xref: /openbmc/linux/drivers/mfd/db8500-prcmu.c (revision 04eb94d526423ff082efce61f4f26b0369d0bfdd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * DB8500 PRCM Unit driver
4  *
5  * Copyright (C) STMicroelectronics 2009
6  * Copyright (C) ST-Ericsson SA 2010
7  *
8  * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
9  * Author: Sundar Iyer <sundar.iyer@stericsson.com>
10  * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
11  *
12  * U8500 PRCM Unit interface driver
13  */
14 #include <linux/init.h>
15 #include <linux/export.h>
16 #include <linux/kernel.h>
17 #include <linux/delay.h>
18 #include <linux/errno.h>
19 #include <linux/err.h>
20 #include <linux/spinlock.h>
21 #include <linux/io.h>
22 #include <linux/slab.h>
23 #include <linux/mutex.h>
24 #include <linux/completion.h>
25 #include <linux/irq.h>
26 #include <linux/jiffies.h>
27 #include <linux/bitops.h>
28 #include <linux/fs.h>
29 #include <linux/of.h>
30 #include <linux/of_irq.h>
31 #include <linux/platform_device.h>
32 #include <linux/uaccess.h>
33 #include <linux/mfd/core.h>
34 #include <linux/mfd/dbx500-prcmu.h>
35 #include <linux/mfd/abx500/ab8500.h>
36 #include <linux/regulator/db8500-prcmu.h>
37 #include <linux/regulator/machine.h>
38 #include <linux/platform_data/ux500_wdt.h>
39 #include <linux/platform_data/db8500_thermal.h>
40 #include "dbx500-prcmu-regs.h"
41 
42 /* Index of different voltages to be used when accessing AVSData */
43 #define PRCM_AVS_BASE		0x2FC
44 #define PRCM_AVS_VBB_RET	(PRCM_AVS_BASE + 0x0)
45 #define PRCM_AVS_VBB_MAX_OPP	(PRCM_AVS_BASE + 0x1)
46 #define PRCM_AVS_VBB_100_OPP	(PRCM_AVS_BASE + 0x2)
47 #define PRCM_AVS_VBB_50_OPP	(PRCM_AVS_BASE + 0x3)
48 #define PRCM_AVS_VARM_MAX_OPP	(PRCM_AVS_BASE + 0x4)
49 #define PRCM_AVS_VARM_100_OPP	(PRCM_AVS_BASE + 0x5)
50 #define PRCM_AVS_VARM_50_OPP	(PRCM_AVS_BASE + 0x6)
51 #define PRCM_AVS_VARM_RET	(PRCM_AVS_BASE + 0x7)
52 #define PRCM_AVS_VAPE_100_OPP	(PRCM_AVS_BASE + 0x8)
53 #define PRCM_AVS_VAPE_50_OPP	(PRCM_AVS_BASE + 0x9)
54 #define PRCM_AVS_VMOD_100_OPP	(PRCM_AVS_BASE + 0xA)
55 #define PRCM_AVS_VMOD_50_OPP	(PRCM_AVS_BASE + 0xB)
56 #define PRCM_AVS_VSAFE		(PRCM_AVS_BASE + 0xC)
57 
58 #define PRCM_AVS_VOLTAGE		0
59 #define PRCM_AVS_VOLTAGE_MASK		0x3f
60 #define PRCM_AVS_ISSLOWSTARTUP		6
61 #define PRCM_AVS_ISSLOWSTARTUP_MASK	(1 << PRCM_AVS_ISSLOWSTARTUP)
62 #define PRCM_AVS_ISMODEENABLE		7
63 #define PRCM_AVS_ISMODEENABLE_MASK	(1 << PRCM_AVS_ISMODEENABLE)
64 
65 #define PRCM_BOOT_STATUS	0xFFF
66 #define PRCM_ROMCODE_A2P	0xFFE
67 #define PRCM_ROMCODE_P2A	0xFFD
68 #define PRCM_XP70_CUR_PWR_STATE 0xFFC      /* 4 BYTES */
