xref: /openbmc/linux/drivers/mfd/db8500-prcmu.c (revision 160b8e75)
1 /*
2  * Copyright (C) STMicroelectronics 2009
3  * Copyright (C) ST-Ericsson SA 2010
4  *
5  * License Terms: GNU General Public License v2
6  * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
7  * Author: Sundar Iyer <sundar.iyer@stericsson.com>
8  * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
9  *
10  * U8500 PRCM Unit interface driver
11  *
12  */
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/delay.h>
16 #include <linux/errno.h>
17 #include <linux/err.h>
18 #include <linux/spinlock.h>
19 #include <linux/io.h>
20 #include <linux/slab.h>
21 #include <linux/mutex.h>
22 #include <linux/completion.h>
23 #include <linux/irq.h>
24 #include <linux/jiffies.h>
25 #include <linux/bitops.h>
26 #include <linux/fs.h>
27 #include <linux/of.h>
28 #include <linux/of_irq.h>
29 #include <linux/platform_device.h>
30 #include <linux/uaccess.h>
31 #include <linux/mfd/core.h>
32 #include <linux/mfd/dbx500-prcmu.h>
33 #include <linux/mfd/abx500/ab8500.h>
34 #include <linux/regulator/db8500-prcmu.h>
35 #include <linux/regulator/machine.h>
36 #include <linux/platform_data/ux500_wdt.h>
37 #include <linux/platform_data/db8500_thermal.h>
38 #include "dbx500-prcmu-regs.h"
39 
40 /* Index of different voltages to be used when accessing AVSData */
41 #define PRCM_AVS_BASE		0x2FC
42 #define PRCM_AVS_VBB_RET	(PRCM_AVS_BASE + 0x0)
43 #define PRCM_AVS_VBB_MAX_OPP	(PRCM_AVS_BASE + 0x1)
44 #define PRCM_AVS_VBB_100_OPP	(PRCM_AVS_BASE + 0x2)
45 #define PRCM_AVS_VBB_50_OPP	(PRCM_AVS_BASE + 0x3)
46 #define PRCM_AVS_VARM_MAX_OPP	(PRCM_AVS_BASE + 0x4)
47 #define PRCM_AVS_VARM_100_OPP	(PRCM_AVS_BASE + 0x5)
48 #define PRCM_AVS_VARM_50_OPP	(PRCM_AVS_BASE + 0x6)
49 #define PRCM_AVS_VARM_RET	(PRCM_AVS_BASE + 0x7)
50 #define PRCM_AVS_VAPE_100_OPP	(PRCM_AVS_BASE + 0x8)
51 #define PRCM_AVS_VAPE_50_OPP	(PRCM_AVS_BASE + 0x9)
52 #define PRCM_AVS_VMOD_100_OPP	(PRCM_AVS_BASE + 0xA)
53 #define PRCM_AVS_VMOD_50_OPP	(PRCM_AVS_BASE + 0xB)
54 #define PRCM_AVS_VSAFE		(PRCM_AVS_BASE + 0xC)
55 
56 #define PRCM_AVS_VOLTAGE		0
57 #define PRCM_AVS_VOLTAGE_MASK		0x3f
58 #define PRCM_AVS_ISSLOWSTARTUP		6
59 #define PRCM_AVS_ISSLOWSTARTUP_MASK	(1 << PRCM_AVS_ISSLOWSTARTUP)
60 #define PRCM_AVS_ISMODEENABLE		7
61 #define PRCM_AVS_ISMODEENABLE_MASK	(1 << PRCM_AVS_ISMODEENABLE)
62 
63 #define PRCM_BOOT_STATUS	0xFFF
64 #define PRCM_ROMCODE_A2P	0xFFE
65 #define PRCM_ROMCODE_P2A	0xFFD
66 #define PRCM_XP70_CUR_PWR_STATE 0xFFC      /* 4 BYTES */
67 
68 #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
69 
70 #define _PRCM_MBOX_HEADER		0xFE8 /* 16 bytes */
71 #define PRCM_MBOX_HEADER_REQ_MB0	(_PRCM_MBOX_HEADER + 0x0)
72 #define PRCM_MBOX_HEADER_REQ_MB1	(_PRCM_MBOX_HEADER + 0x1)
73 #define PRCM_MBOX_HEADER_REQ_MB2	(_PRCM_MBOX_HEADER + 0x2)
74 #define PRCM_MBOX_HEADER_REQ_MB3	(_PRCM_MBOX_HEADER + 0x3)
75 #define PRCM_MBOX_HEADER_REQ_MB4	(_PRCM_MBOX_HEADER + 0x4)
76 #define PRCM_MBOX_HEADER_REQ_MB5	(_PRCM_MBOX_HEADER + 0x5)
77 #define PRCM_MBOX_HEADER_ACK_MB0	(_PRCM_MBOX_HEADER + 0x8)
78 
79 /* Req Mailboxes */
80 #define PRCM_REQ_MB0 0xFDC /* 12 bytes  */
81 #define PRCM_REQ_MB1 0xFD0 /* 12 bytes  */
82 #define PRCM_REQ_MB2 0xFC0 /* 16 bytes  */
83 #define PRCM_REQ_MB3 0xE4C /* 372 bytes  */
84 #define PRCM_REQ_MB4 0xE48 /* 4 bytes  */
85 #define PRCM_REQ_MB5 0xE44 /* 4 bytes  */
86 
87 /* Ack Mailboxes */
88 #define PRCM_ACK_MB0 0xE08 /* 52 bytes  */
89 #define PRCM_ACK_MB1 0xE04 /* 4 bytes */
90 #define PRCM_ACK_MB2 0xE00 /* 4 bytes */
91 #define PRCM_ACK_MB3 0xDFC /* 4 bytes */
92 #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
93 #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
94 
95 /* Mailbox 0 headers */
96 #define MB0H_POWER_STATE_TRANS		0
97 #define MB0H_CONFIG_WAKEUPS_EXE		1
98 #define MB0H_READ_WAKEUP_ACK		3
99 #define MB0H_CONFIG_WAKEUPS_SLEEP	4
100 
101 #define MB0H_WAKEUP_EXE 2
102 #define MB0H_WAKEUP_SLEEP 5
103 
104 /* Mailbox 0 REQs */
105 #define PRCM_REQ_MB0_AP_POWER_STATE	(PRCM_REQ_MB0 + 0x0)
106 #define PRCM_REQ_MB0_AP_PLL_STATE	(PRCM_REQ_MB0 + 0x1)
107 #define PRCM_REQ_MB0_ULP_CLOCK_STATE	(PRCM_REQ_MB0 + 0x2)
108 #define PRCM_REQ_MB0_DO_NOT_WFI		(PRCM_REQ_MB0 + 0x3)
109 #define PRCM_REQ_MB0_WAKEUP_8500	(PRCM_REQ_MB0 + 0x4)
110 #define PRCM_REQ_MB0_WAKEUP_4500	(PRCM_REQ_MB0 + 0x8)
111 
112 /* Mailbox 0 ACKs */
113 #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS	(PRCM_ACK_MB0 + 0x0)
114 #define PRCM_ACK_MB0_READ_POINTER	(PRCM_ACK_MB0 + 0x1)
115 #define PRCM_ACK_MB0_WAKEUP_0_8500	(PRCM_ACK_MB0 + 0x4)
116 #define PRCM_ACK_MB0_WAKEUP_0_4500	(PRCM_ACK_MB0 + 0x8)
117 #define PRCM_ACK_MB0_WAKEUP_1_8500	(PRCM_ACK_MB0 + 0x1C)
118 #define PRCM_ACK_MB0_WAKEUP_1_4500	(PRCM_ACK_MB0 + 0x20)
119 #define PRCM_ACK_MB0_EVENT_4500_NUMBERS	20
120 
121 /* Mailbox 1 headers */
122 #define MB1H_ARM_APE_OPP 0x0
123 #define MB1H_RESET_MODEM 0x2
124 #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
125 #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
126 #define MB1H_RELEASE_USB_WAKEUP 0x5
127 #define MB1H_PLL_ON_OFF 0x6
128 
129 /* Mailbox 1 Requests */
130 #define PRCM_REQ_MB1_ARM_OPP			(PRCM_REQ_MB1 + 0x0)
131 #define PRCM_REQ_MB1_APE_OPP			(PRCM_REQ_MB1 + 0x1)
132 #define PRCM_REQ_MB1_PLL_ON_OFF			(PRCM_REQ_MB1 + 0x4)
133 #define PLL_SOC0_OFF	0x1
134 #define PLL_SOC0_ON	0x2
135 #define PLL_SOC1_OFF	0x4
136 #define PLL_SOC1_ON	0x8
137 
138 /* Mailbox 1 ACKs */
139 #define PRCM_ACK_MB1_CURRENT_ARM_OPP	(PRCM_ACK_MB1 + 0x0)
140 #define PRCM_ACK_MB1_CURRENT_APE_OPP	(PRCM_ACK_MB1 + 0x1)
141 #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS	(PRCM_ACK_MB1 + 0x2)
142 #define PRCM_ACK_MB1_DVFS_STATUS	(PRCM_ACK_MB1 + 0x3)
143 
144 /* Mailbox 2 headers */
145 #define MB2H_DPS	0x0
146 #define MB2H_AUTO_PWR	0x1
147 
148 /* Mailbox 2 REQs */
149 #define PRCM_REQ_MB2_SVA_MMDSP		(PRCM_REQ_MB2 + 0x0)
150 #define PRCM_REQ_MB2_SVA_PIPE		(PRCM_REQ_MB2 + 0x1)
151 #define PRCM_REQ_MB2_SIA_MMDSP		(PRCM_REQ_MB2 + 0x2)
152 #define PRCM_REQ_MB2_SIA_PIPE		(PRCM_REQ_MB2 + 0x3)
153 #define PRCM_REQ_MB2_SGA		(PRCM_REQ_MB2 + 0x4)
154 #define PRCM_REQ_MB2_B2R2_MCDE		(PRCM_REQ_MB2 + 0x5)
155 #define PRCM_REQ_MB2_ESRAM12		(PRCM_REQ_MB2 + 0x6)
156 #define PRCM_REQ_MB2_ESRAM34		(PRCM_REQ_MB2 + 0x7)
157 #define PRCM_REQ_MB2_AUTO_PM_SLEEP	(PRCM_REQ_MB2 + 0x8)
158 #define PRCM_REQ_MB2_AUTO_PM_IDLE	(PRCM_REQ_MB2 + 0xC)
159 
160 /* Mailbox 2 ACKs */
161 #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
162 #define HWACC_PWR_ST_OK 0xFE
163 
164 /* Mailbox 3 headers */
165 #define MB3H_ANC	0x0
166 #define MB3H_SIDETONE	0x1
167 #define MB3H_SYSCLK	0xE
168 
169 /* Mailbox 3 Requests */
170 #define PRCM_REQ_MB3_ANC_FIR_COEFF	(PRCM_REQ_MB3 + 0x0)
171 #define PRCM_REQ_MB3_ANC_IIR_COEFF	(PRCM_REQ_MB3 + 0x20)
172 #define PRCM_REQ_MB3_ANC_SHIFTER	(PRCM_REQ_MB3 + 0x60)
173 #define PRCM_REQ_MB3_ANC_WARP		(PRCM_REQ_MB3 + 0x64)
174 #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN	(PRCM_REQ_MB3 + 0x68)
175 #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF	(PRCM_REQ_MB3 + 0x6C)
176 #define PRCM_REQ_MB3_SYSCLK_MGT		(PRCM_REQ_MB3 + 0x16C)
177 
178 /* Mailbox 4 headers */
179 #define MB4H_DDR_INIT	0x0
180 #define MB4H_MEM_ST	0x1
181 #define MB4H_HOTDOG	0x12
182 #define MB4H_HOTMON	0x13
183 #define MB4H_HOT_PERIOD	0x14
184 #define MB4H_A9WDOG_CONF 0x16
185 #define MB4H_A9WDOG_EN   0x17
186 #define MB4H_A9WDOG_DIS  0x18
187 #define MB4H_A9WDOG_LOAD 0x19
188 #define MB4H_A9WDOG_KICK 0x20
189 
190 /* Mailbox 4 Requests */
191 #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE	(PRCM_REQ_MB4 + 0x0)
192 #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE	(PRCM_REQ_MB4 + 0x1)
193 #define PRCM_REQ_MB4_ESRAM0_ST			(PRCM_REQ_MB4 + 0x3)
194 #define PRCM_REQ_MB4_HOTDOG_THRESHOLD		(PRCM_REQ_MB4 + 0x0)
195 #define PRCM_REQ_MB4_HOTMON_LOW			(PRCM_REQ_MB4 + 0x0)
196 #define PRCM_REQ_MB4_HOTMON_HIGH		(PRCM_REQ_MB4 + 0x1)
197 #define PRCM_REQ_MB4_HOTMON_CONFIG		(PRCM_REQ_MB4 + 0x2)
198 #define PRCM_REQ_MB4_HOT_PERIOD			(PRCM_REQ_MB4 + 0x0)
199 #define HOTMON_CONFIG_LOW			BIT(0)
200 #define HOTMON_CONFIG_HIGH			BIT(1)
201 #define PRCM_REQ_MB4_A9WDOG_0			(PRCM_REQ_MB4 + 0x0)
202 #define PRCM_REQ_MB4_A9WDOG_1			(PRCM_REQ_MB4 + 0x1)
203 #define PRCM_REQ_MB4_A9WDOG_2			(PRCM_REQ_MB4 + 0x2)
204 #define PRCM_REQ_MB4_A9WDOG_3			(PRCM_REQ_MB4 + 0x3)
205 #define A9WDOG_AUTO_OFF_EN			BIT(7)
206 #define A9WDOG_AUTO_OFF_DIS			0
207 #define A9WDOG_ID_MASK				0xf
208 
209 /* Mailbox 5 Requests */
210 #define PRCM_REQ_MB5_I2C_SLAVE_OP	(PRCM_REQ_MB5 + 0x0)
211 #define PRCM_REQ_MB5_I2C_HW_BITS	(PRCM_REQ_MB5 + 0x1)
212 #define PRCM_REQ_MB5_I2C_REG		(PRCM_REQ_MB5 + 0x2)
213 #define PRCM_REQ_MB5_I2C_VAL		(PRCM_REQ_MB5 + 0x3)
214 #define PRCMU_I2C_WRITE(slave) (((slave) << 1) | BIT(6))
215 #define PRCMU_I2C_READ(slave) (((slave) << 1) | BIT(0) | BIT(6))
216 #define PRCMU_I2C_STOP_EN		BIT(3)
217 
218 /* Mailbox 5 ACKs */
219 #define PRCM_ACK_MB5_I2C_STATUS	(PRCM_ACK_MB5 + 0x1)
220 #define PRCM_ACK_MB5_I2C_VAL	(PRCM_ACK_MB5 + 0x3)
221 #define I2C_WR_OK 0x1
222 #define I2C_RD_OK 0x2
223 
224 #define NUM_MB 8
225 #define MBOX_BIT BIT
226 #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
227 
228 /*
229  * Wakeups/IRQs
230  */
231 
232 #define WAKEUP_BIT_RTC BIT(0)
233 #define WAKEUP_BIT_RTT0 BIT(1)
234 #define WAKEUP_BIT_RTT1 BIT(2)
235 #define WAKEUP_BIT_HSI0 BIT(3)
236 #define WAKEUP_BIT_HSI1 BIT(4)
237 #define WAKEUP_BIT_CA_WAKE BIT(5)
238 #define WAKEUP_BIT_USB BIT(6)
239 #define WAKEUP_BIT_ABB BIT(7)
240 #define WAKEUP_BIT_ABB_FIFO BIT(8)
241 #define WAKEUP_BIT_SYSCLK_OK BIT(9)
242 #define WAKEUP_BIT_CA_SLEEP BIT(10)
243 #define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
244 #define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
245 #define WAKEUP_BIT_ANC_OK BIT(13)
246 #define WAKEUP_BIT_SW_ERROR BIT(14)
247 #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
248 #define WAKEUP_BIT_ARM BIT(17)
249 #define WAKEUP_BIT_HOTMON_LOW BIT(18)
250 #define WAKEUP_BIT_HOTMON_HIGH BIT(19)
251 #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
252 #define WAKEUP_BIT_GPIO0 BIT(23)
253 #define WAKEUP_BIT_GPIO1 BIT(24)
254 #define WAKEUP_BIT_GPIO2 BIT(25)
255 #define WAKEUP_BIT_GPIO3 BIT(26)
256 #define WAKEUP_BIT_GPIO4 BIT(27)
257 #define WAKEUP_BIT_GPIO5 BIT(28)
258 #define WAKEUP_BIT_GPIO6 BIT(29)
259 #define WAKEUP_BIT_GPIO7 BIT(30)
260 #define WAKEUP_BIT_GPIO8 BIT(31)
261 
262 static struct {
263 	bool valid;
264 	struct prcmu_fw_version version;
265 } fw_info;
266 
267 static struct irq_domain *db8500_irq_domain;
268 
269 /*
270  * This vector maps irq numbers to the bits in the bit field used in
271  * communication with the PRCMU firmware.
