xref: /openbmc/linux/drivers/mfd/db8500-prcmu.c (revision 089a49b6)
1 /*
2  * Copyright (C) STMicroelectronics 2009
3  * Copyright (C) ST-Ericsson SA 2010
4  *
5  * License Terms: GNU General Public License v2
6  * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
7  * Author: Sundar Iyer <sundar.iyer@stericsson.com>
8  * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
9  *
10  * U8500 PRCM Unit interface driver
11  *
12  */
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/delay.h>
16 #include <linux/errno.h>
17 #include <linux/err.h>
18 #include <linux/spinlock.h>
19 #include <linux/io.h>
20 #include <linux/slab.h>
21 #include <linux/mutex.h>
22 #include <linux/completion.h>
23 #include <linux/irq.h>
24 #include <linux/jiffies.h>
25 #include <linux/bitops.h>
26 #include <linux/fs.h>
27 #include <linux/of.h>
28 #include <linux/platform_device.h>
29 #include <linux/uaccess.h>
30 #include <linux/mfd/core.h>
31 #include <linux/mfd/dbx500-prcmu.h>
32 #include <linux/mfd/abx500/ab8500.h>
33 #include <linux/regulator/db8500-prcmu.h>
34 #include <linux/regulator/machine.h>
35 #include <linux/cpufreq.h>
36 #include <linux/platform_data/ux500_wdt.h>
37 #include <linux/platform_data/db8500_thermal.h>
38 #include "dbx500-prcmu-regs.h"
39 
40 /* Index of different voltages to be used when accessing AVSData */
41 #define PRCM_AVS_BASE		0x2FC
42 #define PRCM_AVS_VBB_RET	(PRCM_AVS_BASE + 0x0)
43 #define PRCM_AVS_VBB_MAX_OPP	(PRCM_AVS_BASE + 0x1)
44 #define PRCM_AVS_VBB_100_OPP	(PRCM_AVS_BASE + 0x2)
45 #define PRCM_AVS_VBB_50_OPP	(PRCM_AVS_BASE + 0x3)
46 #define PRCM_AVS_VARM_MAX_OPP	(PRCM_AVS_BASE + 0x4)
47 #define PRCM_AVS_VARM_100_OPP	(PRCM_AVS_BASE + 0x5)
48 #define PRCM_AVS_VARM_50_OPP	(PRCM_AVS_BASE + 0x6)
49 #define PRCM_AVS_VARM_RET	(PRCM_AVS_BASE + 0x7)
50 #define PRCM_AVS_VAPE_100_OPP	(PRCM_AVS_BASE + 0x8)
51 #define PRCM_AVS_VAPE_50_OPP	(PRCM_AVS_BASE + 0x9)
52 #define PRCM_AVS_VMOD_100_OPP	(PRCM_AVS_BASE + 0xA)
53 #define PRCM_AVS_VMOD_50_OPP	(PRCM_AVS_BASE + 0xB)
54 #define PRCM_AVS_VSAFE		(PRCM_AVS_BASE + 0xC)
55 
56 #define PRCM_AVS_VOLTAGE		0
57 #define PRCM_AVS_VOLTAGE_MASK		0x3f
58 #define PRCM_AVS_ISSLOWSTARTUP		6
59 #define PRCM_AVS_ISSLOWSTARTUP_MASK	(1 << PRCM_AVS_ISSLOWSTARTUP)
60 #define PRCM_AVS_ISMODEENABLE		7
61 #define PRCM_AVS_ISMODEENABLE_MASK	(1 << PRCM_AVS_ISMODEENABLE)
62 
63 #define PRCM_BOOT_STATUS	0xFFF
64 #define PRCM_ROMCODE_A2P	0xFFE
65 #define PRCM_ROMCODE_P2A	0xFFD
66 #define PRCM_XP70_CUR_PWR_STATE 0xFFC      /* 4 BYTES */
67 
68 #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
69 
70 #define _PRCM_MBOX_HEADER		0xFE8 /* 16 bytes */
71 #define PRCM_MBOX_HEADER_REQ_MB0	(_PRCM_MBOX_HEADER + 0x0)
72 #define PRCM_MBOX_HEADER_REQ_MB1	(_PRCM_MBOX_HEADER + 0x1)
73 #define PRCM_MBOX_HEADER_REQ_MB2	(_PRCM_MBOX_HEADER + 0x2)
74 #define PRCM_MBOX_HEADER_REQ_MB3	(_PRCM_MBOX_HEADER + 0x3)
75 #define PRCM_MBOX_HEADER_REQ_MB4	(_PRCM_MBOX_HEADER + 0x4)
76 #define PRCM_MBOX_HEADER_REQ_MB5	(_PRCM_MBOX_HEADER + 0x5)
77 #define PRCM_MBOX_HEADER_ACK_MB0	(_PRCM_MBOX_HEADER + 0x8)
78 
79 /* Req Mailboxes */
80 #define PRCM_REQ_MB0 0xFDC /* 12 bytes  */
81 #define PRCM_REQ_MB1 0xFD0 /* 12 bytes  */
82 #define PRCM_REQ_MB2 0xFC0 /* 16 bytes  */
83 #define PRCM_REQ_MB3 0xE4C /* 372 bytes  */
84 #define PRCM_REQ_MB4 0xE48 /* 4 bytes  */
85 #define PRCM_REQ_MB5 0xE44 /* 4 bytes  */
86 
87 /* Ack Mailboxes */
88 #define PRCM_ACK_MB0 0xE08 /* 52 bytes  */
89 #define PRCM_ACK_MB1 0xE04 /* 4 bytes */
90 #define PRCM_ACK_MB2 0xE00 /* 4 bytes */
91 #define PRCM_ACK_MB3 0xDFC /* 4 bytes */
92 #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
93 #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
94 
95 /* Mailbox 0 headers */
96 #define MB0H_POWER_STATE_TRANS		0
97 #define MB0H_CONFIG_WAKEUPS_EXE		1
98 #define MB0H_READ_WAKEUP_ACK		3
99 #define MB0H_CONFIG_WAKEUPS_SLEEP	4
100 
101 #define MB0H_WAKEUP_EXE 2
102 #define MB0H_WAKEUP_SLEEP 5
103 
104 /* Mailbox 0 REQs */
105 #define PRCM_REQ_MB0_AP_POWER_STATE	(PRCM_REQ_MB0 + 0x0)
106 #define PRCM_REQ_MB0_AP_PLL_STATE	(PRCM_REQ_MB0 + 0x1)
107 #define PRCM_REQ_MB0_ULP_CLOCK_STATE	(PRCM_REQ_MB0 + 0x2)
108 #define PRCM_REQ_MB0_DO_NOT_WFI		(PRCM_REQ_MB0 + 0x3)
109 #define PRCM_REQ_MB0_WAKEUP_8500	(PRCM_REQ_MB0 + 0x4)
110 #define PRCM_REQ_MB0_WAKEUP_4500	(PRCM_REQ_MB0 + 0x8)
111 
112 /* Mailbox 0 ACKs */
113 #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS	(PRCM_ACK_MB0 + 0x0)
114 #define PRCM_ACK_MB0_READ_POINTER	(PRCM_ACK_MB0 + 0x1)
115 #define PRCM_ACK_MB0_WAKEUP_0_8500	(PRCM_ACK_MB0 + 0x4)
116 #define PRCM_ACK_MB0_WAKEUP_0_4500	(PRCM_ACK_MB0 + 0x8)
117 #define PRCM_ACK_MB0_WAKEUP_1_8500	(PRCM_ACK_MB0 + 0x1C)
118 #define PRCM_ACK_MB0_WAKEUP_1_4500	(PRCM_ACK_MB0 + 0x20)
119 #define PRCM_ACK_MB0_EVENT_4500_NUMBERS	20
120 
121 /* Mailbox 1 headers */
122 #define MB1H_ARM_APE_OPP 0x0
123 #define MB1H_RESET_MODEM 0x2
124 #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
125 #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
126 #define MB1H_RELEASE_USB_WAKEUP 0x5
127 #define MB1H_PLL_ON_OFF 0x6
128 
129 /* Mailbox 1 Requests */
130 #define PRCM_REQ_MB1_ARM_OPP			(PRCM_REQ_MB1 + 0x0)
131 #define PRCM_REQ_MB1_APE_OPP			(PRCM_REQ_MB1 + 0x1)
132 #define PRCM_REQ_MB1_PLL_ON_OFF			(PRCM_REQ_MB1 + 0x4)
133 #define PLL_SOC0_OFF	0x1
134 #define PLL_SOC0_ON	0x2
135 #define PLL_SOC1_OFF	0x4
136 #define PLL_SOC1_ON	0x8
137 
138 /* Mailbox 1 ACKs */
139 #define PRCM_ACK_MB1_CURRENT_ARM_OPP	(PRCM_ACK_MB1 + 0x0)
140 #define PRCM_ACK_MB1_CURRENT_APE_OPP	(PRCM_ACK_MB1 + 0x1)
141 #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS	(PRCM_ACK_MB1 + 0x2)
142 #define PRCM_ACK_MB1_DVFS_STATUS	(PRCM_ACK_MB1 + 0x3)
143 
144 /* Mailbox 2 headers */
145 #define MB2H_DPS	0x0
146 #define MB2H_AUTO_PWR	0x1
147 
148 /* Mailbox 2 REQs */
149 #define PRCM_REQ_MB2_SVA_MMDSP		(PRCM_REQ_MB2 + 0x0)
150 #define PRCM_REQ_MB2_SVA_PIPE		(PRCM_REQ_MB2 + 0x1)
151 #define PRCM_REQ_MB2_SIA_MMDSP		(PRCM_REQ_MB2 + 0x2)
152 #define PRCM_REQ_MB2_SIA_PIPE		(PRCM_REQ_MB2 + 0x3)
153 #define PRCM_REQ_MB2_SGA		(PRCM_REQ_MB2 + 0x4)
154 #define PRCM_REQ_MB2_B2R2_MCDE		(PRCM_REQ_MB2 + 0x5)
155 #define PRCM_REQ_MB2_ESRAM12		(PRCM_REQ_MB2 + 0x6)
156 #define PRCM_REQ_MB2_ESRAM34		(PRCM_REQ_MB2 + 0x7)
157 #define PRCM_REQ_MB2_AUTO_PM_SLEEP	(PRCM_REQ_MB2 + 0x8)
158 #define PRCM_REQ_MB2_AUTO_PM_IDLE	(PRCM_REQ_MB2 + 0xC)
159 
160 /* Mailbox 2 ACKs */
161 #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
162 #define HWACC_PWR_ST_OK 0xFE
163 
164 /* Mailbox 3 headers */
165 #define MB3H_ANC	0x0
166 #define MB3H_SIDETONE	0x1
167 #define MB3H_SYSCLK	0xE
168 
169 /* Mailbox 3 Requests */
170 #define PRCM_REQ_MB3_ANC_FIR_COEFF	(PRCM_REQ_MB3 + 0x0)
171 #define PRCM_REQ_MB3_ANC_IIR_COEFF	(PRCM_REQ_MB3 + 0x20)
172 #define PRCM_REQ_MB3_ANC_SHIFTER	(PRCM_REQ_MB3 + 0x60)
173 #define PRCM_REQ_MB3_ANC_WARP		(PRCM_REQ_MB3 + 0x64)
174 #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN	(PRCM_REQ_MB3 + 0x68)
175 #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF	(PRCM_REQ_MB3 + 0x6C)
176 #define PRCM_REQ_MB3_SYSCLK_MGT		(PRCM_REQ_MB3 + 0x16C)
177 
178 /* Mailbox 4 headers */
179 #define MB4H_DDR_INIT	0x0
180 #define MB4H_MEM_ST	0x1
181 #define MB4H_HOTDOG	0x12
182 #define MB4H_HOTMON	0x13
183 #define MB4H_HOT_PERIOD	0x14
184 #define MB4H_A9WDOG_CONF 0x16
185 #define MB4H_A9WDOG_EN   0x17
186 #define MB4H_A9WDOG_DIS  0x18
187 #define MB4H_A9WDOG_LOAD 0x19
188 #define MB4H_A9WDOG_KICK 0x20
189 
190 /* Mailbox 4 Requests */
191 #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE	(PRCM_REQ_MB4 + 0x0)
192 #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE	(PRCM_REQ_MB4 + 0x1)
193 #define PRCM_REQ_MB4_ESRAM0_ST			(PRCM_REQ_MB4 + 0x3)
194 #define PRCM_REQ_MB4_HOTDOG_THRESHOLD		(PRCM_REQ_MB4 + 0x0)
195 #define PRCM_REQ_MB4_HOTMON_LOW			(PRCM_REQ_MB4 + 0x0)
196 #define PRCM_REQ_MB4_HOTMON_HIGH		(PRCM_REQ_MB4 + 0x1)
197 #define PRCM_REQ_MB4_HOTMON_CONFIG		(PRCM_REQ_MB4 + 0x2)
198 #define PRCM_REQ_MB4_HOT_PERIOD			(PRCM_REQ_MB4 + 0x0)
199 #define HOTMON_CONFIG_LOW			BIT(0)
200 #define HOTMON_CONFIG_HIGH			BIT(1)
201 #define PRCM_REQ_MB4_A9WDOG_0			(PRCM_REQ_MB4 + 0x0)
202 #define PRCM_REQ_MB4_A9WDOG_1			(PRCM_REQ_MB4 + 0x1)
203 #define PRCM_REQ_MB4_A9WDOG_2			(PRCM_REQ_MB4 + 0x2)
204 #define PRCM_REQ_MB4_A9WDOG_3			(PRCM_REQ_MB4 + 0x3)
205 #define A9WDOG_AUTO_OFF_EN			BIT(7)
206 #define A9WDOG_AUTO_OFF_DIS			0
207 #define A9WDOG_ID_MASK				0xf
208 
209 /* Mailbox 5 Requests */
210 #define PRCM_REQ_MB5_I2C_SLAVE_OP	(PRCM_REQ_MB5 + 0x0)
211 #define PRCM_REQ_MB5_I2C_HW_BITS	(PRCM_REQ_MB5 + 0x1)
212 #define PRCM_REQ_MB5_I2C_REG		(PRCM_REQ_MB5 + 0x2)
213 #define PRCM_REQ_MB5_I2C_VAL		(PRCM_REQ_MB5 + 0x3)
214 #define PRCMU_I2C_WRITE(slave) (((slave) << 1) | BIT(6))
215 #define PRCMU_I2C_READ(slave) (((slave) << 1) | BIT(0) | BIT(6))
216 #define PRCMU_I2C_STOP_EN		BIT(3)
217 
218 /* Mailbox 5 ACKs */
219 #define PRCM_ACK_MB5_I2C_STATUS	(PRCM_ACK_MB5 + 0x1)
220 #define PRCM_ACK_MB5_I2C_VAL	(PRCM_ACK_MB5 + 0x3)
221 #define I2C_WR_OK 0x1
222 #define I2C_RD_OK 0x2
223 
224 #define NUM_MB 8
225 #define MBOX_BIT BIT
226 #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
227 
228 /*
229  * Wakeups/IRQs
230  */
231 
232 #define WAKEUP_BIT_RTC BIT(0)
233 #define WAKEUP_BIT_RTT0 BIT(1)
234 #define WAKEUP_BIT_RTT1 BIT(2)
235 #define WAKEUP_BIT_HSI0 BIT(3)
236 #define WAKEUP_BIT_HSI1 BIT(4)
237 #define WAKEUP_BIT_CA_WAKE BIT(5)
238 #define WAKEUP_BIT_USB BIT(6)
239 #define WAKEUP_BIT_ABB BIT(7)
240 #define WAKEUP_BIT_ABB_FIFO BIT(8)
241 #define WAKEUP_BIT_SYSCLK_OK BIT(9)
242 #define WAKEUP_BIT_CA_SLEEP BIT(10)
243 #define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
244 #define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
245 #define WAKEUP_BIT_ANC_OK BIT(13)
246 #define WAKEUP_BIT_SW_ERROR BIT(14)
247 #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
248 #define WAKEUP_BIT_ARM BIT(17)
249 #define WAKEUP_BIT_HOTMON_LOW BIT(18)
250 #define WAKEUP_BIT_HOTMON_HIGH BIT(19)
251 #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
252 #define WAKEUP_BIT_GPIO0 BIT(23)
253 #define WAKEUP_BIT_GPIO1 BIT(24)
254 #define WAKEUP_BIT_GPIO2 BIT(25)
255 #define WAKEUP_BIT_GPIO3 BIT(26)
256 #define WAKEUP_BIT_GPIO4 BIT(27)
257 #define WAKEUP_BIT_GPIO5 BIT(28)
258 #define WAKEUP_BIT_GPIO6 BIT(29)
259 #define WAKEUP_BIT_GPIO7 BIT(30)
260 #define WAKEUP_BIT_GPIO8 BIT(31)
261 
262 static struct {
263 	bool valid;
264 	struct prcmu_fw_version version;
265 } fw_info;
266 
267 static struct irq_domain *db8500_irq_domain;
268 
269 /*
270  * This vector maps irq numbers to the bits in the bit field used in
271  * communication with the PRCMU firmware.