69 
70 #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
71 
72 #define _PRCM_MBOX_HEADER		0xFE8 /* 16 bytes */
73 #define PRCM_MBOX_HEADER_REQ_MB0	(_PRCM_MBOX_HEADER + 0x0)
74 #define PRCM_MBOX_HEADER_REQ_MB1	(_PRCM_MBOX_HEADER + 0x1)
75 #define PRCM_MBOX_HEADER_REQ_MB2	(_PRCM_MBOX_HEADER + 0x2)
76 #define PRCM_MBOX_HEADER_REQ_MB3	(_PRCM_MBOX_HEADER + 0x3)
77 #define PRCM_MBOX_HEADER_REQ_MB4	(_PRCM_MBOX_HEADER + 0x4)
78 #define PRCM_MBOX_HEADER_REQ_MB5	(_PRCM_MBOX_HEADER + 0x5)
79 #define PRCM_MBOX_HEADER_ACK_MB0	(_PRCM_MBOX_HEADER + 0x8)
80 
81 /* Req Mailboxes */
82 #define PRCM_REQ_MB0 0xFDC /* 12 bytes  */
83 #define PRCM_REQ_MB1 0xFD0 /* 12 bytes  */
84 #define PRCM_REQ_MB2 0xFC0 /* 16 bytes  */
85 #define PRCM_REQ_MB3 0xE4C /* 372 bytes  */
86 #define PRCM_REQ_MB4 0xE48 /* 4 bytes  */
87 #define PRCM_REQ_MB5 0xE44 /* 4 bytes  */
88 
89 /* Ack Mailboxes */
90 #define PRCM_ACK_MB0 0xE08 /* 52 bytes  */
91 #define PRCM_ACK_MB1 0xE04 /* 4 bytes */
92 #define PRCM_ACK_MB2 0xE00 /* 4 bytes */
93 #define PRCM_ACK_MB3 0xDFC /* 4 bytes */
94 #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
95 #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
96 
97 /* Mailbox 0 headers */
98 #define MB0H_POWER_STATE_TRANS		0
99 #define MB0H_CONFIG_WAKEUPS_EXE		1
100 #define MB0H_READ_WAKEUP_ACK		3
101 #define MB0H_CONFIG_WAKEUPS_SLEEP	4
102 
103 #define MB0H_WAKEUP_EXE 2
104 #define MB0H_WAKEUP_SLEEP 5
105 
106 /* Mailbox 0 REQs */
107 #define PRCM_REQ_MB0_AP_POWER_STATE	(PRCM_REQ_MB0 + 0x0)
108 #define PRCM_REQ_MB0_AP_PLL_STATE	(PRCM_REQ_MB0 + 0x1)
109 #define PRCM_REQ_MB0_ULP_CLOCK_STATE	(PRCM_REQ_MB0 + 0x2)
110 #define PRCM_REQ_MB0_DO_NOT_WFI		(PRCM_REQ_MB0 + 0x3)
111 #define PRCM_REQ_MB0_WAKEUP_8500	(PRCM_REQ_MB0 + 0x4)
112 #define PRCM_REQ_MB0_WAKEUP_4500	(PRCM_REQ_MB0 + 0x8)
113 
114 /* Mailbox 0 ACKs */
115 #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS	(PRCM_ACK_MB0 + 0x0)
116 #define PRCM_ACK_MB0_READ_POINTER	(PRCM_ACK_MB0 + 0x1)
117 #define PRCM_ACK_MB0_WAKEUP_0_8500	(PRCM_ACK_MB0 + 0x4)
118 #define PRCM_ACK_MB0_WAKEUP_0_4500	(PRCM_ACK_MB0 + 0x8)
119 #define PRCM_ACK_MB0_WAKEUP_1_8500	(PRCM_ACK_MB0 + 0x1C)
120 #define PRCM_ACK_MB0_WAKEUP_1_4500	(PRCM_ACK_MB0 + 0x20)
121 #define PRCM_ACK_MB0_EVENT_4500_NUMBERS	20
122 
123 /* Mailbox 1 headers */
124 #define MB1H_ARM_APE_OPP 0x0
125 #define MB1H_RESET_MODEM 0x2
126 #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
127 #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
128 #define MB1H_RELEASE_USB_WAKEUP 0x5
129 #define MB1H_PLL_ON_OFF 0x6
130 
131 /* Mailbox 1 Requests */