272  *
273  * The reason for having this is to keep the irq numbers contiguous even though
274  * the bits in the bit field are not. (The bits also have a tendency to move
275  * around, to further complicate matters.)
276  */
277 #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name))
278 #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
279 
280 #define IRQ_PRCMU_RTC 0
281 #define IRQ_PRCMU_RTT0 1
282 #define IRQ_PRCMU_RTT1 2
283 #define IRQ_PRCMU_HSI0 3
284 #define IRQ_PRCMU_HSI1 4
285 #define IRQ_PRCMU_CA_WAKE 5
286 #define IRQ_PRCMU_USB 6
287 #define IRQ_PRCMU_ABB 7
288 #define IRQ_PRCMU_ABB_FIFO 8
289 #define IRQ_PRCMU_ARM 9
290 #define IRQ_PRCMU_MODEM_SW_RESET_REQ 10
291 #define IRQ_PRCMU_GPIO0 11
292 #define IRQ_PRCMU_GPIO1 12
293 #define IRQ_PRCMU_GPIO2 13
294 #define IRQ_PRCMU_GPIO3 14
295 #define IRQ_PRCMU_GPIO4 15
296 #define IRQ_PRCMU_GPIO5 16
297 #define IRQ_PRCMU_GPIO6 17
298 #define IRQ_PRCMU_GPIO7 18
299 #define IRQ_PRCMU_GPIO8 19
300 #define IRQ_PRCMU_CA_SLEEP 20
301 #define IRQ_PRCMU_HOTMON_LOW 21
302 #define IRQ_PRCMU_HOTMON_HIGH 22
303 #define NUM_PRCMU_WAKEUPS 23
304 
305 static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
306 	IRQ_ENTRY(RTC),
307 	IRQ_ENTRY(RTT0),
308 	IRQ_ENTRY(RTT1),
309 	IRQ_ENTRY(HSI0),
310 	IRQ_ENTRY(HSI1),
311 	IRQ_ENTRY(CA_WAKE),
312 	IRQ_ENTRY(USB),
313 	IRQ_ENTRY(ABB),
314 	IRQ_ENTRY(ABB_FIFO),
315 	IRQ_ENTRY(CA_SLEEP),
316 	IRQ_ENTRY(ARM),
317 	IRQ_ENTRY(HOTMON_LOW),
318 	IRQ_ENTRY(HOTMON_HIGH),
319 	IRQ_ENTRY(MODEM_SW_RESET_REQ),
320 	IRQ_ENTRY(GPIO0),
321 	IRQ_ENTRY(GPIO1),
322 	IRQ_ENTRY(GPIO2),
323 	IRQ_ENTRY(GPIO3),
324 	IRQ_ENTRY(GPIO4),
325 	IRQ_ENTRY(GPIO5),
326 	IRQ_ENTRY(GPIO6),
327 	IRQ_ENTRY(GPIO7),
328 	IRQ_ENTRY(GPIO8)
329 };
330 
331 #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
332 #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
333 static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
334 	WAKEUP_ENTRY(RTC),
335 	WAKEUP_ENTRY(RTT0),
336 	WAKEUP_ENTRY(RTT1),
337 	WAKEUP_ENTRY(HSI0),
338 	WAKEUP_ENTRY(HSI1),
339 	WAKEUP_ENTRY(USB),
340 	WAKEUP_ENTRY(ABB),
341 	WAKEUP_ENTRY(ABB_FIFO),
342 	WAKEUP_ENTRY(ARM)
343 };
344 
345 /*
346  * mb0_transfer - state needed for mailbox 0 communication.
347  * @lock:		The transaction lock.
348  * @dbb_events_lock:	A lock used to handle concurrent access to (parts of)
349  *			the request data.
350  * @mask_work:		Work structure used for (un)masking wakeup interrupts.
351  * @req:		Request data that need to persist between requests.
352  */
353 static struct {
354 	spinlock_t lock;
355 	spinlock_t dbb_irqs_lock;
356 	struct work_struct mask_work;
357 	struct mutex ac_wake_lock;
358 	struct completion ac_wake_work;
359 	struct {
360 		u32 dbb_irqs;
361 		u32 dbb_wakeups;
362 		u32 abb_events;
363 	} req;
364 } mb0_transfer;
365 
366 /*
367  * mb1_transfer - state needed for mailbox 1 communication.
368  * @lock:	The transaction lock.
369  * @work:	The transaction completion structure.
370  * @ape_opp:	The current APE OPP.
371  * @ack:	Reply ("acknowledge") data.
372  */
373 static struct {
374 	struct mutex lock;
375 	struct completion work;
376 	u8 ape_opp;
377 	struct {
378 		u8 header;
379 		u8 arm_opp;
380 		u8 ape_opp;
381 		u8 ape_voltage_status;
382 	} ack;
383 } mb1_transfer;
384 
385 /*
386  * mb2_transfer - state needed for mailbox 2 communication.
387  * @lock:            The transaction lock.
388  * @work:            The transaction completion structure.
389  * @auto_pm_lock:    The autonomous power management configuration lock.
390  * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
391  * @req:             Request data that need to persist between requests.
392  * @ack:             Reply ("acknowledge") data.
393  */
394 static struct {
395 	struct mutex lock;
396 	struct completion work;
397 	spinlock_t auto_pm_lock;
398 	bool auto_pm_enabled;
399 	struct {
400 		u8 status;
401 	} ack;
402 } mb2_transfer;
403 
404 /*
405  * mb3_transfer - state needed for mailbox 3 communication.
406  * @lock:		The request lock.
407  * @sysclk_lock:	A lock used to handle concurrent sysclk requests.
408  * @sysclk_work:	Work structure used for sysclk requests.
409  */
410 static struct {
411 	spinlock_t lock;
412 	struct mutex sysclk_lock;
413 	struct completion sysclk_work;
414 } mb3_transfer;
415 
416 /*
417  * mb4_transfer - state needed for mailbox 4 communication.
418  * @lock:	The transaction lock.
419  * @work:	The transaction completion structure.
420  */
421 static struct {
422 	struct mutex lock;
423 	struct completion work;
424 } mb4_transfer;
425 
426 /*
427  * mb5_transfer - state needed for mailbox 5 communication.
428  * @lock:	The transaction lock.
429  * @work:	The transaction completion structure.
430  * @ack:	Reply ("acknowledge") data.