272  *
273  * The reason for having this is to keep the irq numbers contiguous even though
274  * the bits in the bit field are not. (The bits also have a tendency to move
275  * around, to further complicate matters.)
276  */
277 #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name))
278 #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
279 
280 #define IRQ_PRCMU_RTC 0
281 #define IRQ_PRCMU_RTT0 1
282 #define IRQ_PRCMU_RTT1 2
283 #define IRQ_PRCMU_HSI0 3
284 #define IRQ_PRCMU_HSI1 4
285 #define IRQ_PRCMU_CA_WAKE 5
286 #define IRQ_PRCMU_USB 6
287 #define IRQ_PRCMU_ABB 7
288 #define IRQ_PRCMU_ABB_FIFO 8
289 #define IRQ_PRCMU_ARM 9
290 #define IRQ_PRCMU_MODEM_SW_RESET_REQ 10
291 #define IRQ_PRCMU_GPIO0 11
292 #define IRQ_PRCMU_GPIO1 12
293 #define IRQ_PRCMU_GPIO2 13
294 #define IRQ_PRCMU_GPIO3 14
295 #define IRQ_PRCMU_GPIO4 15
296 #define IRQ_PRCMU_GPIO5 16
297 #define IRQ_PRCMU_GPIO6 17
298 #define IRQ_PRCMU_GPIO7 18
299 #define IRQ_PRCMU_GPIO8 19
300 #define IRQ_PRCMU_CA_SLEEP 20
301 #define IRQ_PRCMU_HOTMON_LOW 21
302 #define IRQ_PRCMU_HOTMON_HIGH 22
303 #define NUM_PRCMU_WAKEUPS 23
304 
305 static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
306 	IRQ_ENTRY(RTC),
307 	IRQ_ENTRY(RTT0),
308 	IRQ_ENTRY(RTT1),
309 	IRQ_ENTRY(HSI0),
310 	IRQ_ENTRY(HSI1),
311 	IRQ_ENTRY(CA_WAKE),
312 	IRQ_ENTRY(USB),
313 	IRQ_ENTRY(ABB),
314 	IRQ_ENTRY(ABB_FIFO),
315 	IRQ_ENTRY(CA_SLEEP),
316 	IRQ_ENTRY(ARM),
317 	IRQ_ENTRY(HOTMON_LOW),
318 	IRQ_ENTRY(HOTMON_HIGH),
319 	IRQ_ENTRY(MODEM_SW_RESET_REQ),
320 	IRQ_ENTRY(GPIO0),
321 	IRQ_ENTRY(GPIO1),
322 	IRQ_ENTRY(GPIO2),
323 	IRQ_ENTRY(GPIO3),
324 	IRQ_ENTRY(GPIO4),
325 	IRQ_ENTRY(GPIO5),
326 	IRQ_ENTRY(GPIO6),
327 	IRQ_ENTRY(GPIO7),
328 	IRQ_ENTRY(GPIO8)
329 };
330 
331 #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
332 #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
333 static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
334 	WAKEUP_ENTRY(RTC),
335 	WAKEUP_ENTRY(RTT0),
336 	WAKEUP_ENTRY(RTT1),
337 	WAKEUP_ENTRY(HSI0),
338 	WAKEUP_ENTRY(HSI1),
339 	WAKEUP_ENTRY(USB),
340 	WAKEUP_ENTRY(ABB),
341 	WAKEUP_ENTRY(ABB_FIFO),
342 	WAKEUP_ENTRY(ARM)
343 };
344 
345 /*
346  * mb0_transfer - state needed for mailbox 0 communication.
347  * @lock:		The transaction lock.
348  * @dbb_events_lock:	A lock used to handle concurrent access to (parts of)
349  *			the request data.
350  * @mask_work:		Work structure used for (un)masking wakeup interrupts.
351  * @req:		Request data that need to persist between requests.
352  */
353 static struct {
354 	spinlock_t lock;
355 	spinlock_t dbb_irqs_lock;
356 	struct work_struct mask_work;
357 	struct mutex ac_wake_lock;
358 	struct completion ac_wake_work;
359 	struct {
360 		u32 dbb_irqs;
361 		u32 dbb_wakeups;
362 		u32 abb_events;
363 	} req;
364 } mb0_transfer;
365 
366 /*
367  * mb1_transfer - state needed for mailbox 1 communication.
368  * @lock:	The transaction lock.
369  * @work:	The transaction completion structure.
370  * @ape_opp:	The current APE OPP.
371  * @ack:	Reply ("acknowledge") data.
372  */
373 static struct {
374 	struct mutex lock;
375 	struct completion work;
376 	u8 ape_opp;
377 	struct {
378 		u8 header;
379 		u8 arm_opp;
380 		u8 ape_opp;
381 		u8 ape_voltage_status;
382 	} ack;
383 } mb1_transfer;
384 
385 /*
386  * mb2_transfer - state needed for mailbox 2 communication.
387  * @lock:            The transaction lock.
388  * @work:            The transaction completion structure.
389  * @auto_pm_lock:    The autonomous power management configuration lock.
390  * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
391  * @req:             Request data that need to persist between requests.
392  * @ack:             Reply ("acknowledge") data.
393  */
394 static struct {
395 	struct mutex lock;
396 	struct completion work;
397 	spinlock_t auto_pm_lock;
398 	bool auto_pm_enabled;
399 	struct {
400 		u8 status;
401 	} ack;
402 } mb2_transfer;
403 
404 /*
405  * mb3_transfer - state needed for mailbox 3 communication.
406  * @lock:		The request lock.
407  * @sysclk_lock:	A lock used to handle concurrent sysclk requests.
408  * @sysclk_work:	Work structure used for sysclk requests.
409  */
410 static struct {
411 	spinlock_t lock;
412 	struct mutex sysclk_lock;
413 	struct completion sysclk_work;
414 } mb3_transfer;
415 
416 /*
417  * mb4_transfer - state needed for mailbox 4 communication.
418  * @lock:	The transaction lock.
419  * @work:	The transaction completion structure.
420  */
421 static struct {
422 	struct mutex lock;
423 	struct completion work;
424 } mb4_transfer;
425 
426 /*
427  * mb5_transfer - state needed for mailbox 5 communication.
428  * @lock:	The transaction lock.
429  * @work:	The transaction completion structure.
430  * @ack:	Reply ("acknowledge") data.
