xref: /openbmc/linux/drivers/mfd/db8500-prcmu.c (revision 0d456bad)
1 /*
2  * Copyright (C) STMicroelectronics 2009
3  * Copyright (C) ST-Ericsson SA 2010
4  *
5  * License Terms: GNU General Public License v2
6  * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
7  * Author: Sundar Iyer <sundar.iyer@stericsson.com>
8  * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
9  *
10  * U8500 PRCM Unit interface driver
11  *
12  */
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/delay.h>
16 #include <linux/errno.h>
17 #include <linux/err.h>
18 #include <linux/spinlock.h>
19 #include <linux/io.h>
20 #include <linux/slab.h>
21 #include <linux/mutex.h>
22 #include <linux/completion.h>
23 #include <linux/irq.h>
24 #include <linux/jiffies.h>
25 #include <linux/bitops.h>
26 #include <linux/fs.h>
27 #include <linux/platform_device.h>
28 #include <linux/uaccess.h>
29 #include <linux/mfd/core.h>
30 #include <linux/mfd/dbx500-prcmu.h>
31 #include <linux/mfd/abx500/ab8500.h>
32 #include <linux/regulator/db8500-prcmu.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/cpufreq.h>
35 #include <asm/hardware/gic.h>
36 #include <mach/hardware.h>
37 #include <mach/irqs.h>
38 #include <mach/db8500-regs.h>
39 #include <mach/id.h>
40 #include "dbx500-prcmu-regs.h"
41 
42 /* Offset for the firmware version within the TCPM */
43 #define PRCMU_FW_VERSION_OFFSET 0xA4
44 
45 /* Index of different voltages to be used when accessing AVSData */
46 #define PRCM_AVS_BASE		0x2FC
47 #define PRCM_AVS_VBB_RET	(PRCM_AVS_BASE + 0x0)
48 #define PRCM_AVS_VBB_MAX_OPP	(PRCM_AVS_BASE + 0x1)
49 #define PRCM_AVS_VBB_100_OPP	(PRCM_AVS_BASE + 0x2)
50 #define PRCM_AVS_VBB_50_OPP	(PRCM_AVS_BASE + 0x3)
51 #define PRCM_AVS_VARM_MAX_OPP	(PRCM_AVS_BASE + 0x4)
52 #define PRCM_AVS_VARM_100_OPP	(PRCM_AVS_BASE + 0x5)
53 #define PRCM_AVS_VARM_50_OPP	(PRCM_AVS_BASE + 0x6)
54 #define PRCM_AVS_VARM_RET	(PRCM_AVS_BASE + 0x7)
55 #define PRCM_AVS_VAPE_100_OPP	(PRCM_AVS_BASE + 0x8)
56 #define PRCM_AVS_VAPE_50_OPP	(PRCM_AVS_BASE + 0x9)
57 #define PRCM_AVS_VMOD_100_OPP	(PRCM_AVS_BASE + 0xA)
58 #define PRCM_AVS_VMOD_50_OPP	(PRCM_AVS_BASE + 0xB)
59 #define PRCM_AVS_VSAFE		(PRCM_AVS_BASE + 0xC)
60 
61 #define PRCM_AVS_VOLTAGE		0
62 #define PRCM_AVS_VOLTAGE_MASK		0x3f
63 #define PRCM_AVS_ISSLOWSTARTUP		6
64 #define PRCM_AVS_ISSLOWSTARTUP_MASK	(1 << PRCM_AVS_ISSLOWSTARTUP)
65 #define PRCM_AVS_ISMODEENABLE		7
66 #define PRCM_AVS_ISMODEENABLE_MASK	(1 << PRCM_AVS_ISMODEENABLE)
67 
68 #define PRCM_BOOT_STATUS	0xFFF
69 #define PRCM_ROMCODE_A2P	0xFFE
70 #define PRCM_ROMCODE_P2A	0xFFD
71 #define PRCM_XP70_CUR_PWR_STATE 0xFFC      /* 4 BYTES */
72 
73 #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
74 
75 #define _PRCM_MBOX_HEADER		0xFE8 /* 16 bytes */
76 #define PRCM_MBOX_HEADER_REQ_MB0	(_PRCM_MBOX_HEADER + 0x0)
77 #define PRCM_MBOX_HEADER_REQ_MB1	(_PRCM_MBOX_HEADER + 0x1)
78 #define PRCM_MBOX_HEADER_REQ_MB2	(_PRCM_MBOX_HEADER + 0x2)
79 #define PRCM_MBOX_HEADER_REQ_MB3	(_PRCM_MBOX_HEADER + 0x3)
80 #define PRCM_MBOX_HEADER_REQ_MB4	(_PRCM_MBOX_HEADER + 0x4)
81 #define PRCM_MBOX_HEADER_REQ_MB5	(_PRCM_MBOX_HEADER + 0x5)
82 #define PRCM_MBOX_HEADER_ACK_MB0	(_PRCM_MBOX_HEADER + 0x8)
83 
84 /* Req Mailboxes */
85 #define PRCM_REQ_MB0 0xFDC /* 12 bytes  */
86 #define PRCM_REQ_MB1 0xFD0 /* 12 bytes  */
87 #define PRCM_REQ_MB2 0xFC0 /* 16 bytes  */
88 #define PRCM_REQ_MB3 0xE4C /* 372 bytes  */
89 #define PRCM_REQ_MB4 0xE48 /* 4 bytes  */
90 #define PRCM_REQ_MB5 0xE44 /* 4 bytes  */
91 
92 /* Ack Mailboxes */
93 #define PRCM_ACK_MB0 0xE08 /* 52 bytes  */
94 #define PRCM_ACK_MB1 0xE04 /* 4 bytes */
95 #define PRCM_ACK_MB2 0xE00 /* 4 bytes */
96 #define PRCM_ACK_MB3 0xDFC /* 4 bytes */
97 #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
98 #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
99 
100 /* Mailbox 0 headers */
101 #define MB0H_POWER_STATE_TRANS		0
102 #define MB0H_CONFIG_WAKEUPS_EXE		1
103 #define MB0H_READ_WAKEUP_ACK		3
104 #define MB0H_CONFIG_WAKEUPS_SLEEP	4
105 
106 #define MB0H_WAKEUP_EXE 2
107 #define MB0H_WAKEUP_SLEEP 5
108 
109 /* Mailbox 0 REQs */
110 #define PRCM_REQ_MB0_AP_POWER_STATE	(PRCM_REQ_MB0 + 0x0)
111 #define PRCM_REQ_MB0_AP_PLL_STATE	(PRCM_REQ_MB0 + 0x1)
112 #define PRCM_REQ_MB0_ULP_CLOCK_STATE	(PRCM_REQ_MB0 + 0x2)
113 #define PRCM_REQ_MB0_DO_NOT_WFI		(PRCM_REQ_MB0 + 0x3)
114 #define PRCM_REQ_MB0_WAKEUP_8500	(PRCM_REQ_MB0 + 0x4)
115 #define PRCM_REQ_MB0_WAKEUP_4500	(PRCM_REQ_MB0 + 0x8)
116 
117 /* Mailbox 0 ACKs */
118 #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS	(PRCM_ACK_MB0 + 0x0)
119 #define PRCM_ACK_MB0_READ_POINTER	(PRCM_ACK_MB0 + 0x1)
120 #define PRCM_ACK_MB0_WAKEUP_0_8500	(PRCM_ACK_MB0 + 0x4)
121 #define PRCM_ACK_MB0_WAKEUP_0_4500	(PRCM_ACK_MB0 + 0x8)
122 #define PRCM_ACK_MB0_WAKEUP_1_8500	(PRCM_ACK_MB0 + 0x1C)
123 #define PRCM_ACK_MB0_WAKEUP_1_4500	(PRCM_ACK_MB0 + 0x20)
124 #define PRCM_ACK_MB0_EVENT_4500_NUMBERS	20
125 
126 /* Mailbox 1 headers */
127 #define MB1H_ARM_APE_OPP 0x0
128 #define MB1H_RESET_MODEM 0x2
129 #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
130 #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
131 #define MB1H_RELEASE_USB_WAKEUP 0x5
132 #define MB1H_PLL_ON_OFF 0x6
133 
134 /* Mailbox 1 Requests */
135 #define PRCM_REQ_MB1_ARM_OPP			(PRCM_REQ_MB1 + 0x0)
136 #define PRCM_REQ_MB1_APE_OPP			(PRCM_REQ_MB1 + 0x1)
137 #define PRCM_REQ_MB1_PLL_ON_OFF			(PRCM_REQ_MB1 + 0x4)
138 #define PLL_SOC0_OFF	0x1
139 #define PLL_SOC0_ON	0x2
140 #define PLL_SOC1_OFF	0x4
141 #define PLL_SOC1_ON	0x8
142 
143 /* Mailbox 1 ACKs */
144 #define PRCM_ACK_MB1_CURRENT_ARM_OPP	(PRCM_ACK_MB1 + 0x0)
145 #define PRCM_ACK_MB1_CURRENT_APE_OPP	(PRCM_ACK_MB1 + 0x1)
146 #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS	(PRCM_ACK_MB1 + 0x2)
147 #define PRCM_ACK_MB1_DVFS_STATUS	(PRCM_ACK_MB1 + 0x3)
148 
149 /* Mailbox 2 headers */
150 #define MB2H_DPS	0x0
151 #define MB2H_AUTO_PWR	0x1
152 
153 /* Mailbox 2 REQs */
154 #define PRCM_REQ_MB2_SVA_MMDSP		(PRCM_REQ_MB2 + 0x0)
155 #define PRCM_REQ_MB2_SVA_PIPE		(PRCM_REQ_MB2 + 0x1)
156 #define PRCM_REQ_MB2_SIA_MMDSP		(PRCM_REQ_MB2 + 0x2)
157 #define PRCM_REQ_MB2_SIA_PIPE		(PRCM_REQ_MB2 + 0x3)
158 #define PRCM_REQ_MB2_SGA		(PRCM_REQ_MB2 + 0x4)
159 #define PRCM_REQ_MB2_B2R2_MCDE		(PRCM_REQ_MB2 + 0x5)
160 #define PRCM_REQ_MB2_ESRAM12		(PRCM_REQ_MB2 + 0x6)
161 #define PRCM_REQ_MB2_ESRAM34		(PRCM_REQ_MB2 + 0x7)
162 #define PRCM_REQ_MB2_AUTO_PM_SLEEP	(PRCM_REQ_MB2 + 0x8)
163 #define PRCM_REQ_MB2_AUTO_PM_IDLE	(PRCM_REQ_MB2 + 0xC)
164 
165 /* Mailbox 2 ACKs */
166 #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
167 #define HWACC_PWR_ST_OK 0xFE
168 
169 /* Mailbox 3 headers */
170 #define MB3H_ANC	0x0
171 #define MB3H_SIDETONE	0x1
172 #define MB3H_SYSCLK	0xE
173 
174 /* Mailbox 3 Requests */
175 #define PRCM_REQ_MB3_ANC_FIR_COEFF	(PRCM_REQ_MB3 + 0x0)
176 #define PRCM_REQ_MB3_ANC_IIR_COEFF	(PRCM_REQ_MB3 + 0x20)
177 #define PRCM_REQ_MB3_ANC_SHIFTER	(PRCM_REQ_MB3 + 0x60)
178 #define PRCM_REQ_MB3_ANC_WARP		(PRCM_REQ_MB3 + 0x64)
179 #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN	(PRCM_REQ_MB3 + 0x68)
180 #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF	(PRCM_REQ_MB3 + 0x6C)
181 #define PRCM_REQ_MB3_SYSCLK_MGT		(PRCM_REQ_MB3 + 0x16C)
182 
183 /* Mailbox 4 headers */
184 #define MB4H_DDR_INIT	0x0
185 #define MB4H_MEM_ST	0x1
186 #define MB4H_HOTDOG	0x12
187 #define MB4H_HOTMON	0x13
188 #define MB4H_HOT_PERIOD	0x14
189 #define MB4H_A9WDOG_CONF 0x16
190 #define MB4H_A9WDOG_EN   0x17
191 #define MB4H_A9WDOG_DIS  0x18
192 #define MB4H_A9WDOG_LOAD 0x19
193 #define MB4H_A9WDOG_KICK 0x20
194 
195 /* Mailbox 4 Requests */
196 #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE	(PRCM_REQ_MB4 + 0x0)
197 #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE	(PRCM_REQ_MB4 + 0x1)
198 #define PRCM_REQ_MB4_ESRAM0_ST			(PRCM_REQ_MB4 + 0x3)
199 #define PRCM_REQ_MB4_HOTDOG_THRESHOLD		(PRCM_REQ_MB4 + 0x0)
200 #define PRCM_REQ_MB4_HOTMON_LOW			(PRCM_REQ_MB4 + 0x0)
201 #define PRCM_REQ_MB4_HOTMON_HIGH		(PRCM_REQ_MB4 + 0x1)
202 #define PRCM_REQ_MB4_HOTMON_CONFIG		(PRCM_REQ_MB4 + 0x2)
203 #define PRCM_REQ_MB4_HOT_PERIOD			(PRCM_REQ_MB4 + 0x0)
204 #define HOTMON_CONFIG_LOW			BIT(0)
205 #define HOTMON_CONFIG_HIGH			BIT(1)
206 #define PRCM_REQ_MB4_A9WDOG_0			(PRCM_REQ_MB4 + 0x0)
207 #define PRCM_REQ_MB4_A9WDOG_1			(PRCM_REQ_MB4 + 0x1)
208 #define PRCM_REQ_MB4_A9WDOG_2			(PRCM_REQ_MB4 + 0x2)
209 #define PRCM_REQ_MB4_A9WDOG_3			(PRCM_REQ_MB4 + 0x3)
210 #define A9WDOG_AUTO_OFF_EN			BIT(7)
211 #define A9WDOG_AUTO_OFF_DIS			0
212 #define A9WDOG_ID_MASK				0xf
213 
214 /* Mailbox 5 Requests */
215 #define PRCM_REQ_MB5_I2C_SLAVE_OP	(PRCM_REQ_MB5 + 0x0)
216 #define PRCM_REQ_MB5_I2C_HW_BITS	(PRCM_REQ_MB5 + 0x1)
217 #define PRCM_REQ_MB5_I2C_REG		(PRCM_REQ_MB5 + 0x2)
218 #define PRCM_REQ_MB5_I2C_VAL		(PRCM_REQ_MB5 + 0x3)
219 #define PRCMU_I2C_WRITE(slave) \
220 	(((slave) << 1) | (cpu_is_u8500v2() ? BIT(6) : 0))
221 #define PRCMU_I2C_READ(slave) \
222 	(((slave) << 1) | BIT(0) | (cpu_is_u8500v2() ? BIT(6) : 0))
223 #define PRCMU_I2C_STOP_EN		BIT(3)
224 
225 /* Mailbox 5 ACKs */
226 #define PRCM_ACK_MB5_I2C_STATUS	(PRCM_ACK_MB5 + 0x1)
227 #define PRCM_ACK_MB5_I2C_VAL	(PRCM_ACK_MB5 + 0x3)
228 #define I2C_WR_OK 0x1
229 #define I2C_RD_OK 0x2
230 
231 #define NUM_MB 8
232 #define MBOX_BIT BIT
233 #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
234 
235 /*
236  * Wakeups/IRQs
237  */
238 
239 #define WAKEUP_BIT_RTC BIT(0)
240 #define WAKEUP_BIT_RTT0 BIT(1)
241 #define WAKEUP_BIT_RTT1 BIT(2)
242 #define WAKEUP_BIT_HSI0 BIT(3)
243 #define WAKEUP_BIT_HSI1 BIT(4)
244 #define WAKEUP_BIT_CA_WAKE BIT(5)
245 #define WAKEUP_BIT_USB BIT(6)
246 #define WAKEUP_BIT_ABB BIT(7)
247 #define WAKEUP_BIT_ABB_FIFO BIT(8)
248 #define WAKEUP_BIT_SYSCLK_OK BIT(9)
249 #define WAKEUP_BIT_CA_SLEEP BIT(10)
250 #define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
251 #define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
252 #define WAKEUP_BIT_ANC_OK BIT(13)
253 #define WAKEUP_BIT_SW_ERROR BIT(14)
254 #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
255 #define WAKEUP_BIT_ARM BIT(17)
256 #define WAKEUP_BIT_HOTMON_LOW BIT(18)
257 #define WAKEUP_BIT_HOTMON_HIGH BIT(19)
258 #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
259 #define WAKEUP_BIT_GPIO0 BIT(23)
260 #define WAKEUP_BIT_GPIO1 BIT(24)
261 #define WAKEUP_BIT_GPIO2 BIT(25)
262 #define WAKEUP_BIT_GPIO3 BIT(26)
263 #define WAKEUP_BIT_GPIO4 BIT(27)
264 #define WAKEUP_BIT_GPIO5 BIT(28)
265 #define WAKEUP_BIT_GPIO6 BIT(29)
266 #define WAKEUP_BIT_GPIO7 BIT(30)
267 #define WAKEUP_BIT_GPIO8 BIT(31)
268 
269 static struct {
270 	bool valid;
271 	struct prcmu_fw_version version;
272 } fw_info;
273 
274 static struct irq_domain *db8500_irq_domain;
275 
276 /*
277  * This vector maps irq numbers to the bits in the bit field used in
278  * communication with the PRCMU firmware.
279  *
280  * The reason for having this is to keep the irq numbers contiguous even though
281  * the bits in the bit field are not. (The bits also have a tendency to move
282  * around, to further complicate matters.)