431  */
432 static struct {
433 	struct mutex lock;
434 	struct completion work;
435 	struct {
436 		u8 status;
437 		u8 value;
438 	} ack;
439 } mb5_transfer;
440 
441 static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
442 
443 /* Spinlocks */
444 static DEFINE_SPINLOCK(prcmu_lock);
445 static DEFINE_SPINLOCK(clkout_lock);
446 
447 /* Global var to runtime determine TCDM base for v2 or v1 */
448 static __iomem void *tcdm_base;
449 static __iomem void *prcmu_base;
450 
451 struct clk_mgt {
452 	u32 offset;
453 	u32 pllsw;
454 	int branch;
455 	bool clk38div;
456 };
457 
458 enum {
459 	PLL_RAW,
460 	PLL_FIX,
461 	PLL_DIV
462 };
463 
464 static DEFINE_SPINLOCK(clk_mgt_lock);
465 
466 #define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
467 	{ (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
468 static struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
469 	CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
470 	CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
471 	CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
472 	CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
473 	CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
474 	CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
475 	CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
476 	CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
477 	CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
478 	CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
479 	CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
480 	CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
481 	CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
482 	CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
483 	CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
484 	CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
485 	CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
486 	CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
487 	CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
488 	CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
489 	CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
490 	CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
491 	CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
492 	CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
493 	CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
494 	CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
495 	CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
496 	CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
497 	CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
498 };
499 
500 struct dsiclk {
501 	u32 divsel_mask;
502 	u32 divsel_shift;
503 	u32 divsel;
504 };
505 
506 static struct dsiclk dsiclk[2] = {
507 	{
508 		.divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
509 		.divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
510 		.divsel = PRCM_DSI_PLLOUT_SEL_PHI,
511 	},
512 	{
513 		.divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
514 		.divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
515 		.divsel = PRCM_DSI_PLLOUT_SEL_PHI,
516 	}
517 };
518 
519 struct dsiescclk {
520 	u32 en;
521 	u32 div_mask;
522 	u32 div_shift;
523 };
524 
525 static struct dsiescclk dsiescclk[3] = {
526 	{
527 		.en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
528 		.div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
529 		.div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
530 	},
531 	{
532 		.en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
533 		.div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
534 		.div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
535 	},
536 	{
537 		.en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
538 		.div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
539 		.div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
540 	}
541 };
542 
543 
544 /*
545 * Used by MCDE to setup all necessary PRCMU registers
546 */
547 #define PRCMU_RESET_DSIPLL		0x00004000
548 #define PRCMU_UNCLAMP_DSIPLL		0x00400800
549 
550 #define PRCMU_CLK_PLL_DIV_SHIFT		0
551 #define PRCMU_CLK_PLL_SW_SHIFT		5
552 #define PRCMU_CLK_38			(1 << 9)
553 #define PRCMU_CLK_38_SRC		(1 << 10)
554 #define PRCMU_CLK_38_DIV		(1 << 11)
555 
556 /* PLLDIV=12, PLLSW=4 (PLLDDR) */
557 #define PRCMU_DSI_CLOCK_SETTING		0x0000008C
558 
559 /* DPI 50000000 Hz */
560 #define PRCMU_DPI_CLOCK_SETTING		((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
561 					  (16 << PRCMU_CLK_PLL_DIV_SHIFT))
562 #define PRCMU_DSI_LP_CLOCK_SETTING	0x00000E00
563 
564 /* D=101, N=1, R=4, SELDIV2=0 */
565 #define PRCMU_PLLDSI_FREQ_SETTING	0x00040165
566 
567 #define PRCMU_ENABLE_PLLDSI		0x00000001
568 #define PRCMU_DISABLE_PLLDSI		0x00000000
569 #define PRCMU_RELEASE_RESET_DSS		0x0000400C
570 #define PRCMU_DSI_PLLOUT_SEL_SETTING	0x00000202
571 /* ESC clk, div0=1, div1=1, div2=3 */
572 #define PRCMU_ENABLE_ESCAPE_CLOCK_DIV	0x07030101
573 #define PRCMU_DISABLE_ESCAPE_CLOCK_DIV	0x00030101
574 #define PRCMU_DSI_RESET_SW		0x00000007
575 
576 #define PRCMU_PLLDSI_LOCKP_LOCKED	0x3
577 
578 int db8500_prcmu_enable_dsipll(void)
579 {
580 	int i;
581 
582 	/* Clear DSIPLL_RESETN */
583 	writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR);
584 	/* Unclamp DSIPLL in/out */
585 	writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR);
586 
587 	/* Set DSI PLL FREQ */
588 	writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ);
589 	writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL);
590 	/* Enable Escape clocks */
591 	writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
592 
593 	/* Start DSI PLL */
594 	writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
595 	/* Reset DSI PLL */
596 	writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET);
597 	for (i = 0; i < 10; i++) {
598 		if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED)
599 					== PRCMU_PLLDSI_LOCKP_LOCKED)
600 			break;
601 		udelay(100);
602 	}
603 	/* Set DSIPLL_RESETN */
604 	writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET);
605 	return 0;
606 }
607 
608 int db8500_prcmu_disable_dsipll(void)
609 {
610 	/* Disable dsi pll */
611 	writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
612 	/* Disable  escapeclock */
613 	writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
614 	return 0;
615 }
616 
617 int db8500_prcmu_set_display_clocks(void)
618 {
619 	unsigned long flags;
620 
621 	spin_lock_irqsave(&clk_mgt_lock, flags);
622 
623 	/* Grab the HW semaphore. */
624 	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
625 		cpu_relax();
626 
627 	writel(PRCMU_DSI_CLOCK_SETTING, prcmu_base + PRCM_HDMICLK_MGT);
628 	writel(PRCMU_DSI_LP_CLOCK_SETTING, prcmu_base + PRCM_TVCLK_MGT);
629 	writel(PRCMU_DPI_CLOCK_SETTING, prcmu_base + PRCM_LCDCLK_MGT);
630 
631 	/* Release the HW semaphore. */
632 	writel(0, PRCM_SEM);
633 
634 	spin_unlock_irqrestore(&clk_mgt_lock, flags);
635 
636 	return 0;
637 }
638 
639 u32 db8500_prcmu_read(unsigned int reg)
640 {
641 	return readl(prcmu_base + reg);
642 }
643 
644 void db8500_prcmu_write(unsigned int reg, u32 value)
645 {
646 	unsigned long flags;
647 
648 	spin_lock_irqsave(&prcmu_lock, flags);
649 	writel(value, (prcmu_base + reg));
650 	spin_unlock_irqrestore(&prcmu_lock, flags);
651 }
652 
653 void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
654 {
655 	u32 val;
656 	unsigned long flags;
657 
658 	spin_lock_irqsave(&prcmu_lock, flags);
659 	val = readl(prcmu_base + reg);
660 	val = ((val & ~mask) | (value & mask));
661 	writel(val, (prcmu_base + reg));
662 	spin_unlock_irqrestore(&prcmu_lock, flags);
663 }
664 
665 struct prcmu_fw_version *prcmu_get_fw_version(void)
666 {
667 	return fw_info.valid ? &fw_info.version : NULL;
668 }
669 
670 bool prcmu_has_arm_maxopp(void)
671 {
672 	return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
673 		PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
674 }
675 
676 /**
677  * prcmu_set_rc_a2p - This function is used to run few power state sequences
678  * @val: Value to be set, i.e. transition requested
679  * Returns: 0 on success, -EINVAL on invalid argument
680  *
681  * This function is used to run the following power state sequences -
682  * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
683  */
684 int prcmu_set_rc_a2p(enum romcode_write val)
685 {
686 	if (val < RDY_2_DS || val > RDY_2_XP70_RST)
687 		return -EINVAL;
688 	writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
689 	return 0;
690 }
691 
692 /**
693  * prcmu_get_rc_p2a - This function is used to get power state sequences
694  * Returns: the power transition that has last happened
695  *
696  * This function can return the following transitions-
697  * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
698  */
699 enum romcode_read prcmu_get_rc_p2a(void)
700 {
701 	return readb(tcdm_base + PRCM_ROMCODE_P2A);
702 }
703 
704 /**
705  * prcmu_get_current_mode - Return the current XP70 power mode
706  * Returns: Returns the current AP(ARM) power mode: init,
707  * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
708  */
709 enum ap_pwrst prcmu_get_xp70_current_state(void)
710 {
711 	return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
712 }
713 
714 /**
715  * prcmu_config_clkout - Configure one of the programmable clock outputs.
716  * @clkout:	The CLKOUT number (0 or 1).
717  * @source:	The clock to be used (one of the PRCMU_CLKSRC_*).
718  * @div:	The divider to be applied.
719  *
720  * Configures one of the programmable clock outputs (CLKOUTs).
721  * @div should be in the range [1,63] to request a configuration, or 0 to
722  * inform that the configuration is no longer requested.
723  */
724 int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
725 {
726 	static int requests[2];
727 	int r = 0;
728 	unsigned long flags;
729 	u32 val;
730 	u32 bits;
731 	u32 mask;
732 	u32 div_mask;
733 
734 	BUG_ON(clkout > 1);
735 	BUG_ON(div > 63);
736 	BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
737 
738 	if (!div && !requests[clkout])
739 		return -EINVAL;
740 
741 	if (clkout == 0) {
742 		div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
743 		mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
744 		bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
745 			(div << PRCM_CLKOCR_CLKODIV0_SHIFT));
746 	} else {
747 		div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
748 		mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
749 			PRCM_CLKOCR_CLK1TYPE);
750 		bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
751 			(div << PRCM_CLKOCR_CLKODIV1_SHIFT));
752 	}
753 	bits &= mask;
754 
755 	spin_lock_irqsave(&clkout_lock, flags);
756 
757 	val = readl(PRCM_CLKOCR);
758 	if (val & div_mask) {
759 		if (div) {
760 			if ((val & mask) != bits) {
761 				r = -EBUSY;
762 				goto unlock_and_return;
763 			}
764 		} else {
765 			if ((val & mask & ~div_mask) != bits) {
766 				r = -EINVAL;
767 				goto unlock_and_return;
768 			}
769 		}
770 	}
771 	writel((bits | (val & ~mask)), PRCM_CLKOCR);
772 	requests[clkout] += (div ? 1 : -1);
773 
774 unlock_and_return:
775 	spin_unlock_irqrestore(&clkout_lock, flags);
776 
777 	return r;
778 }
779 
780 int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
781 {
782 	unsigned long flags;
783 
784 	BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
785 
786 	spin_lock_irqsave(&mb0_transfer.lock, flags);
787 
788 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
789 		cpu_relax();
790 
791 	writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
792 	writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
793 	writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
794 	writeb((keep_ulp_clk ? 1 : 0),
795 		(tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
796 	writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
797 	writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
798 
799 	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
800 
801 	return 0;
802 }
803 
804 u8 db8500_prcmu_get_power_state_result(void)
805 {
806 	return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
807 }
808 
809 /* This function should only be called while mb0_transfer.lock is held. */
810 static void config_wakeups(void)
811 {
812 	const u8 header[2] = {
813 		MB0H_CONFIG_WAKEUPS_EXE,
814 		MB0H_CONFIG_WAKEUPS_SLEEP
815 	};
816 	static u32 last_dbb_events;
817 	static u32 last_abb_events;
818 	u32 dbb_events;
819 	u32 abb_events;
820 	unsigned int i;
821 
822 	dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
823 	dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
824 
825 	abb_events = mb0_transfer.req.abb_events;
826 
827 	if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
828 		return;
829 
830 	for (i = 0; i < 2; i++) {
831 		while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
832 			cpu_relax();
833 		writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
834 		writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
835 		writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
836 		writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
837 	}
838 	last_dbb_events = dbb_events;
839 	last_abb_events = abb_events;
840 }
841 
842 void db8500_prcmu_enable_wakeups(u32 wakeups)
843 {
844 	unsigned long flags;
845 	u32 bits;
846 	int i;
847 
848 	BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
849 
850 	for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
851 		if (wakeups & BIT(i))
852 			bits |= prcmu_wakeup_bit[i];
853 	}
854 
855 	spin_lock_irqsave(&mb0_transfer.lock, flags);
856 
857 	mb0_transfer.req.dbb_wakeups = bits;
858 	config_wakeups();
859 
860 	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
861 }
862 
863 void db8500_prcmu_config_abb_event_readout(u32 abb_events)
864 {
865 	unsigned long flags;
866 
867 	spin_lock_irqsave(&mb0_transfer.lock, flags);
868 
869 	mb0_transfer.req.abb_events = abb_events;
870 	config_wakeups();
871 
872 	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
873 }
874 
875 void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
876 {
877 	if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
878 		*buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
879 	else
880 		*buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
881 }
882 
883 /**
884  * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
885  * @opp: The new ARM operating point to which transition is to be made
886  * Returns: 0 on success, non-zero on failure
887  *
888  * This function sets the the operating point of the ARM.
889  */
890 int db8500_prcmu_set_arm_opp(u8 opp)
891 {
892 	int r;
893 
894 	if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
895 		return -EINVAL;
896 
897 	r = 0;
898 
899 	mutex_lock(&mb1_transfer.lock);
900 
901 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
902 		cpu_relax();
903 
904 	writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
905 	writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
906 	writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
907 
908 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
909 	wait_for_completion(&mb1_transfer.work);
910 
911 	if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
912 		(mb1_transfer.ack.arm_opp != opp))
913 		r = -EIO;
914 
915 	mutex_unlock(&mb1_transfer.lock);
916 
917 	return r;
918 }
919 
920 /**
921  * db8500_prcmu_get_arm_opp - get the current ARM OPP
922  *
923  * Returns: the current ARM OPP
924  */
925 int db8500_prcmu_get_arm_opp(void)
926 {
927 	return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
928 }
929 
930 /**
931  * db8500_prcmu_get_ddr_opp - get the current DDR OPP
932  *
933  * Returns: the current DDR OPP
934  */
935 int db8500_prcmu_get_ddr_opp(void)
936 {
937 	return readb(PRCM_DDR_SUBSYS_APE_MINBW);
938 }
939 
940 /* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
941 static void request_even_slower_clocks(bool enable)
942 {
943 	u32 clock_reg[] = {
944 		PRCM_ACLK_MGT,
945 		PRCM_DMACLK_MGT
946 	};
947 	unsigned long flags;
948 	unsigned int i;
949 
950 	spin_lock_irqsave(&clk_mgt_lock, flags);
951 
952 	/* Grab the HW semaphore. */
953 	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
954 		cpu_relax();
955 
956 	for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
957 		u32 val;
958 		u32 div;
959 
960 		val = readl(prcmu_base + clock_reg[i]);
961 		div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
962 		if (enable) {
963 			if ((div <= 1) || (div > 15)) {
964 				pr_err("prcmu: Bad clock divider %d in %s\n",
965 					div, __func__);
966 				goto unlock_and_return;
967 			}
968 			div <<= 1;
969 		} else {
970 			if (div <= 2)
971 				goto unlock_and_return;
972 			div >>= 1;
973 		}
974 		val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
975 			(div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
976 		writel(val, prcmu_base + clock_reg[i]);
977 	}
978 
979 unlock_and_return:
980 	/* Release the HW semaphore. */
981 	writel(0, PRCM_SEM);
982 
983 	spin_unlock_irqrestore(&clk_mgt_lock, flags);
984 }
985 
986 /**
987  * db8500_set_ape_opp - set the appropriate APE OPP
988  * @opp: The new APE operating point to which transition is to be made
989  * Returns: 0 on success, non-zero on failure
990  *
991  * This function sets the operating point of the APE.
992  */
993 int db8500_prcmu_set_ape_opp(u8 opp)
994 {
995 	int r = 0;
996 
997 	if (opp == mb1_transfer.ape_opp)
998 		return 0;
999 
1000 	mutex_lock(&mb1_transfer.lock);
1001 
1002 	if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
1003 		request_even_slower_clocks(false);
1004 
1005 	if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
1006 		goto skip_message;
1007 
1008 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1009 		cpu_relax();
1010 
1011 	writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1012 	writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
1013 	writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
1014 		(tcdm_base + PRCM_REQ_MB1_APE_OPP));
1015 
1016 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1017 	wait_for_completion(&mb1_transfer.work);
1018 
1019 	if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
1020 		(mb1_transfer.ack.ape_opp != opp))
1021 		r = -EIO;
1022 
1023 skip_message:
1024 	if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
1025 		(r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
1026 		request_even_slower_clocks(true);
1027 	if (!r)
1028 		mb1_transfer.ape_opp = opp;
1029 
1030 	mutex_unlock(&mb1_transfer.lock);
1031 
1032 	return r;
1033 }
1034 
1035 /**
1036  * db8500_prcmu_get_ape_opp - get the current APE OPP
1037  *
1038  * Returns: the current APE OPP
1039  */
1040 int db8500_prcmu_get_ape_opp(void)
1041 {
1042 	return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
1043 }
1044 
1045 /**
1046  * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
1047  * @enable: true to request the higher voltage, false to drop a request.