431  */
432 static struct {
433 	struct mutex lock;
434 	struct completion work;
435 	struct {
436 		u8 status;
437 		u8 value;
438 	} ack;
439 } mb5_transfer;
440 
441 static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
442 
443 /* Spinlocks */
444 static DEFINE_SPINLOCK(prcmu_lock);
445 static DEFINE_SPINLOCK(clkout_lock);
446 
447 /* Global var to runtime determine TCDM base for v2 or v1 */
448 static __iomem void *tcdm_base;
449 static __iomem void *prcmu_base;
450 
451 struct clk_mgt {
452 	u32 offset;
453 	u32 pllsw;
454 	int branch;
455 	bool clk38div;
456 };
457 
458 enum {
459 	PLL_RAW,
460 	PLL_FIX,
461 	PLL_DIV
462 };
463 
464 static DEFINE_SPINLOCK(clk_mgt_lock);
465 
466 #define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
467 	{ (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
468 static struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
469 	CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
470 	CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
471 	CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
472 	CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
473 	CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
474 	CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
475 	CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
476 	CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
477 	CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
478 	CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
479 	CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
480 	CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
481 	CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
482 	CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
483 	CLK_MGT_ENTRY(BML8580CLK, PLL_DIV, true),
484 	CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
485 	CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
486 	CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
487 	CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
488 	CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
489 	CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
490 	CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
491 	CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
492 	CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
493 	CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
494 	CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
495 	CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
496 	CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
497 	CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
498 	CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
499 };
500 
501 struct dsiclk {
502 	u32 divsel_mask;
503 	u32 divsel_shift;
504 	u32 divsel;
505 };
506 
507 static struct dsiclk dsiclk[2] = {
508 	{
509 		.divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
510 		.divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
511 		.divsel = PRCM_DSI_PLLOUT_SEL_PHI,
512 	},
513 	{
514 		.divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
515 		.divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
516 		.divsel = PRCM_DSI_PLLOUT_SEL_PHI,
517 	}
518 };
519 
520 struct dsiescclk {
521 	u32 en;
522 	u32 div_mask;
523 	u32 div_shift;
524 };
525 
526 static struct dsiescclk dsiescclk[3] = {
527 	{
528 		.en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
529 		.div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
530 		.div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
531 	},
532 	{
533 		.en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
534 		.div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
535 		.div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
536 	},
537 	{
538 		.en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
539 		.div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
540 		.div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
541 	}
542 };
543 
544 
545 /*
546 * Used by MCDE to setup all necessary PRCMU registers
547 */
548 #define PRCMU_RESET_DSIPLL		0x00004000
549 #define PRCMU_UNCLAMP_DSIPLL		0x00400800
550 
551 #define PRCMU_CLK_PLL_DIV_SHIFT		0
552 #define PRCMU_CLK_PLL_SW_SHIFT		5
553 #define PRCMU_CLK_38			(1 << 9)
554 #define PRCMU_CLK_38_SRC		(1 << 10)
555 #define PRCMU_CLK_38_DIV		(1 << 11)
556 
557 /* PLLDIV=12, PLLSW=4 (PLLDDR) */
558 #define PRCMU_DSI_CLOCK_SETTING		0x0000008C
559 
560 /* DPI 50000000 Hz */
561 #define PRCMU_DPI_CLOCK_SETTING		((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
562 					  (16 << PRCMU_CLK_PLL_DIV_SHIFT))
563 #define PRCMU_DSI_LP_CLOCK_SETTING	0x00000E00
564 
565 /* D=101, N=1, R=4, SELDIV2=0 */
566 #define PRCMU_PLLDSI_FREQ_SETTING	0x00040165
567 
568 #define PRCMU_ENABLE_PLLDSI		0x00000001
569 #define PRCMU_DISABLE_PLLDSI		0x00000000
570 #define PRCMU_RELEASE_RESET_DSS		0x0000400C
571 #define PRCMU_DSI_PLLOUT_SEL_SETTING	0x00000202
572 /* ESC clk, div0=1, div1=1, div2=3 */
573 #define PRCMU_ENABLE_ESCAPE_CLOCK_DIV	0x07030101
574 #define PRCMU_DISABLE_ESCAPE_CLOCK_DIV	0x00030101
575 #define PRCMU_DSI_RESET_SW		0x00000007
576 
577 #define PRCMU_PLLDSI_LOCKP_LOCKED	0x3
578 
579 int db8500_prcmu_enable_dsipll(void)
580 {
581 	int i;
582 
583 	/* Clear DSIPLL_RESETN */
584 	writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR);
585 	/* Unclamp DSIPLL in/out */
586 	writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR);
587 
588 	/* Set DSI PLL FREQ */
589 	writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ);
590 	writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL);
591 	/* Enable Escape clocks */
592 	writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
593 
594 	/* Start DSI PLL */
595 	writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
596 	/* Reset DSI PLL */
597 	writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET);
598 	for (i = 0; i < 10; i++) {
599 		if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED)
600 					== PRCMU_PLLDSI_LOCKP_LOCKED)
601 			break;
602 		udelay(100);
603 	}
604 	/* Set DSIPLL_RESETN */
605 	writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET);
606 	return 0;
607 }
608 
609 int db8500_prcmu_disable_dsipll(void)
610 {
611 	/* Disable dsi pll */
612 	writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
613 	/* Disable  escapeclock */
614 	writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
615 	return 0;
616 }
617 
618 int db8500_prcmu_set_display_clocks(void)
619 {
620 	unsigned long flags;
621 
622 	spin_lock_irqsave(&clk_mgt_lock, flags);
623 
624 	/* Grab the HW semaphore. */
625 	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
626 		cpu_relax();
627 
628 	writel(PRCMU_DSI_CLOCK_SETTING, prcmu_base + PRCM_HDMICLK_MGT);
629 	writel(PRCMU_DSI_LP_CLOCK_SETTING, prcmu_base + PRCM_TVCLK_MGT);
630 	writel(PRCMU_DPI_CLOCK_SETTING, prcmu_base + PRCM_LCDCLK_MGT);
631 
632 	/* Release the HW semaphore. */
633 	writel(0, PRCM_SEM);
634 
635 	spin_unlock_irqrestore(&clk_mgt_lock, flags);
636 
637 	return 0;
638 }
639 
640 u32 db8500_prcmu_read(unsigned int reg)
641 {
642 	return readl(prcmu_base + reg);
643 }
644 
645 void db8500_prcmu_write(unsigned int reg, u32 value)
646 {
647 	unsigned long flags;
648 
649 	spin_lock_irqsave(&prcmu_lock, flags);
650 	writel(value, (prcmu_base + reg));
651 	spin_unlock_irqrestore(&prcmu_lock, flags);
652 }
653 
654 void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
655 {
656 	u32 val;
657 	unsigned long flags;
658 
659 	spin_lock_irqsave(&prcmu_lock, flags);
660 	val = readl(prcmu_base + reg);
661 	val = ((val & ~mask) | (value & mask));
662 	writel(val, (prcmu_base + reg));
663 	spin_unlock_irqrestore(&prcmu_lock, flags);
664 }
665 
666 struct prcmu_fw_version *prcmu_get_fw_version(void)
667 {
668 	return fw_info.valid ? &fw_info.version : NULL;
669 }
670 
671 bool prcmu_has_arm_maxopp(void)
672 {
673 	return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
674 		PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
675 }
676 
677 /**
678  * prcmu_get_boot_status - PRCMU boot status checking
679  * Returns: the current PRCMU boot status
680  */
681 int prcmu_get_boot_status(void)
682 {
683 	return readb(tcdm_base + PRCM_BOOT_STATUS);
684 }
685 
686 /**
687  * prcmu_set_rc_a2p - This function is used to run few power state sequences
688  * @val: Value to be set, i.e. transition requested
689  * Returns: 0 on success, -EINVAL on invalid argument
690  *
691  * This function is used to run the following power state sequences -
692  * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
693  */
694 int prcmu_set_rc_a2p(enum romcode_write val)
695 {
696 	if (val < RDY_2_DS || val > RDY_2_XP70_RST)
697 		return -EINVAL;
698 	writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
699 	return 0;
700 }
701 
702 /**
703  * prcmu_get_rc_p2a - This function is used to get power state sequences
704  * Returns: the power transition that has last happened
705  *
706  * This function can return the following transitions-
707  * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
708  */
709 enum romcode_read prcmu_get_rc_p2a(void)
710 {
711 	return readb(tcdm_base + PRCM_ROMCODE_P2A);
712 }
713 
714 /**
715  * prcmu_get_current_mode - Return the current XP70 power mode
716  * Returns: Returns the current AP(ARM) power mode: init,
717  * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
718  */
719 enum ap_pwrst prcmu_get_xp70_current_state(void)
720 {
721 	return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
722 }
723 
724 /**
725  * prcmu_config_clkout - Configure one of the programmable clock outputs.
726  * @clkout:	The CLKOUT number (0 or 1).
727  * @source:	The clock to be used (one of the PRCMU_CLKSRC_*).
728  * @div:	The divider to be applied.
729  *
730  * Configures one of the programmable clock outputs (CLKOUTs).
731  * @div should be in the range [1,63] to request a configuration, or 0 to
732  * inform that the configuration is no longer requested.
733  */
734 int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
735 {
736 	static int requests[2];
737 	int r = 0;
738 	unsigned long flags;
739 	u32 val;
740 	u32 bits;
741 	u32 mask;
742 	u32 div_mask;
743 
744 	BUG_ON(clkout > 1);
745 	BUG_ON(div > 63);
746 	BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
747 
748 	if (!div && !requests[clkout])
749 		return -EINVAL;
750 
751 	switch (clkout) {
752 	case 0:
753 		div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
754 		mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
755 		bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
756 			(div << PRCM_CLKOCR_CLKODIV0_SHIFT));
757 		break;
758 	case 1:
759 		div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
760 		mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
761 			PRCM_CLKOCR_CLK1TYPE);
762 		bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
763 			(div << PRCM_CLKOCR_CLKODIV1_SHIFT));
764 		break;
765 	}
766 	bits &= mask;
767 
768 	spin_lock_irqsave(&clkout_lock, flags);
769 
770 	val = readl(PRCM_CLKOCR);
771 	if (val & div_mask) {
772 		if (div) {
773 			if ((val & mask) != bits) {
774 				r = -EBUSY;
775 				goto unlock_and_return;
776 			}
777 		} else {
778 			if ((val & mask & ~div_mask) != bits) {
779 				r = -EINVAL;
780 				goto unlock_and_return;
781 			}
782 		}
783 	}
784 	writel((bits | (val & ~mask)), PRCM_CLKOCR);
785 	requests[clkout] += (div ? 1 : -1);
786 
787 unlock_and_return:
788 	spin_unlock_irqrestore(&clkout_lock, flags);
789 
790 	return r;
791 }
792 
793 int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
794 {
795 	unsigned long flags;
796 
797 	BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
798 
799 	spin_lock_irqsave(&mb0_transfer.lock, flags);
800 
801 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
802 		cpu_relax();
803 
804 	writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
805 	writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
806 	writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
807 	writeb((keep_ulp_clk ? 1 : 0),
808 		(tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
809 	writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
810 	writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
811 
812 	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
813 
814 	return 0;
815 }
816 
817 u8 db8500_prcmu_get_power_state_result(void)
818 {
819 	return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
820 }
821 
822 /* This function should only be called while mb0_transfer.lock is held. */
823 static void config_wakeups(void)
824 {
825 	const u8 header[2] = {
826 		MB0H_CONFIG_WAKEUPS_EXE,
827 		MB0H_CONFIG_WAKEUPS_SLEEP
828 	};
829 	static u32 last_dbb_events;
830 	static u32 last_abb_events;
831 	u32 dbb_events;
832 	u32 abb_events;
833 	unsigned int i;
834 
835 	dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
836 	dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
837 
838 	abb_events = mb0_transfer.req.abb_events;
839 
840 	if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
841 		return;
842 
843 	for (i = 0; i < 2; i++) {
844 		while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
845 			cpu_relax();
846 		writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
847 		writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
848 		writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
849 		writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
850 	}
851 	last_dbb_events = dbb_events;
852 	last_abb_events = abb_events;
853 }
854 
855 void db8500_prcmu_enable_wakeups(u32 wakeups)
856 {
857 	unsigned long flags;
858 	u32 bits;
859 	int i;
860 
861 	BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
862 
863 	for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
864 		if (wakeups & BIT(i))
865 			bits |= prcmu_wakeup_bit[i];
866 	}
867 
868 	spin_lock_irqsave(&mb0_transfer.lock, flags);
869 
870 	mb0_transfer.req.dbb_wakeups = bits;
871 	config_wakeups();
872 
873 	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
874 }
875 
876 void db8500_prcmu_config_abb_event_readout(u32 abb_events)
877 {
878 	unsigned long flags;
879 
880 	spin_lock_irqsave(&mb0_transfer.lock, flags);
881 
882 	mb0_transfer.req.abb_events = abb_events;
883 	config_wakeups();
884 
885 	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
886 }
887 
888 void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
889 {
890 	if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
891 		*buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
892 	else
893 		*buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
894 }
895 
896 /**
897  * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
898  * @opp: The new ARM operating point to which transition is to be made
899  * Returns: 0 on success, non-zero on failure
900  *
901  * This function sets the the operating point of the ARM.
902  */
903 int db8500_prcmu_set_arm_opp(u8 opp)
904 {
905 	int r;
906 
907 	if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
908 		return -EINVAL;
909 
910 	r = 0;
911 
912 	mutex_lock(&mb1_transfer.lock);
913 
914 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
915 		cpu_relax();
916 
917 	writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
918 	writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
919 	writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
920 
921 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
922 	wait_for_completion(&mb1_transfer.work);
923 
924 	if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
925 		(mb1_transfer.ack.arm_opp != opp))
926 		r = -EIO;
927 
928 	mutex_unlock(&mb1_transfer.lock);
929 
930 	return r;
931 }
932 
933 /**
934  * db8500_prcmu_get_arm_opp - get the current ARM OPP
935  *
936  * Returns: the current ARM OPP
937  */
938 int db8500_prcmu_get_arm_opp(void)
939 {
940 	return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
941 }
942 
943 /**
944  * db8500_prcmu_get_ddr_opp - get the current DDR OPP
945  *
946  * Returns: the current DDR OPP
947  */
948 int db8500_prcmu_get_ddr_opp(void)
949 {
950 	return readb(PRCM_DDR_SUBSYS_APE_MINBW);
951 }
952 
953 /**
954  * db8500_set_ddr_opp - set the appropriate DDR OPP
955  * @opp: The new DDR operating point to which transition is to be made
956  * Returns: 0 on success, non-zero on failure
957  *
958  * This function sets the operating point of the DDR.
959  */
960 static bool enable_set_ddr_opp;
961 int db8500_prcmu_set_ddr_opp(u8 opp)
962 {
963 	if (opp < DDR_100_OPP || opp > DDR_25_OPP)
964 		return -EINVAL;
965 	/* Changing the DDR OPP can hang the hardware pre-v21 */
966 	if (enable_set_ddr_opp)
967 		writeb(opp, PRCM_DDR_SUBSYS_APE_MINBW);
968 
969 	return 0;
970 }
971 
972 /* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
973 static void request_even_slower_clocks(bool enable)
974 {
975 	u32 clock_reg[] = {
976 		PRCM_ACLK_MGT,
977 		PRCM_DMACLK_MGT
978 	};
979 	unsigned long flags;
980 	unsigned int i;
981 
982 	spin_lock_irqsave(&clk_mgt_lock, flags);
983 
984 	/* Grab the HW semaphore. */
985 	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
986 		cpu_relax();
987 
988 	for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
989 		u32 val;
990 		u32 div;
991 
992 		val = readl(prcmu_base + clock_reg[i]);
993 		div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
994 		if (enable) {
995 			if ((div <= 1) || (div > 15)) {
996 				pr_err("prcmu: Bad clock divider %d in %s\n",
997 					div, __func__);
998 				goto unlock_and_return;
999 			}
1000 			div <<= 1;
1001 		} else {
1002 			if (div <= 2)
1003 				goto unlock_and_return;
1004 			div >>= 1;
1005 		}
1006 		val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
1007 			(div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
1008 		writel(val, prcmu_base + clock_reg[i]);
1009 	}
1010 
1011 unlock_and_return:
1012 	/* Release the HW semaphore. */
1013 	writel(0, PRCM_SEM);
1014 
1015 	spin_unlock_irqrestore(&clk_mgt_lock, flags);
1016 }
1017 
1018 /**
1019  * db8500_set_ape_opp - set the appropriate APE OPP
1020  * @opp: The new APE operating point to which transition is to be made
1021  * Returns: 0 on success, non-zero on failure
1022  *
1023  * This function sets the operating point of the APE.
1024  */
1025 int db8500_prcmu_set_ape_opp(u8 opp)
1026 {
1027 	int r = 0;
1028 
1029 	if (opp == mb1_transfer.ape_opp)
1030 		return 0;
1031 
1032 	mutex_lock(&mb1_transfer.lock);
1033 
1034 	if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
1035 		request_even_slower_clocks(false);
1036 
1037 	if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
1038 		goto skip_message;
1039 
1040 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1041 		cpu_relax();
1042 
1043 	writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1044 	writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
1045 	writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
1046 		(tcdm_base + PRCM_REQ_MB1_APE_OPP));
1047 
1048 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1049 	wait_for_completion(&mb1_transfer.work);
1050 
1051 	if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
1052 		(mb1_transfer.ack.ape_opp != opp))
1053 		r = -EIO;
1054 
1055 skip_message:
1056 	if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
1057 		(r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
1058 		request_even_slower_clocks(true);
1059 	if (!r)
1060 		mb1_transfer.ape_opp = opp;
1061 
1062 	mutex_unlock(&mb1_transfer.lock);
1063 
1064 	return r;
1065 }
1066 
1067 /**
1068  * db8500_prcmu_get_ape_opp - get the current APE OPP
1069  *
1070  * Returns: the current APE OPP
1071  */
1072 int db8500_prcmu_get_ape_opp(void)
1073 {
1074 	return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
1075 }
1076 
1077 /**
1078  * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
1079  * @enable: true to request the higher voltage, false to drop a request.