283  */
284 #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name) - IRQ_PRCMU_BASE)
285 #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
286 static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
287 	IRQ_ENTRY(RTC),
288 	IRQ_ENTRY(RTT0),
289 	IRQ_ENTRY(RTT1),
290 	IRQ_ENTRY(HSI0),
291 	IRQ_ENTRY(HSI1),
292 	IRQ_ENTRY(CA_WAKE),
293 	IRQ_ENTRY(USB),
294 	IRQ_ENTRY(ABB),
295 	IRQ_ENTRY(ABB_FIFO),
296 	IRQ_ENTRY(CA_SLEEP),
297 	IRQ_ENTRY(ARM),
298 	IRQ_ENTRY(HOTMON_LOW),
299 	IRQ_ENTRY(HOTMON_HIGH),
300 	IRQ_ENTRY(MODEM_SW_RESET_REQ),
301 	IRQ_ENTRY(GPIO0),
302 	IRQ_ENTRY(GPIO1),
303 	IRQ_ENTRY(GPIO2),
304 	IRQ_ENTRY(GPIO3),
305 	IRQ_ENTRY(GPIO4),
306 	IRQ_ENTRY(GPIO5),
307 	IRQ_ENTRY(GPIO6),
308 	IRQ_ENTRY(GPIO7),
309 	IRQ_ENTRY(GPIO8)
310 };
311 
312 #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
313 #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
314 static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
315 	WAKEUP_ENTRY(RTC),
316 	WAKEUP_ENTRY(RTT0),
317 	WAKEUP_ENTRY(RTT1),
318 	WAKEUP_ENTRY(HSI0),
319 	WAKEUP_ENTRY(HSI1),
320 	WAKEUP_ENTRY(USB),
321 	WAKEUP_ENTRY(ABB),
322 	WAKEUP_ENTRY(ABB_FIFO),
323 	WAKEUP_ENTRY(ARM)
324 };
325 
326 /*
327  * mb0_transfer - state needed for mailbox 0 communication.
328  * @lock:		The transaction lock.
329  * @dbb_events_lock:	A lock used to handle concurrent access to (parts of)
330  *			the request data.
331  * @mask_work:		Work structure used for (un)masking wakeup interrupts.
332  * @req:		Request data that need to persist between requests.
333  */
334 static struct {
335 	spinlock_t lock;
336 	spinlock_t dbb_irqs_lock;
337 	struct work_struct mask_work;
338 	struct mutex ac_wake_lock;
339 	struct completion ac_wake_work;
340 	struct {
341 		u32 dbb_irqs;
342 		u32 dbb_wakeups;
343 		u32 abb_events;
344 	} req;
345 } mb0_transfer;
346 
347 /*
348  * mb1_transfer - state needed for mailbox 1 communication.
349  * @lock:	The transaction lock.
350  * @work:	The transaction completion structure.
351  * @ape_opp:	The current APE OPP.
352  * @ack:	Reply ("acknowledge") data.
353  */
354 static struct {
355 	struct mutex lock;
356 	struct completion work;
357 	u8 ape_opp;
358 	struct {
359 		u8 header;
360 		u8 arm_opp;
361 		u8 ape_opp;
362 		u8 ape_voltage_status;
363 	} ack;
364 } mb1_transfer;
365 
366 /*
367  * mb2_transfer - state needed for mailbox 2 communication.
368  * @lock:            The transaction lock.
369  * @work:            The transaction completion structure.
370  * @auto_pm_lock:    The autonomous power management configuration lock.
371  * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
372  * @req:             Request data that need to persist between requests.
373  * @ack:             Reply ("acknowledge") data.
374  */
375 static struct {
376 	struct mutex lock;
377 	struct completion work;
378 	spinlock_t auto_pm_lock;
379 	bool auto_pm_enabled;
380 	struct {
381 		u8 status;
382 	} ack;
383 } mb2_transfer;
384 
385 /*
386  * mb3_transfer - state needed for mailbox 3 communication.
387  * @lock:		The request lock.
388  * @sysclk_lock:	A lock used to handle concurrent sysclk requests.
389  * @sysclk_work:	Work structure used for sysclk requests.
390  */
391 static struct {
392 	spinlock_t lock;
393 	struct mutex sysclk_lock;
394 	struct completion sysclk_work;
395 } mb3_transfer;
396 
397 /*
398  * mb4_transfer - state needed for mailbox 4 communication.
399  * @lock:	The transaction lock.
400  * @work:	The transaction completion structure.
401  */
402 static struct {
403 	struct mutex lock;
404 	struct completion work;
405 } mb4_transfer;
406 
407 /*
408  * mb5_transfer - state needed for mailbox 5 communication.
409  * @lock:	The transaction lock.
410  * @work:	The transaction completion structure.
411  * @ack:	Reply ("acknowledge") data.
412  */
413 static struct {
414 	struct mutex lock;
415 	struct completion work;
416 	struct {
417 		u8 status;
418 		u8 value;
419 	} ack;
420 } mb5_transfer;
421 
422 static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
423 
424 /* Spinlocks */
425 static DEFINE_SPINLOCK(prcmu_lock);
426 static DEFINE_SPINLOCK(clkout_lock);
427 
428 /* Global var to runtime determine TCDM base for v2 or v1 */
429 static __iomem void *tcdm_base;
430 
431 struct clk_mgt {
432 	void __iomem *reg;
433 	u32 pllsw;
434 	int branch;
435 	bool clk38div;
436 };
437 
438 enum {
439 	PLL_RAW,
440 	PLL_FIX,
441 	PLL_DIV
442 };
443 
444 static DEFINE_SPINLOCK(clk_mgt_lock);
445 
446 #define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
447 	{ (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
448 struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
449 	CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
450 	CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
451 	CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
452 	CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
453 	CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
454 	CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
455 	CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
456 	CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
457 	CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
458 	CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
459 	CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
460 	CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
461 	CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
462 	CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
463 	CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
464 	CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
465 	CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
466 	CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
467 	CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
468 	CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
469 	CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
470 	CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
471 	CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
472 	CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
473 	CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
474 	CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
475 	CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
476 	CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
477 	CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
478 };
479 
480 struct dsiclk {
481 	u32 divsel_mask;
482 	u32 divsel_shift;
483 	u32 divsel;
484 };
485 
486 static struct dsiclk dsiclk[2] = {
487 	{
488 		.divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
489 		.divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
490 		.divsel = PRCM_DSI_PLLOUT_SEL_PHI,
491 	},
492 	{
493 		.divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
494 		.divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
495 		.divsel = PRCM_DSI_PLLOUT_SEL_PHI,
496 	}
497 };
498 
499 struct dsiescclk {
500 	u32 en;
501 	u32 div_mask;
502 	u32 div_shift;
503 };
504 
505 static struct dsiescclk dsiescclk[3] = {
506 	{
507 		.en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
508 		.div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
509 		.div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
510 	},
511 	{
512 		.en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
513 		.div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
514 		.div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
515 	},
516 	{
517 		.en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
518 		.div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
519 		.div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
520 	}
521 };
522 
523 
524 /*
525 * Used by MCDE to setup all necessary PRCMU registers
526 */
527 #define PRCMU_RESET_DSIPLL		0x00004000
528 #define PRCMU_UNCLAMP_DSIPLL		0x00400800
529 
530 #define PRCMU_CLK_PLL_DIV_SHIFT		0
531 #define PRCMU_CLK_PLL_SW_SHIFT		5
532 #define PRCMU_CLK_38			(1 << 9)
533 #define PRCMU_CLK_38_SRC		(1 << 10)
534 #define PRCMU_CLK_38_DIV		(1 << 11)
535 
536 /* PLLDIV=12, PLLSW=4 (PLLDDR) */
537 #define PRCMU_DSI_CLOCK_SETTING		0x0000008C
538 
539 /* DPI 50000000 Hz */
540 #define PRCMU_DPI_CLOCK_SETTING		((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
541 					  (16 << PRCMU_CLK_PLL_DIV_SHIFT))
542 #define PRCMU_DSI_LP_CLOCK_SETTING	0x00000E00
543 
544 /* D=101, N=1, R=4, SELDIV2=0 */
545 #define PRCMU_PLLDSI_FREQ_SETTING	0x00040165
546 
547 #define PRCMU_ENABLE_PLLDSI		0x00000001
548 #define PRCMU_DISABLE_PLLDSI		0x00000000
549 #define PRCMU_RELEASE_RESET_DSS		0x0000400C
550 #define PRCMU_DSI_PLLOUT_SEL_SETTING	0x00000202
551 /* ESC clk, div0=1, div1=1, div2=3 */
552 #define PRCMU_ENABLE_ESCAPE_CLOCK_DIV	0x07030101
553 #define PRCMU_DISABLE_ESCAPE_CLOCK_DIV	0x00030101
554 #define PRCMU_DSI_RESET_SW		0x00000007
555 
556 #define PRCMU_PLLDSI_LOCKP_LOCKED	0x3
557 
558 int db8500_prcmu_enable_dsipll(void)
559 {
560 	int i;
561 
562 	/* Clear DSIPLL_RESETN */
563 	writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR);
564 	/* Unclamp DSIPLL in/out */
565 	writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR);
566 
567 	/* Set DSI PLL FREQ */
568 	writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ);
569 	writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL);
570 	/* Enable Escape clocks */
571 	writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
572 
573 	/* Start DSI PLL */
574 	writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
575 	/* Reset DSI PLL */
576 	writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET);
577 	for (i = 0; i < 10; i++) {
578 		if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED)
579 					== PRCMU_PLLDSI_LOCKP_LOCKED)
580 			break;
581 		udelay(100);
582 	}
583 	/* Set DSIPLL_RESETN */
584 	writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET);
585 	return 0;
586 }
587 
588 int db8500_prcmu_disable_dsipll(void)
589 {
590 	/* Disable dsi pll */
591 	writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
592 	/* Disable  escapeclock */
593 	writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
594 	return 0;
595 }
596 
597 int db8500_prcmu_set_display_clocks(void)
598 {
599 	unsigned long flags;
600 
601 	spin_lock_irqsave(&clk_mgt_lock, flags);
602 
603 	/* Grab the HW semaphore. */
604 	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
605 		cpu_relax();
606 
607 	writel(PRCMU_DSI_CLOCK_SETTING, PRCM_HDMICLK_MGT);
608 	writel(PRCMU_DSI_LP_CLOCK_SETTING, PRCM_TVCLK_MGT);
609 	writel(PRCMU_DPI_CLOCK_SETTING, PRCM_LCDCLK_MGT);
610 
611 	/* Release the HW semaphore. */
612 	writel(0, PRCM_SEM);
613 
614 	spin_unlock_irqrestore(&clk_mgt_lock, flags);
615 
616 	return 0;
617 }
618 
619 u32 db8500_prcmu_read(unsigned int reg)
620 {
621 	return readl(_PRCMU_BASE + reg);
622 }
623 
624 void db8500_prcmu_write(unsigned int reg, u32 value)
625 {
626 	unsigned long flags;
627 
628 	spin_lock_irqsave(&prcmu_lock, flags);
629 	writel(value, (_PRCMU_BASE + reg));