1048  *
1049  * Calls to this function to enable and disable requests must be balanced.
1050  */
1051 int db8500_prcmu_request_ape_opp_100_voltage(bool enable)
1052 {
1053 	int r = 0;
1054 	u8 header;
1055 	static unsigned int requests;
1056 
1057 	mutex_lock(&mb1_transfer.lock);
1058 
1059 	if (enable) {
1060 		if (0 != requests++)
1061 			goto unlock_and_return;
1062 		header = MB1H_REQUEST_APE_OPP_100_VOLT;
1063 	} else {
1064 		if (requests == 0) {
1065 			r = -EIO;
1066 			goto unlock_and_return;
1067 		} else if (1 != requests--) {
1068 			goto unlock_and_return;
1069 		}
1070 		header = MB1H_RELEASE_APE_OPP_100_VOLT;
1071 	}
1072 
1073 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1074 		cpu_relax();
1075 
1076 	writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1077 
1078 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1079 	wait_for_completion(&mb1_transfer.work);
1080 
1081 	if ((mb1_transfer.ack.header != header) ||
1082 		((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1083 		r = -EIO;
1084 
1085 unlock_and_return:
1086 	mutex_unlock(&mb1_transfer.lock);
1087 
1088 	return r;
1089 }
1090 
1091 /**
1092  * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
1093  *
1094  * This function releases the power state requirements of a USB wakeup.
1095  */
1096 int prcmu_release_usb_wakeup_state(void)
1097 {
1098 	int r = 0;
1099 
1100 	mutex_lock(&mb1_transfer.lock);
1101 
1102 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1103 		cpu_relax();
1104 
1105 	writeb(MB1H_RELEASE_USB_WAKEUP,
1106 		(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1107 
1108 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1109 	wait_for_completion(&mb1_transfer.work);
1110 
1111 	if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
1112 		((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1113 		r = -EIO;
1114 
1115 	mutex_unlock(&mb1_transfer.lock);
1116 
1117 	return r;
1118 }
1119 
1120 static int request_pll(u8 clock, bool enable)
1121 {
1122 	int r = 0;
1123 
1124 	if (clock == PRCMU_PLLSOC0)
1125 		clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
1126 	else if (clock == PRCMU_PLLSOC1)
1127 		clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
1128 	else
1129 		return -EINVAL;
1130 
1131 	mutex_lock(&mb1_transfer.lock);
1132 
1133 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1134 		cpu_relax();
1135 
1136 	writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1137 	writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
1138 
1139 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1140 	wait_for_completion(&mb1_transfer.work);
1141 
1142 	if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
1143 		r = -EIO;
1144 
1145 	mutex_unlock(&mb1_transfer.lock);
1146 
1147 	return r;
1148 }
1149 
1150 /**
1151  * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
1152  * @epod_id: The EPOD to set
1153  * @epod_state: The new EPOD state
1154  *
1155  * This function sets the state of a EPOD (power domain). It may not be called
1156  * from interrupt context.
1157  */
1158 int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
1159 {
1160 	int r = 0;
1161 	bool ram_retention = false;
1162 	int i;
1163 
1164 	/* check argument */
1165 	BUG_ON(epod_id >= NUM_EPOD_ID);
1166 
1167 	/* set flag if retention is possible */
1168 	switch (epod_id) {
1169 	case EPOD_ID_SVAMMDSP:
1170 	case EPOD_ID_SIAMMDSP:
1171 	case EPOD_ID_ESRAM12:
1172 	case EPOD_ID_ESRAM34:
1173 		ram_retention = true;
1174 		break;
1175 	}
1176 
1177 	/* check argument */
1178 	BUG_ON(epod_state > EPOD_STATE_ON);
1179 	BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
1180 
1181 	/* get lock */
1182 	mutex_lock(&mb2_transfer.lock);
1183 
1184 	/* wait for mailbox */
1185 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
1186 		cpu_relax();
1187 
1188 	/* fill in mailbox */
1189 	for (i = 0; i < NUM_EPOD_ID; i++)
1190 		writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
1191 	writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
1192 
1193 	writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
1194 
1195 	writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
1196 
1197 	/*
1198 	 * The current firmware version does not handle errors correctly,
1199 	 * and we cannot recover if there is an error.
1200 	 * This is expected to change when the firmware is updated.
1201 	 */
1202 	if (!wait_for_completion_timeout(&mb2_transfer.work,
1203 			msecs_to_jiffies(20000))) {
1204 		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1205 			__func__);
1206 		r = -EIO;
1207 		goto unlock_and_return;
1208 	}
1209 
1210 	if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
1211 		r = -EIO;
1212 
1213 unlock_and_return:
1214 	mutex_unlock(&mb2_transfer.lock);
1215 	return r;
1216 }
1217 
1218 /**
1219  * prcmu_configure_auto_pm - Configure autonomous power management.
1220  * @sleep: Configuration for ApSleep.
1221  * @idle:  Configuration for ApIdle.
1222  */
1223 void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
1224 	struct prcmu_auto_pm_config *idle)
1225 {
1226 	u32 sleep_cfg;
1227 	u32 idle_cfg;
1228 	unsigned long flags;
1229 
1230 	BUG_ON((sleep == NULL) || (idle == NULL));
1231 
1232 	sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
1233 	sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
1234 	sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
1235 	sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
1236 	sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
1237 	sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
1238 
1239 	idle_cfg = (idle->sva_auto_pm_enable & 0xF);
1240 	idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
1241 	idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
1242 	idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
1243 	idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
1244 	idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
1245 
1246 	spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
1247 
1248 	/*
1249 	 * The autonomous power management configuration is done through
1250 	 * fields in mailbox 2, but these fields are only used as shared
1251 	 * variables - i.e. there is no need to send a message.
1252 	 */
1253 	writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
1254 	writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
1255 
1256 	mb2_transfer.auto_pm_enabled =
1257 		((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1258 		 (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1259 		 (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1260 		 (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
1261 
1262 	spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
1263 }
1264 EXPORT_SYMBOL(prcmu_configure_auto_pm);
1265 
1266 bool prcmu_is_auto_pm_enabled(void)
1267 {
1268 	return mb2_transfer.auto_pm_enabled;
1269 }
1270 
1271 static int request_sysclk(bool enable)
1272 {
1273 	int r;
1274 	unsigned long flags;
1275 
1276 	r = 0;
1277 
1278 	mutex_lock(&mb3_transfer.sysclk_lock);
1279 
1280 	spin_lock_irqsave(&mb3_transfer.lock, flags);
1281 
1282 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
1283 		cpu_relax();
1284 
1285 	writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
1286 
1287 	writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
1288 	writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
1289 
1290 	spin_unlock_irqrestore(&mb3_transfer.lock, flags);
1291 
1292 	/*
1293 	 * The firmware only sends an ACK if we want to enable the
1294 	 * SysClk, and it succeeds.
1295 	 */
1296 	if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
1297 			msecs_to_jiffies(20000))) {
1298 		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1299 			__func__);
1300 		r = -EIO;
1301 	}
1302 
1303 	mutex_unlock(&mb3_transfer.sysclk_lock);
1304 
1305 	return r;
1306 }
1307 
1308 static int request_timclk(bool enable)
1309 {
1310 	u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
1311 
1312 	if (!enable)
1313 		val |= PRCM_TCR_STOP_TIMERS;
1314 	writel(val, PRCM_TCR);
1315 
1316 	return 0;
1317 }
1318 
1319 static int request_clock(u8 clock, bool enable)
1320 {
1321 	u32 val;
1322 	unsigned long flags;
1323 
1324 	spin_lock_irqsave(&clk_mgt_lock, flags);
1325 
1326 	/* Grab the HW semaphore. */
1327 	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1328 		cpu_relax();
1329 
1330 	val = readl(prcmu_base + clk_mgt[clock].offset);
1331 	if (enable) {
1332 		val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
1333 	} else {
1334 		clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1335 		val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
1336 	}
1337 	writel(val, prcmu_base + clk_mgt[clock].offset);
1338 
1339 	/* Release the HW semaphore. */
1340 	writel(0, PRCM_SEM);
1341 
1342 	spin_unlock_irqrestore(&clk_mgt_lock, flags);
1343 
1344 	return 0;
1345 }
1346 
1347 static int request_sga_clock(u8 clock, bool enable)
1348 {
1349 	u32 val;
1350 	int ret;
1351 
1352 	if (enable) {
1353 		val = readl(PRCM_CGATING_BYPASS);
1354 		writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1355 	}
1356 
1357 	ret = request_clock(clock, enable);
1358 
1359 	if (!ret && !enable) {
1360 		val = readl(PRCM_CGATING_BYPASS);
1361 		writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1362 	}
1363 
1364 	return ret;
1365 }
1366 
1367 static inline bool plldsi_locked(void)
1368 {
1369 	return (readl(PRCM_PLLDSI_LOCKP) &
1370 		(PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1371 		 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
1372 		(PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1373 		 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
1374 }
1375 
1376 static int request_plldsi(bool enable)
1377 {
1378 	int r = 0;
1379 	u32 val;
1380 
1381 	writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1382 		PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
1383 		PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
1384 
1385 	val = readl(PRCM_PLLDSI_ENABLE);
1386 	if (enable)
1387 		val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1388 	else
1389 		val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1390 	writel(val, PRCM_PLLDSI_ENABLE);
1391 
1392 	if (enable) {
1393 		unsigned int i;
1394 		bool locked = plldsi_locked();
1395 
1396 		for (i = 10; !locked && (i > 0); --i) {
1397 			udelay(100);
1398 			locked = plldsi_locked();
1399 		}
1400 		if (locked) {
1401 			writel(PRCM_APE_RESETN_DSIPLL_RESETN,
1402 				PRCM_APE_RESETN_SET);
1403 		} else {
1404 			writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1405 				PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
1406 				PRCM_MMIP_LS_CLAMP_SET);
1407 			val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1408 			writel(val, PRCM_PLLDSI_ENABLE);
1409 			r = -EAGAIN;
1410 		}
1411 	} else {
1412 		writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
1413 	}
1414 	return r;
1415 }
1416 
1417 static int request_dsiclk(u8 n, bool enable)
1418 {
1419 	u32 val;
1420 
1421 	val = readl(PRCM_DSI_PLLOUT_SEL);
1422 	val &= ~dsiclk[n].divsel_mask;
1423 	val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
1424 		dsiclk[n].divsel_shift);
1425 	writel(val, PRCM_DSI_PLLOUT_SEL);
1426 	return 0;
1427 }
1428 
1429 static int request_dsiescclk(u8 n, bool enable)
1430 {
1431 	u32 val;
1432 
1433 	val = readl(PRCM_DSITVCLK_DIV);
1434 	enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
1435 	writel(val, PRCM_DSITVCLK_DIV);
1436 	return 0;
1437 }
1438 
1439 /**
1440  * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
1441  * @clock:      The clock for which the request is made.
1442  * @enable:     Whether the clock should be enabled (true) or disabled (false).
1443  *
1444  * This function should only be used by the clock implementation.
1445  * Do not use it from any other place!