1080  *
1081  * Calls to this function to enable and disable requests must be balanced.
1082  */
1083 int db8500_prcmu_request_ape_opp_100_voltage(bool enable)
1084 {
1085 	int r = 0;
1086 	u8 header;
1087 	static unsigned int requests;
1088 
1089 	mutex_lock(&mb1_transfer.lock);
1090 
1091 	if (enable) {
1092 		if (0 != requests++)
1093 			goto unlock_and_return;
1094 		header = MB1H_REQUEST_APE_OPP_100_VOLT;
1095 	} else {
1096 		if (requests == 0) {
1097 			r = -EIO;
1098 			goto unlock_and_return;
1099 		} else if (1 != requests--) {
1100 			goto unlock_and_return;
1101 		}
1102 		header = MB1H_RELEASE_APE_OPP_100_VOLT;
1103 	}
1104 
1105 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1106 		cpu_relax();
1107 
1108 	writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1109 
1110 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1111 	wait_for_completion(&mb1_transfer.work);
1112 
1113 	if ((mb1_transfer.ack.header != header) ||
1114 		((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1115 		r = -EIO;
1116 
1117 unlock_and_return:
1118 	mutex_unlock(&mb1_transfer.lock);
1119 
1120 	return r;
1121 }
1122 
1123 /**
1124  * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
1125  *
1126  * This function releases the power state requirements of a USB wakeup.
1127  */
1128 int prcmu_release_usb_wakeup_state(void)
1129 {
1130 	int r = 0;
1131 
1132 	mutex_lock(&mb1_transfer.lock);
1133 
1134 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1135 		cpu_relax();
1136 
1137 	writeb(MB1H_RELEASE_USB_WAKEUP,
1138 		(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1139 
1140 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1141 	wait_for_completion(&mb1_transfer.work);
1142 
1143 	if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
1144 		((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1145 		r = -EIO;
1146 
1147 	mutex_unlock(&mb1_transfer.lock);
1148 
1149 	return r;
1150 }
1151 
1152 static int request_pll(u8 clock, bool enable)
1153 {
1154 	int r = 0;
1155 
1156 	if (clock == PRCMU_PLLSOC0)
1157 		clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
1158 	else if (clock == PRCMU_PLLSOC1)
1159 		clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
1160 	else
1161 		return -EINVAL;
1162 
1163 	mutex_lock(&mb1_transfer.lock);
1164 
1165 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1166 		cpu_relax();
1167 
1168 	writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1169 	writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
1170 
1171 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1172 	wait_for_completion(&mb1_transfer.work);
1173 
1174 	if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
1175 		r = -EIO;
1176 
1177 	mutex_unlock(&mb1_transfer.lock);
1178 
1179 	return r;
1180 }
1181 
1182 /**
1183  * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
1184  * @epod_id: The EPOD to set
1185  * @epod_state: The new EPOD state
1186  *
1187  * This function sets the state of a EPOD (power domain). It may not be called
1188  * from interrupt context.
1189  */
1190 int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
1191 {
1192 	int r = 0;
1193 	bool ram_retention = false;
1194 	int i;
1195 
1196 	/* check argument */
1197 	BUG_ON(epod_id >= NUM_EPOD_ID);
1198 
1199 	/* set flag if retention is possible */
1200 	switch (epod_id) {
1201 	case EPOD_ID_SVAMMDSP:
1202 	case EPOD_ID_SIAMMDSP:
1203 	case EPOD_ID_ESRAM12:
1204 	case EPOD_ID_ESRAM34:
1205 		ram_retention = true;
1206 		break;
1207 	}
1208 
1209 	/* check argument */
1210 	BUG_ON(epod_state > EPOD_STATE_ON);
1211 	BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
1212 
1213 	/* get lock */
1214 	mutex_lock(&mb2_transfer.lock);
1215 
1216 	/* wait for mailbox */
1217 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
1218 		cpu_relax();
1219 
1220 	/* fill in mailbox */
1221 	for (i = 0; i < NUM_EPOD_ID; i++)
1222 		writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
1223 	writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
1224 
1225 	writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
1226 
1227 	writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
1228 
1229 	/*
1230 	 * The current firmware version does not handle errors correctly,
1231 	 * and we cannot recover if there is an error.
1232 	 * This is expected to change when the firmware is updated.
1233 	 */
1234 	if (!wait_for_completion_timeout(&mb2_transfer.work,
1235 			msecs_to_jiffies(20000))) {
1236 		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1237 			__func__);
1238 		r = -EIO;
1239 		goto unlock_and_return;
1240 	}
1241 
1242 	if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
1243 		r = -EIO;
1244 
1245 unlock_and_return:
1246 	mutex_unlock(&mb2_transfer.lock);
1247 	return r;
1248 }
1249 
1250 /**
1251  * prcmu_configure_auto_pm - Configure autonomous power management.
1252  * @sleep: Configuration for ApSleep.
1253  * @idle:  Configuration for ApIdle.
1254  */
1255 void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
1256 	struct prcmu_auto_pm_config *idle)
1257 {
1258 	u32 sleep_cfg;
1259 	u32 idle_cfg;
1260 	unsigned long flags;
1261 
1262 	BUG_ON((sleep == NULL) || (idle == NULL));
1263 
1264 	sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
1265 	sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
1266 	sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
1267 	sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
1268 	sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
1269 	sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
1270 
1271 	idle_cfg = (idle->sva_auto_pm_enable & 0xF);
1272 	idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
1273 	idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
1274 	idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
1275 	idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
1276 	idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
1277 
1278 	spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
1279 
1280 	/*
1281 	 * The autonomous power management configuration is done through
1282 	 * fields in mailbox 2, but these fields are only used as shared
1283 	 * variables - i.e. there is no need to send a message.
1284 	 */
1285 	writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
1286 	writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
1287 
1288 	mb2_transfer.auto_pm_enabled =
1289 		((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1290 		 (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1291 		 (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1292 		 (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
1293 
1294 	spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
1295 }
1296 EXPORT_SYMBOL(prcmu_configure_auto_pm);
1297 
1298 bool prcmu_is_auto_pm_enabled(void)
1299 {
1300 	return mb2_transfer.auto_pm_enabled;
1301 }
1302 
1303 static int request_sysclk(bool enable)
1304 {
1305 	int r;
1306 	unsigned long flags;
1307 
1308 	r = 0;
1309 
1310 	mutex_lock(&mb3_transfer.sysclk_lock);
1311 
1312 	spin_lock_irqsave(&mb3_transfer.lock, flags);
1313 
1314 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
1315 		cpu_relax();
1316 
1317 	writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
1318 
1319 	writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
1320 	writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
1321 
1322 	spin_unlock_irqrestore(&mb3_transfer.lock, flags);
1323 
1324 	/*
1325 	 * The firmware only sends an ACK if we want to enable the
1326 	 * SysClk, and it succeeds.
1327 	 */
1328 	if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
1329 			msecs_to_jiffies(20000))) {
1330 		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1331 			__func__);
1332 		r = -EIO;
1333 	}
1334 
1335 	mutex_unlock(&mb3_transfer.sysclk_lock);
1336 
1337 	return r;
1338 }
1339 
1340 static int request_timclk(bool enable)
1341 {
1342 	u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
1343 
1344 	if (!enable)
1345 		val |= PRCM_TCR_STOP_TIMERS;
1346 	writel(val, PRCM_TCR);
1347 
1348 	return 0;
1349 }
1350 
1351 static int request_clock(u8 clock, bool enable)
1352 {
1353 	u32 val;
1354 	unsigned long flags;
1355 
1356 	spin_lock_irqsave(&clk_mgt_lock, flags);
1357 
1358 	/* Grab the HW semaphore. */
1359 	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1360 		cpu_relax();
1361 
1362 	val = readl(prcmu_base + clk_mgt[clock].offset);
1363 	if (enable) {
1364 		val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
1365 	} else {
1366 		clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1367 		val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
1368 	}
1369 	writel(val, prcmu_base + clk_mgt[clock].offset);
1370 
1371 	/* Release the HW semaphore. */
1372 	writel(0, PRCM_SEM);
1373 
1374 	spin_unlock_irqrestore(&clk_mgt_lock, flags);
1375 
1376 	return 0;
1377 }
1378 
1379 static int request_sga_clock(u8 clock, bool enable)
1380 {
1381 	u32 val;
1382 	int ret;
1383 
1384 	if (enable) {
1385 		val = readl(PRCM_CGATING_BYPASS);
1386 		writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1387 	}
1388 
1389 	ret = request_clock(clock, enable);
1390 
1391 	if (!ret && !enable) {
1392 		val = readl(PRCM_CGATING_BYPASS);
1393 		writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1394 	}
1395 
1396 	return ret;
1397 }
1398 
1399 static inline bool plldsi_locked(void)
1400 {
1401 	return (readl(PRCM_PLLDSI_LOCKP) &
1402 		(PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1403 		 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
1404 		(PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1405 		 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
1406 }
1407 
1408 static int request_plldsi(bool enable)
1409 {
1410 	int r = 0;
1411 	u32 val;
1412 
1413 	writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1414 		PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
1415 		PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
1416 
1417 	val = readl(PRCM_PLLDSI_ENABLE);
1418 	if (enable)
1419 		val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1420 	else
1421 		val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1422 	writel(val, PRCM_PLLDSI_ENABLE);
1423 
1424 	if (enable) {
1425 		unsigned int i;
1426 		bool locked = plldsi_locked();
1427 
1428 		for (i = 10; !locked && (i > 0); --i) {
1429 			udelay(100);
1430 			locked = plldsi_locked();
1431 		}
1432 		if (locked) {
1433 			writel(PRCM_APE_RESETN_DSIPLL_RESETN,
1434 				PRCM_APE_RESETN_SET);
1435 		} else {
1436 			writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1437 				PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
1438 				PRCM_MMIP_LS_CLAMP_SET);
1439 			val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1440 			writel(val, PRCM_PLLDSI_ENABLE);
1441 			r = -EAGAIN;
1442 		}
1443 	} else {
1444 		writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
1445 	}
1446 	return r;
1447 }
1448 
1449 static int request_dsiclk(u8 n, bool enable)
1450 {
1451 	u32 val;
1452 
1453 	val = readl(PRCM_DSI_PLLOUT_SEL);
1454 	val &= ~dsiclk[n].divsel_mask;
1455 	val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
1456 		dsiclk[n].divsel_shift);
1457 	writel(val, PRCM_DSI_PLLOUT_SEL);
1458 	return 0;
1459 }
1460 
1461 static int request_dsiescclk(u8 n, bool enable)
1462 {
1463 	u32 val;
1464 
1465 	val = readl(PRCM_DSITVCLK_DIV);
1466 	enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
1467 	writel(val, PRCM_DSITVCLK_DIV);
1468 	return 0;
1469 }
1470 
1471 /**
1472  * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
1473  * @clock:      The clock for which the request is made.
1474  * @enable:     Whether the clock should be enabled (true) or disabled (false).
1475  *
1476  * This function should only be used by the clock implementation.
1477  * Do not use it from any other place!