132 #define PRCM_REQ_MB1_ARM_OPP			(PRCM_REQ_MB1 + 0x0)
133 #define PRCM_REQ_MB1_APE_OPP			(PRCM_REQ_MB1 + 0x1)
134 #define PRCM_REQ_MB1_PLL_ON_OFF			(PRCM_REQ_MB1 + 0x4)
135 #define PLL_SOC0_OFF	0x1
136 #define PLL_SOC0_ON	0x2
137 #define PLL_SOC1_OFF	0x4
138 #define PLL_SOC1_ON	0x8
139 
140 /* Mailbox 1 ACKs */
141 #define PRCM_ACK_MB1_CURRENT_ARM_OPP	(PRCM_ACK_MB1 + 0x0)
142 #define PRCM_ACK_MB1_CURRENT_APE_OPP	(PRCM_ACK_MB1 + 0x1)
143 #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS	(PRCM_ACK_MB1 + 0x2)
144 #define PRCM_ACK_MB1_DVFS_STATUS	(PRCM_ACK_MB1 + 0x3)
145 
146 /* Mailbox 2 headers */
147 #define MB2H_DPS	0x0
148 #define MB2H_AUTO_PWR	0x1
149 
150 /* Mailbox 2 REQs */
151 #define PRCM_REQ_MB2_SVA_MMDSP		(PRCM_REQ_MB2 + 0x0)
152 #define PRCM_REQ_MB2_SVA_PIPE		(PRCM_REQ_MB2 + 0x1)
153 #define PRCM_REQ_MB2_SIA_MMDSP		(PRCM_REQ_MB2 + 0x2)
154 #define PRCM_REQ_MB2_SIA_PIPE		(PRCM_REQ_MB2 + 0x3)
155 #define PRCM_REQ_MB2_SGA		(PRCM_REQ_MB2 + 0x4)
156 #define PRCM_REQ_MB2_B2R2_MCDE		(PRCM_REQ_MB2 + 0x5)
157 #define PRCM_REQ_MB2_ESRAM12		(PRCM_REQ_MB2 + 0x6)
158 #define PRCM_REQ_MB2_ESRAM34		(PRCM_REQ_MB2 + 0x7)
159 #define PRCM_REQ_MB2_AUTO_PM_SLEEP	(PRCM_REQ_MB2 + 0x8)
160 #define PRCM_REQ_MB2_AUTO_PM_IDLE	(PRCM_REQ_MB2 + 0xC)
161 
162 /* Mailbox 2 ACKs */
163 #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
164 #define HWACC_PWR_ST_OK 0xFE
165 
166 /* Mailbox 3 headers */
167 #define MB3H_ANC	0x0
168 #define MB3H_SIDETONE	0x1
169 #define MB3H_SYSCLK	0xE
170 
171 /* Mailbox 3 Requests */
172 #define PRCM_REQ_MB3_ANC_FIR_COEFF	(PRCM_REQ_MB3 + 0x0)
173 #define PRCM_REQ_MB3_ANC_IIR_COEFF	(PRCM_REQ_MB3 + 0x20)
174 #define PRCM_REQ_MB3_ANC_SHIFTER	(PRCM_REQ_MB3 + 0x60)
175 #define PRCM_REQ_MB3_ANC_WARP		(PRCM_REQ_MB3 + 0x64)
176 #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN	(PRCM_REQ_MB3 + 0x68)
177 #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF	(PRCM_REQ_MB3 + 0x6C)
178 #define PRCM_REQ_MB3_SYSCLK_MGT		(PRCM_REQ_MB3 + 0x16C)
179 
180 /* Mailbox 4 headers */
181 #define MB4H_DDR_INIT	0x0
182 #define MB4H_MEM_ST	0x1
183 #define MB4H_HOTDOG	0x12
184 #define MB4H_HOTMON	0x13
185 #define MB4H_HOT_PERIOD	0x14
186 #define MB4H_A9WDOG_CONF 0x16
187 #define MB4H_A9WDOG_EN   0x17
188 #define MB4H_A9WDOG_DIS  0x18
189 #define MB4H_A9WDOG_LOAD 0x19
190 #define MB4H_A9WDOG_KICK 0x20
191 
192 /* Mailbox 4 Requests */
193 #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE	(PRCM_REQ_MB4 + 0x0)
194 #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE	(PRCM_REQ_MB4 + 0x1)
195 #define PRCM_REQ_MB4_ESRAM0_ST			(PRCM_REQ_MB4 + 0x3)
