wakeups & BIT(i))
862 			bits |= prcmu_wakeup_bit[i];
863 	}
864 
865 	spin_lock_irqsave(&mb0_transfer.lock, flags);
866 
867 	mb0_transfer.req.dbb_wakeups = bits;
868 	config_wakeups();
869 
870 	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
871 }
872 
873 void db8500_prcmu_config_abb_event_readout(u32 abb_events)
874 {
875 	unsigned long flags;
876 
877 	spin_lock_irqsave(&mb0_transfer.lock, flags);
878 
879 	mb0_transfer.req.abb_events = abb_events;
880 	config_wakeups();
881 
882 	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
883 }
884 
885 void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
886 {
887 	if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
888 		*buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
889 	else
890 		*buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
891 }
892 
893 /**
894  * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
895  * @opp: The new ARM operating point to which transition is to be made
896  * Returns: 0 on success, non-zero on failure
897  *
898  * This function sets the the operating point of the ARM.
899  */
900 int db8500_prcmu_set_arm_opp(u8 opp)
901 {
902 	int r;
903 
904 	if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
905 		return -EINVAL;
906 
907 	r = 0;
908 
909 	mutex_lock(&mb1_transfer.lock);
910 
911 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
912 		cpu_relax();
913 
914 	writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
915 	writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
916 	writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
917 
918 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
919 	wait_for_completion(&mb1_transfer.work);
920 
921 	if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
922 		(mb1_transfer.ack.arm_opp != opp))
923 		r = -EIO;
924 
925 	mutex_unlock(&mb1_transfer.lock);
926 
927 	return r;
928 }
929 
930 /**
931  * db8500_prcmu_get_arm_opp - get the current ARM OPP
932  *
933  * Returns: the current ARM OPP
934  */
935 int db8500_prcmu_get_arm_opp(void)
936 {
937 	return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
938 }
939 
940 /**
941  * db8500_prcmu_get_ddr_opp - get the current DDR OPP
942  *
943  * Returns: the current DDR OPP
944  */
945 int db8500_prcmu_get_ddr_opp(void)
946 {
947 	return readb(PRCM_DDR_SUBSYS_APE_MINBW);
948 }
949 
950 /* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
951 static void request_even_slower_clocks(bool enable)
952 {
953 	u32 clock_reg[] = {
954 		PRCM_ACLK_MGT,
955 		PRCM_DMACLK_MGT
956 	};
957 	unsigned long flags;
958 	unsigned int i;
959 
960 	spin_lock_irqsave(&clk_mgt_lock, flags);
961 
962 	/* Grab the HW semaphore. */
963 	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
964 		cpu_relax();
965 
966 	for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
967 		u32 val;
968 		u32 div;
969 
970 		val = readl(prcmu_base + clock_reg[i]);
971 		div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
972 		if (enable) {
973 			if ((div <= 1) || (div > 15)) {
974 				pr_err("prcmu: Bad clock divider %d in %s\n",
975 					div, __func__);
976 				goto unlock_and_return;
977 			}
978 			div <<= 1;
979 		} else {
980 			if (div <= 2)
981 				goto unlock_and_return;
982 			div >>= 1;
983 		}
984 		val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
985 			(div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
986 		writel(val, prcmu_base + clock_reg[i]);
987 	}
988 
989 unlock_and_return:
990 	/* Release the HW semaphore. */
991 	writel(0, PRCM_SEM);
992 
993 	spin_unlock_irqrestore(&clk_mgt_lock, flags);
994 }
995 
996 /**
997  * db8500_set_ape_opp - set the appropriate APE OPP
998  * @opp: The new APE operating point to which transition is to be made
999  * Returns: 0 on success, non-zero on failure
1000  *
1001  * This function sets the operating point of the APE.
1002  */
1003 int db8500_prcmu_set_ape_opp(u8 opp)
1004 {
1005 	int r = 0;
1006 
1007 	if (opp == mb1_transfer.ape_opp)
1008 		return 0;
1009 
1010 	mutex_lock(&mb1_transfer.lock);
1011 
1012 	if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
1013 		request_even_slower_clocks(false);
1014 
1015 	if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
1016 		goto skip_message;
1017 
1018 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1019 		cpu_relax();
1020 
1021 	writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1022 	writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
1023 	writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
1024 		(tcdm_base + PRCM_REQ_MB1_APE_OPP));
1025 
1026 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1027 	wait_for_completion(&mb1_transfer.work);
1028 
1029 	if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
1030 		(mb1_transfer.ack.ape_opp != opp))
1031 		r = -EIO;
1032 
1033 skip_message:
1034 	if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
1035 		(r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
1036 		request_even_slower_clocks(true);
1037 	if (!r)
1038 		mb1_transfer.ape_opp = opp;
1039 
1040 	mutex_unlock(&mb1_transfer.lock);
1041 
1042 	return r;
1043 }
1044 
1045 /**
1046  * db8500_prcmu_get_ape_opp - get the current APE OPP
1047  *
1048  * Returns: the current APE OPP
1049  */
1050 int db8500_prcmu_get_ape_opp(void)
1051 {
1052 	return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
1053 }
1054 
1055 /**
1056  * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
1057  * @enable: true to request the higher voltage, false to drop a request.
1058  *
1059  * Calls to this function to enable and disable requests must be balanced.
1060  */
1061 int db8500_prcmu_request_ape_opp_100_voltage(bool enable)
1062 {
1063 	int r = 0;
1064 	u8 header;
1065 	static unsigned int requests;
1066 
1067 	mutex_lock(&mb1_transfer.lock);
1068 
1069 	if (enable) {
1070 		if (0 != requests++)
1071 			goto unlock_and_return;
1072 		header = MB1H_REQUEST_APE_OPP_100_VOLT;
1073 	} else {
1074 		if (requests == 0) {
1075 			r = -EIO;
1076 			goto unlock_and_return;
1077 		} else if (1 != requests--) {
1078 			goto unlock_and_return;
1079 		}
1080 		header = MB1H_RELEASE_APE_OPP_100_VOLT;
1081 	}
1082 
1083 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1084 		cpu_relax();
1085 
1086 	writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1087 
1088 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1089 	wait_for_completion(&mb1_transfer.work);
1090 
1091 	if ((mb1_transfer.ack.header != header) ||
1092 		((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1093 		r = -EIO;
1094 
1095 unlock_and_return:
1096 	mutex_unlock(&mb1_transfer.lock);
1097 
1098 	return r;
1099 }
1100 
1101 /**
1102  * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
1103  *
1104  * This function releases the power state requirements of a USB wakeup.
1105  */
1106 int prcmu_release_usb_wakeup_state(void)
1107 {
1108 	int r = 0;
1109 
1110 	mutex_lock(&mb1_transfer.lock);
1111 
1112 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1113 		cpu_relax();
1114 
1115 	writeb(MB1H_RELEASE_USB_WAKEUP,
1116 		(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1117 
1118 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1119 	wait_for_completion(&mb1_transfer.work);
1120 
1121 	if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
1122 		((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1123 		r = -EIO;
1124 
1125 	mutex_unlock(&mb1_transfer.lock);
1126 
1127 	return r;
1128 }
1129 
1130 static int request_pll(u8 clock, bool enable)
1131 {
1132 	int r = 0;
1133 
1134 	if (clock == PRCMU_PLLSOC0)
1135 		clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
1136 	else if (clock == PRCMU_PLLSOC1)
1137 		clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
1138 	else
1139 		return -EINVAL;
1140 
1141 	mutex_lock(&mb1_transfer.lock);
1142 
1143 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1144 		cpu_relax();
1145 
1146 	writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1147 	writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
1148 
1149 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1150 	wait_for_completion(&mb1_transfer.work);
1151 
1152 	if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
1153 		r = -EIO;
1154 
1155 	mutex_unlock(&mb1_transfer.lock);
1156 
1157 	return r;
1158 }
1159 
1160 /**
1161  * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
1162  * @epod_id: The EPOD to set
1163  * @epod_state: The new EPOD state
1164  *
1165  * This function sets the state of a EPOD (power domain). It may not be called
1166  * from interrupt context.
1167  */
1168 int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
1169 {
1170 	int r = 0;
1171 	bool ram_retention = false;
1172 	int i;
1173 
1174 	/* check argument */
1175 	BUG_ON(epod_id >= NUM_EPOD_ID);
1176 
1177 	/* set flag if retention is possible */
1178 	switch (epod_id) {
1179 	case EPOD_ID_SVAMMDSP:
1180 	case EPOD_ID_SIAMMDSP:
1181 	case EPOD_ID_ESRAM12:
1182 	case EPOD_ID_ESRAM34:
1183 		ram_retention = true;
1184 		break;
1185 	}
1186 
1187 	/* check argument */
1188 	BUG_ON(epod_state > EPOD_STATE_ON);
1189 	BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
1190 
1191 	/* get lock */
1192 	mutex_lock(&mb2_transfer.lock);
1193 
1194 	/* wait for mailbox */
1195 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
1196 		cpu_relax();
1197 
1198 	/* fill in mailbox */
1199 	for (i = 0; i < NUM_EPOD_ID; i++)
1200 		writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
1201 	writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
1202 
1203 	writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
1204 
1205 	writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
1206 
1207 	/*
1208 	 * The current firmware version does not handle errors correctly,
1209 	 * and we cannot recover if there is an error.