1478  */
1479 int db8500_prcmu_request_clock(u8 clock, bool enable)
1480 {
1481 	if (clock == PRCMU_SGACLK)
1482 		return request_sga_clock(clock, enable);
1483 	else if (clock < PRCMU_NUM_REG_CLOCKS)
1484 		return request_clock(clock, enable);
1485 	else if (clock == PRCMU_TIMCLK)
1486 		return request_timclk(enable);
1487 	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1488 		return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
1489 	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1490 		return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
1491 	else if (clock == PRCMU_PLLDSI)
1492 		return request_plldsi(enable);
1493 	else if (clock == PRCMU_SYSCLK)
1494 		return request_sysclk(enable);
1495 	else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
1496 		return request_pll(clock, enable);
1497 	else
1498 		return -EINVAL;
1499 }
1500 
1501 static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
1502 	int branch)
1503 {
1504 	u64 rate;
1505 	u32 val;
1506 	u32 d;
1507 	u32 div = 1;
1508 
1509 	val = readl(reg);
1510 
1511 	rate = src_rate;
1512 	rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
1513 
1514 	d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
1515 	if (d > 1)
1516 		div *= d;
1517 
1518 	d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
1519 	if (d > 1)
1520 		div *= d;
1521 
1522 	if (val & PRCM_PLL_FREQ_SELDIV2)
1523 		div *= 2;
1524 
1525 	if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
1526 		(val & PRCM_PLL_FREQ_DIV2EN) &&
1527 		((reg == PRCM_PLLSOC0_FREQ) ||
1528 		 (reg == PRCM_PLLARM_FREQ) ||
1529 		 (reg == PRCM_PLLDDR_FREQ))))
1530 		div *= 2;
1531 
1532 	(void)do_div(rate, div);
1533 
1534 	return (unsigned long)rate;
1535 }
1536 
1537 #define ROOT_CLOCK_RATE 38400000
1538 
1539 static unsigned long clock_rate(u8 clock)
1540 {
1541 	u32 val;
1542 	u32 pllsw;
1543 	unsigned long rate = ROOT_CLOCK_RATE;
1544 
1545 	val = readl(prcmu_base + clk_mgt[clock].offset);
1546 
1547 	if (val & PRCM_CLK_MGT_CLK38) {
1548 		if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
1549 			rate /= 2;
1550 		return rate;
1551 	}
1552 
1553 	val |= clk_mgt[clock].pllsw;
1554 	pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1555 
1556 	if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1557 		rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
1558 	else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1559 		rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
1560 	else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
1561 		rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
1562 	else
1563 		return 0;
1564 
1565 	if ((clock == PRCMU_SGACLK) &&
1566 		(val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
1567 		u64 r = (rate * 10);
1568 
1569 		(void)do_div(r, 25);
1570 		return (unsigned long)r;
1571 	}
1572 	val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1573 	if (val)
1574 		return rate / val;
1575 	else
1576 		return 0;
1577 }
1578 
1579 static unsigned long armss_rate(void)
1580 {
1581 	u32 r;
1582 	unsigned long rate;
1583 
1584 	r = readl(PRCM_ARM_CHGCLKREQ);
1585 
1586 	if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) {
1587 		/* External ARMCLKFIX clock */
1588 
1589 		rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX);
1590 
1591 		/* Check PRCM_ARM_CHGCLKREQ divider */
1592 		if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL))
1593 			rate /= 2;
1594 
1595 		/* Check PRCM_ARMCLKFIX_MGT divider */
1596 		r = readl(PRCM_ARMCLKFIX_MGT);
1597 		r &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1598 		rate /= r;
1599 
1600 	} else {/* ARM PLL */
1601 		rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV);
1602 	}
1603 
1604 	return rate;
1605 }
1606 
1607 static unsigned long dsiclk_rate(u8 n)
1608 {
1609 	u32 divsel;
1610 	u32 div = 1;
1611 
1612 	divsel = readl(PRCM_DSI_PLLOUT_SEL);
1613 	divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
1614 
1615 	if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
1616 		divsel = dsiclk[n].divsel;
1617 	else
1618 		dsiclk[n].divsel = divsel;
1619 
1620 	switch (divsel) {
1621 	case PRCM_DSI_PLLOUT_SEL_PHI_4:
1622 		div *= 2;
1623 	case PRCM_DSI_PLLOUT_SEL_PHI_2:
1624 		div *= 2;
1625 	case PRCM_DSI_PLLOUT_SEL_PHI:
1626 		return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1627 			PLL_RAW) / div;
1628 	default:
1629 		return 0;
1630 	}
1631 }
1632 
1633 static unsigned long dsiescclk_rate(u8 n)
1634 {
1635 	u32 div;
1636 
1637 	div = readl(PRCM_DSITVCLK_DIV);
1638 	div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
1639 	return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
1640 }
1641 
1642 unsigned long prcmu_clock_rate(u8 clock)
1643 {
1644 	if (clock < PRCMU_NUM_REG_CLOCKS)
1645 		return clock_rate(clock);
1646 	else if (clock == PRCMU_TIMCLK)
1647 		return ROOT_CLOCK_RATE / 16;
1648 	else if (clock == PRCMU_SYSCLK)
1649 		return ROOT_CLOCK_RATE;
1650 	else if (clock == PRCMU_PLLSOC0)
1651 		return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1652 	else if (clock == PRCMU_PLLSOC1)
1653 		return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1654 	else if (clock == PRCMU_ARMSS)
1655 		return armss_rate();
1656 	else if (clock == PRCMU_PLLDDR)
1657 		return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1658 	else if (clock == PRCMU_PLLDSI)
1659 		return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1660 			PLL_RAW);
1661 	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1662 		return dsiclk_rate(clock - PRCMU_DSI0CLK);
1663 	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1664 		return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
1665 	else
1666 		return 0;
1667 }
1668 
1669 static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
1670 {
1671 	if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
1672 		return ROOT_CLOCK_RATE;
1673 	clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
1674 	if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1675 		return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
1676 	else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1677 		return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
1678 	else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
1679 		return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
1680 	else
1681 		return 0;
1682 }
1683 
1684 static u32 clock_divider(unsigned long src_rate, unsigned long rate)
1685 {
1686 	u32 div;
1687 
1688 	div = (src_rate / rate);
1689 	if (div == 0)
1690 		return 1;
1691 	if (rate < (src_rate / div))
1692 		div++;
1693 	return div;
1694 }
1695 
1696 static long round_clock_rate(u8 clock, unsigned long rate)
1697 {
1698 	u32 val;
1699 	u32 div;
1700 	unsigned long src_rate;
1701 	long rounded_rate;
1702 
1703 	val = readl(prcmu_base + clk_mgt[clock].offset);
1704 	src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1705 		clk_mgt[clock].branch);
1706 	div = clock_divider(src_rate, rate);
1707 	if (val & PRCM_CLK_MGT_CLK38) {
1708 		if (clk_mgt[clock].clk38div) {
1709 			if (div > 2)
1710 				div = 2;
1711 		} else {
1712 			div = 1;
1713 		}
1714 	} else if ((clock == PRCMU_SGACLK) && (div == 3)) {
1715 		u64 r = (src_rate * 10);
1716 
1717 		(void)do_div(r, 25);
1718 		if (r <= rate)
1719 			return (unsigned long)r;
1720 	}
1721 	rounded_rate = (src_rate / min(div, (u32)31));
1722 
1723 	return rounded_rate;
1724 }
1725 
1726 /* CPU FREQ table, may be changed due to if MAX_OPP is supported. */
1727 static struct cpufreq_frequency_table db8500_cpufreq_table[] = {
1728 	{ .frequency = 200000, .driver_data = ARM_EXTCLK,},
1729 	{ .frequency = 400000, .driver_data = ARM_50_OPP,},
1730 	{ .frequency = 800000, .driver_data = ARM_100_OPP,},
1731 	{ .frequency = CPUFREQ_TABLE_END,}, /* To be used for MAX_OPP. */
1732 	{ .frequency = CPUFREQ_TABLE_END,},
1733 };
1734 
1735 static long round_armss_rate(unsigned long rate)
1736 {
1737 	long freq = 0;
1738 	int i = 0;
1739 
1740 	/* cpufreq table frequencies is in KHz. */
1741 	rate = rate / 1000;
1742 
1743 	/* Find the corresponding arm opp from the cpufreq table. */
1744 	while (db8500_cpufreq_table[i].frequency != CPUFREQ_TABLE_END) {
1745 		freq = db8500_cpufreq_table[i].frequency;
1746 		if (freq == rate)
1747 			break;
1748 		i++;
1749 	}
1750 
1751 	/* Return the last valid value, even if a match was not found. */
1752 	return freq * 1000;
1753 }
1754 
1755 #define MIN_PLL_VCO_RATE 600000000ULL
1756 #define MAX_PLL_VCO_RATE 1680640000ULL
1757 
1758 static long round_plldsi_rate(unsigned long rate)
1759 {
1760 	long rounded_rate = 0;
1761 	unsigned long src_rate;
1762 	unsigned long rem;
1763 	u32 r;
1764 
1765 	src_rate = clock_rate(PRCMU_HDMICLK);
1766 	rem = rate;
1767 
1768 	for (r = 7; (rem > 0) && (r > 0); r--) {
1769 		u64 d;
1770 
1771 		d = (r * rate);
1772 		(void)do_div(d, src_rate);
1773 		if (d < 6)
1774 			d = 6;
1775 		else if (d > 255)
1776 			d = 255;
1777 		d *= src_rate;
1778 		if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
1779 			((r * MAX_PLL_VCO_RATE) < (2 * d)))
1780 			continue;
1781 		(void)do_div(d, r);
1782 		if (rate < d) {
1783 			if (rounded_rate == 0)
1784 				rounded_rate = (long)d;
1785 			break;
1786 		}
1787 		if ((rate - d) < rem) {
1788 			rem = (rate - d);
1789 			rounded_rate = (long)d;
1790 		}
1791 	}
1792 	return rounded_rate;
1793 }
1794 
1795 static long round_dsiclk_rate(unsigned long rate)
1796 {
1797 	u32 div;
1798 	unsigned long src_rate;
1799 	long rounded_rate;
1800 
1801 	src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1802 		PLL_RAW);
1803 	div = clock_divider(src_rate, rate);
1804 	rounded_rate = (src_rate / ((div > 2) ? 4 : div));
1805 
1806 	return rounded_rate;
1807 }
1808 
1809 static long round_dsiescclk_rate(unsigned long rate)
1810 {
1811 	u32 div;
1812 	unsigned long src_rate;
1813 	long rounded_rate;
1814 
1815 	src_rate = clock_rate(PRCMU_TVCLK);
1816 	div = clock_divider(src_rate, rate);
1817 	rounded_rate = (src_rate / min(div, (u32)255));
1818 
1819 	return rounded_rate;
1820 }
1821 
1822 long prcmu_round_clock_rate(u8 clock, unsigned long rate)
1823 {
1824 	if (clock < PRCMU_NUM_REG_CLOCKS)
1825 		return round_clock_rate(clock, rate);
1826 	else if (clock == PRCMU_ARMSS)
1827 		return round_armss_rate(rate);
1828 	else if (clock == PRCMU_PLLDSI)
1829 		return round_plldsi_rate(rate);
1830 	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1831 		return round_dsiclk_rate(rate);
1832 	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1833 		return round_dsiescclk_rate(rate);
1834 	else
1835 		return (long)prcmu_clock_rate(clock);
1836 }
1837 
1838 static void set_clock_rate(u8 clock, unsigned long rate)
1839 {
1840 	u32 val;
1841 	u32 div;
1842 	unsigned long src_rate;
1843 	unsigned long flags;
1844 
1845 	spin_lock_irqsave(&clk_mgt_lock, flags);
1846 
1847 	/* Grab the HW semaphore. */
1848 	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1849 		cpu_relax();
1850 
1851 	val = readl(prcmu_base + clk_mgt[clock].offset);
1852 	src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1853 		clk_mgt[clock].branch);
1854 	div = clock_divider(src_rate, rate);
1855 	if (val & PRCM_CLK_MGT_CLK38) {
1856 		if (clk_mgt[clock].clk38div) {
1857 			if (div > 1)
1858 				val |= PRCM_CLK_MGT_CLK38DIV;
1859 			else
1860 				val &= ~PRCM_CLK_MGT_CLK38DIV;
1861 		}
1862 	} else if (clock == PRCMU_SGACLK) {
1863 		val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
1864 			PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
1865 		if (div == 3) {
1866 			u64 r = (src_rate * 10);
1867 
1868 			(void)do_div(r, 25);
1869 			if (r <= rate) {
1870 				val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
1871 				div = 0;
1872 			}
1873 		}
1874 		val |= min(div, (u32)31);
1875 	} else {
1876 		val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
1877 		val |= min(div, (u32)31);
1878 	}
1879 	writel(val, prcmu_base + clk_mgt[clock].offset);
1880 
1881 	/* Release the HW semaphore. */
1882 	writel(0, PRCM_SEM);
1883 
1884 	spin_unlock_irqrestore(&clk_mgt_lock, flags);
1885 }
1886 
1887 static int set_armss_rate(unsigned long rate)
1888 {
1889 	int i = 0;
1890 
1891 	/* cpufreq table frequencies is in KHz. */
1892 	rate = rate / 1000;
1893 
1894 	/* Find the corresponding arm opp from the cpufreq table. */
1895 	while (db8500_cpufreq_table[i].frequency != CPUFREQ_TABLE_END) {
1896 		if (db8500_cpufreq_table[i].frequency == rate)
1897 			break;
1898 		i++;
1899 	}
1900 
1901 	if (db8500_cpufreq_table[i].frequency != rate)
1902 		return -EINVAL;
1903 
1904 	/* Set the new arm opp. */
1905 	return db8500_prcmu_set_arm_opp(db8500_cpufreq_table[i].driver_data);
1906 }
1907 
1908 static int set_plldsi_rate(unsigned long rate)
1909 {
1910 	unsigned long src_rate;
1911 	unsigned long rem;
1912 	u32 pll_freq = 0;
1913 	u32 r;
1914 
1915 	src_rate = clock_rate(PRCMU_HDMICLK);
1916 	rem = rate;
1917 
1918 	for (r = 7; (rem > 0) && (r > 0); r--) {
1919 		u64 d;
1920 		u64 hwrate;
1921 
1922 		d = (r * rate);
1923 		(void)do_div(d, src_rate);
1924 		if (d < 6)
1925 			d = 6;
1926 		else if (d > 255)
1927 			d = 255;
1928 		hwrate = (d * src_rate);
1929 		if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
1930 			((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
1931 			continue;
1932 		(void)do_div(hwrate, r);