630 	spin_unlock_irqrestore(&prcmu_lock, flags);
631 }
632 
633 void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
634 {
635 	u32 val;
636 	unsigned long flags;
637 
638 	spin_lock_irqsave(&prcmu_lock, flags);
639 	val = readl(_PRCMU_BASE + reg);
640 	val = ((val & ~mask) | (value & mask));
641 	writel(val, (_PRCMU_BASE + reg));
642 	spin_unlock_irqrestore(&prcmu_lock, flags);
643 }
644 
645 struct prcmu_fw_version *prcmu_get_fw_version(void)
646 {
647 	return fw_info.valid ? &fw_info.version : NULL;
648 }
649 
650 bool prcmu_has_arm_maxopp(void)
651 {
652 	return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
653 		PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
654 }
655 
656 /**
657  * prcmu_get_boot_status - PRCMU boot status checking
658  * Returns: the current PRCMU boot status
659  */
660 int prcmu_get_boot_status(void)
661 {
662 	return readb(tcdm_base + PRCM_BOOT_STATUS);
663 }
664 
665 /**
666  * prcmu_set_rc_a2p - This function is used to run few power state sequences
667  * @val: Value to be set, i.e. transition requested
668  * Returns: 0 on success, -EINVAL on invalid argument
669  *
670  * This function is used to run the following power state sequences -
671  * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
672  */
673 int prcmu_set_rc_a2p(enum romcode_write val)
674 {
675 	if (val < RDY_2_DS || val > RDY_2_XP70_RST)
676 		return -EINVAL;
677 	writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
678 	return 0;
679 }
680 
681 /**
682  * prcmu_get_rc_p2a - This function is used to get power state sequences
683  * Returns: the power transition that has last happened
684  *
685  * This function can return the following transitions-
686  * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
687  */
688 enum romcode_read prcmu_get_rc_p2a(void)
689 {
690 	return readb(tcdm_base + PRCM_ROMCODE_P2A);
691 }
692 
693 /**
694  * prcmu_get_current_mode - Return the current XP70 power mode
695  * Returns: Returns the current AP(ARM) power mode: init,
696  * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
697  */
698 enum ap_pwrst prcmu_get_xp70_current_state(void)
699 {
700 	return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
701 }
702 
703 /**
704  * prcmu_config_clkout - Configure one of the programmable clock outputs.
705  * @clkout:	The CLKOUT number (0 or 1).
706  * @source:	The clock to be used (one of the PRCMU_CLKSRC_*).
707  * @div:	The divider to be applied.
708  *
709  * Configures one of the programmable clock outputs (CLKOUTs).
710  * @div should be in the range [1,63] to request a configuration, or 0 to
711  * inform that the configuration is no longer requested.
712  */
713 int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
714 {
715 	static int requests[2];
716 	int r = 0;
717 	unsigned long flags;
718 	u32 val;
719 	u32 bits;
720 	u32 mask;
721 	u32 div_mask;
722 
723 	BUG_ON(clkout > 1);
724 	BUG_ON(div > 63);
725 	BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
726 
727 	if (!div && !requests[clkout])
728 		return -EINVAL;
729 
730 	switch (clkout) {
731 	case 0:
732 		div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
733 		mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
734 		bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
735 			(div << PRCM_CLKOCR_CLKODIV0_SHIFT));
736 		break;
737 	case 1:
738 		div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
739 		mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
740 			PRCM_CLKOCR_CLK1TYPE);
741 		bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
742 			(div << PRCM_CLKOCR_CLKODIV1_SHIFT));
743 		break;
744 	}
745 	bits &= mask;
746 
747 	spin_lock_irqsave(&clkout_lock, flags);
748 
749 	val = readl(PRCM_CLKOCR);
750 	if (val & div_mask) {
751 		if (div) {
752 			if ((val & mask) != bits) {
753 				r = -EBUSY;
754 				goto unlock_and_return;
755 			}
756 		} else {
757 			if ((val & mask & ~div_mask) != bits) {
758 				r = -EINVAL;
759 				goto unlock_and_return;
760 			}
761 		}
762 	}
763 	writel((bits | (val & ~mask)), PRCM_CLKOCR);
764 	requests[clkout] += (div ? 1 : -1);
765 
766 unlock_and_return:
767 	spin_unlock_irqrestore(&clkout_lock, flags);
768 
769 	return r;
770 }
771 
772 int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
773 {
774 	unsigned long flags;
775 
776 	BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
777 
778 	spin_lock_irqsave(&mb0_transfer.lock, flags);
779 
780 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
781 		cpu_relax();
782 
783 	writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
784 	writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
785 	writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
786 	writeb((keep_ulp_clk ? 1 : 0),
787 		(tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
788 	writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
789 	writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
790 
791 	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
792 
793 	return 0;
794 }
795 
796 u8 db8500_prcmu_get_power_state_result(void)
797 {
798 	return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
799 }
800 
801 /* This function decouple the gic from the prcmu */
802 int db8500_prcmu_gic_decouple(void)
803 {
804 	u32 val = readl(PRCM_A9_MASK_REQ);
805 
806 	/* Set bit 0 register value to 1 */
807 	writel(val | PRCM_A9_MASK_REQ_PRCM_A9_MASK_REQ,
808 	       PRCM_A9_MASK_REQ);
809 
810 	/* Make sure the register is updated */
811 	readl(PRCM_A9_MASK_REQ);
812 
813 	/* Wait a few cycles for the gic mask completion */
814 	udelay(1);
815 
816 	return 0;
817 }
818 
819 /* This function recouple the gic with the prcmu */
820 int db8500_prcmu_gic_recouple(void)
821 {
822 	u32 val = readl(PRCM_A9_MASK_REQ);
823 
824 	/* Set bit 0 register value to 0 */
825 	writel(val & ~PRCM_A9_MASK_REQ_PRCM_A9_MASK_REQ, PRCM_A9_MASK_REQ);
826 
827 	return 0;
828 }
829 
830 #define PRCMU_GIC_NUMBER_REGS 5
831 
832 /*
833  * This function checks if there are pending irq on the gic. It only
834  * makes sense if the gic has been decoupled before with the
835  * db8500_prcmu_gic_decouple function. Disabling an interrupt only
836  * disables the forwarding of the interrupt to any CPU interface. It
837  * does not prevent the interrupt from changing state, for example
838  * becoming pending, or active and pending if it is already
839  * active. Hence, we have to check the interrupt is pending *and* is
840  * active.
841  */
842 bool db8500_prcmu_gic_pending_irq(void)
843 {
844 	u32 pr; /* Pending register */
845 	u32 er; /* Enable register */
846 	void __iomem *dist_base = __io_address(U8500_GIC_DIST_BASE);
847 	int i;
848 
849         /* 5 registers. STI & PPI not skipped */
850 	for (i = 0; i < PRCMU_GIC_NUMBER_REGS; i++) {
851 
852 		pr = readl_relaxed(dist_base + GIC_DIST_PENDING_SET + i * 4);
853 		er = readl_relaxed(dist_base + GIC_DIST_ENABLE_SET + i * 4);
854 
855 		if (pr & er)
856 			return true; /* There is a pending interrupt */
857 	}
858 
859 	return false;
860 }
861 
862 /*
863  * This function checks if there are pending interrupt on the
864  * prcmu which has been delegated to monitor the irqs with the
865  * db8500_prcmu_copy_gic_settings function.
866  */
867 bool db8500_prcmu_pending_irq(void)
868 {
869 	u32 it, im;
870 	int i;
871 
872 	for (i = 0; i < PRCMU_GIC_NUMBER_REGS - 1; i++) {
873 		it = readl(PRCM_ARMITVAL31TO0 + i * 4);
874 		im = readl(PRCM_ARMITMSK31TO0 + i * 4);
875 		if (it & im)
876 			return true; /* There is a pending interrupt */
877 	}
878 
879 	return false;
880 }
881 
882 /*
883  * This function checks if the specified cpu is in in WFI. It's usage
884  * makes sense only if the gic is decoupled with the db8500_prcmu_gic_decouple
885  * function. Of course passing smp_processor_id() to this function will
886  * always return false...
887  */
888 bool db8500_prcmu_is_cpu_in_wfi(int cpu)
889 {
890 	return readl(PRCM_ARM_WFI_STANDBY) & cpu ? PRCM_ARM_WFI_STANDBY_WFI1 :
891 		     PRCM_ARM_WFI_STANDBY_WFI0;
892 }
893 
894 /*
895  * This function copies the gic SPI settings to the prcmu in order to
896  * monitor them and abort/finish the retention/off sequence or state.
897  */
898 int db8500_prcmu_copy_gic_settings(void)
899 {
900 	u32 er; /* Enable register */
901 	void __iomem *dist_base = __io_address(U8500_GIC_DIST_BASE);
902 	int i;
903 
904         /* We skip the STI and PPI */
905 	for (i = 0; i < PRCMU_GIC_NUMBER_REGS - 1; i++) {
906 		er = readl_relaxed(dist_base +
907 				   GIC_DIST_ENABLE_SET + (i + 1) * 4);
908 		writel(er, PRCM_ARMITMSK31TO0 + i * 4);
909 	}
910 
911 	return 0;
912 }
913 
914 /* This function should only be called while mb0_transfer.lock is held. */
915 static void config_wakeups(void)
916 {
917 	const u8 header[2] = {
918 		MB0H_CONFIG_WAKEUPS_EXE,
919 		MB0H_CONFIG_WAKEUPS_SLEEP
920 	};
921 	static u32 last_dbb_events;
922 	static u32 last_abb_events;
923 	u32 dbb_events;
924 	u32 abb_events;
925 	unsigned int i;
926 
927 	dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
928 	dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
929 
930 	abb_events = mb0_transfer.req.abb_events;
931 
932 	if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
933 		return;
934 
935 	for (i = 0; i < 2; i++) {
936 		while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
937 			cpu_relax();
938 		writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
939 		writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
940 		writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
941 		writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
942 	}
943 	last_dbb_events = dbb_events;
944 	last_abb_events = abb_events;
945 }
946 
947 void db8500_prcmu_enable_wakeups(u32 wakeups)
948 {
949 	unsigned long flags;
950 	u32 bits;
951 	int i;
952 
953 	BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
954 
955 	for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
956 		if (wakeups & BIT(i))
957 			bits |= prcmu_wakeup_bit[i];
958 	}
959 
960 	spin_lock_irqsave(&mb0_transfer.lock, flags);
961 
962 	mb0_transfer.req.dbb_wakeups = bits;
963 	config_wakeups();
964 
965 	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
966 }
967 
968 void db8500_prcmu_config_abb_event_readout(u32 abb_events)
969 {
970 	unsigned long flags;
971 
972 	spin_lock_irqsave(&mb0_transfer.lock, flags);
973 
974 	mb0_transfer.req.abb_events = abb_events;
975 	config_wakeups();
976 
977 	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
978 }
979 
980 void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
981 {
982 	if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
983 		*buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
984 	else
985 		*buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
986 }
987 
988 /**
989  * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
990  * @opp: The new ARM operating point to which transition is to be made
991  * Returns: 0 on success, non-zero on failure
992  *
993  * This function sets the the operating point of the ARM.