1446  */
1447 int db8500_prcmu_request_clock(u8 clock, bool enable)
1448 {
1449 	if (clock == PRCMU_SGACLK)
1450 		return request_sga_clock(clock, enable);
1451 	else if (clock < PRCMU_NUM_REG_CLOCKS)
1452 		return request_clock(clock, enable);
1453 	else if (clock == PRCMU_TIMCLK)
1454 		return request_timclk(enable);
1455 	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1456 		return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
1457 	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1458 		return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
1459 	else if (clock == PRCMU_PLLDSI)
1460 		return request_plldsi(enable);
1461 	else if (clock == PRCMU_SYSCLK)
1462 		return request_sysclk(enable);
1463 	else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
1464 		return request_pll(clock, enable);
1465 	else
1466 		return -EINVAL;
1467 }
1468 
1469 static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
1470 	int branch)
1471 {
1472 	u64 rate;
1473 	u32 val;
1474 	u32 d;
1475 	u32 div = 1;
1476 
1477 	val = readl(reg);
1478 
1479 	rate = src_rate;
1480 	rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
1481 
1482 	d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
1483 	if (d > 1)
1484 		div *= d;
1485 
1486 	d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
1487 	if (d > 1)
1488 		div *= d;
1489 
1490 	if (val & PRCM_PLL_FREQ_SELDIV2)
1491 		div *= 2;
1492 
1493 	if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
1494 		(val & PRCM_PLL_FREQ_DIV2EN) &&
1495 		((reg == PRCM_PLLSOC0_FREQ) ||
1496 		 (reg == PRCM_PLLARM_FREQ) ||
1497 		 (reg == PRCM_PLLDDR_FREQ))))
1498 		div *= 2;
1499 
1500 	(void)do_div(rate, div);
1501 
1502 	return (unsigned long)rate;
1503 }
1504 
1505 #define ROOT_CLOCK_RATE 38400000
1506 
1507 static unsigned long clock_rate(u8 clock)
1508 {
1509 	u32 val;
1510 	u32 pllsw;
1511 	unsigned long rate = ROOT_CLOCK_RATE;
1512 
1513 	val = readl(prcmu_base + clk_mgt[clock].offset);
1514 
1515 	if (val & PRCM_CLK_MGT_CLK38) {
1516 		if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
1517 			rate /= 2;
1518 		return rate;
1519 	}
1520 
1521 	val |= clk_mgt[clock].pllsw;
1522 	pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1523 
1524 	if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1525 		rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
1526 	else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1527 		rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
1528 	else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
1529 		rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
1530 	else
1531 		return 0;
1532 
1533 	if ((clock == PRCMU_SGACLK) &&
1534 		(val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
1535 		u64 r = (rate * 10);
1536 
1537 		(void)do_div(r, 25);
1538 		return (unsigned long)r;
1539 	}
1540 	val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1541 	if (val)
1542 		return rate / val;
1543 	else
1544 		return 0;
1545 }
1546 
1547 static unsigned long armss_rate(void)
1548 {
1549 	u32 r;
1550 	unsigned long rate;
1551 
1552 	r = readl(PRCM_ARM_CHGCLKREQ);
1553 
1554 	if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) {
1555 		/* External ARMCLKFIX clock */
1556 
1557 		rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX);
1558 
1559 		/* Check PRCM_ARM_CHGCLKREQ divider */
1560 		if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL))
1561 			rate /= 2;
1562 
1563 		/* Check PRCM_ARMCLKFIX_MGT divider */
1564 		r = readl(PRCM_ARMCLKFIX_MGT);
1565 		r &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1566 		rate /= r;
1567 
1568 	} else {/* ARM PLL */
1569 		rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV);
1570 	}
1571 
1572 	return rate;
1573 }
1574 
1575 static unsigned long dsiclk_rate(u8 n)
1576 {
1577 	u32 divsel;
1578 	u32 div = 1;
1579 
1580 	divsel = readl(PRCM_DSI_PLLOUT_SEL);
1581 	divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
1582 
1583 	if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
1584 		divsel = dsiclk[n].divsel;
1585 	else
1586 		dsiclk[n].divsel = divsel;
1587 
1588 	switch (divsel) {
1589 	case PRCM_DSI_PLLOUT_SEL_PHI_4:
1590 		div *= 2;
1591 	case PRCM_DSI_PLLOUT_SEL_PHI_2:
1592 		div *= 2;
1593 	case PRCM_DSI_PLLOUT_SEL_PHI:
1594 		return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1595 			PLL_RAW) / div;
1596 	default:
1597 		return 0;
1598 	}
1599 }
1600 
1601 static unsigned long dsiescclk_rate(u8 n)
1602 {
1603 	u32 div;
1604 
1605 	div = readl(PRCM_DSITVCLK_DIV);
1606 	div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
1607 	return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
1608 }
1609 
1610 unsigned long prcmu_clock_rate(u8 clock)
1611 {
1612 	if (clock < PRCMU_NUM_REG_CLOCKS)
1613 		return clock_rate(clock);
1614 	else if (clock == PRCMU_TIMCLK)
1615 		return ROOT_CLOCK_RATE / 16;
1616 	else if (clock == PRCMU_SYSCLK)
1617 		return ROOT_CLOCK_RATE;
1618 	else if (clock == PRCMU_PLLSOC0)
1619 		return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1620 	else if (clock == PRCMU_PLLSOC1)
1621 		return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1622 	else if (clock == PRCMU_ARMSS)
1623 		return armss_rate();
1624 	else if (clock == PRCMU_PLLDDR)
1625 		return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1626 	else if (clock == PRCMU_PLLDSI)
1627 		return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1628 			PLL_RAW);
1629 	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1630 		return dsiclk_rate(clock - PRCMU_DSI0CLK);
1631 	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1632 		return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
1633 	else
1634 		return 0;
1635 }
1636 
1637 static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
1638 {
1639 	if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
1640 		return ROOT_CLOCK_RATE;
1641 	clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
1642 	if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1643 		return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
1644 	else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1645 		return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
1646 	else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
1647 		return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
1648 	else
1649 		return 0;
1650 }
1651 
1652 static u32 clock_divider(unsigned long src_rate, unsigned long rate)
1653 {
1654 	u32 div;
1655 
1656 	div = (src_rate / rate);
1657 	if (div == 0)
1658 		return 1;
1659 	if (rate < (src_rate / div))
1660 		div++;
1661 	return div;
1662 }
1663 
1664 static long round_clock_rate(u8 clock, unsigned long rate)
1665 {
1666 	u32 val;
1667 	u32 div;
1668 	unsigned long src_rate;
1669 	long rounded_rate;
1670 
1671 	val = readl(prcmu_base + clk_mgt[clock].offset);
1672 	src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1673 		clk_mgt[clock].branch);
1674 	div = clock_divider(src_rate, rate);
1675 	if (val & PRCM_CLK_MGT_CLK38) {
1676 		if (clk_mgt[clock].clk38div) {
1677 			if (div > 2)
1678 				div = 2;
1679 		} else {
1680 			div = 1;
1681 		}
1682 	} else if ((clock == PRCMU_SGACLK) && (div == 3)) {
1683 		u64 r = (src_rate * 10);
1684 
1685 		(void)do_div(r, 25);
1686 		if (r <= rate)
1687 			return (unsigned long)r;
1688 	}
1689 	rounded_rate = (src_rate / min(div, (u32)31));
1690 
1691 	return rounded_rate;
1692 }
1693 
1694 static const unsigned long armss_freqs[] = {
1695 	200000000,
1696 	400000000,
1697 	800000000,
1698 	998400000
1699 };
1700 
1701 static long round_armss_rate(unsigned long rate)
1702 {
1703 	unsigned long freq = 0;
1704 	int i;
1705 
1706 	/* Find the corresponding arm opp from the cpufreq table. */
1707 	for (i = 0; i < ARRAY_SIZE(armss_freqs); i++) {
1708 		freq = armss_freqs[i];
1709 		if (rate <= freq)
1710 			break;
1711 	}
1712 
1713 	/* Return the last valid value, even if a match was not found. */
1714 	return freq;
1715 }
1716 
1717 #define MIN_PLL_VCO_RATE 600000000ULL
1718 #define MAX_PLL_VCO_RATE 1680640000ULL
1719 
1720 static long round_plldsi_rate(unsigned long rate)
1721 {
1722 	long rounded_rate = 0;
1723 	unsigned long src_rate;
1724 	unsigned long rem;
1725 	u32 r;
1726 
1727 	src_rate = clock_rate(PRCMU_HDMICLK);
1728 	rem = rate;
1729 
1730 	for (r = 7; (rem > 0) && (r > 0); r--) {
1731 		u64 d;
1732 
1733 		d = (r * rate);
1734 		(void)do_div(d, src_rate);
1735 		if (d < 6)
1736 			d = 6;
1737 		else if (d > 255)
1738 			d = 255;
1739 		d *= src_rate;
1740 		if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
1741 			((r * MAX_PLL_VCO_RATE) < (2 * d)))
1742 			continue;
1743 		(void)do_div(d, r);
1744 		if (rate < d) {
1745 			if (rounded_rate == 0)
1746 				rounded_rate = (long)d;
1747 			break;
1748 		}
1749 		if ((rate - d) < rem) {
1750 			rem = (rate - d);
1751 			rounded_rate = (long)d;
1752 		}
1753 	}
1754 	return rounded_rate;
1755 }
1756 
1757 static long round_dsiclk_rate(unsigned long rate)
1758 {
1759 	u32 div;
1760 	unsigned long src_rate;
1761 	long rounded_rate;
1762 
1763 	src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1764 		PLL_RAW);
1765 	div = clock_divider(src_rate, rate);
1766 	rounded_rate = (src_rate / ((div > 2) ? 4 : div));
1767 
1768 	return rounded_rate;
1769 }
1770 
1771 static long round_dsiescclk_rate(unsigned long rate)
1772 {
1773 	u32 div;
1774 	unsigned long src_rate;
1775 	long rounded_rate;
1776 
1777 	src_rate = clock_rate(PRCMU_TVCLK);
1778 	div = clock_divider(src_rate, rate);
1779 	rounded_rate = (src_rate / min(div, (u32)255));
1780 
1781 	return rounded_rate;
1782 }
1783 
1784 long prcmu_round_clock_rate(u8 clock, unsigned long rate)
1785 {
1786 	if (clock < PRCMU_NUM_REG_CLOCKS)
1787 		return round_clock_rate(clock, rate);
1788 	else if (clock == PRCMU_ARMSS)
1789 		return round_armss_rate(rate);
1790 	else if (clock == PRCMU_PLLDSI)
1791 		return round_plldsi_rate(rate);
1792 	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1793 		return round_dsiclk_rate(rate);
1794 	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1795 		return round_dsiescclk_rate(rate);
1796 	else
1797 		return (long)prcmu_clock_rate(clock);
1798 }
1799 
1800 static void set_clock_rate(u8 clock, unsigned long rate)
1801 {
1802 	u32 val;
1803 	u32 div;
1804 	unsigned long src_rate;
1805 	unsigned long flags;
1806 
1807 	spin_lock_irqsave(&clk_mgt_lock, flags);
1808 
1809 	/* Grab the HW semaphore. */
1810 	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1811 		cpu_relax();
1812 
1813 	val = readl(prcmu_base + clk_mgt[clock].offset);
1814 	src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1815 		clk_mgt[clock].branch);
1816 	div = clock_divider(src_rate, rate);
1817 	if (val & PRCM_CLK_MGT_CLK38) {
1818 		if (clk_mgt[clock].clk38div) {
1819 			if (div > 1)
1820 				val |= PRCM_CLK_MGT_CLK38DIV;
1821 			else
1822 				val &= ~PRCM_CLK_MGT_CLK38DIV;
1823 		}
1824 	} else if (clock == PRCMU_SGACLK) {
1825 		val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
1826 			PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
1827 		if (div == 3) {
1828 			u64 r = (src_rate * 10);
1829 
1830 			(void)do_div(r, 25);
1831 			if (r <= rate) {
1832 				val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
1833 				div = 0;
1834 			}
1835 		}
1836 		val |= min(div, (u32)31);
1837 	} else {
1838 		val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
1839 		val |= min(div, (u32)31);
1840 	}
1841 	writel(val, prcmu_base + clk_mgt[clock].offset);
1842 
1843 	/* Release the HW semaphore. */
1844 	writel(0, PRCM_SEM);
1845 
1846 	spin_unlock_irqrestore(&clk_mgt_lock, flags);
1847 }
1848 
1849 static int set_armss_rate(unsigned long rate)
1850 {
1851 	unsigned long freq;
1852 	u8 opps[] = { ARM_EXTCLK, ARM_50_OPP, ARM_100_OPP, ARM_MAX_OPP };
1853 	int i;
1854 
1855 	/* Find the corresponding arm opp from the cpufreq table. */
1856 	for (i = 0; i < ARRAY_SIZE(armss_freqs); i++) {
1857 		freq = armss_freqs[i];
1858 		if (rate == freq)
1859 			break;
1860 	}
1861 
1862 	if (rate != freq)
1863 		return -EINVAL;
1864 
1865 	/* Set the new arm opp. */
1866 	pr_debug("SET ARM OPP 0x%02x\n", opps[i]);
1867 	return db8500_prcmu_set_arm_opp(opps[i]);
1868 }
1869 
1870 static int set_plldsi_rate(unsigned long rate)
1871 {
1872 	unsigned long src_rate;
1873 	unsigned long rem;
1874 	u32 pll_freq = 0;
1875 	u32 r;
1876 
1877 	src_rate = clock_rate(PRCMU_HDMICLK);
1878 	rem = rate;
1879 
1880 	for (r = 7; (rem > 0) && (r > 0); r--) {
1881 		u64 d;
1882 		u64 hwrate;
1883 
1884 		d = (r * rate);
1885 		(void)do_div(d, src_rate);
1886 		if (d < 6)
1887 			d = 6;
1888 		else if (d > 255)
1889 			d = 255;
1890 		hwrate = (d * src_rate);
1891 		if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
1892 			((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
1893 			continue;
1894 		(void)do_div(hwrate, r);
1895 		if (rate < hwrate) {
1896 			if (pll_freq == 0)
1897 				pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1898 					(r << PRCM_PLL_FREQ_R_SHIFT));
1899 			break;
1900 		}
1901 		if ((rate - hwrate) < rem) {
1902 			rem = (rate - hwrate);