196 #define PRCM_REQ_MB4_HOTDOG_THRESHOLD		(PRCM_REQ_MB4 + 0x0)
197 #define PRCM_REQ_MB4_HOTMON_LOW			(PRCM_REQ_MB4 + 0x0)
198 #define PRCM_REQ_MB4_HOTMON_HIGH		(PRCM_REQ_MB4 + 0x1)
199 #define PRCM_REQ_MB4_HOTMON_CONFIG		(PRCM_REQ_MB4 + 0x2)
200 #define PRCM_REQ_MB4_HOT_PERIOD			(PRCM_REQ_MB4 + 0x0)
201 #define HOTMON_CONFIG_LOW			BIT(0)
202 #define HOTMON_CONFIG_HIGH			BIT(1)
203 #define PRCM_REQ_MB4_A9WDOG_0			(PRCM_REQ_MB4 + 0x0)
204 #define PRCM_REQ_MB4_A9WDOG_1			(PRCM_REQ_MB4 + 0x1)
205 #define PRCM_REQ_MB4_A9WDOG_2			(PRCM_REQ_MB4 + 0x2)
206 #define PRCM_REQ_MB4_A9WDOG_3			(PRCM_REQ_MB4 + 0x3)
207 #define A9WDOG_AUTO_OFF_EN			BIT(7)
208 #define A9WDOG_AUTO_OFF_DIS			0
209 #define A9WDOG_ID_MASK				0xf
210 
211 /* Mailbox 5 Requests */
212 #define PRCM_REQ_MB5_I2C_SLAVE_OP	(PRCM_REQ_MB5 + 0x0)
213 #define PRCM_REQ_MB5_I2C_HW_BITS	(PRCM_REQ_MB5 + 0x1)
214 #define PRCM_REQ_MB5_I2C_REG		(PRCM_REQ_MB5 + 0x2)
215 #define PRCM_REQ_MB5_I2C_VAL		(PRCM_REQ_MB5 + 0x3)
216 #define PRCMU_I2C_WRITE(slave) (((slave) << 1) | BIT(6))
217 #define PRCMU_I2C_READ(slave) (((slave) << 1) | BIT(0) | BIT(6))
218 #define PRCMU_I2C_STOP_EN		BIT(3)
219 
220 /* Mailbox 5 ACKs */
221 #define PRCM_ACK_MB5_I2C_STATUS	(PRCM_ACK_MB5 + 0x1)
222 #define PRCM_ACK_MB5_I2C_VAL	(PRCM_ACK_MB5 + 0x3)
223 #define I2C_WR_OK 0x1
224 #define I2C_RD_OK 0x2
225 
226 #define NUM_MB 8
227 #define MBOX_BIT BIT
228 #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
229 
230 /*
231  * Wakeups/IRQs
232  */
233 
234 #define WAKEUP_BIT_RTC BIT(0)
235 #define WAKEUP_BIT_RTT0 BIT(1)
236 #define WAKEUP_BIT_RTT1 BIT(2)
237 #define WAKEUP_BIT_HSI0 BIT(3)
238 #define WAKEUP_BIT_HSI1 BIT(4)
239 #define WAKEUP_BIT_CA_WAKE BIT(5)
240 #define WAKEUP_BIT_USB BIT(6)
241 #define WAKEUP_BIT_ABB BIT(7)
242 #define WAKEUP_BIT_ABB_FIFO BIT(8)
243 #define WAKEUP_BIT_SYSCLK_OK BIT(9)
244 #define WAKEUP_BIT_CA_SLEEP BIT(10)
245 #define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
246 #define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
247 #define WAKEUP_BIT_ANC_OK BIT(13)
248 #define WAKEUP_BIT_SW_ERROR BIT(14)
249 #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
250 #define WAKEUP_BIT_ARM BIT(17)
251 #define WAKEUP_BIT_HOTMON_LOW BIT(18)
252 #define WAKEUP_BIT_HOTMON_HIGH BIT(19)
253 #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
254 #define WAKEUP_BIT_GPIO0 BIT(23)
255 #define WAKEUP_BIT_GPIO1 BIT(24)
256 #define WAKEUP_BIT_GPIO2 BIT(25)
257 #define WAKEUP_BIT_GPIO3 BIT(26)
258 #define WAKEUP_BIT_GPIO4 BIT(27)
259 #define WAKEUP_BIT_GPIO5 BIT(28)
260 #define WAKEUP_BIT_GPIO6 BIT(29)