1210 	 * This is expected to change when the firmware is updated.
1211 	 */
1212 	if (!wait_for_completion_timeout(&mb2_transfer.work,
1213 			msecs_to_jiffies(20000))) {
1214 		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1215 			__func__);
1216 		r = -EIO;
1217 		goto unlock_and_return;
1218 	}
1219 
1220 	if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
1221 		r = -EIO;
1222 
1223 unlock_and_return:
1224 	mutex_unlock(&mb2_transfer.lock);
1225 	return r;
1226 }
1227 
1228 /**
1229  * prcmu_configure_auto_pm - Configure autonomous power management.
1230  * @sleep: Configuration for ApSleep.
1231  * @idle:  Configuration for ApIdle.
1232  */
1233 void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
1234 	struct prcmu_auto_pm_config *idle)
1235 {
1236 	u32 sleep_cfg;
1237 	u32 idle_cfg;
1238 	unsigned long flags;
1239 
1240 	BUG_ON((sleep == NULL) || (idle == NULL));
1241 
1242 	sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
1243 	sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
1244 	sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
1245 	sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
1246 	sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
1247 	sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
1248 
1249 	idle_cfg = (idle->sva_auto_pm_enable & 0xF);
1250 	idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
1251 	idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
1252 	idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
1253 	idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
1254 	idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
1255 
1256 	spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
1257 
1258 	/*
1259 	 * The autonomous power management configuration is done through
1260 	 * fields in mailbox 2, but these fields are only used as shared
1261 	 * variables - i.e. there is no need to send a message.
1262 	 */
1263 	writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
1264 	writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
1265 
1266 	mb2_transfer.auto_pm_enabled =
1267 		((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1268 		 (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1269 		 (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1270 		 (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
1271 
1272 	spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
1273 }
1274 EXPORT_SYMBOL(prcmu_configure_auto_pm);
1275 
1276 bool prcmu_is_auto_pm_enabled(void)
1277 {
1278 	return mb2_transfer.auto_pm_enabled;
1279 }
1280 
1281 static int request_sysclk(bool enable)
1282 {
1283 	int r;
1284 	unsigned long flags;
1285 
1286 	r = 0;
1287 
1288 	mutex_lock(&mb3_transfer.sysclk_lock);
1289 
1290 	spin_lock_irqsave(&mb3_transfer.lock, flags);
1291 
1292 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
1293 		cpu_relax();
1294 
1295 	writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
1296 
1297 	writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
1298 	writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
1299 
1300 	spin_unlock_irqrestore(&mb3_transfer.lock, flags);
1301 
1302 	/*
1303 	 * The firmware only sends an ACK if we want to enable the
1304 	 * SysClk, and it succeeds.
1305 	 */
1306 	if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
1307 			msecs_to_jiffies(20000))) {
1308 		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1309 			__func__);
1310 		r = -EIO;
1311 	}
1312 
1313 	mutex_unlock(&mb3_transfer.sysclk_lock);
1314 
1315 	return r;
1316 }
1317 
1318 static int request_timclk(bool enable)
1319 {
1320 	u32 val;
1321 
1322 	/*
1323 	 * On the U8420_CLKSEL firmware, the ULP (Ultra Low Power)
1324 	 * PLL is disabled so we cannot use doze mode, this will
1325 	 * stop the clock on this firmware.
1326 	 */
1327 	if (prcmu_is_ulppll_disabled())
1328 		val = 0;
1329 	else
1330 		val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
1331 
1332 	if (!enable)
1333 		val |= PRCM_TCR_STOP_TIMERS |
1334 			PRCM_TCR_DOZE_MODE |
1335 			PRCM_TCR_TENSEL_MASK;
1336 
1337 	writel(val, PRCM_TCR);
1338 
1339 	return 0;
1340 }
1341 
1342 static int request_clock(u8 clock, bool enable)
1343 {
1344 	u32 val;
1345 	unsigned long flags;
1346 
1347 	spin_lock_irqsave(&clk_mgt_lock, flags);
1348 
1349 	/* Grab the HW semaphore. */
1350 	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1351 		cpu_relax();
1352 
1353 	val = readl(prcmu_base + clk_mgt[clock].offset);
1354 	if (enable) {
1355 		val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
1356 	} else {
1357 		clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1358 		val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
1359 	}
1360 	writel(val, prcmu_base + clk_mgt[clock].offset);
1361 
1362 	/* Release the HW semaphore. */
1363 	writel(0, PRCM_SEM);
1364 
1365 	spin_unlock_irqrestore(&clk_mgt_lock, flags);
1366 
1367 	return 0;
1368 }
1369 
1370 static int request_sga_clock(u8 clock, bool enable)
1371 {
1372 	u32 val;
1373 	int ret;
1374 
1375 	if (enable) {
1376 		val = readl(PRCM_CGATING_BYPASS);
1377 		writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1378 	}
1379 
1380 	ret = request_clock(clock, enable);
1381 
1382 	if (!ret && !enable) {
1383 		val = readl(PRCM_CGATING_BYPASS);
1384 		writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1385 	}
1386 
1387 	return ret;
1388 }
1389 
1390 static inline bool plldsi_locked(void)
1391 {
1392 	return (readl(PRCM_PLLDSI_LOCKP) &
1393 		(PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1394 		 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
1395 		(PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1396 		 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
1397 }
1398 
1399 static int request_plldsi(bool enable)
1400 {
1401 	int r = 0;
1402 	u32 val;
1403 
1404 	writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1405 		PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
1406 		PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
1407 
1408 	val = readl(PRCM_PLLDSI_ENABLE);
1409 	if (enable)
1410 		val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1411 	else
1412 		val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1413 	writel(val, PRCM_PLLDSI_ENABLE);
1414 
1415 	if (enable) {
1416 		unsigned int i;
1417 		bool locked = plldsi_locked();
1418 
1419 		for (i = 10; !locked && (i > 0); --i) {
1420 			udelay(100);
1421 			locked = plldsi_locked();
1422 		}
1423 		if (locked) {
1424 			writel(PRCM_APE_RESETN_DSIPLL_RESETN,
1425 				PRCM_APE_RESETN_SET);
1426 		} else {
1427 			writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1428 				PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
1429 				PRCM_MMIP_LS_CLAMP_SET);
1430 			val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1431 			writel(val, PRCM_PLLDSI_ENABLE);
1432 			r = -EAGAIN;
1433 		}
1434 	} else {
1435 		writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
1436 	}
1437 	return r;
1438 }
1439 
1440 static int request_dsiclk(u8 n, bool enable)
1441 {
1442 	u32 val;
1443 
1444 	val = readl(PRCM_DSI_PLLOUT_SEL);
1445 	val &= ~dsiclk[n].divsel_mask;
1446 	val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
1447 		dsiclk[n].divsel_shift);
1448 	writel(val, PRCM_DSI_PLLOUT_SEL);
1449 	return 0;
1450 }
1451 
1452 static int request_dsiescclk(u8 n, bool enable)
1453 {
1454 	u32 val;
1455 
1456 	val = readl(PRCM_DSITVCLK_DIV);
1457 	enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
1458 	writel(val, PRCM_DSITVCLK_DIV);
1459 	return 0;
1460 }
1461 
1462 /**
1463  * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
1464  * @clock:      The clock for which the request is made.
1465  * @enable:     Whether the clock should be enabled (true) or disabled (false).
1466  *
1467  * This function should only be used by the clock implementation.
1468  * Do not use it from any other place!