994  */
995 int db8500_prcmu_set_arm_opp(u8 opp)
996 {
997 	int r;
998 
999 	if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
1000 		return -EINVAL;
1001 
1002 	r = 0;
1003 
1004 	mutex_lock(&mb1_transfer.lock);
1005 
1006 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1007 		cpu_relax();
1008 
1009 	writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1010 	writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
1011 	writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
1012 
1013 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1014 	wait_for_completion(&mb1_transfer.work);
1015 
1016 	if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
1017 		(mb1_transfer.ack.arm_opp != opp))
1018 		r = -EIO;
1019 
1020 	mutex_unlock(&mb1_transfer.lock);
1021 
1022 	return r;
1023 }
1024 
1025 /**
1026  * db8500_prcmu_get_arm_opp - get the current ARM OPP
1027  *
1028  * Returns: the current ARM OPP
1029  */
1030 int db8500_prcmu_get_arm_opp(void)
1031 {
1032 	return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
1033 }
1034 
1035 /**
1036  * db8500_prcmu_get_ddr_opp - get the current DDR OPP
1037  *
1038  * Returns: the current DDR OPP
1039  */
1040 int db8500_prcmu_get_ddr_opp(void)
1041 {
1042 	return readb(PRCM_DDR_SUBSYS_APE_MINBW);
1043 }
1044 
1045 /**
1046  * db8500_set_ddr_opp - set the appropriate DDR OPP
1047  * @opp: The new DDR operating point to which transition is to be made
1048  * Returns: 0 on success, non-zero on failure
1049  *
1050  * This function sets the operating point of the DDR.
1051  */
1052 int db8500_prcmu_set_ddr_opp(u8 opp)
1053 {
1054 	if (opp < DDR_100_OPP || opp > DDR_25_OPP)
1055 		return -EINVAL;
1056 	/* Changing the DDR OPP can hang the hardware pre-v21 */
1057 	if (cpu_is_u8500v20_or_later() && !cpu_is_u8500v20())
1058 		writeb(opp, PRCM_DDR_SUBSYS_APE_MINBW);
1059 
1060 	return 0;
1061 }
1062 
1063 /* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
1064 static void request_even_slower_clocks(bool enable)
1065 {
1066 	void __iomem *clock_reg[] = {
1067 		PRCM_ACLK_MGT,
1068 		PRCM_DMACLK_MGT
1069 	};
1070 	unsigned long flags;
1071 	unsigned int i;
1072 
1073 	spin_lock_irqsave(&clk_mgt_lock, flags);
1074 
1075 	/* Grab the HW semaphore. */
1076 	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1077 		cpu_relax();
1078 
1079 	for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
1080 		u32 val;
1081 		u32 div;
1082 
1083 		val = readl(clock_reg[i]);
1084 		div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
1085 		if (enable) {
1086 			if ((div <= 1) || (div > 15)) {
1087 				pr_err("prcmu: Bad clock divider %d in %s\n",
1088 					div, __func__);
1089 				goto unlock_and_return;
1090 			}
1091 			div <<= 1;
1092 		} else {
1093 			if (div <= 2)
1094 				goto unlock_and_return;
1095 			div >>= 1;
1096 		}
1097 		val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
1098 			(div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
1099 		writel(val, clock_reg[i]);
1100 	}
1101 
1102 unlock_and_return:
1103 	/* Release the HW semaphore. */
1104 	writel(0, PRCM_SEM);
1105 
1106 	spin_unlock_irqrestore(&clk_mgt_lock, flags);
1107 }
1108 
1109 /**
1110  * db8500_set_ape_opp - set the appropriate APE OPP
1111  * @opp: The new APE operating point to which transition is to be made
1112  * Returns: 0 on success, non-zero on failure
1113  *
1114  * This function sets the operating point of the APE.
1115  */
1116 int db8500_prcmu_set_ape_opp(u8 opp)
1117 {
1118 	int r = 0;
1119 
1120 	if (opp == mb1_transfer.ape_opp)
1121 		return 0;
1122 
1123 	mutex_lock(&mb1_transfer.lock);
1124 
1125 	if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
1126 		request_even_slower_clocks(false);
1127 
1128 	if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
1129 		goto skip_message;
1130 
1131 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1132 		cpu_relax();
1133 
1134 	writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1135 	writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
1136 	writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
1137 		(tcdm_base + PRCM_REQ_MB1_APE_OPP));
1138 
1139 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1140 	wait_for_completion(&mb1_transfer.work);
1141 
1142 	if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
1143 		(mb1_transfer.ack.ape_opp != opp))
1144 		r = -EIO;
1145 
1146 skip_message:
1147 	if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
1148 		(r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
1149 		request_even_slower_clocks(true);
1150 	if (!r)
1151 		mb1_transfer.ape_opp = opp;
1152 
1153 	mutex_unlock(&mb1_transfer.lock);
1154 
1155 	return r;
1156 }
1157 
1158 /**
1159  * db8500_prcmu_get_ape_opp - get the current APE OPP
1160  *
1161  * Returns: the current APE OPP
1162  */
1163 int db8500_prcmu_get_ape_opp(void)
1164 {
1165 	return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
1166 }
1167 
1168 /**
1169  * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
1170  * @enable: true to request the higher voltage, false to drop a request.
1171  *
1172  * Calls to this function to enable and disable requests must be balanced.
1173  */
1174 int db8500_prcmu_request_ape_opp_100_voltage(bool enable)
1175 {
1176 	int r = 0;
1177 	u8 header;
1178 	static unsigned int requests;
1179 
1180 	mutex_lock(&mb1_transfer.lock);
1181 
1182 	if (enable) {
1183 		if (0 != requests++)
1184 			goto unlock_and_return;
1185 		header = MB1H_REQUEST_APE_OPP_100_VOLT;
1186 	} else {
1187 		if (requests == 0) {
1188 			r = -EIO;
1189 			goto unlock_and_return;
1190 		} else if (1 != requests--) {
1191 			goto unlock_and_return;
1192 		}
1193 		header = MB1H_RELEASE_APE_OPP_100_VOLT;
1194 	}
1195 
1196 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1197 		cpu_relax();
1198 
1199 	writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1200 
1201 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1202 	wait_for_completion(&mb1_transfer.work);
1203 
1204 	if ((mb1_transfer.ack.header != header) ||
1205 		((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1206 		r = -EIO;
1207 
1208 unlock_and_return:
1209 	mutex_unlock(&mb1_transfer.lock);
1210 
1211 	return r;
1212 }
1213 
1214 /**
1215  * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
1216  *
1217  * This function releases the power state requirements of a USB wakeup.
1218  */
1219 int prcmu_release_usb_wakeup_state(void)
1220 {
1221 	int r = 0;
1222 
1223 	mutex_lock(&mb1_transfer.lock);
1224 
1225 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1226 		cpu_relax();
1227 
1228 	writeb(MB1H_RELEASE_USB_WAKEUP,
1229 		(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1230 
1231 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1232 	wait_for_completion(&mb1_transfer.work);
1233 
1234 	if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
1235 		((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1236 		r = -EIO;
1237 
1238 	mutex_unlock(&mb1_transfer.lock);
1239 
1240 	return r;
1241 }
1242 
1243 static int request_pll(u8 clock, bool enable)
1244 {
1245 	int r = 0;
1246 
1247 	if (clock == PRCMU_PLLSOC0)
1248 		clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
1249 	else if (clock == PRCMU_PLLSOC1)
1250 		clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
1251 	else
1252 		return -EINVAL;
1253 
1254 	mutex_lock(&mb1_transfer.lock);
1255 
1256 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1257 		cpu_relax();
1258 
1259 	writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1260 	writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
1261 
1262 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1263 	wait_for_completion(&mb1_transfer.work);
1264 
1265 	if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
1266 		r = -EIO;
1267 
1268 	mutex_unlock(&mb1_transfer.lock);
1269 
1270 	return r;
1271 }
1272 
1273 /**
1274  * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
1275  * @epod_id: The EPOD to set
1276  * @epod_state: The new EPOD state
1277  *
1278  * This function sets the state of a EPOD (power domain). It may not be called
1279  * from interrupt context.
1280  */
1281 int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
1282 {
1283 	int r = 0;
1284 	bool ram_retention = false;
1285 	int i;
1286 
1287 	/* check argument */
1288 	BUG_ON(epod_id >= NUM_EPOD_ID);
1289 
1290 	/* set flag if retention is possible */
1291 	switch (epod_id) {
1292 	case EPOD_ID_SVAMMDSP:
1293 	case EPOD_ID_SIAMMDSP:
1294 	case EPOD_ID_ESRAM12:
1295 	case EPOD_ID_ESRAM34:
1296 		ram_retention = true;
1297 		break;
1298 	}
1299 
1300 	/* check argument */
1301 	BUG_ON(epod_state > EPOD_STATE_ON);
1302 	BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
1303 
1304 	/* get lock */
1305 	mutex_lock(&mb2_transfer.lock);
1306 
1307 	/* wait for mailbox */
1308 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
1309 		cpu_relax();
1310 
1311 	/* fill in mailbox */
1312 	for (i = 0; i < NUM_EPOD_ID; i++)
1313 		writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
1314 	writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
1315 
1316 	writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
1317 
1318 	writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
1319 
1320 	/*
1321 	 * The current firmware version does not handle errors correctly,
1322 	 * and we cannot recover if there is an error.
1323 	 * This is expected to change when the firmware is updated.
1324 	 */
1325 	if (!wait_for_completion_timeout(&mb2_transfer.work,
1326 			msecs_to_jiffies(20000))) {
1327 		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1328 			__func__);
1329 		r = -EIO;
1330 		goto unlock_and_return;
1331 	}
1332 
1333 	if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
1334 		r = -EIO;
1335 
1336 unlock_and_return:
1337 	mutex_unlock(&mb2_transfer.lock);
1338 	return r;
1339 }
1340 
1341 /**
1342  * prcmu_configure_auto_pm - Configure autonomous power management.
1343  * @sleep: Configuration for ApSleep.
1344  * @idle:  Configuration for ApIdle.
1345  */
1346 void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
1347 	struct prcmu_auto_pm_config *idle)
1348 {
1349 	u32 sleep_cfg;
1350 	u32 idle_cfg;
1351 	unsigned long flags;
1352 
1353 	BUG_ON((sleep == NULL) || (idle == NULL));
1354 
1355 	sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
1356 	sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
1357 	sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
1358 	sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
1359 	sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
1360 	sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
1361 
1362 	idle_cfg = (idle->sva_auto_pm_enable & 0xF);
1363 	idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
1364 	idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
1365 	idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
1366 	idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
1367 	idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
1368 
1369 	spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
1370 
1371 	/*
1372 	 * The autonomous power management configuration is done through
1373 	 * fields in mailbox 2, but these fields are only used as shared
1374 	 * variables - i.e. there is no need to send a message.
1375 	 */
1376 	writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
1377 	writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
1378 
1379 	mb2_transfer.auto_pm_enabled =
1380 		((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1381 		 (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1382 		 (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1383 		 (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
1384 
1385 	spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
1386 }
1387 EXPORT_SYMBOL(prcmu_configure_auto_pm);
1388 
1389 bool prcmu_is_auto_pm_enabled(void)
1390 {
1391 	return mb2_transfer.auto_pm_enabled;
1392 }
1393 
1394 static int request_sysclk(bool enable)
1395 {
1396 	int r;
1397 	unsigned long flags;
1398 
1399 	r = 0;
1400 
1401 	mutex_lock(&mb3_transfer.sysclk_lock);
1402 
1403 	spin_lock_irqsave(&mb3_transfer.lock, flags);
1404 
1405 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
1406 		cpu_relax();
1407 
1408 	writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
1409 
1410 	writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
1411 	writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
1412 
1413 	spin_unlock_irqrestore(&mb3_transfer.lock, flags);
1414 
1415 	/*
1416 	 * The firmware only sends an ACK if we want to enable the
1417 	 * SysClk, and it succeeds.