261 #define WAKEUP_BIT_GPIO7 BIT(30)
262 #define WAKEUP_BIT_GPIO8 BIT(31)
263 
264 static struct {
265 	bool valid;
266 	struct prcmu_fw_version version;
267 } fw_info;
268 
269 static struct irq_domain *db8500_irq_domain;
270 
271 /*
272  * This vector maps irq numbers to the bits in the bit field used in
273  * communication with the PRCMU firmware.
274  *
275  * The reason for having this is to keep the irq numbers contiguous even though
276  * the bits in the bit field are not. (The bits also have a tendency to move
277  * around, to further complicate matters.)
278  */
279 #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name))
280 #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
281 
282 #define IRQ_PRCMU_RTC 0
283 #define IRQ_PRCMU_RTT0 1
284 #define IRQ_PRCMU_RTT1 2
285 #define IRQ_PRCMU_HSI0 3
286 #define IRQ_PRCMU_HSI1 4
287 #define IRQ_PRCMU_CA_WAKE 5
288 #define IRQ_PRCMU_USB 6
289 #define IRQ_PRCMU_ABB 7
290 #define IRQ_PRCMU_ABB_FIFO 8
291 #define IRQ_PRCMU_ARM 9
292 #define IRQ_PRCMU_MODEM_SW_RESET_REQ 10
293 #define IRQ_PRCMU_GPIO0 11
294 #define IRQ_PRCMU_GPIO1 12
295 #define IRQ_PRCMU_GPIO2 13
296 #define IRQ_PRCMU_GPIO3 14
297 #define IRQ_PRCMU_GPIO4 15
298 #define IRQ_PRCMU_GPIO5 16
299 #define IRQ_PRCMU_GPIO6 17
300 #define IRQ_PRCMU_GPIO7 18
301 #define IRQ_PRCMU_GPIO8 19
302 #define IRQ_PRCMU_CA_SLEEP 20
303 #define IRQ_PRCMU_HOTMON_LOW 21
304 #define IRQ_PRCMU_HOTMON_HIGH 22
305 #define NUM_PRCMU_WAKEUPS 23
306 
307 static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
308 	IRQ_ENTRY(RTC),
309 	IRQ_ENTRY(RTT0),
310 	IRQ_ENTRY(RTT1),
311 	IRQ_ENTRY(HSI0),
312 	IRQ_ENTRY(HSI1),
313 	IRQ_ENTRY(CA_WAKE),
314 	IRQ_ENTRY(USB),
315 	IRQ_ENTRY(ABB),
316 	IRQ_ENTRY(ABB_FIFO),
317 	IRQ_ENTRY(CA_SLEEP),
318 	IRQ_ENTRY(ARM),
319 	IRQ_ENTRY(HOTMON_LOW),
320 	IRQ_ENTRY(HOTMON_HIGH),
321 	IRQ_ENTRY(MODEM_SW_RESET_REQ),
322 	IRQ_ENTRY(GPIO0),
323 	IRQ_ENTRY(GPIO1),
324 	IRQ_ENTRY(GPIO2),
325 	IRQ_ENTRY(GPIO3),
326 	IRQ_ENTRY(GPIO4),
327 	IRQ_ENTRY(GPIO5),
328 	IRQ_ENTRY(GPIO6),
329 	IRQ_ENTRY(GPIO7),
330 	IRQ_ENTRY(GPIO8)
331 };
332 
333 #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
334 #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
335 static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
336 	WAKEUP_ENTRY(RTC),
337 	WAKEUP_ENTRY(RTT0),
338 	WAKEUP_ENTRY(RTT1),
339 	WAKEUP_ENTRY(HSI0),
340 	WAKEUP_ENTRY(HSI1),
341 	WAKEUP_ENTRY(USB),
342 	WAKEUP_ENTRY(ABB),
343 	WAKEUP_ENTRY(ABB_FIFO),
344 	WAKEUP_ENTRY(ARM)
345 };
346 
347 /*
348  * mb0_transfer - state needed for mailbox 0 communication.