1469  */
1470 int db8500_prcmu_request_clock(u8 clock, bool enable)
1471 {
1472 	if (clock == PRCMU_SGACLK)
1473 		return request_sga_clock(clock, enable);
1474 	else if (clock < PRCMU_NUM_REG_CLOCKS)
1475 		return request_clock(clock, enable);
1476 	else if (clock == PRCMU_TIMCLK)
1477 		return request_timclk(enable);
1478 	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1479 		return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
1480 	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1481 		return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
1482 	else if (clock == PRCMU_PLLDSI)
1483 		return request_plldsi(enable);
1484 	else if (clock == PRCMU_SYSCLK)
1485 		return request_sysclk(enable);
1486 	else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
1487 		return request_pll(clock, enable);
1488 	else
1489 		return -EINVAL;
1490 }
1491 
1492 static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
1493 	int branch)
1494 {
1495 	u64 rate;
1496 	u32 val;
1497 	u32 d;
1498 	u32 div = 1;
1499 
1500 	val = readl(reg);
1501 
1502 	rate = src_rate;
1503 	rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
1504 
1505 	d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
1506 	if (d > 1)
1507 		div *= d;
1508 
1509 	d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
1510 	if (d > 1)
1511 		div *= d;
1512 
1513 	if (val & PRCM_PLL_FREQ_SELDIV2)
1514 		div *= 2;
1515 
1516 	if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
1517 		(val & PRCM_PLL_FREQ_DIV2EN) &&
1518 		((reg == PRCM_PLLSOC0_FREQ) ||
1519 		 (reg == PRCM_PLLARM_FREQ) ||
1520 		 (reg == PRCM_PLLDDR_FREQ))))
1521 		div *= 2;
1522 
1523 	(void)do_div(rate, div);
1524 
1525 	return (unsigned long)rate;
1526 }
1527 
1528 #define ROOT_CLOCK_RATE 38400000
1529 
1530 static unsigned long clock_rate(u8 clock)
1531 {
1532 	u32 val;
1533 	u32 pllsw;
1534 	unsigned long rate = ROOT_CLOCK_RATE;
1535 
1536 	val = readl(prcmu_base + clk_mgt[clock].offset);
1537 
1538 	if (val & PRCM_CLK_MGT_CLK38) {
1539 		if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
1540 			rate /= 2;
1541 		return rate;
1542 	}
1543 
1544 	val |= clk_mgt[clock].pllsw;
1545 	pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1546 
1547 	if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1548 		rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
1549 	else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1550 		rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
1551 	else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
1552 		rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
1553 	else
1554 		return 0;
1555 
1556 	if ((clock == PRCMU_SGACLK) &&
1557 		(val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
1558 		u64 r = (rate * 10);
1559 
1560 		(void)do_div(r, 25);
1561 		return (unsigned long)r;
1562 	}
1563 	val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1564 	if (val)
1565 		return rate / val;
1566 	else
1567 		return 0;
1568 }
1569 
1570 static unsigned long armss_rate(void)
1571 {
1572 	u32 r;
1573 	unsigned long rate;
1574 
1575 	r = readl(PRCM_ARM_CHGCLKREQ);
1576 
1577 	if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) {
1578 		/* External ARMCLKFIX clock */
1579 
1580 		rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX);
1581 
1582 		/* Check PRCM_ARM_CHGCLKREQ divider */
1583 		if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL))
1584 			rate /= 2;
1585 
1586 		/* Check PRCM_ARMCLKFIX_MGT divider */
1587 		r = readl(PRCM_ARMCLKFIX_MGT);
1588 		r &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1589 		rate /= r;
1590 
1591 	} else {/* ARM PLL */
1592 		rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV);
1593 	}
1594 
1595 	return rate;
1596 }
1597 
1598 static unsigned long dsiclk_rate(u8 n)
1599 {
1600 	u32 divsel;
1601 	u32 div = 1;
1602 
1603 	divsel = readl(PRCM_DSI_PLLOUT_SEL);
1604 	divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
1605 
1606 	if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
1607 		divsel = dsiclk[n].divsel;
1608 	else
1609 		dsiclk[n].divsel = divsel;
1610 
1611 	switch (divsel) {
1612 	case PRCM_DSI_PLLOUT_SEL_PHI_4:
1613 		div *= 2;
1614 		/* Fall through */
1615 	case PRCM_DSI_PLLOUT_SEL_PHI_2:
1616 		div *= 2;
1617 		/* Fall through */
1618 	case PRCM_DSI_PLLOUT_SEL_PHI:
1619 		return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1620 			PLL_RAW) / div;
1621 	default:
1622 		return 0;
1623 	}
1624 }
1625 
1626 static unsigned long dsiescclk_rate(u8 n)
1627 {
1628 	u32 div;
1629 
1630 	div = readl(PRCM_DSITVCLK_DIV);
1631 	div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
1632 	return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
1633 }
1634 
1635 unsigned long prcmu_clock_rate(u8 clock)
1636 {
1637 	if (clock < PRCMU_NUM_REG_CLOCKS)
1638 		return clock_rate(clock);
1639 	else if (clock == PRCMU_TIMCLK)
1640 		return prcmu_is_ulppll_disabled() ?
1641 			32768 : ROOT_CLOCK_RATE / 16;
1642 	else if (clock == PRCMU_SYSCLK)
1643 		return ROOT_CLOCK_RATE;
1644 	else if (clock == PRCMU_PLLSOC0)
1645 		return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1646 	else if (clock == PRCMU_PLLSOC1)
1647 		return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1648 	else if (clock == PRCMU_ARMSS)
1649 		return armss_rate();
1650 	else if (clock == PRCMU_PLLDDR)
1651 		return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1652 	else if (clock == PRCMU_PLLDSI)
1653 		return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1654 			PLL_RAW);
1655 	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1656 		return dsiclk_rate(clock - PRCMU_DSI0CLK);
1657 	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1658 		return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
1659 	else
1660 		return 0;
1661 }
1662 
1663 static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
1664 {
1665 	if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
1666 		return ROOT_CLOCK_RATE;
1667 	clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
1668 	if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1669 		return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
1670 	else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1671 		return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
1672 	else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
1673 		return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
1674 	else
1675 		return 0;
1676 }
1677 
1678 static u32 clock_divider(unsigned long src_rate, unsigned long rate)
1679 {
1680 	u32 div;
1681 
1682 	div = (src_rate / rate);
1683 	if (div == 0)
1684 		return 1;
1685 	if (rate < (src_rate / div))
1686 		div++;
1687 	return div;
1688 }
1689 
1690 static long round_clock_rate(u8 clock, unsigned long rate)
1691 {
1692 	u32 val;
1693 	u32 div;
1694 	unsigned long src_rate;
1695 	long rounded_rate;
1696 
1697 	val = readl(prcmu_base + clk_mgt[clock].offset);
1698 	src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1699 		clk_mgt[clock].branch);
1700 	div = clock_divider(src_rate, rate);
1701 	if (val & PRCM_CLK_MGT_CLK38) {
1702 		if (clk_mgt[clock].clk38div) {
1703 			if (div > 2)
1704 				div = 2;
1705 		} else {
1706 			div = 1;
1707 		}
1708 	} else if ((clock == PRCMU_SGACLK) && (div == 3)) {
1709 		u64 r = (src_rate * 10);
1710 
1711 		(void)do_div(r, 25);
1712 		if (r <= rate)
1713 			return (unsigned long)r;
1714 	}
1715 	rounded_rate = (src_rate / min(div, (u32)31));
1716 
1717 	return rounded_rate;
1718 }
1719 
1720 static const unsigned long db8500_armss_freqs[] = {
1721 	200000000,
1722 	400000000,
1723 	800000000,
1724 	998400000
1725 };
1726 
1727 /* The DB8520 has slightly higher ARMSS max frequency */
1728 static const unsigned long db8520_armss_freqs[] = {
1729 	200000000,
1730 	400000000,
1731 	800000000,
1732 	1152000000
1733 };
1734 
1735 
1736 
1737 static long round_armss_rate(unsigned long rate)
1738 {
1739 	unsigned long freq = 0;
1740 	const unsigned long *freqs;
1741 	int nfreqs;
1742 	int i;
1743 
1744 	if (fw_info.version.project == PRCMU_FW_PROJECT_U8520) {
1745 		freqs = db8520_armss_freqs;
1746 		nfreqs = ARRAY_SIZE(db8520_armss_freqs);
1747 	} else {
1748 		freqs = db8500_armss_freqs;
1749 		nfreqs = ARRAY_SIZE(db8500_armss_freqs);
1750 	}
1751 
1752 	/* Find the corresponding arm opp from the cpufreq table. */
1753 	for (i = 0; i < nfreqs; i++) {
1754 		freq = freqs[i];
1755 		if (rate <= freq)
1756 			break;
1757 	}
1758 
1759 	/* Return the last valid value, even if a match was not found. */
1760 	return freq;
1761 }
1762 
1763 #define MIN_PLL_VCO_RATE 600000000ULL
1764 #define MAX_PLL_VCO_RATE 1680640000ULL
1765 
1766 static long round_plldsi_rate(unsigned long rate)
1767 {
1768 	long rounded_rate = 0;
1769 	unsigned long src_rate;
1770 	unsigned long rem;
1771 	u32 r;
1772 
1773 	src_rate = clock_rate(PRCMU_HDMICLK);
1774 	rem = rate;
1775 
1776 	for (r = 7; (rem > 0) && (r > 0); r--) {
1777 		u64 d;
1778 
1779 		d = (r * rate);
1780 		(void)do_div(d, src_rate);
1781 		if (d < 6)
1782 			d = 6;
1783 		else if (d > 255)
1784 			d = 255;
1785 		d *= src_rate;
1786 		if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
1787 			((r * MAX_PLL_VCO_RATE) < (2 * d)))
1788 			continue;
1789 		(void)do_div(d, r);
1790 		if (rate < d) {
1791 			if (rounded_rate == 0)
1792 				rounded_rate = (long)d;
1793 			break;
1794 		}
1795 		if ((rate - d) < rem) {
1796 			rem = (rate - d);
1797 			rounded_rate = (long)d;
1798 		}
1799 	}
1800 	return rounded_rate;
1801 }
1802 
1803 static long round_dsiclk_rate(unsigned long rate)
1804 {
1805 	u32 div;
1806 	unsigned long src_rate;
1807 	long rounded_rate;
1808 
1809 	src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1810 		PLL_RAW);
1811 	div = clock_divider(src_rate, rate);
1812 	rounded_rate = (src_rate / ((div > 2) ? 4 : div));
1813 
1814 	return rounded_rate;
1815 }
1816 
1817 static long round_dsiescclk_rate(unsigned long rate)
1818 {
1819 	u32 div;
1820 	unsigned long src_rate;
1821 	long rounded_rate;
1822 
1823 	src_rate = clock_rate(PRCMU_TVCLK);
1824 	div = clock_divider(src_rate, rate);
1825 	rounded_rate = (src_rate / min(div, (u32)255));
1826 
1827 	return rounded_rate;
1828 }
1829 
1830 long prcmu_round_clock_rate(u8 clock, unsigned long rate)