1418 	 */
1419 	if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
1420 			msecs_to_jiffies(20000))) {
1421 		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1422 			__func__);
1423 		r = -EIO;
1424 	}
1425 
1426 	mutex_unlock(&mb3_transfer.sysclk_lock);
1427 
1428 	return r;
1429 }
1430 
1431 static int request_timclk(bool enable)
1432 {
1433 	u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
1434 
1435 	if (!enable)
1436 		val |= PRCM_TCR_STOP_TIMERS;
1437 	writel(val, PRCM_TCR);
1438 
1439 	return 0;
1440 }
1441 
1442 static int request_clock(u8 clock, bool enable)
1443 {
1444 	u32 val;
1445 	unsigned long flags;
1446 
1447 	spin_lock_irqsave(&clk_mgt_lock, flags);
1448 
1449 	/* Grab the HW semaphore. */
1450 	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1451 		cpu_relax();
1452 
1453 	val = readl(clk_mgt[clock].reg);
1454 	if (enable) {
1455 		val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
1456 	} else {
1457 		clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1458 		val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
1459 	}
1460 	writel(val, clk_mgt[clock].reg);
1461 
1462 	/* Release the HW semaphore. */
1463 	writel(0, PRCM_SEM);
1464 
1465 	spin_unlock_irqrestore(&clk_mgt_lock, flags);
1466 
1467 	return 0;
1468 }
1469 
1470 static int request_sga_clock(u8 clock, bool enable)
1471 {
1472 	u32 val;
1473 	int ret;
1474 
1475 	if (enable) {
1476 		val = readl(PRCM_CGATING_BYPASS);
1477 		writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1478 	}
1479 
1480 	ret = request_clock(clock, enable);
1481 
1482 	if (!ret && !enable) {
1483 		val = readl(PRCM_CGATING_BYPASS);
1484 		writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1485 	}
1486 
1487 	return ret;
1488 }
1489 
1490 static inline bool plldsi_locked(void)
1491 {
1492 	return (readl(PRCM_PLLDSI_LOCKP) &
1493 		(PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1494 		 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
1495 		(PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1496 		 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
1497 }
1498 
1499 static int request_plldsi(bool enable)
1500 {
1501 	int r = 0;
1502 	u32 val;
1503 
1504 	writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1505 		PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
1506 		PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
1507 
1508 	val = readl(PRCM_PLLDSI_ENABLE);
1509 	if (enable)
1510 		val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1511 	else
1512 		val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1513 	writel(val, PRCM_PLLDSI_ENABLE);
1514 
1515 	if (enable) {
1516 		unsigned int i;
1517 		bool locked = plldsi_locked();
1518 
1519 		for (i = 10; !locked && (i > 0); --i) {
1520 			udelay(100);
1521 			locked = plldsi_locked();
1522 		}
1523 		if (locked) {
1524 			writel(PRCM_APE_RESETN_DSIPLL_RESETN,
1525 				PRCM_APE_RESETN_SET);
1526 		} else {
1527 			writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1528 				PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
1529 				PRCM_MMIP_LS_CLAMP_SET);
1530 			val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1531 			writel(val, PRCM_PLLDSI_ENABLE);
1532 			r = -EAGAIN;
1533 		}
1534 	} else {
1535 		writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
1536 	}
1537 	return r;
1538 }
1539 
1540 static int request_dsiclk(u8 n, bool enable)
1541 {
1542 	u32 val;
1543 
1544 	val = readl(PRCM_DSI_PLLOUT_SEL);
1545 	val &= ~dsiclk[n].divsel_mask;
1546 	val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
1547 		dsiclk[n].divsel_shift);
1548 	writel(val, PRCM_DSI_PLLOUT_SEL);
1549 	return 0;
1550 }
1551 
1552 static int request_dsiescclk(u8 n, bool enable)
1553 {
1554 	u32 val;
1555 
1556 	val = readl(PRCM_DSITVCLK_DIV);
1557 	enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
1558 	writel(val, PRCM_DSITVCLK_DIV);
1559 	return 0;
1560 }
1561 
1562 /**
1563  * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
1564  * @clock:      The clock for which the request is made.
1565  * @enable:     Whether the clock should be enabled (true) or disabled (false).
1566  *
1567  * This function should only be used by the clock implementation.
1568  * Do not use it from any other place!
1569  */
1570 int db8500_prcmu_request_clock(u8 clock, bool enable)
1571 {
1572 	if (clock == PRCMU_SGACLK)
1573 		return request_sga_clock(clock, enable);
1574 	else if (clock < PRCMU_NUM_REG_CLOCKS)
1575 		return request_clock(clock, enable);
1576 	else if (clock == PRCMU_TIMCLK)
1577 		return request_timclk(enable);
1578 	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1579 		return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
1580 	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1581 		return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
1582 	else if (clock == PRCMU_PLLDSI)
1583 		return request_plldsi(enable);
1584 	else if (clock == PRCMU_SYSCLK)
1585 		return request_sysclk(enable);
1586 	else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
1587 		return request_pll(clock, enable);
1588 	else
1589 		return -EINVAL;
1590 }
1591 
1592 static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
1593 	int branch)
1594 {
1595 	u64 rate;
1596 	u32 val;
1597 	u32 d;
1598 	u32 div = 1;
1599 
1600 	val = readl(reg);
1601 
1602 	rate = src_rate;
1603 	rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
1604 
1605 	d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
1606 	if (d > 1)
1607 		div *= d;
1608 
1609 	d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
1610 	if (d > 1)
1611 		div *= d;
1612 
1613 	if (val & PRCM_PLL_FREQ_SELDIV2)
1614 		div *= 2;
1615 
1616 	if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
1617 		(val & PRCM_PLL_FREQ_DIV2EN) &&
1618 		((reg == PRCM_PLLSOC0_FREQ) ||
1619 		 (reg == PRCM_PLLARM_FREQ) ||
1620 		 (reg == PRCM_PLLDDR_FREQ))))
1621 		div *= 2;
1622 
1623 	(void)do_div(rate, div);
1624 
1625 	return (unsigned long)rate;
1626 }
1627 
1628 #define ROOT_CLOCK_RATE 38400000
1629 
1630 static unsigned long clock_rate(u8 clock)
1631 {
1632 	u32 val;
1633 	u32 pllsw;
1634 	unsigned long rate = ROOT_CLOCK_RATE;
1635 
1636 	val = readl(clk_mgt[clock].reg);
1637 
1638 	if (val & PRCM_CLK_MGT_CLK38) {
1639 		if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
1640 			rate /= 2;
1641 		return rate;
1642 	}
1643 
1644 	val |= clk_mgt[clock].pllsw;
1645 	pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1646 
1647 	if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1648 		rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
1649 	else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1650 		rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
1651 	else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
1652 		rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
1653 	else
1654 		return 0;
1655 
1656 	if ((clock == PRCMU_SGACLK) &&
1657 		(val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
1658 		u64 r = (rate * 10);
1659 
1660 		(void)do_div(r, 25);
1661 		return (unsigned long)r;
1662 	}
1663 	val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1664 	if (val)
1665 		return rate / val;
1666 	else
1667 		return 0;
1668 }
1669 
1670 static unsigned long armss_rate(void)
1671 {
1672 	u32 r;
1673 	unsigned long rate;
1674 
1675 	r = readl(PRCM_ARM_CHGCLKREQ);
1676 
1677 	if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) {
1678 		/* External ARMCLKFIX clock */
1679 
1680 		rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX);
1681 
1682 		/* Check PRCM_ARM_CHGCLKREQ divider */
1683 		if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL))
1684 			rate /= 2;
1685 
1686 		/* Check PRCM_ARMCLKFIX_MGT divider */
1687 		r = readl(PRCM_ARMCLKFIX_MGT);
1688 		r &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1689 		rate /= r;
1690 
1691 	} else {/* ARM PLL */
1692 		rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV);
1693 	}
1694 
1695 	return rate;
1696 }
1697 
1698 static unsigned long dsiclk_rate(u8 n)
1699 {
1700 	u32 divsel;
1701 	u32 div = 1;
1702 
1703 	divsel = readl(PRCM_DSI_PLLOUT_SEL);
1704 	divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
1705 
1706 	if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
1707 		divsel = dsiclk[n].divsel;
1708 
1709 	switch (divsel) {
1710 	case PRCM_DSI_PLLOUT_SEL_PHI_4:
1711 		div *= 2;
1712 	case PRCM_DSI_PLLOUT_SEL_PHI_2:
1713 		div *= 2;
1714 	case PRCM_DSI_PLLOUT_SEL_PHI:
1715 		return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1716 			PLL_RAW) / div;
1717 	default:
1718 		return 0;
1719 	}
1720 }
1721 
1722 static unsigned long dsiescclk_rate(u8 n)
1723 {
1724 	u32 div;
1725 
1726 	div = readl(PRCM_DSITVCLK_DIV);
1727 	div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
1728 	return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
1729 }
1730 
1731 unsigned long prcmu_clock_rate(u8 clock)
1732 {
1733 	if (clock < PRCMU_NUM_REG_CLOCKS)
1734 		return clock_rate(clock);
1735 	else if (clock == PRCMU_TIMCLK)
1736 		return ROOT_CLOCK_RATE / 16;
1737 	else if (clock == PRCMU_SYSCLK)
1738 		return ROOT_CLOCK_RATE;
1739 	else if (clock == PRCMU_PLLSOC0)
1740 		return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1741 	else if (clock == PRCMU_PLLSOC1)
1742 		return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1743 	else if (clock == PRCMU_ARMSS)
1744 		return armss_rate();
1745 	else if (clock == PRCMU_PLLDDR)
1746 		return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1747 	else if (clock == PRCMU_PLLDSI)
1748 		return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1749 			PLL_RAW);
1750 	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1751 		return dsiclk_rate(clock - PRCMU_DSI0CLK);
1752 	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1753 		return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
1754 	else
1755 		return 0;
1756 }
1757 
1758 static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
1759 {
1760 	if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
1761 		return ROOT_CLOCK_RATE;
1762 	clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
1763 	if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1764 		return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
1765 	else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1766 		return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
1767 	else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
1768 		return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
1769 	else
1770 		return 0;
1771 }
1772 
1773 static u32 clock_divider(unsigned long src_rate, unsigned long rate)
1774 {
1775 	u32 div;
1776 
1777 	div = (src_rate / rate);
1778 	if (div == 0)
1779 		return 1;
1780 	if (rate < (src_rate / div))
1781 		div++;
1782 	return div;
1783 }
1784 
1785 static long round_clock_rate(u8 clock, unsigned long rate)
1786 {
1787 	u32 val;
1788 	u32 div;
1789 	unsigned long src_rate;
1790 	long rounded_rate;
1791 
1792 	val = readl(clk_mgt[clock].reg);
1793 	src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1794 		clk_mgt[clock].branch);
1795 	div = clock_divider(src_rate, rate);
1796 	if (val & PRCM_CLK_MGT_CLK38) {
1797 		if (clk_mgt[clock].clk38div) {
1798 			if (div > 2)
1799 				div = 2;
1800 		} else {
1801 			div = 1;
1802 		}
1803 	} else if ((clock == PRCMU_SGACLK) && (div == 3)) {
1804 		u64 r = (src_rate * 10);
1805 
1806 		(void)do_div(r, 25);
1807 		if (r <= rate)
1808 			return (unsigned long)r;
1809 	}
1810 	rounded_rate = (src_rate / min(div, (u32)31));
1811 
1812 	return rounded_rate;
1813 }
1814 
1815 /* CPU FREQ table, may be changed due to if MAX_OPP is supported. */
1816 static struct cpufreq_frequency_table db8500_cpufreq_table[] = {
1817 	{ .frequency = 200000, .index = ARM_EXTCLK,},
1818 	{ .frequency = 400000, .index = ARM_50_OPP,},
1819 	{ .frequency = 800000, .index = ARM_100_OPP,},
1820 	{ .frequency = CPUFREQ_TABLE_END,}, /* To be used for MAX_OPP. */
1821 	{ .frequency = CPUFREQ_TABLE_END,},
1822 };
1823 
1824 static long round_armss_rate(unsigned long rate)
1825 {
1826 	long freq = 0;
1827 	int i = 0;
1828 
1829 	/* cpufreq table frequencies is in KHz. */
1830 	rate = rate / 1000;
1831 
1832 	/* Find the corresponding arm opp from the cpufreq table. */
1833 	while (db8500_cpufreq_table[i].frequency != CPUFREQ_TABLE_END) {
1834 		freq = db8500_cpufreq_table[i].frequency;
1835 		if (freq == rate)
1836 			break;
1837 		i++;
1838 	}
1839 
1840 	/* Return the last valid value, even if a match was not found. */
1841 	return freq * 1000;
1842 }
1843 
1844 #define MIN_PLL_VCO_RATE 600000000ULL
1845 #define MAX_PLL_VCO_RATE 1680640000ULL
1846 
1847 static long round_plldsi_rate(unsigned long rate)
1848 {
1849 	long rounded_rate = 0;
1850 	unsigned long src_rate;
1851 	unsigned long rem;
1852 	u32 r;
1853 
1854 	src_rate = clock_rate(PRCMU_HDMICLK);
1855 	rem = rate;
1856 
1857 	for (r = 7; (rem > 0) && (r > 0); r--) {
1858 		u64 d;
1859 
1860 		d = (r * rate);
1861 		(void)do_div(d, src_rate);
1862 		if (d < 6)
1863 			d = 6;
1864 		else if (d > 255)
1865 			d = 255;
1866 		d *= src_rate;
1867 		if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
1868 			((r * MAX_PLL_VCO_RATE) < (2 * d)))
1869 			continue;
1870 		(void)do_div(d, r);
1871 		if (rate < d) {
1872 			if (rounded_rate == 0)
1873 				rounded_rate = (long)d;
1874 			break;
1875 		}
1876 		if ((rate - d) < rem) {
1877 			rem = (rate - d);
1878 			rounded_rate = (long)d;
1879 		}
1880 	}
1881 	return rounded_rate;
1882 }
1883 
1884 static long round_dsiclk_rate(unsigned long rate)
1885 {
1886 	u32 div;
1887 	unsigned long src_rate;
1888 	long rounded_rate;
1889 
1890 	src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1891 		PLL_RAW);
1892 	div = clock_divider(src_rate, rate);
1893 	rounded_rate = (src_rate / ((div > 2) ? 4 : div));
1894 
1895 	return rounded_rate;
1896 }
1897 
1898 static long round_dsiescclk_rate(unsigned long rate)
1899 {
1900 	u32 div;
1901 	unsigned long src_rate;
1902 	long rounded_rate;
1903 
1904 	src_rate = clock_rate(PRCMU_TVCLK);
1905 	div = clock_divider(src_rate, rate);
1906 	rounded_rate = (src_rate / min(div, (u32)255));
1907 