349  * @lock:		The transaction lock.
350  * @dbb_events_lock:	A lock used to handle concurrent access to (parts of)
351  *			the request data.
352  * @mask_work:		Work structure used for (un)masking wakeup interrupts.
353  * @req:		Request data that need to persist between requests.
354  */
355 static struct {
356 	spinlock_t lock;
357 	spinlock_t dbb_irqs_lock;
358 	struct work_struct mask_work;
359 	struct mutex ac_wake_lock;
360 	struct completion ac_wake_work;
361 	struct {
362 		u32 dbb_irqs;
363 		u32 dbb_wakeups;
364 		u32 abb_events;
365 	} req;
366 } mb0_transfer;
367 
368 /*
369  * mb1_transfer - state needed for mailbox 1 communication.
370  * @lock:	The transaction lock.
371  * @work:	The transaction completion structure.
372  * @ape_opp:	The current APE OPP.
373  * @ack:	Reply ("acknowledge") data.
374  */
375 static struct {
376 	struct mutex lock;
377 	struct completion work;
378 	u8 ape_opp;
379 	struct {
380 		u8 header;
381 		u8 arm_opp;
382 		u8 ape_opp;
383 		u8 ape_voltage_status;
384 	} ack;
385 } mb1_transfer;
386 
387 /*
388  * mb2_transfer - state needed for mailbox 2 communication.
389  * @lock:            The transaction lock.
390  * @work:            The transaction completion structure.
391  * @auto_pm_lock:    The autonomous power management configuration lock.
392  * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
393  * @req:             Request data that need to persist between requests.
394  * @ack:             Reply ("acknowledge") data.
395  */
396 static struct {
397 	struct mutex lock;
398 	struct completion work;
399 	spinlock_t auto_pm_lock;
400 	bool auto_pm_enabled;
401 	struct {
402 		u8 status;
403 	} ack;
404 } mb2_transfer;
405 
406 /*
407  * mb3_transfer - state needed for mailbox 3 communication.
408  * @lock:		The request lock.
409  * @sysclk_lock:	A lock used to handle concurrent sysclk requests.
410  * @sysclk_work:	Work structure used for sysclk requests.
411  */
412 static struct {
413 	spinlock_t lock;
414 	struct mutex sysclk_lock;
415 	struct completion sysclk_work;
416 } mb3_transfer;
417 
418 /*
419  * mb4_transfer - state needed for mailbox 4 communication.
420  * @lock:	The transaction lock.
421  * @work:	The transaction completion structure.
422  */
423 static struct {
424 	struct mutex lock;
425 	struct completion work;
426 } mb4_transfer;
427 
428 /*
429  * mb5_transfer - state needed for mailbox 5 communication.
430  * @lock:	The transaction lock.
431  * @work:	The transaction completion structure.
432  * @ack:	Reply ("acknowledge") data.