1831 {
1832 	if (clock < PRCMU_NUM_REG_CLOCKS)
1833 		return round_clock_rate(clock, rate);
1834 	else if (clock == PRCMU_ARMSS)
1835 		return round_armss_rate(rate);
1836 	else if (clock == PRCMU_PLLDSI)
1837 		return round_plldsi_rate(rate);
1838 	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1839 		return round_dsiclk_rate(rate);
1840 	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1841 		return round_dsiescclk_rate(rate);
1842 	else
1843 		return (long)prcmu_clock_rate(clock);
1844 }
1845 
1846 static void set_clock_rate(u8 clock, unsigned long rate)
1847 {
1848 	u32 val;
1849 	u32 div;
1850 	unsigned long src_rate;
1851 	unsigned long flags;
1852 
1853 	spin_lock_irqsave(&clk_mgt_lock, flags);
1854 
1855 	/* Grab the HW semaphore. */
1856 	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1857 		cpu_relax();
1858 
1859 	val = readl(prcmu_base + clk_mgt[clock].offset);
1860 	src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1861 		clk_mgt[clock].branch);
1862 	div = clock_divider(src_rate, rate);
1863 	if (val & PRCM_CLK_MGT_CLK38) {
1864 		if (clk_mgt[clock].clk38div) {
1865 			if (div > 1)
1866 				val |= PRCM_CLK_MGT_CLK38DIV;
1867 			else
1868 				val &= ~PRCM_CLK_MGT_CLK38DIV;
1869 		}
1870 	} else if (clock == PRCMU_SGACLK) {
1871 		val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
1872 			PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
1873 		if (div == 3) {
1874 			u64 r = (src_rate * 10);
1875 
1876 			(void)do_div(r, 25);
1877 			if (r <= rate) {
1878 				val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
1879 				div = 0;
1880 			}
1881 		}
1882 		val |= min(div, (u32)31);
1883 	} else {
1884 		val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
1885 		val |= min(div, (u32)31);
1886 	}
1887 	writel(val, prcmu_base + clk_mgt[clock].offset);
1888 
1889 	/* Release the HW semaphore. */
1890 	writel(0, PRCM_SEM);
1891 
1892 	spin_unlock_irqrestore(&clk_mgt_lock, flags);
1893 }
1894 
1895 static int set_armss_rate(unsigned long rate)
1896 {
1897 	unsigned long freq;
1898 	u8 opps[] = { ARM_EXTCLK, ARM_50_OPP, ARM_100_OPP, ARM_MAX_OPP };
1899 	const unsigned long *freqs;
1900 	int nfreqs;
1901 	int i;
1902 
1903 	if (fw_info.version.project == PRCMU_FW_PROJECT_U8520) {
1904 		freqs = db8520_armss_freqs;
1905 		nfreqs = ARRAY_SIZE(db8520_armss_freqs);
1906 	} else {
1907 		freqs = db8500_armss_freqs;
1908 		nfreqs = ARRAY_SIZE(db8500_armss_freqs);
1909 	}
1910 
1911 	/* Find the corresponding arm opp from the cpufreq table. */
1912 	for (i = 0; i < nfreqs; i++) {
1913 		freq = freqs[i];
1914 		if (rate == freq)
1915 			break;
1916 	}
1917 
1918 	if (rate != freq)
1919 		return -EINVAL;
1920 
1921 	/* Set the new arm opp. */
1922 	pr_debug("SET ARM OPP 0x%02x\n", opps[i]);
1923 	return db8500_prcmu_set_arm_opp(opps[i]);
1924 }
1925 
1926 static int set_plldsi_rate(unsigned long rate)
1927 {
1928 	unsigned long src_rate;
1929 	unsigned long rem;
1930 	u32 pll_freq = 0;
1931 	u32 r;
1932 
1933 	src_rate = clock_rate(PRCMU_HDMICLK);
1934 	rem = rate;
1935 
1936 	for (r = 7; (rem > 0) && (r > 0); r--) {
1937 		u64 d;
1938 		u64 hwrate;
1939 
1940 		d = (r * rate);
1941 		(void)do_div(d, src_rate);
1942 		if (d < 6)
1943 			d = 6;
1944 		else if (d > 255)
1945 			d = 255;
1946 		hwrate = (d * src_rate);
1947 		if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
1948 			((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
1949 			continue;
1950 		(void)do_div(hwrate, r);
1951 		if (rate < hwrate) {
1952 			if (pll_freq == 0)
1953 				pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1954 					(r << PRCM_PLL_FREQ_R_SHIFT));
1955 			break;
1956 		}
1957 		if ((rate - hwrate) < rem) {
1958 			rem = (rate - hwrate);
1959 			pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1960 				(r << PRCM_PLL_FREQ_R_SHIFT));
1961 		}
1962 	}
1963 	if (pll_freq == 0)
1964 		return -EINVAL;
1965 
1966 	pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
1967 	writel(pll_freq, PRCM_PLLDSI_FREQ);
1968 
1969 	return 0;
1970 }
1971 
1972 static void set_dsiclk_rate(u8 n, unsigned long rate)
1973 {
1974 	u32 val;
1975 	u32 div;
1976 
1977 	div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
1978 			clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
1979 
1980 	dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
1981 			   (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
1982 			   /* else */	PRCM_DSI_PLLOUT_SEL_PHI_4;
1983 
1984 	val = readl(PRCM_DSI_PLLOUT_SEL);
1985 	val &= ~dsiclk[n].divsel_mask;
1986 	val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
1987 	writel(val, PRCM_DSI_PLLOUT_SEL);
1988 }
1989 
1990 static void set_dsiescclk_rate(u8 n, unsigned long rate)
1991 {
1992 	u32 val;
1993 	u32 div;
1994 
1995 	div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
1996 	val = readl(PRCM_DSITVCLK_DIV);
1997 	val &= ~dsiescclk[n].div_mask;
1998 	val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
1999 	writel(val, PRCM_DSITVCLK_DIV);
2000 }
2001 
2002 int prcmu_set_clock_rate(u8 clock, unsigned long rate)
2003 {
2004 	if (clock < PRCMU_NUM_REG_CLOCKS)
2005 		set_clock_rate(clock, rate);
2006 	else if (clock == PRCMU_ARMSS)
2007 		return set_armss_rate(rate);
2008 	else if (clock == PRCMU_PLLDSI)
2009 		return set_plldsi_rate(rate);
2010 	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
2011 		set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
2012 	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
2013 		set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
2014 	return 0;
2015 }
2016 
2017 int db8500_prcmu_config_esram0_deep_sleep(u8 state)
2018 {
2019 	if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
2020 	    (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
2021 		return -EINVAL;
2022 
2023 	mutex_lock(&mb4_transfer.lock);
2024 
2025 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2026 		cpu_relax();
2027 
2028 	writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2029 	writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
2030 	       (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
2031 	writeb(DDR_PWR_STATE_ON,
2032 	       (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
2033 	writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
2034 
2035 	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2036 	wait_for_completion(&mb4_transfer.work);
2037 
2038 	mutex_unlock(&mb4_transfer.lock);
2039 
2040 	return 0;
2041 }
2042 
2043 int db8500_prcmu_config_hotdog(u8 threshold)
2044 {
2045 	mutex_lock(&mb4_transfer.lock);
2046 
2047 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2048 		cpu_relax();
2049 
2050 	writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
2051 	writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2052 
2053 	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2054 	wait_for_completion(&mb4_transfer.work);
2055 
2056 	mutex_unlock(&mb4_transfer.lock);
2057 
2058 	return 0;
2059 }
2060 
2061 int db8500_prcmu_config_hotmon(u8 low, u8 high)
2062 {
2063 	mutex_lock(&mb4_transfer.lock);
2064 
2065 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2066 		cpu_relax();
2067 
2068 	writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
2069 	writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
2070 	writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
2071 		(tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
2072 	writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2073 
2074 	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2075 	wait_for_completion(&mb4_transfer.work);
2076 
2077 	mutex_unlock(&mb4_transfer.lock);
2078 
2079 	return 0;
2080 }
2081 EXPORT_SYMBOL_GPL(db8500_prcmu_config_hotmon);
2082 
2083 static int config_hot_period(u16 val)
2084 {
2085 	mutex_lock(&mb4_transfer.lock);
2086 
2087 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2088 		cpu_relax();
2089 
2090 	writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
2091 	writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2092 
2093 	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2094 	wait_for_completion(&mb4_transfer.work);
2095 
2096 	mutex_unlock(&mb4_transfer.lock);
2097 
2098 	return 0;
2099 }
2100 
2101 int db8500_prcmu_start_temp_sense(u16 cycles32k)
2102 {
2103 	if (cycles32k == 0xFFFF)
2104 		return -EINVAL;
2105 
2106 	return config_hot_period(cycles32k);
2107 }
2108 EXPORT_SYMBOL_GPL(db8500_prcmu_start_temp_sense);
2109 
2110 int db8500_prcmu_stop_temp_sense(void)
2111 {
2112 	return config_hot_period(0xFFFF);
2113 }
2114 EXPORT_SYMBOL_GPL(db8500_prcmu_stop_temp_sense);
2115 
2116 static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
2117 {
2118 
2119 	mutex_lock(&mb4_transfer.lock);
2120 
2121 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2122 		cpu_relax();
2123 
2124 	writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
2125 	writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
2126 	writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
2127 	writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
2128 
2129 	writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2130 
2131 	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2132 	wait_for_completion(&mb4_transfer.work);
2133 
2134 	mutex_unlock(&mb4_transfer.lock);
2135 
2136 	return 0;
2137 
2138 }
2139 
2140 int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
2141 {
2142 	BUG_ON(num == 0 || num > 0xf);
2143 	return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
2144 			    sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
2145 			    A9WDOG_AUTO_OFF_DIS);
2146 }
2147 EXPORT_SYMBOL(db8500_prcmu_config_a9wdog);
2148 
2149 int db8500_prcmu_enable_a9wdog(u8 id)
2150 {
2151 	return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
2152 }
2153 EXPORT_SYMBOL(db8500_prcmu_enable_a9wdog);
2154 
2155 int db8500_prcmu_disable_a9wdog(u8 id)
2156 {
2157 	return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
2158 }
2159 EXPORT_SYMBOL(db8500_prcmu_disable_a9wdog);
2160 
2161 int db8500_prcmu_kick_a9wdog(u8 id)
2162 {
2163 	return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
2164 }
2165 EXPORT_SYMBOL(db8500_prcmu_kick_a9wdog);
2166 
2167 /*
2168  * timeout is 28 bit, in ms.