1933 		if (rate < hwrate) {
1934 			if (pll_freq == 0)
1935 				pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1936 					(r << PRCM_PLL_FREQ_R_SHIFT));
1937 			break;
1938 		}
1939 		if ((rate - hwrate) < rem) {
1940 			rem = (rate - hwrate);
1941 			pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1942 				(r << PRCM_PLL_FREQ_R_SHIFT));
1943 		}
1944 	}
1945 	if (pll_freq == 0)
1946 		return -EINVAL;
1947 
1948 	pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
1949 	writel(pll_freq, PRCM_PLLDSI_FREQ);
1950 
1951 	return 0;
1952 }
1953 
1954 static void set_dsiclk_rate(u8 n, unsigned long rate)
1955 {
1956 	u32 val;
1957 	u32 div;
1958 
1959 	div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
1960 			clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
1961 
1962 	dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
1963 			   (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
1964 			   /* else */	PRCM_DSI_PLLOUT_SEL_PHI_4;
1965 
1966 	val = readl(PRCM_DSI_PLLOUT_SEL);
1967 	val &= ~dsiclk[n].divsel_mask;
1968 	val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
1969 	writel(val, PRCM_DSI_PLLOUT_SEL);
1970 }
1971 
1972 static void set_dsiescclk_rate(u8 n, unsigned long rate)
1973 {
1974 	u32 val;
1975 	u32 div;
1976 
1977 	div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
1978 	val = readl(PRCM_DSITVCLK_DIV);
1979 	val &= ~dsiescclk[n].div_mask;
1980 	val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
1981 	writel(val, PRCM_DSITVCLK_DIV);
1982 }
1983 
1984 int prcmu_set_clock_rate(u8 clock, unsigned long rate)
1985 {
1986 	if (clock < PRCMU_NUM_REG_CLOCKS)
1987 		set_clock_rate(clock, rate);
1988 	else if (clock == PRCMU_ARMSS)
1989 		return set_armss_rate(rate);
1990 	else if (clock == PRCMU_PLLDSI)
1991 		return set_plldsi_rate(rate);
1992 	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1993 		set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
1994 	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1995 		set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
1996 	return 0;
1997 }
1998 
1999 int db8500_prcmu_config_esram0_deep_sleep(u8 state)
2000 {
2001 	if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
2002 	    (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
2003 		return -EINVAL;
2004 
2005 	mutex_lock(&mb4_transfer.lock);
2006 
2007 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2008 		cpu_relax();
2009 
2010 	writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2011 	writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
2012 	       (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
2013 	writeb(DDR_PWR_STATE_ON,
2014 	       (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
2015 	writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
2016 
2017 	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2018 	wait_for_completion(&mb4_transfer.work);
2019 
2020 	mutex_unlock(&mb4_transfer.lock);
2021 
2022 	return 0;
2023 }
2024 
2025 int db8500_prcmu_config_hotdog(u8 threshold)
2026 {
2027 	mutex_lock(&mb4_transfer.lock);
2028 
2029 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2030 		cpu_relax();
2031 
2032 	writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
2033 	writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2034 
2035 	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2036 	wait_for_completion(&mb4_transfer.work);
2037 
2038 	mutex_unlock(&mb4_transfer.lock);
2039 
2040 	return 0;
2041 }
2042 
2043 int db8500_prcmu_config_hotmon(u8 low, u8 high)
2044 {
2045 	mutex_lock(&mb4_transfer.lock);
2046 
2047 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2048 		cpu_relax();
2049 
2050 	writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
2051 	writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
2052 	writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
2053 		(tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
2054 	writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2055 
2056 	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2057 	wait_for_completion(&mb4_transfer.work);
2058 
2059 	mutex_unlock(&mb4_transfer.lock);
2060 
2061 	return 0;
2062 }
2063 
2064 static int config_hot_period(u16 val)
2065 {
2066 	mutex_lock(&mb4_transfer.lock);
2067 
2068 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2069 		cpu_relax();
2070 
2071 	writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
2072 	writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2073 
2074 	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2075 	wait_for_completion(&mb4_transfer.work);
2076 
2077 	mutex_unlock(&mb4_transfer.lock);
2078 
2079 	return 0;
2080 }
2081 
2082 int db8500_prcmu_start_temp_sense(u16 cycles32k)
2083 {
2084 	if (cycles32k == 0xFFFF)
2085 		return -EINVAL;
2086 
2087 	return config_hot_period(cycles32k);
2088 }
2089 
2090 int db8500_prcmu_stop_temp_sense(void)
2091 {
2092 	return config_hot_period(0xFFFF);
2093 }
2094 
2095 static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
2096 {
2097 
2098 	mutex_lock(&mb4_transfer.lock);
2099 
2100 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2101 		cpu_relax();
2102 
2103 	writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
2104 	writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
2105 	writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
2106 	writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
2107 
2108 	writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2109 
2110 	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2111 	wait_for_completion(&mb4_transfer.work);
2112 
2113 	mutex_unlock(&mb4_transfer.lock);
2114 
2115 	return 0;
2116 
2117 }
2118 
2119 int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
2120 {
2121 	BUG_ON(num == 0 || num > 0xf);
2122 	return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
2123 			    sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
2124 			    A9WDOG_AUTO_OFF_DIS);
2125 }
2126 EXPORT_SYMBOL(db8500_prcmu_config_a9wdog);
2127 
2128 int db8500_prcmu_enable_a9wdog(u8 id)
2129 {
2130 	return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
2131 }
2132 EXPORT_SYMBOL(db8500_prcmu_enable_a9wdog);
2133 
2134 int db8500_prcmu_disable_a9wdog(u8 id)
2135 {
2136 	return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
2137 }
2138 EXPORT_SYMBOL(db8500_prcmu_disable_a9wdog);
2139 
2140 int db8500_prcmu_kick_a9wdog(u8 id)
2141 {
2142 	return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
2143 }
2144 EXPORT_SYMBOL(db8500_prcmu_kick_a9wdog);
2145 
2146 /*
2147  * timeout is 28 bit, in ms.
2148  */
2149 int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
2150 {
2151 	return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
2152 			    (id & A9WDOG_ID_MASK) |
2153 			    /*
2154 			     * Put the lowest 28 bits of timeout at
2155 			     * offset 4. Four first bits are used for id.
2156 			     */
2157 			    (u8)((timeout << 4) & 0xf0),
2158 			    (u8)((timeout >> 4) & 0xff),
2159 			    (u8)((timeout >> 12) & 0xff),
2160 			    (u8)((timeout >> 20) & 0xff));
2161 }
2162 EXPORT_SYMBOL(db8500_prcmu_load_a9wdog);
2163 
2164 /**
2165  * prcmu_abb_read() - Read register value(s) from the ABB.
2166  * @slave:	The I2C slave address.
2167  * @reg:	The (start) register address.
2168  * @value:	The read out value(s).
2169  * @size:	The number of registers to read.
2170  *
2171  * Reads register value(s) from the ABB.
2172  * @size has to be 1 for the current firmware version.
2173  */
2174 int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
2175 {
2176 	int r;
2177 
2178 	if (size != 1)
2179 		return -EINVAL;
2180 
2181 	mutex_lock(&mb5_transfer.lock);
2182 
2183 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2184 		cpu_relax();
2185 
2186 	writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2187 	writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2188 	writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2189 	writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2190 	writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2191 
2192 	writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2193 
2194 	if (!wait_for_completion_timeout(&mb5_transfer.work,
2195 				msecs_to_jiffies(20000))) {
2196 		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2197 			__func__);
2198 		r = -EIO;
2199 	} else {
2200 		r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
2201 	}
2202 
2203 	if (!r)
2204 		*value = mb5_transfer.ack.value;
2205 
2206 	mutex_unlock(&mb5_transfer.lock);
2207 
2208 	return r;
2209 }
2210 
2211 /**
2212  * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
2213  * @slave:	The I2C slave address.
2214  * @reg:	The (start) register address.
2215  * @value:	The value(s) to write.
2216  * @mask:	The mask(s) to use.
2217  * @size:	The number of registers to write.
2218  *
2219  * Writes masked register value(s) to the ABB.
2220  * For each @value, only the bits set to 1 in the corresponding @mask
2221  * will be written. The other bits are not changed.
2222  * @size has to be 1 for the current firmware version.
2223  */
2224 int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
2225 {
2226 	int r;
2227 
2228 	if (size != 1)
2229 		return -EINVAL;
2230 
2231 	mutex_lock(&mb5_transfer.lock);
2232 
2233 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2234 		cpu_relax();
2235 
2236 	writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2237 	writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2238 	writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2239 	writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2240 	writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2241 
2242 	writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2243 
2244 	if (!wait_for_completion_timeout(&mb5_transfer.work,
2245 				msecs_to_jiffies(20000))) {
2246 		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2247 			__func__);
2248 		r = -EIO;
2249 	} else {
2250 		r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
2251 	}
2252 
2253 	mutex_unlock(&mb5_transfer.lock);
2254 
2255 	return r;
2256 }
2257 
2258 /**
2259  * prcmu_abb_write() - Write register value(s) to the ABB.
2260  * @slave:	The I2C slave address.
2261  * @reg:	The (start) register address.
2262  * @value:	The value(s) to write.
2263  * @size:	The number of registers to write.
2264  *
2265  * Writes register value(s) to the ABB.
2266  * @size has to be 1 for the current firmware version.
2267  */
2268 int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
2269 {
2270 	u8 mask = ~0;
2271 
2272 	return prcmu_abb_write_masked(slave, reg, value, &mask, size);
2273 }
2274 
2275 /**
2276  * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
2277  */
2278 int prcmu_ac_wake_req(void)
2279 {
2280 	u32 val;
2281 	int ret = 0;
2282 
2283 	mutex_lock(&mb0_transfer.ac_wake_lock);
2284 
2285 	val = readl(PRCM_HOSTACCESS_REQ);
2286 	if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
2287 		goto unlock_and_return;
2288 
2289 	atomic_set(&ac_wake_req_state, 1);
2290 
2291 	/*
2292 	 * Force Modem Wake-up before hostaccess_req ping-pong.
2293 	 * It prevents Modem to enter in Sleep while acking the hostaccess
2294 	 * request. The 31us delay has been calculated by HWI.
2295 	 */
2296 	val |= PRCM_HOSTACCESS_REQ_WAKE_REQ;
2297 	writel(val, PRCM_HOSTACCESS_REQ);
2298 
2299 	udelay(31);
2300 
2301 	val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ;
2302 	writel(val, PRCM_HOSTACCESS_REQ);
2303 
2304 	if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2305 			msecs_to_jiffies(5000))) {
2306 #if defined(CONFIG_DBX500_PRCMU_DEBUG)
2307 		db8500_prcmu_debug_dump(__func__, true, true);
2308 #endif
2309 		pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2310 			__func__);
2311 		ret = -EFAULT;
2312 	}
2313 
2314 unlock_and_return:
2315 	mutex_unlock(&mb0_transfer.ac_wake_lock);
2316 	return ret;
2317 }
2318 
2319 /**
2320  * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
2321  */
2322 void prcmu_ac_sleep_req(void)
2323 {
2324 	u32 val;
2325 
2326 	mutex_lock(&mb0_transfer.ac_wake_lock);
2327 
2328 	val = readl(PRCM_HOSTACCESS_REQ);
2329 	if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
2330 		goto unlock_and_return;
2331 
2332 	writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
2333 		PRCM_HOSTACCESS_REQ);
2334 
2335 	if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2336 			msecs_to_jiffies(5000))) {
2337 		pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2338 			__func__);
2339 	}
2340 
2341 	atomic_set(&ac_wake_req_state, 0);
2342 
2343 unlock_and_return:
2344 	mutex_unlock(&mb0_transfer.ac_wake_lock);
2345 }
2346 
2347 bool db8500_prcmu_is_ac_wake_requested(void)
2348 {
2349 	return (atomic_read(&ac_wake_req_state) != 0);
2350 }
2351 
2352 /**
2353  * db8500_prcmu_system_reset - System reset
2354  *
2355  * Saves the reset reason code and then sets the APE_SOFTRST register which
2356  * fires interrupt to fw
2357  */
2358 void db8500_prcmu_system_reset(u16 reset_code)
2359 {
2360 	writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
2361 	writel(1, PRCM_APE_SOFTRST);
2362 }
2363 
2364 /**
2365  * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
2366  *
2367  * Retrieves the reset reason code stored by prcmu_system_reset() before
2368  * last restart.