1908 	return rounded_rate;
1909 }
1910 
1911 long prcmu_round_clock_rate(u8 clock, unsigned long rate)
1912 {
1913 	if (clock < PRCMU_NUM_REG_CLOCKS)
1914 		return round_clock_rate(clock, rate);
1915 	else if (clock == PRCMU_ARMSS)
1916 		return round_armss_rate(rate);
1917 	else if (clock == PRCMU_PLLDSI)
1918 		return round_plldsi_rate(rate);
1919 	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1920 		return round_dsiclk_rate(rate);
1921 	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1922 		return round_dsiescclk_rate(rate);
1923 	else
1924 		return (long)prcmu_clock_rate(clock);
1925 }
1926 
1927 static void set_clock_rate(u8 clock, unsigned long rate)
1928 {
1929 	u32 val;
1930 	u32 div;
1931 	unsigned long src_rate;
1932 	unsigned long flags;
1933 
1934 	spin_lock_irqsave(&clk_mgt_lock, flags);
1935 
1936 	/* Grab the HW semaphore. */
1937 	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1938 		cpu_relax();
1939 
1940 	val = readl(clk_mgt[clock].reg);
1941 	src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1942 		clk_mgt[clock].branch);
1943 	div = clock_divider(src_rate, rate);
1944 	if (val & PRCM_CLK_MGT_CLK38) {
1945 		if (clk_mgt[clock].clk38div) {
1946 			if (div > 1)
1947 				val |= PRCM_CLK_MGT_CLK38DIV;
1948 			else
1949 				val &= ~PRCM_CLK_MGT_CLK38DIV;
1950 		}
1951 	} else if (clock == PRCMU_SGACLK) {
1952 		val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
1953 			PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
1954 		if (div == 3) {
1955 			u64 r = (src_rate * 10);
1956 
1957 			(void)do_div(r, 25);
1958 			if (r <= rate) {
1959 				val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
1960 				div = 0;
1961 			}
1962 		}
1963 		val |= min(div, (u32)31);
1964 	} else {
1965 		val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
1966 		val |= min(div, (u32)31);
1967 	}
1968 	writel(val, clk_mgt[clock].reg);
1969 
1970 	/* Release the HW semaphore. */
1971 	writel(0, PRCM_SEM);
1972 
1973 	spin_unlock_irqrestore(&clk_mgt_lock, flags);
1974 }
1975 
1976 static int set_armss_rate(unsigned long rate)
1977 {
1978 	int i = 0;
1979 
1980 	/* cpufreq table frequencies is in KHz. */
1981 	rate = rate / 1000;
1982 
1983 	/* Find the corresponding arm opp from the cpufreq table. */
1984 	while (db8500_cpufreq_table[i].frequency != CPUFREQ_TABLE_END) {
1985 		if (db8500_cpufreq_table[i].frequency == rate)
1986 			break;
1987 		i++;
1988 	}
1989 
1990 	if (db8500_cpufreq_table[i].frequency != rate)
1991 		return -EINVAL;
1992 
1993 	/* Set the new arm opp. */
1994 	return db8500_prcmu_set_arm_opp(db8500_cpufreq_table[i].index);
1995 }
1996 
1997 static int set_plldsi_rate(unsigned long rate)
1998 {
1999 	unsigned long src_rate;
2000 	unsigned long rem;
2001 	u32 pll_freq = 0;
2002 	u32 r;
2003 
2004 	src_rate = clock_rate(PRCMU_HDMICLK);
2005 	rem = rate;
2006 
2007 	for (r = 7; (rem > 0) && (r > 0); r--) {
2008 		u64 d;
2009 		u64 hwrate;
2010 
2011 		d = (r * rate);
2012 		(void)do_div(d, src_rate);
2013 		if (d < 6)
2014 			d = 6;
2015 		else if (d > 255)
2016 			d = 255;
2017 		hwrate = (d * src_rate);
2018 		if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
2019 			((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
2020 			continue;
2021 		(void)do_div(hwrate, r);
2022 		if (rate < hwrate) {
2023 			if (pll_freq == 0)
2024 				pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
2025 					(r << PRCM_PLL_FREQ_R_SHIFT));
2026 			break;
2027 		}
2028 		if ((rate - hwrate) < rem) {
2029 			rem = (rate - hwrate);
2030 			pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
2031 				(r << PRCM_PLL_FREQ_R_SHIFT));
2032 		}
2033 	}
2034 	if (pll_freq == 0)
2035 		return -EINVAL;
2036 
2037 	pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
2038 	writel(pll_freq, PRCM_PLLDSI_FREQ);
2039 
2040 	return 0;
2041 }
2042 
2043 static void set_dsiclk_rate(u8 n, unsigned long rate)
2044 {
2045 	u32 val;
2046 	u32 div;
2047 
2048 	div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
2049 			clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
2050 
2051 	dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
2052 			   (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
2053 			   /* else */	PRCM_DSI_PLLOUT_SEL_PHI_4;
2054 
2055 	val = readl(PRCM_DSI_PLLOUT_SEL);
2056 	val &= ~dsiclk[n].divsel_mask;
2057 	val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
2058 	writel(val, PRCM_DSI_PLLOUT_SEL);
2059 }
2060 
2061 static void set_dsiescclk_rate(u8 n, unsigned long rate)
2062 {
2063 	u32 val;
2064 	u32 div;
2065 
2066 	div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
2067 	val = readl(PRCM_DSITVCLK_DIV);
2068 	val &= ~dsiescclk[n].div_mask;
2069 	val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
2070 	writel(val, PRCM_DSITVCLK_DIV);
2071 }
2072 
2073 int prcmu_set_clock_rate(u8 clock, unsigned long rate)
2074 {
2075 	if (clock < PRCMU_NUM_REG_CLOCKS)
2076 		set_clock_rate(clock, rate);
2077 	else if (clock == PRCMU_ARMSS)
2078 		return set_armss_rate(rate);
2079 	else if (clock == PRCMU_PLLDSI)
2080 		return set_plldsi_rate(rate);
2081 	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
2082 		set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
2083 	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
2084 		set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
2085 	return 0;
2086 }
2087 
2088 int db8500_prcmu_config_esram0_deep_sleep(u8 state)
2089 {
2090 	if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
2091 	    (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
2092 		return -EINVAL;
2093 
2094 	mutex_lock(&mb4_transfer.lock);
2095 
2096 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2097 		cpu_relax();
2098 
2099 	writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2100 	writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
2101 	       (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
2102 	writeb(DDR_PWR_STATE_ON,
2103 	       (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
2104 	writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
2105 
2106 	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2107 	wait_for_completion(&mb4_transfer.work);
2108 
2109 	mutex_unlock(&mb4_transfer.lock);
2110 
2111 	return 0;
2112 }
2113 
2114 int db8500_prcmu_config_hotdog(u8 threshold)
2115 {
2116 	mutex_lock(&mb4_transfer.lock);
2117 
2118 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2119 		cpu_relax();
2120 
2121 	writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
2122 	writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2123 
2124 	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2125 	wait_for_completion(&mb4_transfer.work);
2126 
2127 	mutex_unlock(&mb4_transfer.lock);
2128 
2129 	return 0;
2130 }
2131 
2132 int db8500_prcmu_config_hotmon(u8 low, u8 high)
2133 {
2134 	mutex_lock(&mb4_transfer.lock);
2135 
2136 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2137 		cpu_relax();
2138 
2139 	writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
2140 	writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
2141 	writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
2142 		(tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
2143 	writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2144 
2145 	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2146 	wait_for_completion(&mb4_transfer.work);
2147 
2148 	mutex_unlock(&mb4_transfer.lock);
2149 
2150 	return 0;
2151 }
2152 
2153 static int config_hot_period(u16 val)
2154 {
2155 	mutex_lock(&mb4_transfer.lock);
2156 
2157 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2158 		cpu_relax();
2159 
2160 	writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
2161 	writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2162 
2163 	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2164 	wait_for_completion(&mb4_transfer.work);
2165 
2166 	mutex_unlock(&mb4_transfer.lock);
2167 
2168 	return 0;
2169 }
2170 
2171 int db8500_prcmu_start_temp_sense(u16 cycles32k)
2172 {
2173 	if (cycles32k == 0xFFFF)
2174 		return -EINVAL;
2175 
2176 	return config_hot_period(cycles32k);
2177 }
2178 
2179 int db8500_prcmu_stop_temp_sense(void)
2180 {
2181 	return config_hot_period(0xFFFF);
2182 }
2183 
2184 static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
2185 {
2186 
2187 	mutex_lock(&mb4_transfer.lock);
2188 
2189 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2190 		cpu_relax();
2191 
2192 	writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
2193 	writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
2194 	writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
2195 	writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
2196 
2197 	writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2198 
2199 	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2200 	wait_for_completion(&mb4_transfer.work);
2201 
2202 	mutex_unlock(&mb4_transfer.lock);
2203 
2204 	return 0;
2205 
2206 }
2207 
2208 int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
2209 {
2210 	BUG_ON(num == 0 || num > 0xf);
2211 	return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
2212 			    sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
2213 			    A9WDOG_AUTO_OFF_DIS);
2214 }
2215 
2216 int db8500_prcmu_enable_a9wdog(u8 id)
2217 {
2218 	return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
2219 }
2220 
2221 int db8500_prcmu_disable_a9wdog(u8 id)
2222 {
2223 	return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
2224 }
2225 
2226 int db8500_prcmu_kick_a9wdog(u8 id)
2227 {
2228 	return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
2229 }
2230 
2231 /*
2232  * timeout is 28 bit, in ms.
2233  */
2234 int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
2235 {
2236 	return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
2237 			    (id & A9WDOG_ID_MASK) |
2238 			    /*
2239 			     * Put the lowest 28 bits of timeout at
2240 			     * offset 4. Four first bits are used for id.
2241 			     */
2242 			    (u8)((timeout << 4) & 0xf0),
2243 			    (u8)((timeout >> 4) & 0xff),
2244 			    (u8)((timeout >> 12) & 0xff),
2245 			    (u8)((timeout >> 20) & 0xff));
2246 }
2247 
2248 /**
2249  * prcmu_abb_read() - Read register value(s) from the ABB.
2250  * @slave:	The I2C slave address.
2251  * @reg:	The (start) register address.
2252  * @value:	The read out value(s).
2253  * @size:	The number of registers to read.
2254  *
2255  * Reads register value(s) from the ABB.
2256  * @size has to be 1 for the current firmware version.
2257  */
2258 int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
2259 {
2260 	int r;
2261 
2262 	if (size != 1)
2263 		return -EINVAL;
2264 
2265 	mutex_lock(&mb5_transfer.lock);
2266 
2267 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2268 		cpu_relax();
2269 
2270 	writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2271 	writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2272 	writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2273 	writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2274 	writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2275 
2276 	writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2277 
2278 	if (!wait_for_completion_timeout(&mb5_transfer.work,
2279 				msecs_to_jiffies(20000))) {
2280 		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2281 			__func__);
2282 		r = -EIO;
2283 	} else {
2284 		r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
2285 	}
2286 
2287 	if (!r)
2288 		*value = mb5_transfer.ack.value;
2289 
2290 	mutex_unlock(&mb5_transfer.lock);
2291 
2292 	return r;
2293 }
2294 
2295 /**
2296  * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
2297  * @slave:	The I2C slave address.
2298  * @reg:	The (start) register address.
2299  * @value:	The value(s) to write.
2300  * @mask:	The mask(s) to use.
2301  * @size:	The number of registers to write.
2302  *
2303  * Writes masked register value(s) to the ABB.
2304  * For each @value, only the bits set to 1 in the corresponding @mask
2305  * will be written. The other bits are not changed.
2306  * @size has to be 1 for the current firmware version.
2307  */
2308 int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
2309 {
2310 	int r;
2311 
2312 	if (size != 1)
2313 		return -EINVAL;
2314 
2315 	mutex_lock(&mb5_transfer.lock);
2316 
2317 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2318 		cpu_relax();
2319 
2320 	writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2321 	writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2322 	writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2323 	writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2324 	writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2325 
2326 	writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2327 
2328 	if (!wait_for_completion_timeout(&mb5_transfer.work,
2329 				msecs_to_jiffies(20000))) {
2330 		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2331 			__func__);
2332 		r = -EIO;
2333 	} else {
2334 		r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
2335 	}
2336 
2337 	mutex_unlock(&mb5_transfer.lock);
2338 
2339 	return r;
2340 }
2341 
2342 /**
2343  * prcmu_abb_write() - Write register value(s) to the ABB.
2344  * @slave:	The I2C slave address.
2345  * @reg:	The (start) register address.
2346  * @value:	The value(s) to write.
2347  * @size:	The number of registers to write.
2348  *
2349  * Writes register value(s) to the ABB.
2350  * @size has to be 1 for the current firmware version.
2351  */
2352 int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
2353 {
2354 	u8 mask = ~0;
2355 
2356 	return prcmu_abb_write_masked(slave, reg, value, &mask, size);
2357 }
2358 
2359 /**
2360  * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
2361  */
2362 int prcmu_ac_wake_req(void)
2363 {
2364 	u32 val;
2365 	int ret = 0;
2366 
2367 	mutex_lock(&mb0_transfer.ac_wake_lock);
2368 
2369 	val = readl(PRCM_HOSTACCESS_REQ);
2370 	if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
2371 		goto unlock_and_return;
2372 
2373 	atomic_set(&ac_wake_req_state, 1);
2374 
2375 	/*
2376 	 * Force Modem Wake-up before hostaccess_req ping-pong.