2169  */
2170 int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
2171 {
2172 	return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
2173 			    (id & A9WDOG_ID_MASK) |
2174 			    /*
2175 			     * Put the lowest 28 bits of timeout at
2176 			     * offset 4. Four first bits are used for id.
2177 			     */
2178 			    (u8)((timeout << 4) & 0xf0),
2179 			    (u8)((timeout >> 4) & 0xff),
2180 			    (u8)((timeout >> 12) & 0xff),
2181 			    (u8)((timeout >> 20) & 0xff));
2182 }
2183 EXPORT_SYMBOL(db8500_prcmu_load_a9wdog);
2184 
2185 /**
2186  * prcmu_abb_read() - Read register value(s) from the ABB.
2187  * @slave:	The I2C slave address.
2188  * @reg:	The (start) register address.
2189  * @value:	The read out value(s).
2190  * @size:	The number of registers to read.
2191  *
2192  * Reads register value(s) from the ABB.
2193  * @size has to be 1 for the current firmware version.
2194  */
2195 int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
2196 {
2197 	int r;
2198 
2199 	if (size != 1)
2200 		return -EINVAL;
2201 
2202 	mutex_lock(&mb5_transfer.lock);
2203 
2204 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2205 		cpu_relax();
2206 
2207 	writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2208 	writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2209 	writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2210 	writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2211 	writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2212 
2213 	writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2214 
2215 	if (!wait_for_completion_timeout(&mb5_transfer.work,
2216 				msecs_to_jiffies(20000))) {
2217 		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2218 			__func__);
2219 		r = -EIO;
2220 	} else {
2221 		r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
2222 	}
2223 
2224 	if (!r)
2225 		*value = mb5_transfer.ack.value;
2226 
2227 	mutex_unlock(&mb5_transfer.lock);
2228 
2229 	return r;
2230 }
2231 
2232 /**
2233  * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
2234  * @slave:	The I2C slave address.
2235  * @reg:	The (start) register address.
2236  * @value:	The value(s) to write.
2237  * @mask:	The mask(s) to use.
2238  * @size:	The number of registers to write.
2239  *
2240  * Writes masked register value(s) to the ABB.
2241  * For each @value, only the bits set to 1 in the corresponding @mask
2242  * will be written. The other bits are not changed.
2243  * @size has to be 1 for the current firmware version.
2244  */
2245 int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
2246 {
2247 	int r;
2248 
2249 	if (size != 1)
2250 		return -EINVAL;
2251 
2252 	mutex_lock(&mb5_transfer.lock);
2253 
2254 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2255 		cpu_relax();
2256 
2257 	writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2258 	writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2259 	writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2260 	writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2261 	writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2262 
2263 	writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2264 
2265 	if (!wait_for_completion_timeout(&mb5_transfer.work,
2266 				msecs_to_jiffies(20000))) {
2267 		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2268 			__func__);
2269 		r = -EIO;
2270 	} else {
2271 		r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
2272 	}
2273 
2274 	mutex_unlock(&mb5_transfer.lock);
2275 
2276 	return r;
2277 }
2278 
2279 /**
2280  * prcmu_abb_write() - Write register value(s) to the ABB.
2281  * @slave:	The I2C slave address.
2282  * @reg:	The (start) register address.
2283  * @value:	The value(s) to write.
2284  * @size:	The number of registers to write.
2285  *
2286  * Writes register value(s) to the ABB.
2287  * @size has to be 1 for the current firmware version.
2288  */
2289 int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
2290 {
2291 	u8 mask = ~0;
2292 
2293 	return prcmu_abb_write_masked(slave, reg, value, &mask, size);
2294 }
2295 
2296 /**
2297  * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
2298  */
2299 int prcmu_ac_wake_req(void)
2300 {
2301 	u32 val;
2302 	int ret = 0;
2303 
2304 	mutex_lock(&mb0_transfer.ac_wake_lock);
2305 
2306 	val = readl(PRCM_HOSTACCESS_REQ);
2307 	if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
2308 		goto unlock_and_return;
2309 
2310 	atomic_set(&ac_wake_req_state, 1);
2311 
2312 	/*
2313 	 * Force Modem Wake-up before hostaccess_req ping-pong.
2314 	 * It prevents Modem to enter in Sleep while acking the hostaccess
2315 	 * request. The 31us delay has been calculated by HWI.
2316 	 */
2317 	val |= PRCM_HOSTACCESS_REQ_WAKE_REQ;
2318 	writel(val, PRCM_HOSTACCESS_REQ);
2319 
2320 	udelay(31);
2321 
2322 	val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ;
2323 	writel(val, PRCM_HOSTACCESS_REQ);
2324 
2325 	if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2326 			msecs_to_jiffies(5000))) {
2327 		pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2328 			__func__);
2329 		ret = -EFAULT;
2330 	}
2331 
2332 unlock_and_return:
2333 	mutex_unlock(&mb0_transfer.ac_wake_lock);
2334 	return ret;
2335 }
2336 
2337 /**
2338  * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
2339  */
2340 void prcmu_ac_sleep_req(void)
2341 {
2342 	u32 val;
2343 
2344 	mutex_lock(&mb0_transfer.ac_wake_lock);
2345 
2346 	val = readl(PRCM_HOSTACCESS_REQ);
2347 	if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
2348 		goto unlock_and_return;
2349 
2350 	writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
2351 		PRCM_HOSTACCESS_REQ);
2352 
2353 	if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2354 			msecs_to_jiffies(5000))) {
2355 		pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2356 			__func__);
2357 	}
2358 
2359 	atomic_set(&ac_wake_req_state, 0);
2360 
2361 unlock_and_return:
2362 	mutex_unlock(&mb0_transfer.ac_wake_lock);
2363 }
2364 
2365 bool db8500_prcmu_is_ac_wake_requested(void)
2366 {
2367 	return (atomic_read(&ac_wake_req_state) != 0);
2368 }
2369 
2370 /**
2371  * db8500_prcmu_system_reset - System reset
2372  *
2373  * Saves the reset reason code and then sets the APE_SOFTRST register which
2374  * fires interrupt to fw
2375  */
2376 void db8500_prcmu_system_reset(u16 reset_code)
2377 {
2378 	writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
2379 	writel(1, PRCM_APE_SOFTRST);
2380 }
2381 
2382 /**
2383  * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
2384  *
2385  * Retrieves the reset reason code stored by prcmu_system_reset() before
2386  * last restart.