2369  */
2370 u16 db8500_prcmu_get_reset_code(void)
2371 {
2372 	return readw(tcdm_base + PRCM_SW_RST_REASON);
2373 }
2374 
2375 /**
2376  * db8500_prcmu_reset_modem - ask the PRCMU to reset modem
2377  */
2378 void db8500_prcmu_modem_reset(void)
2379 {
2380 	mutex_lock(&mb1_transfer.lock);
2381 
2382 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
2383 		cpu_relax();
2384 
2385 	writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
2386 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
2387 	wait_for_completion(&mb1_transfer.work);
2388 
2389 	/*
2390 	 * No need to check return from PRCMU as modem should go in reset state
2391 	 * This state is already managed by upper layer
2392 	 */
2393 
2394 	mutex_unlock(&mb1_transfer.lock);
2395 }
2396 
2397 static void ack_dbb_wakeup(void)
2398 {
2399 	unsigned long flags;
2400 
2401 	spin_lock_irqsave(&mb0_transfer.lock, flags);
2402 
2403 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
2404 		cpu_relax();
2405 
2406 	writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
2407 	writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
2408 
2409 	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2410 }
2411 
2412 static inline void print_unknown_header_warning(u8 n, u8 header)
2413 {
2414 	pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n",
2415 		header, n);
2416 }
2417 
2418 static bool read_mailbox_0(void)
2419 {
2420 	bool r;
2421 	u32 ev;
2422 	unsigned int n;
2423 	u8 header;
2424 
2425 	header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
2426 	switch (header) {
2427 	case MB0H_WAKEUP_EXE:
2428 	case MB0H_WAKEUP_SLEEP:
2429 		if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
2430 			ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
2431 		else
2432 			ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
2433 
2434 		if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
2435 			complete(&mb0_transfer.ac_wake_work);
2436 		if (ev & WAKEUP_BIT_SYSCLK_OK)
2437 			complete(&mb3_transfer.sysclk_work);
2438 
2439 		ev &= mb0_transfer.req.dbb_irqs;
2440 
2441 		for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
2442 			if (ev & prcmu_irq_bit[n])
2443 				generic_handle_irq(irq_find_mapping(db8500_irq_domain, n));
2444 		}
2445 		r = true;
2446 		break;
2447 	default:
2448 		print_unknown_header_warning(0, header);
2449 		r = false;
2450 		break;
2451 	}
2452 	writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
2453 	return r;
2454 }
2455 
2456 static bool read_mailbox_1(void)
2457 {
2458 	mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
2459 	mb1_transfer.ack.arm_opp = readb(tcdm_base +
2460 		PRCM_ACK_MB1_CURRENT_ARM_OPP);
2461 	mb1_transfer.ack.ape_opp = readb(tcdm_base +
2462 		PRCM_ACK_MB1_CURRENT_APE_OPP);
2463 	mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
2464 		PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
2465 	writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
2466 	complete(&mb1_transfer.work);
2467 	return false;
2468 }
2469 
2470 static bool read_mailbox_2(void)
2471 {
2472 	mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
2473 	writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
2474 	complete(&mb2_transfer.work);
2475 	return false;
2476 }
2477 
2478 static bool read_mailbox_3(void)
2479 {
2480 	writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
2481 	return false;
2482 }
2483 
2484 static bool read_mailbox_4(void)
2485 {
2486 	u8 header;
2487 	bool do_complete = true;
2488 
2489 	header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
2490 	switch (header) {
2491 	case MB4H_MEM_ST:
2492 	case MB4H_HOTDOG:
2493 	case MB4H_HOTMON:
2494 	case MB4H_HOT_PERIOD:
2495 	case MB4H_A9WDOG_CONF:
2496 	case MB4H_A9WDOG_EN:
2497 	case MB4H_A9WDOG_DIS:
2498 	case MB4H_A9WDOG_LOAD:
2499 	case MB4H_A9WDOG_KICK:
2500 		break;
2501 	default:
2502 		print_unknown_header_warning(4, header);
2503 		do_complete = false;
2504 		break;
2505 	}
2506 
2507 	writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
2508 
2509 	if (do_complete)
2510 		complete(&mb4_transfer.work);
2511 
2512 	return false;
2513 }
2514 
2515 static bool read_mailbox_5(void)
2516 {
2517 	mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
2518 	mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
2519 	writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
2520 	complete(&mb5_transfer.work);
2521 	return false;
2522 }
2523 
2524 static bool read_mailbox_6(void)
2525 {
2526 	writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
2527 	return false;
2528 }
2529 
2530 static bool read_mailbox_7(void)
2531 {
2532 	writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
2533 	return false;
2534 }
2535 
2536 static bool (* const read_mailbox[NUM_MB])(void) = {
2537 	read_mailbox_0,
2538 	read_mailbox_1,
2539 	read_mailbox_2,
2540 	read_mailbox_3,
2541 	read_mailbox_4,
2542 	read_mailbox_5,
2543 	read_mailbox_6,
2544 	read_mailbox_7
2545 };
2546 
2547 static irqreturn_t prcmu_irq_handler(int irq, void *data)
2548 {
2549 	u32 bits;
2550 	u8 n;
2551 	irqreturn_t r;
2552 
2553 	bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
2554 	if (unlikely(!bits))
2555 		return IRQ_NONE;
2556 
2557 	r = IRQ_HANDLED;
2558 	for (n = 0; bits; n++) {
2559 		if (bits & MBOX_BIT(n)) {
2560 			bits -= MBOX_BIT(n);
2561 			if (read_mailbox[n]())
2562 				r = IRQ_WAKE_THREAD;
2563 		}
2564 	}
2565 	return r;
2566 }
2567 
2568 static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
2569 {
2570 	ack_dbb_wakeup();
2571 	return IRQ_HANDLED;
2572 }
2573 
2574 static void prcmu_mask_work(struct work_struct *work)
2575 {
2576 	unsigned long flags;
2577 
2578 	spin_lock_irqsave(&mb0_transfer.lock, flags);
2579 
2580 	config_wakeups();
2581 
2582 	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2583 }
2584 
2585 static void prcmu_irq_mask(struct irq_data *d)
2586 {
2587 	unsigned long flags;
2588 
2589 	spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2590 
2591 	mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq];
2592 
2593 	spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2594 
2595 	if (d->irq != IRQ_PRCMU_CA_SLEEP)
2596 		schedule_work(&mb0_transfer.mask_work);
2597 }
2598 
2599 static void prcmu_irq_unmask(struct irq_data *d)
2600 {
2601 	unsigned long flags;
2602 
2603 	spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2604 
2605 	mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq];
2606 
2607 	spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2608 
2609 	if (d->irq != IRQ_PRCMU_CA_SLEEP)
2610 		schedule_work(&mb0_transfer.mask_work);
2611 }
2612 
2613 static void noop(struct irq_data *d)
2614 {
2615 }
2616 
2617 static struct irq_chip prcmu_irq_chip = {
2618 	.name		= "prcmu",
2619 	.irq_disable	= prcmu_irq_mask,
2620 	.irq_ack	= noop,
2621 	.irq_mask	= prcmu_irq_mask,
2622 	.irq_unmask	= prcmu_irq_unmask,
2623 };
2624 
2625 static __init char *fw_project_name(u32 project)
2626 {
2627 	switch (project) {
2628 	case PRCMU_FW_PROJECT_U8500:
2629 		return "U8500";
2630 	case PRCMU_FW_PROJECT_U8400:
2631 		return "U8400";
2632 	case PRCMU_FW_PROJECT_U9500:
2633 		return "U9500";
2634 	case PRCMU_FW_PROJECT_U8500_MBB:
2635 		return "U8500 MBB";
2636 	case PRCMU_FW_PROJECT_U8500_C1:
2637 		return "U8500 C1";
2638 	case PRCMU_FW_PROJECT_U8500_C2:
2639 		return "U8500 C2";
2640 	case PRCMU_FW_PROJECT_U8500_C3:
2641 		return "U8500 C3";
2642 	case PRCMU_FW_PROJECT_U8500_C4:
2643 		return "U8500 C4";
2644 	case PRCMU_FW_PROJECT_U9500_MBL:
2645 		return "U9500 MBL";
2646 	case PRCMU_FW_PROJECT_U8500_MBL:
2647 		return "U8500 MBL";
2648 	case PRCMU_FW_PROJECT_U8500_MBL2:
2649 		return "U8500 MBL2";
2650 	case PRCMU_FW_PROJECT_U8520:
2651 		return "U8520 MBL";
2652 	case PRCMU_FW_PROJECT_U8420:
2653 		return "U8420";
2654 	case PRCMU_FW_PROJECT_U9540:
2655 		return "U9540";
2656 	case PRCMU_FW_PROJECT_A9420:
2657 		return "A9420";
2658 	case PRCMU_FW_PROJECT_L8540:
2659 		return "L8540";
2660 	case PRCMU_FW_PROJECT_L8580:
2661 		return "L8580";
2662 	default:
2663 		return "Unknown";
2664 	}
2665 }
2666 
2667 static int db8500_irq_map(struct irq_domain *d, unsigned int virq,
2668 				irq_hw_number_t hwirq)
2669 {
2670 	irq_set_chip_and_handler(virq, &prcmu_irq_chip,
2671 				handle_simple_irq);
2672 	set_irq_flags(virq, IRQF_VALID);
2673 
2674 	return 0;
2675 }
2676 
2677 static struct irq_domain_ops db8500_irq_ops = {
2678 	.map    = db8500_irq_map,
2679 	.xlate  = irq_domain_xlate_twocell,
2680 };
2681 
2682 static int db8500_irq_init(struct device_node *np, int irq_base)
2683 {
2684 	int i;
2685 
2686 	/* In the device tree case, just take some IRQs */
2687 	if (np)
2688 		irq_base = 0;
2689 
2690 	db8500_irq_domain = irq_domain_add_simple(
2691 		np, NUM_PRCMU_WAKEUPS, irq_base,
2692 		&db8500_irq_ops, NULL);
2693 
2694 	if (!db8500_irq_domain) {
2695 		pr_err("Failed to create irqdomain\n");
2696 		return -ENOSYS;
2697 	}
2698 
2699 	/* All wakeups will be used, so create mappings for all */
2700 	for (i = 0; i < NUM_PRCMU_WAKEUPS; i++)
2701 		irq_create_mapping(db8500_irq_domain, i);
2702 
2703 	return 0;
2704 }
2705 
2706 static void dbx500_fw_version_init(struct platform_device *pdev,
2707 			    u32 version_offset)
2708 {
2709 	struct resource *res;
2710 	void __iomem *tcpm_base;
2711 	u32 version;
2712 
2713 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
2714 					   "prcmu-tcpm");
2715 	if (!res) {
2716 		dev_err(&pdev->dev,
2717 			"Error: no prcmu tcpm memory region provided\n");
2718 		return;
2719 	}
2720 	tcpm_base = ioremap(res->start, resource_size(res));
2721 	if (!tcpm_base) {
2722 		dev_err(&pdev->dev, "no prcmu tcpm mem region provided\n");
2723 		return;
2724 	}
2725 
2726 	version = readl(tcpm_base + version_offset);
2727 	fw_info.version.project = (version & 0xFF);
2728 	fw_info.version.api_version = (version >> 8) & 0xFF;
2729 	fw_info.version.func_version = (version >> 16) & 0xFF;
2730 	fw_info.version.errata = (version >> 24) & 0xFF;
2731 	strncpy(fw_info.version.project_name,
2732 		fw_project_name(fw_info.version.project),
2733 		PRCMU_FW_PROJECT_NAME_LEN);
2734 	fw_info.valid = true;
2735 	pr_info("PRCMU firmware: %s(%d), version %d.%d.%d\n",
2736 		fw_info.version.project_name,
2737 		fw_info.version.project,
2738 		fw_info.version.api_version,
2739 		fw_info.version.func_version,
2740 		fw_info.version.errata);
2741 	iounmap(tcpm_base);
2742 }
2743 
2744 void __init db8500_prcmu_early_init(u32 phy_base, u32 size)
2745 {
2746 	/*
2747 	 * This is a temporary remap to bring up the clocks. It is
2748 	 * subsequently replaces with a real remap. After the merge of
2749 	 * the mailbox subsystem all of this early code goes away, and the
2750 	 * clock driver can probe independently. An early initcall will
2751 	 * still be needed, but it can be diverted into drivers/clk/ux500.