1903 			pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1904 				(r << PRCM_PLL_FREQ_R_SHIFT));
1905 		}
1906 	}
1907 	if (pll_freq == 0)
1908 		return -EINVAL;
1909 
1910 	pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
1911 	writel(pll_freq, PRCM_PLLDSI_FREQ);
1912 
1913 	return 0;
1914 }
1915 
1916 static void set_dsiclk_rate(u8 n, unsigned long rate)
1917 {
1918 	u32 val;
1919 	u32 div;
1920 
1921 	div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
1922 			clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
1923 
1924 	dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
1925 			   (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
1926 			   /* else */	PRCM_DSI_PLLOUT_SEL_PHI_4;
1927 
1928 	val = readl(PRCM_DSI_PLLOUT_SEL);
1929 	val &= ~dsiclk[n].divsel_mask;
1930 	val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
1931 	writel(val, PRCM_DSI_PLLOUT_SEL);
1932 }
1933 
1934 static void set_dsiescclk_rate(u8 n, unsigned long rate)
1935 {
1936 	u32 val;
1937 	u32 div;
1938 
1939 	div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
1940 	val = readl(PRCM_DSITVCLK_DIV);
1941 	val &= ~dsiescclk[n].div_mask;
1942 	val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
1943 	writel(val, PRCM_DSITVCLK_DIV);
1944 }
1945 
1946 int prcmu_set_clock_rate(u8 clock, unsigned long rate)
1947 {
1948 	if (clock < PRCMU_NUM_REG_CLOCKS)
1949 		set_clock_rate(clock, rate);
1950 	else if (clock == PRCMU_ARMSS)
1951 		return set_armss_rate(rate);
1952 	else if (clock == PRCMU_PLLDSI)
1953 		return set_plldsi_rate(rate);
1954 	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1955 		set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
1956 	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1957 		set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
1958 	return 0;
1959 }
1960 
1961 int db8500_prcmu_config_esram0_deep_sleep(u8 state)
1962 {
1963 	if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
1964 	    (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
1965 		return -EINVAL;
1966 
1967 	mutex_lock(&mb4_transfer.lock);
1968 
1969 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1970 		cpu_relax();
1971 
1972 	writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1973 	writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
1974 	       (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
1975 	writeb(DDR_PWR_STATE_ON,
1976 	       (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
1977 	writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
1978 
1979 	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1980 	wait_for_completion(&mb4_transfer.work);
1981 
1982 	mutex_unlock(&mb4_transfer.lock);
1983 
1984 	return 0;
1985 }
1986 
1987 int db8500_prcmu_config_hotdog(u8 threshold)
1988 {
1989 	mutex_lock(&mb4_transfer.lock);
1990 
1991 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1992 		cpu_relax();
1993 
1994 	writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
1995 	writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1996 
1997 	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1998 	wait_for_completion(&mb4_transfer.work);
1999 
2000 	mutex_unlock(&mb4_transfer.lock);
2001 
2002 	return 0;
2003 }
2004 
2005 int db8500_prcmu_config_hotmon(u8 low, u8 high)
2006 {
2007 	mutex_lock(&mb4_transfer.lock);
2008 
2009 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2010 		cpu_relax();
2011 
2012 	writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
2013 	writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
2014 	writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
2015 		(tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
2016 	writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2017 
2018 	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2019 	wait_for_completion(&mb4_transfer.work);
2020 
2021 	mutex_unlock(&mb4_transfer.lock);
2022 
2023 	return 0;
2024 }
2025 EXPORT_SYMBOL_GPL(db8500_prcmu_config_hotmon);
2026 
2027 static int config_hot_period(u16 val)
2028 {
2029 	mutex_lock(&mb4_transfer.lock);
2030 
2031 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2032 		cpu_relax();
2033 
2034 	writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
2035 	writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2036 
2037 	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2038 	wait_for_completion(&mb4_transfer.work);
2039 
2040 	mutex_unlock(&mb4_transfer.lock);
2041 
2042 	return 0;
2043 }
2044 
2045 int db8500_prcmu_start_temp_sense(u16 cycles32k)
2046 {
2047 	if (cycles32k == 0xFFFF)
2048 		return -EINVAL;
2049 
2050 	return config_hot_period(cycles32k);
2051 }
2052 EXPORT_SYMBOL_GPL(db8500_prcmu_start_temp_sense);
2053 
2054 int db8500_prcmu_stop_temp_sense(void)
2055 {
2056 	return config_hot_period(0xFFFF);
2057 }
2058 EXPORT_SYMBOL_GPL(db8500_prcmu_stop_temp_sense);
2059 
2060 static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
2061 {
2062 
2063 	mutex_lock(&mb4_transfer.lock);
2064 
2065 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2066 		cpu_relax();
2067 
2068 	writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
2069 	writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
2070 	writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
2071 	writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
2072 
2073 	writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2074 
2075 	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2076 	wait_for_completion(&mb4_transfer.work);
2077 
2078 	mutex_unlock(&mb4_transfer.lock);
2079 
2080 	return 0;
2081 
2082 }
2083 
2084 int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
2085 {
2086 	BUG_ON(num == 0 || num > 0xf);
2087 	return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
2088 			    sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
2089 			    A9WDOG_AUTO_OFF_DIS);
2090 }
2091 EXPORT_SYMBOL(db8500_prcmu_config_a9wdog);
2092 
2093 int db8500_prcmu_enable_a9wdog(u8 id)
2094 {
2095 	return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
2096 }
2097 EXPORT_SYMBOL(db8500_prcmu_enable_a9wdog);
2098 
2099 int db8500_prcmu_disable_a9wdog(u8 id)
2100 {
2101 	return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
2102 }
2103 EXPORT_SYMBOL(db8500_prcmu_disable_a9wdog);
2104 
2105 int db8500_prcmu_kick_a9wdog(u8 id)
2106 {
2107 	return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
2108 }
2109 EXPORT_SYMBOL(db8500_prcmu_kick_a9wdog);
2110 
2111 /*
2112  * timeout is 28 bit, in ms.
2113  */
2114 int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
2115 {
2116 	return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
2117 			    (id & A9WDOG_ID_MASK) |
2118 			    /*
2119 			     * Put the lowest 28 bits of timeout at
2120 			     * offset 4. Four first bits are used for id.
2121 			     */
2122 			    (u8)((timeout << 4) & 0xf0),
2123 			    (u8)((timeout >> 4) & 0xff),
2124 			    (u8)((timeout >> 12) & 0xff),
2125 			    (u8)((timeout >> 20) & 0xff));
2126 }
2127 EXPORT_SYMBOL(db8500_prcmu_load_a9wdog);
2128 
2129 /**
2130  * prcmu_abb_read() - Read register value(s) from the ABB.
2131  * @slave:	The I2C slave address.
2132  * @reg:	The (start) register address.
2133  * @value:	The read out value(s).
2134  * @size:	The number of registers to read.
2135  *
2136  * Reads register value(s) from the ABB.
2137  * @size has to be 1 for the current firmware version.
2138  */
2139 int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
2140 {
2141 	int r;
2142 
2143 	if (size != 1)
2144 		return -EINVAL;
2145 
2146 	mutex_lock(&mb5_transfer.lock);
2147 
2148 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2149 		cpu_relax();
2150 
2151 	writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2152 	writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2153 	writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2154 	writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2155 	writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2156 
2157 	writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2158 
2159 	if (!wait_for_completion_timeout(&mb5_transfer.work,
2160 				msecs_to_jiffies(20000))) {
2161 		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2162 			__func__);
2163 		r = -EIO;
2164 	} else {
2165 		r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
2166 	}
2167 
2168 	if (!r)
2169 		*value = mb5_transfer.ack.value;
2170 
2171 	mutex_unlock(&mb5_transfer.lock);
2172 
2173 	return r;
2174 }
2175 
2176 /**
2177  * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
2178  * @slave:	The I2C slave address.
2179  * @reg:	The (start) register address.
2180  * @value:	The value(s) to write.
2181  * @mask:	The mask(s) to use.
2182  * @size:	The number of registers to write.
2183  *
2184  * Writes masked register value(s) to the ABB.
2185  * For each @value, only the bits set to 1 in the corresponding @mask
2186  * will be written. The other bits are not changed.
2187  * @size has to be 1 for the current firmware version.
2188  */
2189 int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
2190 {
2191 	int r;
2192 
2193 	if (size != 1)
2194 		return -EINVAL;
2195 
2196 	mutex_lock(&mb5_transfer.lock);
2197 
2198 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2199 		cpu_relax();
2200 
2201 	writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2202 	writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2203 	writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2204 	writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2205 	writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2206 
2207 	writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2208 
2209 	if (!wait_for_completion_timeout(&mb5_transfer.work,
2210 				msecs_to_jiffies(20000))) {
2211 		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2212 			__func__);
2213 		r = -EIO;
2214 	} else {
2215 		r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
2216 	}
2217 
2218 	mutex_unlock(&mb5_transfer.lock);
2219 
2220 	return r;
2221 }
2222 
2223 /**
2224  * prcmu_abb_write() - Write register value(s) to the ABB.
2225  * @slave:	The I2C slave address.
2226  * @reg:	The (start) register address.
2227  * @value:	The value(s) to write.
2228  * @size:	The number of registers to write.
2229  *
2230  * Writes register value(s) to the ABB.
2231  * @size has to be 1 for the current firmware version.
2232  */
2233 int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
2234 {
2235 	u8 mask = ~0;
2236 
2237 	return prcmu_abb_write_masked(slave, reg, value, &mask, size);
2238 }
2239 
2240 /**
2241  * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
2242  */
2243 int prcmu_ac_wake_req(void)
2244 {
2245 	u32 val;
2246 	int ret = 0;
2247 
2248 	mutex_lock(&mb0_transfer.ac_wake_lock);
2249 
2250 	val = readl(PRCM_HOSTACCESS_REQ);
2251 	if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
2252 		goto unlock_and_return;
2253 
2254 	atomic_set(&ac_wake_req_state, 1);
2255 
2256 	/*
2257 	 * Force Modem Wake-up before hostaccess_req ping-pong.
2258 	 * It prevents Modem to enter in Sleep while acking the hostaccess
2259 	 * request. The 31us delay has been calculated by HWI.
2260 	 */
2261 	val |= PRCM_HOSTACCESS_REQ_WAKE_REQ;
2262 	writel(val, PRCM_HOSTACCESS_REQ);
2263 
2264 	udelay(31);
2265 
2266 	val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ;
2267 	writel(val, PRCM_HOSTACCESS_REQ);
2268 
2269 	if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2270 			msecs_to_jiffies(5000))) {
2271 		pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2272 			__func__);
2273 		ret = -EFAULT;
2274 	}
2275 
2276 unlock_and_return:
2277 	mutex_unlock(&mb0_transfer.ac_wake_lock);
2278 	return ret;
2279 }
2280 
2281 /**
2282  * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
2283  */
2284 void prcmu_ac_sleep_req(void)
2285 {
2286 	u32 val;
2287 
2288 	mutex_lock(&mb0_transfer.ac_wake_lock);
2289 
2290 	val = readl(PRCM_HOSTACCESS_REQ);
2291 	if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
2292 		goto unlock_and_return;
2293 
2294 	writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
2295 		PRCM_HOSTACCESS_REQ);
2296 
2297 	if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2298 			msecs_to_jiffies(5000))) {
2299 		pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2300 			__func__);
2301 	}
2302 
2303 	atomic_set(&ac_wake_req_state, 0);
2304 
2305 unlock_and_return:
2306 	mutex_unlock(&mb0_transfer.ac_wake_lock);
2307 }
2308 
2309 bool db8500_prcmu_is_ac_wake_requested(void)
2310 {
2311 	return (atomic_read(&ac_wake_req_state) != 0);
2312 }
2313 
2314 /**
2315  * db8500_prcmu_system_reset - System reset
2316  *
2317  * Saves the reset reason code and then sets the APE_SOFTRST register which
2318  * fires interrupt to fw
2319  */
2320 void db8500_prcmu_system_reset(u16 reset_code)
2321 {
2322 	writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
2323 	writel(1, PRCM_APE_SOFTRST);
2324 }
2325 
2326 /**
2327  * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
2328  *
2329  * Retrieves the reset reason code stored by prcmu_system_reset() before
2330  * last restart.