2387  */
2388 u16 db8500_prcmu_get_reset_code(void)
2389 {
2390 	return readw(tcdm_base + PRCM_SW_RST_REASON);
2391 }
2392 
2393 /**
2394  * db8500_prcmu_reset_modem - ask the PRCMU to reset modem
2395  */
2396 void db8500_prcmu_modem_reset(void)
2397 {
2398 	mutex_lock(&mb1_transfer.lock);
2399 
2400 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
2401 		cpu_relax();
2402 
2403 	writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
2404 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
2405 	wait_for_completion(&mb1_transfer.work);
2406 
2407 	/*
2408 	 * No need to check return from PRCMU as modem should go in reset state
2409 	 * This state is already managed by upper layer
2410 	 */
2411 
2412 	mutex_unlock(&mb1_transfer.lock);
2413 }
2414 
2415 static void ack_dbb_wakeup(void)
2416 {
2417 	unsigned long flags;
2418 
2419 	spin_lock_irqsave(&mb0_transfer.lock, flags);
2420 
2421 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
2422 		cpu_relax();
2423 
2424 	writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
2425 	writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
2426 
2427 	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2428 }
2429 
2430 static inline void print_unknown_header_warning(u8 n, u8 header)
2431 {
2432 	pr_warn("prcmu: Unknown message header (%d) in mailbox %d\n",
2433 		header, n);
2434 }
2435 
2436 static bool read_mailbox_0(void)
2437 {
2438 	bool r;
2439 	u32 ev;
2440 	unsigned int n;
2441 	u8 header;
2442 
2443 	header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
2444 	switch (header) {
2445 	case MB0H_WAKEUP_EXE:
2446 	case MB0H_WAKEUP_SLEEP:
2447 		if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
2448 			ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
2449 		else
2450 			ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
2451 
2452 		if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
2453 			complete(&mb0_transfer.ac_wake_work);
2454 		if (ev & WAKEUP_BIT_SYSCLK_OK)
2455 			complete(&mb3_transfer.sysclk_work);
2456 
2457 		ev &= mb0_transfer.req.dbb_irqs;
2458 
2459 		for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
2460 			if (ev & prcmu_irq_bit[n])
2461 				generic_handle_irq(irq_find_mapping(db8500_irq_domain, n));
2462 		}
2463 		r = true;
2464 		break;
2465 	default:
2466 		print_unknown_header_warning(0, header);
2467 		r = false;
2468 		break;
2469 	}
2470 	writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
2471 	return r;
2472 }
2473 
2474 static bool read_mailbox_1(void)
2475 {
2476 	mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
2477 	mb1_transfer.ack.arm_opp = readb(tcdm_base +
2478 		PRCM_ACK_MB1_CURRENT_ARM_OPP);
2479 	mb1_transfer.ack.ape_opp = readb(tcdm_base +
2480 		PRCM_ACK_MB1_CURRENT_APE_OPP);
2481 	mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
2482 		PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
2483 	writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
2484 	complete(&mb1_transfer.work);
2485 	return false;
2486 }
2487 
2488 static bool read_mailbox_2(void)
2489 {
2490 	mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
2491 	writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
2492 	complete(&mb2_transfer.work);
2493 	return false;
2494 }
2495 
2496 static bool read_mailbox_3(void)
2497 {
2498 	writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
2499 	return false;
2500 }
2501 
2502 static bool read_mailbox_4(void)
2503 {
2504 	u8 header;
2505 	bool do_complete = true;
2506 
2507 	header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
2508 	switch (header) {
2509 	case MB4H_MEM_ST:
2510 	case MB4H_HOTDOG:
2511 	case MB4H_HOTMON:
2512 	case MB4H_HOT_PERIOD:
2513 	case MB4H_A9WDOG_CONF:
2514 	case MB4H_A9WDOG_EN:
2515 	case MB4H_A9WDOG_DIS:
2516 	case MB4H_A9WDOG_LOAD:
2517 	case MB4H_A9WDOG_KICK:
2518 		break;
2519 	default:
2520 		print_unknown_header_warning(4, header);
2521 		do_complete = false;
2522 		break;
2523 	}
2524 
2525 	writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
2526 
2527 	if (do_complete)
2528 		complete(&mb4_transfer.work);
2529 
2530 	return false;
2531 }
2532 
2533 static bool read_mailbox_5(void)
2534 {
2535 	mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
2536 	mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
2537 	writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
2538 	complete(&mb5_transfer.work);
2539 	return false;
2540 }
2541 
2542 static bool read_mailbox_6(void)
2543 {
2544 	writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
2545 	return false;
2546 }
2547 
2548 static bool read_mailbox_7(void)
2549 {
2550 	writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
2551 	return false;
2552 }
2553 
2554 static bool (* const read_mailbox[NUM_MB])(void) = {
2555 	read_mailbox_0,
2556 	read_mailbox_1,
2557 	read_mailbox_2,
2558 	read_mailbox_3,
2559 	read_mailbox_4,
2560 	read_mailbox_5,
2561 	read_mailbox_6,
2562 	read_mailbox_7
2563 };
2564 
2565 static irqreturn_t prcmu_irq_handler(int irq, void *data)
2566 {
2567 	u32 bits;
2568 	u8 n;
2569 	irqreturn_t r;
2570 
2571 	bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
2572 	if (unlikely(!bits))
2573 		return IRQ_NONE;
2574 
2575 	r = IRQ_HANDLED;
2576 	for (n = 0; bits; n++) {
2577 		if (bits & MBOX_BIT(n)) {
2578 			bits -= MBOX_BIT(n);
2579 			if (read_mailbox[n]())
2580 				r = IRQ_WAKE_THREAD;
2581 		}
2582 	}
2583 	return r;
2584 }
2585 
2586 static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
2587 {
2588 	ack_dbb_wakeup();
2589 	return IRQ_HANDLED;
2590 }
2591 
2592 static void prcmu_mask_work(struct work_struct *work)
2593 {
2594 	unsigned long flags;
2595 
2596 	spin_lock_irqsave(&mb0_transfer.lock, flags);
2597 
2598 	config_wakeups();
2599 
2600 	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2601 }
2602 
2603 static void prcmu_irq_mask(struct irq_data *d)
2604 {
2605 	unsigned long flags;
2606 
2607 	spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2608 
2609 	mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq];
2610 
2611 	spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2612 
2613 	if (d->irq != IRQ_PRCMU_CA_SLEEP)
2614 		schedule_work(&mb0_transfer.mask_work);
2615 }
2616 
2617 static void prcmu_irq_unmask(struct irq_data *d)
2618 {
2619 	unsigned long flags;
2620 
2621 	spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2622 
2623 	mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq];
2624 
2625 	spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2626 
2627 	if (d->irq != IRQ_PRCMU_CA_SLEEP)
2628 		schedule_work(&mb0_transfer.mask_work);
2629 }
2630 
2631 static void noop(struct irq_data *d)
2632 {
2633 }
2634 
2635 static struct irq_chip prcmu_irq_chip = {
2636 	.name		= "prcmu",
2637 	.irq_disable	= prcmu_irq_mask,
2638 	.irq_ack	= noop,
2639 	.irq_mask	= prcmu_irq_mask,
2640 	.irq_unmask	= prcmu_irq_unmask,
2641 };
2642 
2643 static char *fw_project_name(u32 project)
2644 {
2645 	switch (project) {
2646 	case PRCMU_FW_PROJECT_U8500:
2647 		return "U8500";
2648 	case PRCMU_FW_PROJECT_U8400:
2649 		return "U8400";
2650 	case PRCMU_FW_PROJECT_U9500:
2651 		return "U9500";
2652 	case PRCMU_FW_PROJECT_U8500_MBB:
2653 		return "U8500 MBB";
2654 	case PRCMU_FW_PROJECT_U8500_C1:
2655 		return "U8500 C1";
2656 	case PRCMU_FW_PROJECT_U8500_C2:
2657 		return "U8500 C2";
2658 	case PRCMU_FW_PROJECT_U8500_C3:
2659 		return "U8500 C3";
2660 	case PRCMU_FW_PROJECT_U8500_C4:
2661 		return "U8500 C4";
2662 	case PRCMU_FW_PROJECT_U9500_MBL:
2663 		return "U9500 MBL";
2664 	case PRCMU_FW_PROJECT_U8500_MBL:
2665 		return "U8500 MBL";
2666 	case PRCMU_FW_PROJECT_U8500_MBL2:
2667 		return "U8500 MBL2";
2668 	case PRCMU_FW_PROJECT_U8520:
2669 		return "U8520 MBL";
2670 	case PRCMU_FW_PROJECT_U8420:
2671 		return "U8420";
2672 	case PRCMU_FW_PROJECT_U8420_SYSCLK:
2673 		return "U8420-sysclk";
2674 	case PRCMU_FW_PROJECT_U9540:
2675 		return "U9540";
2676 	case PRCMU_FW_PROJECT_A9420:
2677 		return "A9420";
2678 	case PRCMU_FW_PROJECT_L8540:
2679 		return "L8540";
2680 	case PRCMU_FW_PROJECT_L8580:
2681 		return "L8580";
2682 	default:
2683 		return "Unknown";
2684 	}
2685 }
2686 
2687 static int db8500_irq_map(struct irq_domain *d, unsigned int virq,
2688 				irq_hw_number_t hwirq)
2689 {
2690 	irq_set_chip_and_handler(virq, &prcmu_irq_chip,
2691 				handle_simple_irq);
2692 
2693 	return 0;
2694 }
2695 
2696 static const struct irq_domain_ops db8500_irq_ops = {
2697 	.map    = db8500_irq_map,
2698 	.xlate  = irq_domain_xlate_twocell,
2699 };
2700 
2701 static int db8500_irq_init(struct device_node *np)
2702 {
2703 	int i;
2704 
2705 	db8500_irq_domain = irq_domain_add_simple(
2706 		np, NUM_PRCMU_WAKEUPS, 0,
2707 		&db8500_irq_ops, NULL);
2708 
2709 	if (!db8500_irq_domain) {
2710 		pr_err("Failed to create irqdomain\n");
2711 		return -ENOSYS;
2712 	}
2713 
2714 	/* All wakeups will be used, so create mappings for all */
2715 	for (i = 0; i < NUM_PRCMU_WAKEUPS; i++)
2716 		irq_create_mapping(db8500_irq_domain, i);
2717 
2718 	return 0;
2719 }
2720 
2721 static void dbx500_fw_version_init(struct device_node *np)
2722 {
2723 	void __iomem *tcpm_base;
2724 	u32 version;
2725 
2726 	tcpm_base = of_iomap(np, 1);
2727 	if (!tcpm_base) {
2728 		pr_err("no prcmu tcpm mem region provided\n");
2729 		return;
2730 	}
2731 
2732 	version = readl(tcpm_base + DB8500_PRCMU_FW_VERSION_OFFSET);
2733 	fw_info.version.project = (version & 0xFF);
2734 	fw_info.version.api_version = (version >> 8) & 0xFF;
2735 	fw_info.version.func_version = (version >> 16) & 0xFF;
2736 	fw_info.version.errata = (version >> 24) & 0xFF;
2737 	strncpy(fw_info.version.project_name,
2738 		fw_project_name(fw_info.version.project),
2739 		PRCMU_FW_PROJECT_NAME_LEN);
2740 	fw_info.valid = true;
2741 	pr_info("PRCMU firmware: %s(%d), version %d.%d.%d\n",
2742 		fw_info.version.project_name,
2743 		fw_info.version.project,
2744 		fw_info.version.api_version,
2745 		fw_info.version.func_version,
2746 		fw_info.version.errata);
2747 	iounmap(tcpm_base);
2748 }
2749 
2750 void __init db8500_prcmu_early_init(void)
2751 {
2752 	/*
2753 	 * This is a temporary remap to bring up the clocks. It is
2754 	 * subsequently replaces with a real remap. After the merge of
2755 	 * the mailbox subsystem all of this early code goes away, and the
2756 	 * clock driver can probe independently. An early initcall will
2757 	 * still be needed, but it can be diverted into drivers/clk/ux500.