2377 	 * It prevents Modem to enter in Sleep while acking the hostaccess
2378 	 * request. The 31us delay has been calculated by HWI.
2379 	 */
2380 	val |= PRCM_HOSTACCESS_REQ_WAKE_REQ;
2381 	writel(val, PRCM_HOSTACCESS_REQ);
2382 
2383 	udelay(31);
2384 
2385 	val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ;
2386 	writel(val, PRCM_HOSTACCESS_REQ);
2387 
2388 	if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2389 			msecs_to_jiffies(5000))) {
2390 #if defined(CONFIG_DBX500_PRCMU_DEBUG)
2391 		db8500_prcmu_debug_dump(__func__, true, true);
2392 #endif
2393 		pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2394 			__func__);
2395 		ret = -EFAULT;
2396 	}
2397 
2398 unlock_and_return:
2399 	mutex_unlock(&mb0_transfer.ac_wake_lock);
2400 	return ret;
2401 }
2402 
2403 /**
2404  * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
2405  */
2406 void prcmu_ac_sleep_req()
2407 {
2408 	u32 val;
2409 
2410 	mutex_lock(&mb0_transfer.ac_wake_lock);
2411 
2412 	val = readl(PRCM_HOSTACCESS_REQ);
2413 	if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
2414 		goto unlock_and_return;
2415 
2416 	writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
2417 		PRCM_HOSTACCESS_REQ);
2418 
2419 	if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2420 			msecs_to_jiffies(5000))) {
2421 		pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2422 			__func__);
2423 	}
2424 
2425 	atomic_set(&ac_wake_req_state, 0);
2426 
2427 unlock_and_return:
2428 	mutex_unlock(&mb0_transfer.ac_wake_lock);
2429 }
2430 
2431 bool db8500_prcmu_is_ac_wake_requested(void)
2432 {
2433 	return (atomic_read(&ac_wake_req_state) != 0);
2434 }
2435 
2436 /**
2437  * db8500_prcmu_system_reset - System reset
2438  *
2439  * Saves the reset reason code and then sets the APE_SOFTRST register which
2440  * fires interrupt to fw
2441  */
2442 void db8500_prcmu_system_reset(u16 reset_code)
2443 {
2444 	writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
2445 	writel(1, PRCM_APE_SOFTRST);
2446 }
2447 
2448 /**
2449  * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
2450  *
2451  * Retrieves the reset reason code stored by prcmu_system_reset() before
2452  * last restart.
2453  */
2454 u16 db8500_prcmu_get_reset_code(void)
2455 {
2456 	return readw(tcdm_base + PRCM_SW_RST_REASON);
2457 }
2458 
2459 /**
2460  * db8500_prcmu_reset_modem - ask the PRCMU to reset modem
2461  */
2462 void db8500_prcmu_modem_reset(void)
2463 {
2464 	mutex_lock(&mb1_transfer.lock);
2465 
2466 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
2467 		cpu_relax();
2468 
2469 	writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
2470 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
2471 	wait_for_completion(&mb1_transfer.work);
2472 
2473 	/*
2474 	 * No need to check return from PRCMU as modem should go in reset state
2475 	 * This state is already managed by upper layer
2476 	 */
2477 
2478 	mutex_unlock(&mb1_transfer.lock);
2479 }
2480 
2481 static void ack_dbb_wakeup(void)
2482 {
2483 	unsigned long flags;
2484 
2485 	spin_lock_irqsave(&mb0_transfer.lock, flags);
2486 
2487 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
2488 		cpu_relax();
2489 
2490 	writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
2491 	writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
2492 
2493 	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2494 }
2495 
2496 static inline void print_unknown_header_warning(u8 n, u8 header)
2497 {
2498 	pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n",
2499 		header, n);
2500 }
2501 
2502 static bool read_mailbox_0(void)
2503 {
2504 	bool r;
2505 	u32 ev;
2506 	unsigned int n;
2507 	u8 header;
2508 
2509 	header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
2510 	switch (header) {
2511 	case MB0H_WAKEUP_EXE:
2512 	case MB0H_WAKEUP_SLEEP:
2513 		if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
2514 			ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
2515 		else
2516 			ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
2517 
2518 		if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
2519 			complete(&mb0_transfer.ac_wake_work);
2520 		if (ev & WAKEUP_BIT_SYSCLK_OK)
2521 			complete(&mb3_transfer.sysclk_work);
2522 
2523 		ev &= mb0_transfer.req.dbb_irqs;
2524 
2525 		for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
2526 			if (ev & prcmu_irq_bit[n])
2527 				generic_handle_irq(IRQ_PRCMU_BASE + n);
2528 		}
2529 		r = true;
2530 		break;
2531 	default:
2532 		print_unknown_header_warning(0, header);
2533 		r = false;
2534 		break;
2535 	}
2536 	writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
2537 	return r;
2538 }
2539 
2540 static bool read_mailbox_1(void)
2541 {
2542 	mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
2543 	mb1_transfer.ack.arm_opp = readb(tcdm_base +
2544 		PRCM_ACK_MB1_CURRENT_ARM_OPP);
2545 	mb1_transfer.ack.ape_opp = readb(tcdm_base +
2546 		PRCM_ACK_MB1_CURRENT_APE_OPP);
2547 	mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
2548 		PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
2549 	writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
2550 	complete(&mb1_transfer.work);
2551 	return false;
2552 }
2553 
2554 static bool read_mailbox_2(void)
2555 {
2556 	mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
2557 	writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
2558 	complete(&mb2_transfer.work);
2559 	return false;
2560 }
2561 
2562 static bool read_mailbox_3(void)
2563 {
2564 	writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
2565 	return false;
2566 }
2567 
2568 static bool read_mailbox_4(void)
2569 {
2570 	u8 header;
2571 	bool do_complete = true;
2572 
2573 	header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
2574 	switch (header) {
2575 	case MB4H_MEM_ST:
2576 	case MB4H_HOTDOG:
2577 	case MB4H_HOTMON:
2578 	case MB4H_HOT_PERIOD:
2579 	case MB4H_A9WDOG_CONF:
2580 	case MB4H_A9WDOG_EN:
2581 	case MB4H_A9WDOG_DIS:
2582 	case MB4H_A9WDOG_LOAD:
2583 	case MB4H_A9WDOG_KICK:
2584 		break;
2585 	default:
2586 		print_unknown_header_warning(4, header);
2587 		do_complete = false;
2588 		break;
2589 	}
2590 
2591 	writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
2592 
2593 	if (do_complete)
2594 		complete(&mb4_transfer.work);
2595 
2596 	return false;
2597 }
2598 
2599 static bool read_mailbox_5(void)
2600 {
2601 	mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
2602 	mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
2603 	writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
2604 	complete(&mb5_transfer.work);
2605 	return false;
2606 }
2607 
2608 static bool read_mailbox_6(void)
2609 {
2610 	writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
2611 	return false;
2612 }
2613 
2614 static bool read_mailbox_7(void)
2615 {
2616 	writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
2617 	return false;
2618 }
2619 
2620 static bool (* const read_mailbox[NUM_MB])(void) = {
2621 	read_mailbox_0,
2622 	read_mailbox_1,
2623 	read_mailbox_2,
2624 	read_mailbox_3,
2625 	read_mailbox_4,
2626 	read_mailbox_5,
2627 	read_mailbox_6,
2628 	read_mailbox_7
2629 };
2630 
2631 static irqreturn_t prcmu_irq_handler(int irq, void *data)
2632 {
2633 	u32 bits;
2634 	u8 n;
2635 	irqreturn_t r;
2636 
2637 	bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
2638 	if (unlikely(!bits))
2639 		return IRQ_NONE;
2640 
2641 	r = IRQ_HANDLED;
2642 	for (n = 0; bits; n++) {
2643 		if (bits & MBOX_BIT(n)) {
2644 			bits -= MBOX_BIT(n);
2645 			if (read_mailbox[n]())
2646 				r = IRQ_WAKE_THREAD;
2647 		}
2648 	}
2649 	return r;
2650 }
2651 
2652 static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
2653 {
2654 	ack_dbb_wakeup();
2655 	return IRQ_HANDLED;
2656 }
2657 
2658 static void prcmu_mask_work(struct work_struct *work)
2659 {
2660 	unsigned long flags;
2661 
2662 	spin_lock_irqsave(&mb0_transfer.lock, flags);
2663 
2664 	config_wakeups();
2665 
2666 	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2667 }
2668 
2669 static void prcmu_irq_mask(struct irq_data *d)
2670 {
2671 	unsigned long flags;
2672 
2673 	spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2674 
2675 	mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq];
2676 
2677 	spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2678 
2679 	if (d->irq != IRQ_PRCMU_CA_SLEEP)
2680 		schedule_work(&mb0_transfer.mask_work);
2681 }
2682 
2683 static void prcmu_irq_unmask(struct irq_data *d)
2684 {
2685 	unsigned long flags;
2686 
2687 	spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2688 
2689 	mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq];
2690 
2691 	spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2692 
2693 	if (d->irq != IRQ_PRCMU_CA_SLEEP)
2694 		schedule_work(&mb0_transfer.mask_work);
2695 }
2696 
2697 static void noop(struct irq_data *d)
2698 {
2699 }
2700 
2701 static struct irq_chip prcmu_irq_chip = {
2702 	.name		= "prcmu",
2703 	.irq_disable	= prcmu_irq_mask,
2704 	.irq_ack	= noop,
2705 	.irq_mask	= prcmu_irq_mask,
2706 	.irq_unmask	= prcmu_irq_unmask,
2707 };
2708 
2709 static char *fw_project_name(u8 project)
2710 {
2711 	switch (project) {
2712 	case PRCMU_FW_PROJECT_U8500:
2713 		return "U8500";
2714 	case PRCMU_FW_PROJECT_U8500_C2:
2715 		return "U8500 C2";
2716 	case PRCMU_FW_PROJECT_U9500:
2717 		return "U9500";
2718 	case PRCMU_FW_PROJECT_U9500_C2:
2719 		return "U9500 C2";
2720 	case PRCMU_FW_PROJECT_U8520:
2721 		return "U8520";
2722 	case PRCMU_FW_PROJECT_U8420:
2723 		return "U8420";
2724 	default:
2725 		return "Unknown";
2726 	}
2727 }
2728 
2729 static int db8500_irq_map(struct irq_domain *d, unsigned int virq,
2730 				irq_hw_number_t hwirq)
2731 {
2732 	irq_set_chip_and_handler(virq, &prcmu_irq_chip,
2733 				handle_simple_irq);
2734 	set_irq_flags(virq, IRQF_VALID);
2735 
2736 	return 0;
2737 }
2738 
2739 static struct irq_domain_ops db8500_irq_ops = {
2740         .map    = db8500_irq_map,
2741         .xlate  = irq_domain_xlate_twocell,
2742 };
2743 
2744 static int db8500_irq_init(struct device_node *np)
2745 {
2746 	int irq_base = -1;
2747 
2748 	/* In the device tree case, just take some IRQs */
2749 	if (!np)
2750 		irq_base = IRQ_PRCMU_BASE;
2751 
2752 	db8500_irq_domain = irq_domain_add_simple(
2753 		np, NUM_PRCMU_WAKEUPS, irq_base,
2754 		&db8500_irq_ops, NULL);
2755 
2756 	if (!db8500_irq_domain) {
2757 		pr_err("Failed to create irqdomain\n");
2758 		return -ENOSYS;
2759 	}
2760 
2761 	return 0;
2762 }
2763 
2764 void __init db8500_prcmu_early_init(void)
2765 {
2766 	if (cpu_is_u8500v2() || cpu_is_u9540()) {
2767 		void *tcpm_base = ioremap_nocache(U8500_PRCMU_TCPM_BASE, SZ_4K);
2768 
2769 		if (tcpm_base != NULL) {
2770 			u32 version;
2771 			version = readl(tcpm_base + PRCMU_FW_VERSION_OFFSET);
2772 			fw_info.version.project = version & 0xFF;
2773 			fw_info.version.api_version = (version >> 8) & 0xFF;
2774 			fw_info.version.func_version = (version >> 16) & 0xFF;
2775 			fw_info.version.errata = (version >> 24) & 0xFF;
2776 			fw_info.valid = true;
2777 			pr_info("PRCMU firmware: %s, version %d.%d.%d\n",
2778 				fw_project_name(fw_info.version.project),
2779 				(version >> 8) & 0xFF, (version >> 16) & 0xFF,
2780 				(version >> 24) & 0xFF);
2781 			iounmap(tcpm_base);
2782 		}
2783 
2784 		if (cpu_is_u9540())
2785 			tcdm_base = ioremap_nocache(U8500_PRCMU_TCDM_BASE,
2786 						SZ_4K + SZ_8K) + SZ_8K;
2787 		else
2788 			tcdm_base = __io_address(U8500_PRCMU_TCDM_BASE);
2789 	} else {
2790 		pr_err("prcmu: Unsupported chip version\n");
2791 		BUG();
2792 	}
2793 
2794 	spin_lock_init(&mb0_transfer.lock);
2795 	spin_lock_init(&mb0_transfer.dbb_irqs_lock);
2796 	mutex_init(&mb0_transfer.ac_wake_lock);
2797 	init_completion(&mb0_transfer.ac_wake_work);
2798 	mutex_init(&mb1_transfer.lock);
2799 	init_completion(&mb1_transfer.work);
2800 	mb1_transfer.ape_opp = APE_NO_CHANGE;
2801 	mutex_init(&mb2_transfer.lock);
2802 	init_completion(&mb2_transfer.work);
2803 	spin_lock_init(&mb2_transfer.auto_pm_lock);
2804 	spin_lock_init(&mb3_transfer.lock);
2805 	mutex_init(&mb3_transfer.sysclk_lock);
2806 	init_completion(&mb3_transfer.sysclk_work);
2807 	mutex_init(&mb4_transfer.lock);
2808 	init_completion(&mb4_transfer.work);
2809 	mutex_init(&mb5_transfer.lock);
2810 	init_completion(&mb5_transfer.work);
2811 
2812 	INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
2813 }
2814 