2331  */
2332 u16 db8500_prcmu_get_reset_code(void)
2333 {
2334 	return readw(tcdm_base + PRCM_SW_RST_REASON);
2335 }
2336 
2337 /**
2338  * db8500_prcmu_reset_modem - ask the PRCMU to reset modem
2339  */
2340 void db8500_prcmu_modem_reset(void)
2341 {
2342 	mutex_lock(&mb1_transfer.lock);
2343 
2344 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
2345 		cpu_relax();
2346 
2347 	writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
2348 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
2349 	wait_for_completion(&mb1_transfer.work);
2350 
2351 	/*
2352 	 * No need to check return from PRCMU as modem should go in reset state
2353 	 * This state is already managed by upper layer
2354 	 */
2355 
2356 	mutex_unlock(&mb1_transfer.lock);
2357 }
2358 
2359 static void ack_dbb_wakeup(void)
2360 {
2361 	unsigned long flags;
2362 
2363 	spin_lock_irqsave(&mb0_transfer.lock, flags);
2364 
2365 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
2366 		cpu_relax();
2367 
2368 	writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
2369 	writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
2370 
2371 	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2372 }
2373 
2374 static inline void print_unknown_header_warning(u8 n, u8 header)
2375 {
2376 	pr_warn("prcmu: Unknown message header (%d) in mailbox %d\n",
2377 		header, n);
2378 }
2379 
2380 static bool read_mailbox_0(void)
2381 {
2382 	bool r;
2383 	u32 ev;
2384 	unsigned int n;
2385 	u8 header;
2386 
2387 	header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
2388 	switch (header) {
2389 	case MB0H_WAKEUP_EXE:
2390 	case MB0H_WAKEUP_SLEEP:
2391 		if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
2392 			ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
2393 		else
2394 			ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
2395 
2396 		if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
2397 			complete(&mb0_transfer.ac_wake_work);
2398 		if (ev & WAKEUP_BIT_SYSCLK_OK)
2399 			complete(&mb3_transfer.sysclk_work);
2400 
2401 		ev &= mb0_transfer.req.dbb_irqs;
2402 
2403 		for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
2404 			if (ev & prcmu_irq_bit[n])
2405 				generic_handle_irq(irq_find_mapping(db8500_irq_domain, n));
2406 		}
2407 		r = true;
2408 		break;
2409 	default:
2410 		print_unknown_header_warning(0, header);
2411 		r = false;
2412 		break;
2413 	}
2414 	writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
2415 	return r;
2416 }
2417 
2418 static bool read_mailbox_1(void)
2419 {
2420 	mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
2421 	mb1_transfer.ack.arm_opp = readb(tcdm_base +
2422 		PRCM_ACK_MB1_CURRENT_ARM_OPP);
2423 	mb1_transfer.ack.ape_opp = readb(tcdm_base +
2424 		PRCM_ACK_MB1_CURRENT_APE_OPP);
2425 	mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
2426 		PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
2427 	writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
2428 	complete(&mb1_transfer.work);
2429 	return false;
2430 }
2431 
2432 static bool read_mailbox_2(void)
2433 {
2434 	mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
2435 	writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
2436 	complete(&mb2_transfer.work);
2437 	return false;
2438 }
2439 
2440 static bool read_mailbox_3(void)
2441 {
2442 	writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
2443 	return false;
2444 }
2445 
2446 static bool read_mailbox_4(void)
2447 {
2448 	u8 header;
2449 	bool do_complete = true;
2450 
2451 	header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
2452 	switch (header) {
2453 	case MB4H_MEM_ST:
2454 	case MB4H_HOTDOG:
2455 	case MB4H_HOTMON:
2456 	case MB4H_HOT_PERIOD:
2457 	case MB4H_A9WDOG_CONF:
2458 	case MB4H_A9WDOG_EN:
2459 	case MB4H_A9WDOG_DIS:
2460 	case MB4H_A9WDOG_LOAD:
2461 	case MB4H_A9WDOG_KICK:
2462 		break;
2463 	default:
2464 		print_unknown_header_warning(4, header);
2465 		do_complete = false;
2466 		break;
2467 	}
2468 
2469 	writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
2470 
2471 	if (do_complete)
2472 		complete(&mb4_transfer.work);
2473 
2474 	return false;
2475 }
2476 
2477 static bool read_mailbox_5(void)
2478 {
2479 	mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
2480 	mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
2481 	writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
2482 	complete(&mb5_transfer.work);
2483 	return false;
2484 }
2485 
2486 static bool read_mailbox_6(void)
2487 {
2488 	writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
2489 	return false;
2490 }
2491 
2492 static bool read_mailbox_7(void)
2493 {
2494 	writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
2495 	return false;
2496 }
2497 
2498 static bool (* const read_mailbox[NUM_MB])(void) = {
2499 	read_mailbox_0,
2500 	read_mailbox_1,
2501 	read_mailbox_2,
2502 	read_mailbox_3,
2503 	read_mailbox_4,
2504 	read_mailbox_5,
2505 	read_mailbox_6,
2506 	read_mailbox_7
2507 };
2508 
2509 static irqreturn_t prcmu_irq_handler(int irq, void *data)
2510 {
2511 	u32 bits;
2512 	u8 n;
2513 	irqreturn_t r;
2514 
2515 	bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
2516 	if (unlikely(!bits))
2517 		return IRQ_NONE;
2518 
2519 	r = IRQ_HANDLED;
2520 	for (n = 0; bits; n++) {
2521 		if (bits & MBOX_BIT(n)) {
2522 			bits -= MBOX_BIT(n);
2523 			if (read_mailbox[n]())
2524 				r = IRQ_WAKE_THREAD;
2525 		}
2526 	}
2527 	return r;
2528 }
2529 
2530 static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
2531 {
2532 	ack_dbb_wakeup();
2533 	return IRQ_HANDLED;
2534 }
2535 
2536 static void prcmu_mask_work(struct work_struct *work)
2537 {
2538 	unsigned long flags;
2539 
2540 	spin_lock_irqsave(&mb0_transfer.lock, flags);
2541 
2542 	config_wakeups();
2543 
2544 	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2545 }
2546 
2547 static void prcmu_irq_mask(struct irq_data *d)
2548 {
2549 	unsigned long flags;
2550 
2551 	spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2552 
2553 	mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq];
2554 
2555 	spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2556 
2557 	if (d->irq != IRQ_PRCMU_CA_SLEEP)
2558 		schedule_work(&mb0_transfer.mask_work);
2559 }
2560 
2561 static void prcmu_irq_unmask(struct irq_data *d)
2562 {
2563 	unsigned long flags;
2564 
2565 	spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2566 
2567 	mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq];
2568 
2569 	spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2570 
2571 	if (d->irq != IRQ_PRCMU_CA_SLEEP)
2572 		schedule_work(&mb0_transfer.mask_work);
2573 }
2574 
2575 static void noop(struct irq_data *d)
2576 {
2577 }
2578 
2579 static struct irq_chip prcmu_irq_chip = {
2580 	.name		= "prcmu",
2581 	.irq_disable	= prcmu_irq_mask,
2582 	.irq_ack	= noop,
2583 	.irq_mask	= prcmu_irq_mask,
2584 	.irq_unmask	= prcmu_irq_unmask,
2585 };
2586 
2587 static __init char *fw_project_name(u32 project)
2588 {
2589 	switch (project) {
2590 	case PRCMU_FW_PROJECT_U8500:
2591 		return "U8500";
2592 	case PRCMU_FW_PROJECT_U8400:
2593 		return "U8400";
2594 	case PRCMU_FW_PROJECT_U9500:
2595 		return "U9500";
2596 	case PRCMU_FW_PROJECT_U8500_MBB:
2597 		return "U8500 MBB";
2598 	case PRCMU_FW_PROJECT_U8500_C1:
2599 		return "U8500 C1";
2600 	case PRCMU_FW_PROJECT_U8500_C2:
2601 		return "U8500 C2";
2602 	case PRCMU_FW_PROJECT_U8500_C3:
2603 		return "U8500 C3";
2604 	case PRCMU_FW_PROJECT_U8500_C4:
2605 		return "U8500 C4";
2606 	case PRCMU_FW_PROJECT_U9500_MBL:
2607 		return "U9500 MBL";
2608 	case PRCMU_FW_PROJECT_U8500_MBL:
2609 		return "U8500 MBL";
2610 	case PRCMU_FW_PROJECT_U8500_MBL2:
2611 		return "U8500 MBL2";
2612 	case PRCMU_FW_PROJECT_U8520:
2613 		return "U8520 MBL";
2614 	case PRCMU_FW_PROJECT_U8420:
2615 		return "U8420";
2616 	case PRCMU_FW_PROJECT_U9540:
2617 		return "U9540";
2618 	case PRCMU_FW_PROJECT_A9420:
2619 		return "A9420";
2620 	case PRCMU_FW_PROJECT_L8540:
2621 		return "L8540";
2622 	case PRCMU_FW_PROJECT_L8580:
2623 		return "L8580";
2624 	default:
2625 		return "Unknown";
2626 	}
2627 }
2628 
2629 static int db8500_irq_map(struct irq_domain *d, unsigned int virq,
2630 				irq_hw_number_t hwirq)
2631 {
2632 	irq_set_chip_and_handler(virq, &prcmu_irq_chip,
2633 				handle_simple_irq);
2634 
2635 	return 0;
2636 }
2637 
2638 static const struct irq_domain_ops db8500_irq_ops = {
2639 	.map    = db8500_irq_map,
2640 	.xlate  = irq_domain_xlate_twocell,
2641 };
2642 
2643 static int db8500_irq_init(struct device_node *np)
2644 {
2645 	int i;
2646 
2647 	db8500_irq_domain = irq_domain_add_simple(
2648 		np, NUM_PRCMU_WAKEUPS, 0,
2649 		&db8500_irq_ops, NULL);
2650 
2651 	if (!db8500_irq_domain) {
2652 		pr_err("Failed to create irqdomain\n");
2653 		return -ENOSYS;
2654 	}
2655 
2656 	/* All wakeups will be used, so create mappings for all */
2657 	for (i = 0; i < NUM_PRCMU_WAKEUPS; i++)
2658 		irq_create_mapping(db8500_irq_domain, i);
2659 
2660 	return 0;
2661 }
2662 
2663 static void dbx500_fw_version_init(struct platform_device *pdev,
2664 			    u32 version_offset)
2665 {
2666 	struct resource *res;
2667 	void __iomem *tcpm_base;
2668 	u32 version;
2669 
2670 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
2671 					   "prcmu-tcpm");
2672 	if (!res) {
2673 		dev_err(&pdev->dev,
2674 			"Error: no prcmu tcpm memory region provided\n");
2675 		return;
2676 	}
2677 	tcpm_base = ioremap(res->start, resource_size(res));
2678 	if (!tcpm_base) {
2679 		dev_err(&pdev->dev, "no prcmu tcpm mem region provided\n");
2680 		return;
2681 	}
2682 
2683 	version = readl(tcpm_base + version_offset);
2684 	fw_info.version.project = (version & 0xFF);
2685 	fw_info.version.api_version = (version >> 8) & 0xFF;
2686 	fw_info.version.func_version = (version >> 16) & 0xFF;
2687 	fw_info.version.errata = (version >> 24) & 0xFF;
2688 	strncpy(fw_info.version.project_name,
2689 		fw_project_name(fw_info.version.project),
2690 		PRCMU_FW_PROJECT_NAME_LEN);
2691 	fw_info.valid = true;
2692 	pr_info("PRCMU firmware: %s(%d), version %d.%d.%d\n",
2693 		fw_info.version.project_name,
2694 		fw_info.version.project,
2695 		fw_info.version.api_version,
2696 		fw_info.version.func_version,
2697 		fw_info.version.errata);
2698 	iounmap(tcpm_base);
2699 }
2700 
2701 void __init db8500_prcmu_early_init(u32 phy_base, u32 size)
2702 {
2703 	/*
2704 	 * This is a temporary remap to bring up the clocks. It is
2705 	 * subsequently replaces with a real remap. After the merge of
2706 	 * the mailbox subsystem all of this early code goes away, and the
2707 	 * clock driver can probe independently. An early initcall will
2708 	 * still be needed, but it can be diverted into drivers/clk/ux500.