2758 	 */
2759 	struct device_node *np;
2760 
2761 	np = of_find_compatible_node(NULL, NULL, "stericsson,db8500-prcmu");
2762 	prcmu_base = of_iomap(np, 0);
2763 	if (!prcmu_base) {
2764 		of_node_put(np);
2765 		pr_err("%s: ioremap() of prcmu registers failed!\n", __func__);
2766 		return;
2767 	}
2768 	dbx500_fw_version_init(np);
2769 	of_node_put(np);
2770 
2771 	spin_lock_init(&mb0_transfer.lock);
2772 	spin_lock_init(&mb0_transfer.dbb_irqs_lock);
2773 	mutex_init(&mb0_transfer.ac_wake_lock);
2774 	init_completion(&mb0_transfer.ac_wake_work);
2775 	mutex_init(&mb1_transfer.lock);
2776 	init_completion(&mb1_transfer.work);
2777 	mb1_transfer.ape_opp = APE_NO_CHANGE;
2778 	mutex_init(&mb2_transfer.lock);
2779 	init_completion(&mb2_transfer.work);
2780 	spin_lock_init(&mb2_transfer.auto_pm_lock);
2781 	spin_lock_init(&mb3_transfer.lock);
2782 	mutex_init(&mb3_transfer.sysclk_lock);
2783 	init_completion(&mb3_transfer.sysclk_work);
2784 	mutex_init(&mb4_transfer.lock);
2785 	init_completion(&mb4_transfer.work);
2786 	mutex_init(&mb5_transfer.lock);
2787 	init_completion(&mb5_transfer.work);
2788 
2789 	INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
2790 }
2791 
2792 static void init_prcm_registers(void)
2793 {
2794 	u32 val;
2795 
2796 	val = readl(PRCM_A9PL_FORCE_CLKEN);
2797 	val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
2798 		PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
2799 	writel(val, (PRCM_A9PL_FORCE_CLKEN));
2800 }
2801 
2802 /*
2803  * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
2804  */
2805 static struct regulator_consumer_supply db8500_vape_consumers[] = {
2806 	REGULATOR_SUPPLY("v-ape", NULL),
2807 	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2808 	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2809 	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2810 	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
2811 	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
2812 	/* "v-mmc" changed to "vcore" in the mainline kernel */
2813 	REGULATOR_SUPPLY("vcore", "sdi0"),
2814 	REGULATOR_SUPPLY("vcore", "sdi1"),
2815 	REGULATOR_SUPPLY("vcore", "sdi2"),
2816 	REGULATOR_SUPPLY("vcore", "sdi3"),
2817 	REGULATOR_SUPPLY("vcore", "sdi4"),
2818 	REGULATOR_SUPPLY("v-dma", "dma40.0"),
2819 	REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2820 	/* "v-uart" changed to "vcore" in the mainline kernel */
2821 	REGULATOR_SUPPLY("vcore", "uart0"),
2822 	REGULATOR_SUPPLY("vcore", "uart1"),
2823 	REGULATOR_SUPPLY("vcore", "uart2"),
2824 	REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
2825 	REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
2826 	REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
2827 };
2828 
2829 static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
2830 	REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2831 	/* AV8100 regulator */
2832 	REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2833 };
2834 
2835 static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
2836 	REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
2837 	REGULATOR_SUPPLY("vsupply", "mcde"),
2838 };
2839 
2840 /* SVA MMDSP regulator switch */
2841 static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
2842 	REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2843 };
2844 
2845 /* SVA pipe regulator switch */
2846 static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
2847 	REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2848 };
2849 
2850 /* SIA MMDSP regulator switch */
2851 static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
2852 	REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2853 };
2854 
2855 /* SIA pipe regulator switch */
2856 static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
2857 	REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2858 };
2859 
2860 static struct regulator_consumer_supply db8500_sga_consumers[] = {
2861 	REGULATOR_SUPPLY("v-mali", NULL),
2862 };
2863 
2864 /* ESRAM1 and 2 regulator switch */
2865 static struct regulator_consumer_supply db8500_esram12_consumers[] = {
2866 	REGULATOR_SUPPLY("esram12", "cm_control"),
2867 };
2868 
2869 /* ESRAM3 and 4 regulator switch */
2870 static struct regulator_consumer_supply db8500_esram34_consumers[] = {
2871 	REGULATOR_SUPPLY("v-esram34", "mcde"),
2872 	REGULATOR_SUPPLY("esram34", "cm_control"),
2873 	REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
2874 };
2875 
2876 static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
2877 	[DB8500_REGULATOR_VAPE] = {
2878 		.constraints = {
2879 			.name = "db8500-vape",
2880 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2881 			.always_on = true,
2882 		},
2883 		.consumer_supplies = db8500_vape_consumers,
2884 		.num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
2885 	},
2886 	[DB8500_REGULATOR_VARM] = {
2887 		.constraints = {
2888 			.name = "db8500-varm",
2889 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2890 		},
2891 	},
2892 	[DB8500_REGULATOR_VMODEM] = {
2893 		.constraints = {
2894 			.name = "db8500-vmodem",
2895 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2896 		},
2897 	},
2898 	[DB8500_REGULATOR_VPLL] = {
2899 		.constraints = {
2900 			.name = "db8500-vpll",
2901 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2902 		},
2903 	},
2904 	[DB8500_REGULATOR_VSMPS1] = {
2905 		.constraints = {
2906 			.name = "db8500-vsmps1",
2907 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2908 		},
2909 	},
2910 	[DB8500_REGULATOR_VSMPS2] = {
2911 		.constraints = {
2912 			.name = "db8500-vsmps2",
2913 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2914 		},
2915 		.consumer_supplies = db8500_vsmps2_consumers,
2916 		.num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
2917 	},
2918 	[DB8500_REGULATOR_VSMPS3] = {
2919 		.constraints = {
2920 			.name = "db8500-vsmps3",
2921 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2922 		},
2923 	},
2924 	[DB8500_REGULATOR_VRF1] = {
2925 		.constraints = {
2926 			.name = "db8500-vrf1",
2927 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2928 		},
2929 	},
2930 	[DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
2931 		/* dependency to u8500-vape is handled outside regulator framework */
2932 		.constraints = {
2933 			.name = "db8500-sva-mmdsp",
2934 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2935 		},
2936 		.consumer_supplies = db8500_svammdsp_consumers,
2937 		.num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
2938 	},
2939 	[DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
2940 		.constraints = {
2941 			/* "ret" means "retention" */
2942 			.name = "db8500-sva-mmdsp-ret",
2943 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2944 		},
2945 	},
2946 	[DB8500_REGULATOR_SWITCH_SVAPIPE] = {
2947 		/* dependency to u8500-vape is handled outside regulator framework */
2948 		.constraints = {
2949 			.name = "db8500-sva-pipe",
2950 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2951 		},
2952 		.consumer_supplies = db8500_svapipe_consumers,
2953 		.num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
2954 	},
2955 	[DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
2956 		/* dependency to u8500-vape is handled outside regulator framework */
2957 		.constraints = {
2958 			.name = "db8500-sia-mmdsp",
2959 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2960 		},
2961 		.consumer_supplies = db8500_siammdsp_consumers,