2815 static void __init init_prcm_registers(void)
2816 {
2817 	u32 val;
2818 
2819 	val = readl(PRCM_A9PL_FORCE_CLKEN);
2820 	val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
2821 		PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
2822 	writel(val, (PRCM_A9PL_FORCE_CLKEN));
2823 }
2824 
2825 /*
2826  * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
2827  */
2828 static struct regulator_consumer_supply db8500_vape_consumers[] = {
2829 	REGULATOR_SUPPLY("v-ape", NULL),
2830 	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2831 	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2832 	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2833 	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
2834 	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
2835 	/* "v-mmc" changed to "vcore" in the mainline kernel */
2836 	REGULATOR_SUPPLY("vcore", "sdi0"),
2837 	REGULATOR_SUPPLY("vcore", "sdi1"),
2838 	REGULATOR_SUPPLY("vcore", "sdi2"),
2839 	REGULATOR_SUPPLY("vcore", "sdi3"),
2840 	REGULATOR_SUPPLY("vcore", "sdi4"),
2841 	REGULATOR_SUPPLY("v-dma", "dma40.0"),
2842 	REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2843 	/* "v-uart" changed to "vcore" in the mainline kernel */
2844 	REGULATOR_SUPPLY("vcore", "uart0"),
2845 	REGULATOR_SUPPLY("vcore", "uart1"),
2846 	REGULATOR_SUPPLY("vcore", "uart2"),
2847 	REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
2848 	REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
2849 	REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
2850 };
2851 
2852 static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
2853 	REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2854 	/* AV8100 regulator */
2855 	REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2856 };
2857 
2858 static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
2859 	REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
2860 	REGULATOR_SUPPLY("vsupply", "mcde"),
2861 };
2862 
2863 /* SVA MMDSP regulator switch */
2864 static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
2865 	REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2866 };
2867 
2868 /* SVA pipe regulator switch */
2869 static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
2870 	REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2871 };
2872 
2873 /* SIA MMDSP regulator switch */
2874 static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
2875 	REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2876 };
2877 
2878 /* SIA pipe regulator switch */
2879 static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
2880 	REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2881 };
2882 
2883 static struct regulator_consumer_supply db8500_sga_consumers[] = {
2884 	REGULATOR_SUPPLY("v-mali", NULL),
2885 };
2886 
2887 /* ESRAM1 and 2 regulator switch */
2888 static struct regulator_consumer_supply db8500_esram12_consumers[] = {
2889 	REGULATOR_SUPPLY("esram12", "cm_control"),
2890 };
2891 
2892 /* ESRAM3 and 4 regulator switch */
2893 static struct regulator_consumer_supply db8500_esram34_consumers[] = {
2894 	REGULATOR_SUPPLY("v-esram34", "mcde"),
2895 	REGULATOR_SUPPLY("esram34", "cm_control"),
2896 	REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
2897 };
2898 
2899 static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
2900 	[DB8500_REGULATOR_VAPE] = {
2901 		.constraints = {
2902 			.name = "db8500-vape",
2903 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2904 			.always_on = true,
2905 		},
2906 		.consumer_supplies = db8500_vape_consumers,
2907 		.num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
2908 	},
2909 	[DB8500_REGULATOR_VARM] = {
2910 		.constraints = {
2911 			.name = "db8500-varm",
2912 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2913 		},
2914 	},
2915 	[DB8500_REGULATOR_VMODEM] = {
2916 		.constraints = {
2917 			.name = "db8500-vmodem",
2918 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2919 		},
2920 	},
2921 	[DB8500_REGULATOR_VPLL] = {
2922 		.constraints = {
2923 			.name = "db8500-vpll",
2924 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2925 		},
2926 	},
2927 	[DB8500_REGULATOR_VSMPS1] = {
2928 		.constraints = {
2929 			.name = "db8500-vsmps1",
2930 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2931 		},
2932 	},
2933 	[DB8500_REGULATOR_VSMPS2] = {
2934 		.constraints = {
2935 			.name = "db8500-vsmps2",
2936 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2937 		},
2938 		.consumer_supplies = db8500_vsmps2_consumers,
2939 		.num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
2940 	},
2941 	[DB8500_REGULATOR_VSMPS3] = {
2942 		.constraints = {
2943 			.name = "db8500-vsmps3",
2944 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2945 		},
2946 	},
2947 	[DB8500_REGULATOR_VRF1] = {
2948 		.constraints = {
2949 			.name = "db8500-vrf1",
2950 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2951 		},
2952 	},
2953 	[DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
2954 		/* dependency to u8500-vape is handled outside regulator framework */
2955 		.constraints = {
2956 			.name = "db8500-sva-mmdsp",
2957 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2958 		},
2959 		.consumer_supplies = db8500_svammdsp_consumers,
2960 		.num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
2961 	},
2962 	[DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
2963 		.constraints = {
2964 			/* "ret" means "retention" */
2965 			.name = "db8500-sva-mmdsp-ret",
2966 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2967 		},
2968 	},
2969 	[DB8500_REGULATOR_SWITCH_SVAPIPE] = {
2970 		/* dependency to u8500-vape is handled outside regulator framework */
2971 		.constraints = {
2972 			.name = "db8500-sva-pipe",
2973 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2974 		},
2975 		.consumer_supplies = db8500_svapipe_consumers,
2976 		.num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
2977 	},
2978 	[DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
2979 		/* dependency to u8500-vape is handled outside regulator framework */
2980 		.constraints = {
2981 			.name = "db8500-sia-mmdsp",
2982 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2983 		},
2984 		.consumer_supplies = db8500_siammdsp_consumers,
2985 		.num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
2986 	},
2987 	[DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
2988 		.constraints = {
2989 			.name = "db8500-sia-mmdsp-ret",
2990 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2991 		},
2992 	},
2993 	[DB8500_REGULATOR_SWITCH_SIAPIPE] = {
2994 		/* dependency to u8500-vape is handled outside regulator framework */
2995 		.constraints = {
2996 			.name = "db8500-sia-pipe",
2997 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2998 		},
2999 		.consumer_supplies = db8500_siapipe_consumers,
3000 		.num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
3001 	},
3002 	[DB8500_REGULATOR_SWITCH_SGA] = {
3003 		.supply_regulator = "db8500-vape",
3004 		.constraints = {
3005 			.name = "db8500-sga",
3006 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
3007 		},
3008 		.consumer_supplies = db8500_sga_consumers,
3009 		.num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
3010 
3011 	},
3012 	[DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
3013 		.supply_regulator = "db8500-vape",
3014 		.constraints = {
3015 			.name = "db8500-b2r2-mcde",
3016 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
3017 		},
3018 		.consumer_supplies = db8500_b2r2_mcde_consumers,
3019 		.num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
3020 	},
3021 	[DB8500_REGULATOR_SWITCH_ESRAM12] = {
3022 		/*
3023 		 * esram12 is set in retention and supplied by Vsafe when Vape is off,
3024 		 * no need to hold Vape
3025 		 */
3026 		.constraints = {
3027 			.name = "db8500-esram12",
3028 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
3029 		},
3030 		.consumer_supplies = db8500_esram12_consumers,
3031 		.num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
3032 	},
3033 	[DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
3034 		.constraints = {
3035 			.name = "db8500-esram12-ret",
3036 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
3037 		},
3038 	},
3039 	[DB8500_REGULATOR_SWITCH_ESRAM34] = {
3040 		/*
3041 		 * esram34 is set in retention and supplied by Vsafe when Vape is off,
3042 		 * no need to hold Vape
3043 		 */
3044 		.constraints = {
3045 			.name = "db8500-esram34",
3046 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
3047 		},
3048 		.consumer_supplies = db8500_esram34_consumers,
3049 		.num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
3050 	},
3051 	[DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
3052 		.constraints = {
3053 			.name = "db8500-esram34-ret",
3054 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
3055 		},
3056 	},
3057 };
3058 
3059 static struct resource ab8500_resources[] = {
3060 	[0] = {
3061 		.start	= IRQ_DB8500_AB8500,
3062 		.end	= IRQ_DB8500_AB8500,
3063 		.flags	= IORESOURCE_IRQ
3064 	}
3065 };
3066 
3067 static struct mfd_cell db8500_prcmu_devs[] = {
3068 	{
3069 		.name = "db8500-prcmu-regulators",
3070 		.of_compatible = "stericsson,db8500-prcmu-regulator",
3071 		.platform_data = &db8500_regulators,
3072 		.pdata_size = sizeof(db8500_regulators),
3073 	},
3074 	{
3075 		.name = "cpufreq-u8500",
3076 		.of_compatible = "stericsson,cpufreq-u8500",
3077 		.platform_data = &db8500_cpufreq_table,
3078 		.pdata_size = sizeof(db8500_cpufreq_table),
3079 	},
3080 	{
3081 		.name = "ab8500-core",
3082 		.of_compatible = "stericsson,ab8500",
3083 		.num_resources = ARRAY_SIZE(ab8500_resources),
3084 		.resources = ab8500_resources,
3085 		.id = AB8500_VERSION_AB8500,
3086 	},
3087 };
3088 
3089 static void db8500_prcmu_update_cpufreq(void)
3090 {
3091 	if (prcmu_has_arm_maxopp()) {
3092 		db8500_cpufreq_table[3].frequency = 1000000;
3093 		db8500_cpufreq_table[3].index = ARM_MAX_OPP;
3094 	}
3095 }
3096 
3097 /**
3098  * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
3099  *
3100  */
3101 static int db8500_prcmu_probe(struct platform_device *pdev)
3102 {
3103 	struct ab8500_platform_data *ab8500_platdata = pdev->dev.platform_data;
3104 	struct device_node *np = pdev->dev.of_node;
3105 	int irq = 0, err = 0, i;
3106 
3107 	if (ux500_is_svp())
3108 		return -ENODEV;
3109 
3110 	init_prcm_registers();
3111 
3112 	/* Clean up the mailbox interrupts after pre-kernel code. */
3113 	writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
3114 
3115 	if (np)
3116 		irq = platform_get_irq(pdev, 0);
3117 
3118 	if (!np || irq <= 0)
3119 		irq = IRQ_DB8500_PRCMU1;
3120 
3121 	err = request_threaded_irq(irq, prcmu_irq_handler,
3122 	        prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
3123 	if (err < 0) {
3124 		pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
3125 		err = -EBUSY;
3126 		goto no_irq_return;
3127 	}
3128 
3129 	db8500_irq_init(np);
3130 
3131 	for (i = 0; i < ARRAY_SIZE(db8500_prcmu_devs); i++) {
3132 		if (!strcmp(db8500_prcmu_devs[i].name, "ab8500-core")) {
3133 			db8500_prcmu_devs[i].platform_data = ab8500_platdata;
3134 			db8500_prcmu_devs[i].pdata_size = sizeof(struct ab8500_platform_data);
3135 		}
3136 	}
3137 
3138 	if (cpu_is_u8500v20_or_later())
3139 		prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
3140 
3141 	db8500_prcmu_update_cpufreq();
3142 
3143 	err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
3144 			      ARRAY_SIZE(db8500_prcmu_devs), NULL, 0, NULL);
3145 	if (err) {
3146 		pr_err("prcmu: Failed to add subdevices\n");
3147 		return err;
3148 	}
3149 
3150 	pr_info("DB8500 PRCMU initialized\n");
3151 
3152 no_irq_return:
3153 	return err;
3154 }
3155 static const struct of_device_id db8500_prcmu_match[] = {
3156 	{ .compatible = "stericsson,db8500-prcmu"},
3157 	{ },
3158 };
3159 
3160 static struct platform_driver db8500_prcmu_driver = {
3161 	.driver = {
3162 		.name = "db8500-prcmu",
3163 		.owner = THIS_MODULE,
3164 		.of_match_table = db8500_prcmu_match,
3165 	},
3166 	.probe = db8500_prcmu_probe,
3167 };
3168 
3169 static int __init db8500_prcmu_init(void)
3170 {
3171 	return platform_driver_register(&db8500_prcmu_driver);
3172 }
3173 
3174 core_initcall(db8500_prcmu_init);
3175 
3176 MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>");
3177 MODULE_DESCRIPTION("DB8500 PRCM Unit driver");
3178 MODULE_LICENSE("GPL v2");
3179