2752 	 */
2753 	prcmu_base = ioremap(phy_base, size);
2754 	if (!prcmu_base)
2755 		pr_err("%s: ioremap() of prcmu registers failed!\n", __func__);
2756 
2757 	spin_lock_init(&mb0_transfer.lock);
2758 	spin_lock_init(&mb0_transfer.dbb_irqs_lock);
2759 	mutex_init(&mb0_transfer.ac_wake_lock);
2760 	init_completion(&mb0_transfer.ac_wake_work);
2761 	mutex_init(&mb1_transfer.lock);
2762 	init_completion(&mb1_transfer.work);
2763 	mb1_transfer.ape_opp = APE_NO_CHANGE;
2764 	mutex_init(&mb2_transfer.lock);
2765 	init_completion(&mb2_transfer.work);
2766 	spin_lock_init(&mb2_transfer.auto_pm_lock);
2767 	spin_lock_init(&mb3_transfer.lock);
2768 	mutex_init(&mb3_transfer.sysclk_lock);
2769 	init_completion(&mb3_transfer.sysclk_work);
2770 	mutex_init(&mb4_transfer.lock);
2771 	init_completion(&mb4_transfer.work);
2772 	mutex_init(&mb5_transfer.lock);
2773 	init_completion(&mb5_transfer.work);
2774 
2775 	INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
2776 }
2777 
2778 static void __init init_prcm_registers(void)
2779 {
2780 	u32 val;
2781 
2782 	val = readl(PRCM_A9PL_FORCE_CLKEN);
2783 	val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
2784 		PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
2785 	writel(val, (PRCM_A9PL_FORCE_CLKEN));
2786 }
2787 
2788 /*
2789  * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
2790  */
2791 static struct regulator_consumer_supply db8500_vape_consumers[] = {
2792 	REGULATOR_SUPPLY("v-ape", NULL),
2793 	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2794 	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2795 	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2796 	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
2797 	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
2798 	/* "v-mmc" changed to "vcore" in the mainline kernel */
2799 	REGULATOR_SUPPLY("vcore", "sdi0"),
2800 	REGULATOR_SUPPLY("vcore", "sdi1"),
2801 	REGULATOR_SUPPLY("vcore", "sdi2"),
2802 	REGULATOR_SUPPLY("vcore", "sdi3"),
2803 	REGULATOR_SUPPLY("vcore", "sdi4"),
2804 	REGULATOR_SUPPLY("v-dma", "dma40.0"),
2805 	REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2806 	/* "v-uart" changed to "vcore" in the mainline kernel */
2807 	REGULATOR_SUPPLY("vcore", "uart0"),
2808 	REGULATOR_SUPPLY("vcore", "uart1"),
2809 	REGULATOR_SUPPLY("vcore", "uart2"),
2810 	REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
2811 	REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
2812 	REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
2813 };
2814 
2815 static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
2816 	REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2817 	/* AV8100 regulator */
2818 	REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2819 };
2820 
2821 static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
2822 	REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
2823 	REGULATOR_SUPPLY("vsupply", "mcde"),
2824 };
2825 
2826 /* SVA MMDSP regulator switch */
2827 static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
2828 	REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2829 };
2830 
2831 /* SVA pipe regulator switch */
2832 static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
2833 	REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2834 };
2835 
2836 /* SIA MMDSP regulator switch */
2837 static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
2838 	REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2839 };
2840 
2841 /* SIA pipe regulator switch */
2842 static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
2843 	REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2844 };
2845 
2846 static struct regulator_consumer_supply db8500_sga_consumers[] = {
2847 	REGULATOR_SUPPLY("v-mali", NULL),
2848 };
2849 
2850 /* ESRAM1 and 2 regulator switch */
2851 static struct regulator_consumer_supply db8500_esram12_consumers[] = {
2852 	REGULATOR_SUPPLY("esram12", "cm_control"),
2853 };
2854 
2855 /* ESRAM3 and 4 regulator switch */
2856 static struct regulator_consumer_supply db8500_esram34_consumers[] = {
2857 	REGULATOR_SUPPLY("v-esram34", "mcde"),
2858 	REGULATOR_SUPPLY("esram34", "cm_control"),
2859 	REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
2860 };
2861 
2862 static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
2863 	[DB8500_REGULATOR_VAPE] = {
2864 		.constraints = {
2865 			.name = "db8500-vape",
2866 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2867 			.always_on = true,
2868 		},
2869 		.consumer_supplies = db8500_vape_consumers,
2870 		.num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
2871 	},
2872 	[DB8500_REGULATOR_VARM] = {
2873 		.constraints = {
2874 			.name = "db8500-varm",
2875 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2876 		},
2877 	},
2878 	[DB8500_REGULATOR_VMODEM] = {
2879 		.constraints = {
2880 			.name = "db8500-vmodem",
2881 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2882 		},
2883 	},
2884 	[DB8500_REGULATOR_VPLL] = {
2885 		.constraints = {
2886 			.name = "db8500-vpll",
2887 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2888 		},
2889 	},
2890 	[DB8500_REGULATOR_VSMPS1] = {
2891 		.constraints = {
2892 			.name = "db8500-vsmps1",
2893 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2894 		},
2895 	},
2896 	[DB8500_REGULATOR_VSMPS2] = {
2897 		.constraints = {
2898 			.name = "db8500-vsmps2",
2899 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2900 		},
2901 		.consumer_supplies = db8500_vsmps2_consumers,
2902 		.num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
2903 	},
2904 	[DB8500_REGULATOR_VSMPS3] = {
2905 		.constraints = {
2906 			.name = "db8500-vsmps3",
2907 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2908 		},
2909 	},
2910 	[DB8500_REGULATOR_VRF1] = {
2911 		.constraints = {
2912 			.name = "db8500-vrf1",
2913 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2914 		},
2915 	},
2916 	[DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
2917 		/* dependency to u8500-vape is handled outside regulator framework */
2918 		.constraints = {
2919 			.name = "db8500-sva-mmdsp",
2920 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2921 		},
2922 		.consumer_supplies = db8500_svammdsp_consumers,
2923 		.num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
2924 	},
2925 	[DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
2926 		.constraints = {
2927 			/* "ret" means "retention" */
2928 			.name = "db8500-sva-mmdsp-ret",
2929 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2930 		},
2931 	},
2932 	[DB8500_REGULATOR_SWITCH_SVAPIPE] = {
2933 		/* dependency to u8500-vape is handled outside regulator framework */
2934 		.constraints = {
2935 			.name = "db8500-sva-pipe",
2936 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2937 		},
2938 		.consumer_supplies = db8500_svapipe_consumers,
2939 		.num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
2940 	},
2941 	[DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
2942 		/* dependency to u8500-vape is handled outside regulator framework */
2943 		.constraints = {
2944 			.name = "db8500-sia-mmdsp",
2945 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2946 		},
2947 		.consumer_supplies = db8500_siammdsp_consumers,
2948 		.num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
2949 	},
2950 	[DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
2951 		.constraints = {
2952 			.name = "db8500-sia-mmdsp-ret",
2953 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2954 		},
2955 	},
2956 	[DB8500_REGULATOR_SWITCH_SIAPIPE] = {
2957 		/* dependency to u8500-vape is handled outside regulator framework */
2958 		.constraints = {
2959 			.name = "db8500-sia-pipe",
2960 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2961 		},
2962 		.consumer_supplies = db8500_siapipe_consumers,
2963 		.num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
2964 	},
2965 	[DB8500_REGULATOR_SWITCH_SGA] = {
2966 		.supply_regulator = "db8500-vape",
2967 		.constraints = {
2968 			.name = "db8500-sga",
2969 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2970 		},
2971 		.consumer_supplies = db8500_sga_consumers,
2972 		.num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
2973 
2974 	},
2975 	[DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
2976 		.supply_regulator = "db8500-vape",
2977 		.constraints = {
2978 			.name = "db8500-b2r2-mcde",
2979 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2980 		},
2981 		.consumer_supplies = db8500_b2r2_mcde_consumers,
2982 		.num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
2983 	},
2984 	[DB8500_REGULATOR_SWITCH_ESRAM12] = {
2985 		/*
2986 		 * esram12 is set in retention and supplied by Vsafe when Vape is off,
2987 		 * no need to hold Vape
2988 		 */
2989 		.constraints = {
2990 			.name = "db8500-esram12",
2991 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2992 		},
2993 		.consumer_supplies = db8500_esram12_consumers,
2994 		.num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
2995 	},
2996 	[DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
2997 		.constraints = {
2998 			.name = "db8500-esram12-ret",
2999 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
3000 		},
3001 	},
3002 	[DB8500_REGULATOR_SWITCH_ESRAM34] = {
3003 		/*
3004 		 * esram34 is set in retention and supplied by Vsafe when Vape is off,
3005 		 * no need to hold Vape
3006 		 */
3007 		.constraints = {
3008 			.name = "db8500-esram34",
3009 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
3010 		},
3011 		.consumer_supplies = db8500_esram34_consumers,
3012 		.num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
3013 	},
3014 	[DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
3015 		.constraints = {
3016 			.name = "db8500-esram34-ret",
3017 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
3018 		},
3019 	},
3020 };
3021 
3022 static struct ux500_wdt_data db8500_wdt_pdata = {
3023 	.timeout = 600, /* 10 minutes */
3024 	.has_28_bits_resolution = true,
3025 };
3026 /*
3027  * Thermal Sensor
3028  */
3029 
3030 static struct resource db8500_thsens_resources[] = {
3031 	{
3032 		.name = "IRQ_HOTMON_LOW",
3033 		.start  = IRQ_PRCMU_HOTMON_LOW,
3034 		.end    = IRQ_PRCMU_HOTMON_LOW,
3035 		.flags  = IORESOURCE_IRQ,
3036 	},
3037 	{
3038 		.name = "IRQ_HOTMON_HIGH",
3039 		.start  = IRQ_PRCMU_HOTMON_HIGH,
3040 		.end    = IRQ_PRCMU_HOTMON_HIGH,
3041 		.flags  = IORESOURCE_IRQ,
3042 	},
3043 };
3044 
3045 static struct db8500_thsens_platform_data db8500_thsens_data = {
3046 	.trip_points[0] = {
3047 		.temp = 70000,
3048 		.type = THERMAL_TRIP_ACTIVE,
3049 		.cdev_name = {
3050 			[0] = "thermal-cpufreq-0",
3051 		},
3052 	},
3053 	.trip_points[1] = {
3054 		.temp = 75000,
3055 		.type = THERMAL_TRIP_ACTIVE,
3056 		.cdev_name = {
3057 			[0] = "thermal-cpufreq-0",
3058 		},
3059 	},
3060 	.trip_points[2] = {
3061 		.temp = 80000,
3062 		.type = THERMAL_TRIP_ACTIVE,
3063 		.cdev_name = {
3064 			[0] = "thermal-cpufreq-0",
3065 		},
3066 	},
3067 	.trip_points[3] = {
3068 		.temp = 85000,
3069 		.type = THERMAL_TRIP_CRITICAL,
3070 	},
3071 	.num_trips = 4,
3072 };
3073 
3074 static struct mfd_cell common_prcmu_devs[] = {
3075 	{
3076 		.name = "ux500_wdt",
3077 		.platform_data = &db8500_wdt_pdata,
3078 		.pdata_size = sizeof(db8500_wdt_pdata),
3079 		.id = -1,
3080 	},
3081 };
3082 
3083 static struct mfd_cell db8500_prcmu_devs[] = {
3084 	{
3085 		.name = "db8500-prcmu-regulators",
3086 		.of_compatible = "stericsson,db8500-prcmu-regulator",
3087 		.platform_data = &db8500_regulators,
3088 		.pdata_size = sizeof(db8500_regulators),
3089 	},
3090 	{
3091 		.name = "cpufreq-ux500",
3092 		.of_compatible = "stericsson,cpufreq-ux500",
3093 		.platform_data = &db8500_cpufreq_table,
3094 		.pdata_size = sizeof(db8500_cpufreq_table),
3095 	},
3096 	{
3097 		.name = "cpuidle-dbx500",
3098 		.of_compatible = "stericsson,cpuidle-dbx500",
3099 	},
3100 	{
3101 		.name = "db8500-thermal",
3102 		.num_resources = ARRAY_SIZE(db8500_thsens_resources),
3103 		.resources = db8500_thsens_resources,
3104 		.platform_data = &db8500_thsens_data,
3105 		.pdata_size = sizeof(db8500_thsens_data),
3106 	},
3107 };
3108 
3109 static void db8500_prcmu_update_cpufreq(void)
3110 {
3111 	if (prcmu_has_arm_maxopp()) {
3112 		db8500_cpufreq_table[3].frequency = 1000000;
3113 		db8500_cpufreq_table[3].driver_data = ARM_MAX_OPP;
3114 	}
3115 }
3116 
3117 static int db8500_prcmu_register_ab8500(struct device *parent,
3118 					struct ab8500_platform_data *pdata,
3119 					int irq)
3120 {
3121 	struct resource ab8500_resource = DEFINE_RES_IRQ(irq);
3122 	struct mfd_cell ab8500_cell = {
3123 		.name = "ab8500-core",
3124 		.of_compatible = "stericsson,ab8500",
3125 		.id = AB8500_VERSION_AB8500,
3126 		.platform_data = pdata,
3127 		.pdata_size = sizeof(struct ab8500_platform_data),
3128 		.resources = &ab8500_resource,
3129 		.num_resources = 1,
3130 	};
3131 
3132 	return mfd_add_devices(parent, 0, &ab8500_cell, 1, NULL, 0, NULL);
3133 }
3134 
3135 /**
3136  * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
3137  *
3138  */
3139 static int db8500_prcmu_probe(struct platform_device *pdev)
3140 {
3141 	struct device_node *np = pdev->dev.of_node;
3142 	struct prcmu_pdata *pdata = dev_get_platdata(&pdev->dev);
3143 	int irq = 0, err = 0;
3144 	struct resource *res;
3145 
3146 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu");
3147 	if (!res) {
3148 		dev_err(&pdev->dev, "no prcmu memory region provided\n");
3149 		return -ENOENT;
3150 	}
3151 	prcmu_base = devm_ioremap(&pdev->dev, res->start, resource_size(res));
3152 	if (!prcmu_base) {
3153 		dev_err(&pdev->dev,
3154 			"failed to ioremap prcmu register memory\n");
3155 		return -ENOENT;
3156 	}
3157 	init_prcm_registers();
3158 	dbx500_fw_version_init(pdev, pdata->version_offset);
3159 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu-tcdm");
3160 	if (!res) {
3161 		dev_err(&pdev->dev, "no prcmu tcdm region provided\n");
3162 		return -ENOENT;
3163 	}
3164 	tcdm_base = devm_ioremap(&pdev->dev, res->start,
3165 			resource_size(res));
3166 
3167 	/* Clean up the mailbox interrupts after pre-kernel code. */
3168 	writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
3169 
3170 	irq = platform_get_irq(pdev, 0);
3171 	if (irq <= 0) {
3172 		dev_err(&pdev->dev, "no prcmu irq provided\n");
3173 		return -ENOENT;
3174 	}
3175 
3176 	err = request_threaded_irq(irq, prcmu_irq_handler,
3177 	        prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
3178 	if (err < 0) {
3179 		pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
3180 		err = -EBUSY;
3181 		goto no_irq_return;
3182 	}
3183 
3184 	db8500_irq_init(np, pdata->irq_base);
3185 
3186 	prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
3187 
3188 	db8500_prcmu_update_cpufreq();
3189 
3190 	err = mfd_add_devices(&pdev->dev, 0, common_prcmu_devs,
3191 			      ARRAY_SIZE(common_prcmu_devs), NULL, 0, db8500_irq_domain);
3192 	if (err) {
3193 		pr_err("prcmu: Failed to add subdevices\n");
3194 		return err;
3195 	}
3196 
3197 	/* TODO: Remove restriction when clk definitions are available. */
3198 	if (!of_machine_is_compatible("st-ericsson,u8540")) {
3199 		err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
3200 				      ARRAY_SIZE(db8500_prcmu_devs), NULL, 0,
3201 				      db8500_irq_domain);
3202 		if (err) {
3203 			mfd_remove_devices(&pdev->dev);
3204 			pr_err("prcmu: Failed to add subdevices\n");
3205 			goto no_irq_return;
3206 		}
3207 	}
3208 
3209 	err = db8500_prcmu_register_ab8500(&pdev->dev, pdata->ab_platdata,
3210 					   pdata->ab_irq);
3211 	if (err) {
3212 		mfd_remove_devices(&pdev->dev);
3213 		pr_err("prcmu: Failed to add ab8500 subdevice\n");
3214 		goto no_irq_return;
3215 	}
3216 
3217 	pr_info("DB8500 PRCMU initialized\n");
3218 
3219 no_irq_return:
3220 	return err;
3221 }
3222 static const struct of_device_id db8500_prcmu_match[] = {
3223 	{ .compatible = "stericsson,db8500-prcmu"},
3224 	{ },
3225 };
3226 
3227 static struct platform_driver db8500_prcmu_driver = {
3228 	.driver = {
3229 		.name = "db8500-prcmu",
3230 		.owner = THIS_MODULE,
3231 		.of_match_table = db8500_prcmu_match,
3232 	},
3233 	.probe = db8500_prcmu_probe,
3234 };
3235 
3236 static int __init db8500_prcmu_init(void)
3237 {
3238 	return platform_driver_register(&db8500_prcmu_driver);
3239 }
3240 
3241 core_initcall(db8500_prcmu_init);
3242 
3243 MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>");
3244 MODULE_DESCRIPTION("DB8500 PRCM Unit driver");
3245 MODULE_LICENSE("GPL v2");
3246