2962 		.num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
2963 	},
2964 	[DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
2965 		.constraints = {
2966 			.name = "db8500-sia-mmdsp-ret",
2967 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2968 		},
2969 	},
2970 	[DB8500_REGULATOR_SWITCH_SIAPIPE] = {
2971 		/* dependency to u8500-vape is handled outside regulator framework */
2972 		.constraints = {
2973 			.name = "db8500-sia-pipe",
2974 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2975 		},
2976 		.consumer_supplies = db8500_siapipe_consumers,
2977 		.num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
2978 	},
2979 	[DB8500_REGULATOR_SWITCH_SGA] = {
2980 		.supply_regulator = "db8500-vape",
2981 		.constraints = {
2982 			.name = "db8500-sga",
2983 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2984 		},
2985 		.consumer_supplies = db8500_sga_consumers,
2986 		.num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
2987 
2988 	},
2989 	[DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
2990 		.supply_regulator = "db8500-vape",
2991 		.constraints = {
2992 			.name = "db8500-b2r2-mcde",
2993 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2994 		},
2995 		.consumer_supplies = db8500_b2r2_mcde_consumers,
2996 		.num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
2997 	},
2998 	[DB8500_REGULATOR_SWITCH_ESRAM12] = {
2999 		/*
3000 		 * esram12 is set in retention and supplied by Vsafe when Vape is off,
3001 		 * no need to hold Vape
3002 		 */
3003 		.constraints = {
3004 			.name = "db8500-esram12",
3005 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
3006 		},
3007 		.consumer_supplies = db8500_esram12_consumers,
3008 		.num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
3009 	},
3010 	[DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
3011 		.constraints = {
3012 			.name = "db8500-esram12-ret",
3013 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
3014 		},
3015 	},
3016 	[DB8500_REGULATOR_SWITCH_ESRAM34] = {
3017 		/*
3018 		 * esram34 is set in retention and supplied by Vsafe when Vape is off,
3019 		 * no need to hold Vape
3020 		 */
3021 		.constraints = {
3022 			.name = "db8500-esram34",
3023 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
3024 		},
3025 		.consumer_supplies = db8500_esram34_consumers,
3026 		.num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
3027 	},
3028 	[DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
3029 		.constraints = {
3030 			.name = "db8500-esram34-ret",
3031 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
3032 		},
3033 	},
3034 };
3035 
3036 static struct ux500_wdt_data db8500_wdt_pdata = {
3037 	.timeout = 600, /* 10 minutes */
3038 	.has_28_bits_resolution = true,
3039 };
3040 
3041 static const struct mfd_cell common_prcmu_devs[] = {
3042 	{
3043 		.name = "ux500_wdt",
3044 		.platform_data = &db8500_wdt_pdata,
3045 		.pdata_size = sizeof(db8500_wdt_pdata),
3046 		.id = -1,
3047 	},
3048 };
3049 
3050 static const struct mfd_cell db8500_prcmu_devs[] = {
3051 	OF_MFD_CELL("db8500-prcmu-regulators", NULL,
3052 		    &db8500_regulators, sizeof(db8500_regulators), 0,
3053 		    "stericsson,db8500-prcmu-regulator"),
3054 	OF_MFD_CELL("cpuidle-dbx500",
3055 		    NULL, NULL, 0, 0, "stericsson,cpuidle-dbx500"),
3056 	OF_MFD_CELL("db8500-thermal",
3057 		    NULL, NULL, 0, 0, "stericsson,db8500-thermal"),
3058 };
3059 
3060 static int db8500_prcmu_register_ab8500(struct device *parent)
3061 {
3062 	struct device_node *np;
3063 	struct resource ab8500_resource;
3064 	const struct mfd_cell ab8500_cell = {
3065 		.name = "ab8500-core",
3066 		.of_compatible = "stericsson,ab8500",
3067 		.id = AB8500_VERSION_AB8500,
3068 		.resources = &ab8500_resource,
3069 		.num_resources = 1,
3070 	};
3071 
3072 	if (!parent->of_node)
3073 		return -ENODEV;
3074 
3075 	/* Look up the device node, sneak the IRQ out of it */
3076 	for_each_child_of_node(parent->of_node, np) {
3077 		if (of_device_is_compatible(np, ab8500_cell.of_compatible))
3078 			break;
3079 	}
3080 	if (!np) {
3081 		dev_info(parent, "could not find AB8500 node in the device tree\n");
3082 		return -ENODEV;
3083 	}
3084 	of_irq_to_resource_table(np, &ab8500_resource, 1);
3085 
3086 	return mfd_add_devices(parent, 0, &ab8500_cell, 1, NULL, 0, NULL);
3087 }
3088 
3089 /**
3090  * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
3091  *
3092  */
3093 static int db8500_prcmu_probe(struct platform_device *pdev)
3094 {
3095 	struct device_node *np = pdev->dev.of_node;
3096 	int irq = 0, err = 0;
3097 	struct resource *res;
3098 
3099 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu");
3100 	if (!res) {
3101 		dev_err(&pdev->dev, "no prcmu memory region provided\n");
3102 		return -EINVAL;
3103 	}
3104 	prcmu_base = devm_ioremap(&pdev->dev, res->start, resource_size(res));
3105 	if (!prcmu_base) {
3106 		dev_err(&pdev->dev,
3107 			"failed to ioremap prcmu register memory\n");
3108 		return -ENOMEM;
3109 	}
3110 	init_prcm_registers();
3111 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu-tcdm");
3112 	if (!res) {
3113 		dev_err(&pdev->dev, "no prcmu tcdm region provided\n");
3114 		return -EINVAL;
3115 	}
3116 	tcdm_base = devm_ioremap(&pdev->dev, res->start,
3117 			resource_size(res));
3118 	if (!tcdm_base) {
3119 		dev_err(&pdev->dev,
3120 			"failed to ioremap prcmu-tcdm register memory\n");
3121 		return -ENOMEM;
3122 	}
3123 
3124 	/* Clean up the mailbox interrupts after pre-kernel code. */
3125 	writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
3126 
3127 	irq = platform_get_irq(pdev, 0);
3128 	if (irq <= 0)
3129 		return irq;
3130 
3131 	err = request_threaded_irq(irq, prcmu_irq_handler,
3132 	        prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
3133 	if (err < 0) {
3134 		pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
3135 		return err;
3136 	}
3137 
3138 	db8500_irq_init(np);
3139 
3140 	prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
3141 
3142 	err = mfd_add_devices(&pdev->dev, 0, common_prcmu_devs,
3143 			      ARRAY_SIZE(common_prcmu_devs), NULL, 0, db8500_irq_domain);
3144 	if (err) {
3145 		pr_err("prcmu: Failed to add subdevices\n");
3146 		return err;
3147 	}
3148 
3149 	/* TODO: Remove restriction when clk definitions are available. */
3150 	if (!of_machine_is_compatible("st-ericsson,u8540")) {
3151 		err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
3152 				      ARRAY_SIZE(db8500_prcmu_devs), NULL, 0,
3153 				      db8500_irq_domain);
3154 		if (err) {
3155 			mfd_remove_devices(&pdev->dev);
3156 			pr_err("prcmu: Failed to add subdevices\n");
3157 			return err;
3158 		}
3159 	}
3160 
3161 	err = db8500_prcmu_register_ab8500(&pdev->dev);
3162 	if (err) {
3163 		mfd_remove_devices(&pdev->dev);
3164 		pr_err("prcmu: Failed to add ab8500 subdevice\n");
3165 		return err;
3166 	}
3167 
3168 	pr_info("DB8500 PRCMU initialized\n");
3169 	return err;
3170 }
3171 static const struct of_device_id db8500_prcmu_match[] = {
3172 	{ .compatible = "stericsson,db8500-prcmu"},
3173 	{ },
3174 };
3175 
3176 static struct platform_driver db8500_prcmu_driver = {
3177 	.driver = {
3178 		.name = "db8500-prcmu",
3179 		.of_match_table = db8500_prcmu_match,
3180 	},
3181 	.probe = db8500_prcmu_probe,
3182 };
3183 
3184 static int __init db8500_prcmu_init(void)
3185 {
3186 	return platform_driver_register(&db8500_prcmu_driver);
3187 }
3188 core_initcall(db8500_prcmu_init);
3189