2709 	 */
2710 	prcmu_base = ioremap(phy_base, size);
2711 	if (!prcmu_base)
2712 		pr_err("%s: ioremap() of prcmu registers failed!\n", __func__);
2713 
2714 	spin_lock_init(&mb0_transfer.lock);
2715 	spin_lock_init(&mb0_transfer.dbb_irqs_lock);
2716 	mutex_init(&mb0_transfer.ac_wake_lock);
2717 	init_completion(&mb0_transfer.ac_wake_work);
2718 	mutex_init(&mb1_transfer.lock);
2719 	init_completion(&mb1_transfer.work);
2720 	mb1_transfer.ape_opp = APE_NO_CHANGE;
2721 	mutex_init(&mb2_transfer.lock);
2722 	init_completion(&mb2_transfer.work);
2723 	spin_lock_init(&mb2_transfer.auto_pm_lock);
2724 	spin_lock_init(&mb3_transfer.lock);
2725 	mutex_init(&mb3_transfer.sysclk_lock);
2726 	init_completion(&mb3_transfer.sysclk_work);
2727 	mutex_init(&mb4_transfer.lock);
2728 	init_completion(&mb4_transfer.work);
2729 	mutex_init(&mb5_transfer.lock);
2730 	init_completion(&mb5_transfer.work);
2731 
2732 	INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
2733 }
2734 
2735 static void __init init_prcm_registers(void)
2736 {
2737 	u32 val;
2738 
2739 	val = readl(PRCM_A9PL_FORCE_CLKEN);
2740 	val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
2741 		PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
2742 	writel(val, (PRCM_A9PL_FORCE_CLKEN));
2743 }
2744 
2745 /*
2746  * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
2747  */
2748 static struct regulator_consumer_supply db8500_vape_consumers[] = {
2749 	REGULATOR_SUPPLY("v-ape", NULL),
2750 	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2751 	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2752 	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2753 	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
2754 	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
2755 	/* "v-mmc" changed to "vcore" in the mainline kernel */
2756 	REGULATOR_SUPPLY("vcore", "sdi0"),
2757 	REGULATOR_SUPPLY("vcore", "sdi1"),
2758 	REGULATOR_SUPPLY("vcore", "sdi2"),
2759 	REGULATOR_SUPPLY("vcore", "sdi3"),
2760 	REGULATOR_SUPPLY("vcore", "sdi4"),
2761 	REGULATOR_SUPPLY("v-dma", "dma40.0"),
2762 	REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2763 	/* "v-uart" changed to "vcore" in the mainline kernel */
2764 	REGULATOR_SUPPLY("vcore", "uart0"),
2765 	REGULATOR_SUPPLY("vcore", "uart1"),
2766 	REGULATOR_SUPPLY("vcore", "uart2"),
2767 	REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
2768 	REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
2769 	REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
2770 };
2771 
2772 static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
2773 	REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2774 	/* AV8100 regulator */
2775 	REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2776 };
2777 
2778 static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
2779 	REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
2780 	REGULATOR_SUPPLY("vsupply", "mcde"),
2781 };
2782 
2783 /* SVA MMDSP regulator switch */
2784 static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
2785 	REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2786 };
2787 
2788 /* SVA pipe regulator switch */
2789 static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
2790 	REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2791 };
2792 
2793 /* SIA MMDSP regulator switch */
2794 static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
2795 	REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2796 };
2797 
2798 /* SIA pipe regulator switch */
2799 static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
2800 	REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2801 };
2802 
2803 static struct regulator_consumer_supply db8500_sga_consumers[] = {
2804 	REGULATOR_SUPPLY("v-mali", NULL),
2805 };
2806 
2807 /* ESRAM1 and 2 regulator switch */
2808 static struct regulator_consumer_supply db8500_esram12_consumers[] = {
2809 	REGULATOR_SUPPLY("esram12", "cm_control"),
2810 };
2811 
2812 /* ESRAM3 and 4 regulator switch */
2813 static struct regulator_consumer_supply db8500_esram34_consumers[] = {
2814 	REGULATOR_SUPPLY("v-esram34", "mcde"),
2815 	REGULATOR_SUPPLY("esram34", "cm_control"),
2816 	REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
2817 };
2818 
2819 static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
2820 	[DB8500_REGULATOR_VAPE] = {
2821 		.constraints = {
2822 			.name = "db8500-vape",
2823 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2824 			.always_on = true,
2825 		},
2826 		.consumer_supplies = db8500_vape_consumers,
2827 		.num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
2828 	},
2829 	[DB8500_REGULATOR_VARM] = {
2830 		.constraints = {
2831 			.name = "db8500-varm",
2832 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2833 		},
2834 	},
2835 	[DB8500_REGULATOR_VMODEM] = {
2836 		.constraints = {
2837 			.name = "db8500-vmodem",
2838 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2839 		},
2840 	},
2841 	[DB8500_REGULATOR_VPLL] = {
2842 		.constraints = {
2843 			.name = "db8500-vpll",
2844 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2845 		},
2846 	},
2847 	[DB8500_REGULATOR_VSMPS1] = {
2848 		.constraints = {
2849 			.name = "db8500-vsmps1",
2850 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2851 		},
2852 	},
2853 	[DB8500_REGULATOR_VSMPS2] = {
2854 		.constraints = {
2855 			.name = "db8500-vsmps2",
2856 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2857 		},
2858 		.consumer_supplies = db8500_vsmps2_consumers,
2859 		.num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
2860 	},
2861 	[DB8500_REGULATOR_VSMPS3] = {
2862 		.constraints = {
2863 			.name = "db8500-vsmps3",
2864 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2865 		},
2866 	},
2867 	[DB8500_REGULATOR_VRF1] = {
2868 		.constraints = {
2869 			.name = "db8500-vrf1",
2870 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2871 		},
2872 	},
2873 	[DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
2874 		/* dependency to u8500-vape is handled outside regulator framework */
2875 		.constraints = {
2876 			.name = "db8500-sva-mmdsp",
2877 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2878 		},
2879 		.consumer_supplies = db8500_svammdsp_consumers,
2880 		.num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
2881 	},
2882 	[DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
2883 		.constraints = {
2884 			/* "ret" means "retention" */
2885 			.name = "db8500-sva-mmdsp-ret",
2886 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2887 		},
2888 	},
2889 	[DB8500_REGULATOR_SWITCH_SVAPIPE] = {
2890 		/* dependency to u8500-vape is handled outside regulator framework */
2891 		.constraints = {
2892 			.name = "db8500-sva-pipe",
2893 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2894 		},
2895 		.consumer_supplies = db8500_svapipe_consumers,
2896 		.num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
2897 	},
2898 	[DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
2899 		/* dependency to u8500-vape is handled outside regulator framework */
2900 		.constraints = {
2901 			.name = "db8500-sia-mmdsp",
2902 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2903 		},
2904 		.consumer_supplies = db8500_siammdsp_consumers,
2905 		.num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
2906 	},
2907 	[DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
2908 		.constraints = {
2909 			.name = "db8500-sia-mmdsp-ret",
2910 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2911 		},
2912 	},
2913 	[DB8500_REGULATOR_SWITCH_SIAPIPE] = {
2914 		/* dependency to u8500-vape is handled outside regulator framework */
2915 		.constraints = {
2916 			.name = "db8500-sia-pipe",
2917 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2918 		},
2919 		.consumer_supplies = db8500_siapipe_consumers,
2920 		.num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
2921 	},
2922 	[DB8500_REGULATOR_SWITCH_SGA] = {
2923 		.supply_regulator = "db8500-vape",
2924 		.constraints = {
2925 			.name = "db8500-sga",
2926 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2927 		},
2928 		.consumer_supplies = db8500_sga_consumers,
2929 		.num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
2930 
2931 	},
2932 	[DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
2933 		.supply_regulator = "db8500-vape",
2934 		.constraints = {
2935 			.name = "db8500-b2r2-mcde",
2936 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2937 		},
2938 		.consumer_supplies = db8500_b2r2_mcde_consumers,
2939 		.num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
2940 	},
2941 	[DB8500_REGULATOR_SWITCH_ESRAM12] = {
2942 		/*
2943 		 * esram12 is set in retention and supplied by Vsafe when Vape is off,
2944 		 * no need to hold Vape
2945 		 */
2946 		.constraints = {
2947 			.name = "db8500-esram12",
2948 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2949 		},
2950 		.consumer_supplies = db8500_esram12_consumers,
2951 		.num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
2952 	},
2953 	[DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
2954 		.constraints = {
2955 			.name = "db8500-esram12-ret",
2956 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2957 		},
2958 	},
2959 	[DB8500_REGULATOR_SWITCH_ESRAM34] = {
2960 		/*
2961 		 * esram34 is set in retention and supplied by Vsafe when Vape is off,
2962 		 * no need to hold Vape
2963 		 */
2964 		.constraints = {
2965 			.name = "db8500-esram34",
2966 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2967 		},
2968 		.consumer_supplies = db8500_esram34_consumers,
2969 		.num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
2970 	},
2971 	[DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
2972 		.constraints = {
2973 			.name = "db8500-esram34-ret",
2974 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2975 		},
2976 	},
2977 };
2978 
2979 static struct ux500_wdt_data db8500_wdt_pdata = {
2980 	.timeout = 600, /* 10 minutes */
2981 	.has_28_bits_resolution = true,
2982 };
2983 /*
2984  * Thermal Sensor
2985  */
2986 
2987 static struct resource db8500_thsens_resources[] = {
2988 	{
2989 		.name = "IRQ_HOTMON_LOW",
2990 		.start  = IRQ_PRCMU_HOTMON_LOW,
2991 		.end    = IRQ_PRCMU_HOTMON_LOW,
2992 		.flags  = IORESOURCE_IRQ,
2993 	},
2994 	{
2995 		.name = "IRQ_HOTMON_HIGH",
2996 		.start  = IRQ_PRCMU_HOTMON_HIGH,
2997 		.end    = IRQ_PRCMU_HOTMON_HIGH,
2998 		.flags  = IORESOURCE_IRQ,
2999 	},
3000 };
3001 
3002 static struct db8500_thsens_platform_data db8500_thsens_data = {
3003 	.trip_points[0] = {
3004 		.temp = 70000,
3005 		.type = THERMAL_TRIP_ACTIVE,
3006 		.cdev_name = {
3007 			[0] = "thermal-cpufreq-0",
3008 		},
3009 	},
3010 	.trip_points[1] = {
3011 		.temp = 75000,
3012 		.type = THERMAL_TRIP_ACTIVE,
3013 		.cdev_name = {
3014 			[0] = "thermal-cpufreq-0",
3015 		},
3016 	},
3017 	.trip_points[2] = {
3018 		.temp = 80000,
3019 		.type = THERMAL_TRIP_ACTIVE,
3020 		.cdev_name = {
3021 			[0] = "thermal-cpufreq-0",
3022 		},
3023 	},
3024 	.trip_points[3] = {
3025 		.temp = 85000,
3026 		.type = THERMAL_TRIP_CRITICAL,
3027 	},
3028 	.num_trips = 4,
3029 };
3030 
3031 static const struct mfd_cell common_prcmu_devs[] = {
3032 	{
3033 		.name = "ux500_wdt",
3034 		.platform_data = &db8500_wdt_pdata,
3035 		.pdata_size = sizeof(db8500_wdt_pdata),
3036 		.id = -1,
3037 	},
3038 };
3039 
3040 static const struct mfd_cell db8500_prcmu_devs[] = {
3041 	{
3042 		.name = "db8500-prcmu-regulators",
3043 		.of_compatible = "stericsson,db8500-prcmu-regulator",
3044 		.platform_data = &db8500_regulators,
3045 		.pdata_size = sizeof(db8500_regulators),
3046 	},
3047 	{
3048 		.name = "cpuidle-dbx500",
3049 		.of_compatible = "stericsson,cpuidle-dbx500",
3050 	},
3051 	{
3052 		.name = "db8500-thermal",
3053 		.num_resources = ARRAY_SIZE(db8500_thsens_resources),
3054 		.resources = db8500_thsens_resources,
3055 		.platform_data = &db8500_thsens_data,
3056 		.pdata_size = sizeof(db8500_thsens_data),
3057 	},
3058 };
3059 
3060 static int db8500_prcmu_register_ab8500(struct device *parent)
3061 {
3062 	struct device_node *np;
3063 	struct resource ab8500_resource;
3064 	const struct mfd_cell ab8500_cell = {
3065 		.name = "ab8500-core",
3066 		.of_compatible = "stericsson,ab8500",
3067 		.id = AB8500_VERSION_AB8500,
3068 		.resources = &ab8500_resource,
3069 		.num_resources = 1,
3070 	};
3071 
3072 	if (!parent->of_node)
3073 		return -ENODEV;
3074 
3075 	/* Look up the device node, sneak the IRQ out of it */
3076 	for_each_child_of_node(parent->of_node, np) {
3077 		if (of_device_is_compatible(np, ab8500_cell.of_compatible))
3078 			break;
3079 	}
3080 	if (!np) {
3081 		dev_info(parent, "could not find AB8500 node in the device tree\n");
3082 		return -ENODEV;
3083 	}
3084 	of_irq_to_resource_table(np, &ab8500_resource, 1);
3085 
3086 	return mfd_add_devices(parent, 0, &ab8500_cell, 1, NULL, 0, NULL);
3087 }
3088 
3089 /**
3090  * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
3091  *
3092  */
3093 static int db8500_prcmu_probe(struct platform_device *pdev)
3094 {
3095 	struct device_node *np = pdev->dev.of_node;
3096 	int irq = 0, err = 0;
3097 	struct resource *res;
3098 
3099 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu");
3100 	if (!res) {
3101 		dev_err(&pdev->dev, "no prcmu memory region provided\n");
3102 		return -EINVAL;
3103 	}
3104 	prcmu_base = devm_ioremap(&pdev->dev, res->start, resource_size(res));
3105 	if (!prcmu_base) {
3106 		dev_err(&pdev->dev,
3107 			"failed to ioremap prcmu register memory\n");
3108 		return -ENOMEM;
3109 	}
3110 	init_prcm_registers();
3111 	dbx500_fw_version_init(pdev, DB8500_PRCMU_FW_VERSION_OFFSET);
3112 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu-tcdm");
3113 	if (!res) {
3114 		dev_err(&pdev->dev, "no prcmu tcdm region provided\n");
3115 		return -EINVAL;
3116 	}
3117 	tcdm_base = devm_ioremap(&pdev->dev, res->start,
3118 			resource_size(res));
3119 	if (!tcdm_base) {
3120 		dev_err(&pdev->dev,
3121 			"failed to ioremap prcmu-tcdm register memory\n");
3122 		return -ENOMEM;
3123 	}
3124 
3125 	/* Clean up the mailbox interrupts after pre-kernel code. */
3126 	writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
3127 
3128 	irq = platform_get_irq(pdev, 0);
3129 	if (irq <= 0) {
3130 		dev_err(&pdev->dev, "no prcmu irq provided\n");
3131 		return irq;
3132 	}
3133 
3134 	err = request_threaded_irq(irq, prcmu_irq_handler,
3135 	        prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
3136 	if (err < 0) {
3137 		pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
3138 		return err;
3139 	}
3140 
3141 	db8500_irq_init(np);
3142 
3143 	prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
3144 
3145 	err = mfd_add_devices(&pdev->dev, 0, common_prcmu_devs,
3146 			      ARRAY_SIZE(common_prcmu_devs), NULL, 0, db8500_irq_domain);
3147 	if (err) {
3148 		pr_err("prcmu: Failed to add subdevices\n");
3149 		return err;
3150 	}
3151 
3152 	/* TODO: Remove restriction when clk definitions are available. */
3153 	if (!of_machine_is_compatible("st-ericsson,u8540")) {
3154 		err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
3155 				      ARRAY_SIZE(db8500_prcmu_devs), NULL, 0,
3156 				      db8500_irq_domain);
3157 		if (err) {
3158 			mfd_remove_devices(&pdev->dev);
3159 			pr_err("prcmu: Failed to add subdevices\n");
3160 			return err;
3161 		}
3162 	}
3163 
3164 	err = db8500_prcmu_register_ab8500(&pdev->dev);
3165 	if (err) {
3166 		mfd_remove_devices(&pdev->dev);
3167 		pr_err("prcmu: Failed to add ab8500 subdevice\n");
3168 		return err;
3169 	}
3170 
3171 	pr_info("DB8500 PRCMU initialized\n");
3172 	return err;
3173 }
3174 static const struct of_device_id db8500_prcmu_match[] = {
3175 	{ .compatible = "stericsson,db8500-prcmu"},
3176 	{ },
3177 };
3178 
3179 static struct platform_driver db8500_prcmu_driver = {
3180 	.driver = {
3181 		.name = "db8500-prcmu",
3182 		.of_match_table = db8500_prcmu_match,
3183 	},
3184 	.probe = db8500_prcmu_probe,
3185 };
3186 
3187 static int __init db8500_prcmu_init(void)
3188 {
3189 	return platform_driver_register(&db8500_prcmu_driver);
3190 }
3191 
3192 core_initcall(db8500_prcmu_init);
3193 
3194 MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>");
3195 MODULE_DESCRIPTION("DB8500 PRCM Unit driver");
3196 MODULE_LICENSE("GPL v2");
3197