433  */
434 static struct {
435 	struct mutex lock;
436 	struct completion work;
437 	struct {
438 		u8 status;
439 		u8 value;
440 	} ack;
441 } mb5_transfer;
442 
443 static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
444 
445 /* Spinlocks */
446 static DEFINE_SPINLOCK(prcmu_lock);
447 static DEFINE_SPINLOCK(clkout_lock);
448 
449 /* Global var to runtime determine TCDM base for v2 or v1 */
450 static __iomem void *tcdm_base;
451 static __iomem void *prcmu_base;
452 
453 struct clk_mgt {
454 	u32 offset;
455 	u32 pllsw;
456 	int branch;
457 	bool clk38div;
458 };
459 
460 enum {
461 	PLL_RAW,
462 	PLL_FIX,
463 	PLL_DIV
464 };
465 
466 static DEFINE_SPINLOCK(clk_mgt_lock);
467 
468 #define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
469 	{ (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
470 static struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
471 	CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
472 	CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
473 	CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
474 	CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
475 	CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
476 	CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
477 	CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
478 	CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
479 	CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
480 	CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
481 	CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
482 	CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
483 	CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
484 	CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
485 	CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
486 	CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
487 	CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
488 	CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
489 	CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
490 	CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
491 	CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
492 	CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
493 	CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
494 	CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
495 	CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
496 	CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
497 	CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
498 	CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
499 	CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
500 };
501 
502 struct dsiclk {
503 	u32 divsel_mask;
504 	u32 divsel_shift;
505 	u32 divsel;
506 };
507 
508 static struct dsiclk dsiclk[2] = {
509 	{
510 		.divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
511 		.divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
512 		.divsel = PRCM_DSI_PLLOUT_SEL_PHI,
513 	},
514 	{
515 		.divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
516 		.divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
517 		.divsel = PRCM_DSI_PLLOUT_SEL_PHI,
518 	}
519 };
520 
521 struct dsiescclk {
522 	u32 en;
523 	u32 div_mask;
524 	u32 div_shift;
525 };
526 
527 static struct dsiescclk dsiescclk[3] = {
528 	{
529 		.en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
530 		.div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
531 		.div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
532 	},
533 	{
534 		.en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
535 		.div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
536 		.div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
537 	},
538 	{
539 		.en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
540 		.div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
541 		.div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
542 	}
543 };
544 
545 
546 /*
547 * Used by MCDE to setup all necessary PRCMU registers
548 */
549 #define PRCMU_RESET_DSIPLL		0x00004000
550 #define PRCMU_UNCLAMP_DSIPLL		0x00400800
551 
552 #define PRCMU_CLK_PLL_DIV_SHIFT		0
553 #define PRCMU_CLK_PLL_SW_SHIFT		5
554 #define PRCMU_CLK_38			(1 << 9)
555 #define PRCMU_CLK_38_SRC		(1 << 10)
556 #define PRCMU_CLK_38_DIV		(1 << 11)
557 
558 /* PLLDIV=12, PLLSW=4 (PLLDDR) */
559 #define PRCMU_DSI_CLOCK_SETTING		0x0000008C
560 
561 /* DPI 50000000 Hz */
562 #define PRCMU_DPI_CLOCK_SETTING		((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
563 					  (16 << PRCMU_CLK_PLL_DIV_SHIFT))
564 #define PRCMU_DSI_LP_CLOCK_SETTING	0x00000E00
565 
566 /* D=101, N=1, R=4, SELDIV2=0 */
567 #define PRCMU_PLLDSI_FREQ_SETTING	0x00040165
568 
569 #define PRCMU_ENABLE_PLLDSI		0x00000001
570 #define PRCMU_DISABLE_PLLDSI		0x00000000
571 #define PRCMU_RELEASE_RESET_DSS		0x0000400C
572 #define PRCMU_DSI_PLLOUT_SEL_SETTING	0x00000202
573 /* ESC clk, div0=1, div1=1, div2=3 */
574 #define PRCMU_ENABLE_ESCAPE_CLOCK_DIV	0x07030101
575 #define PRCMU_DISABLE_ESCAPE_CLOCK_DIV	0x00030101
576 #define PRCMU_DSI_RESET_SW		0x00000007
577 
578 #define PRCMU_PLLDSI_LOCKP_LOCKED	0x3
579 
580 int db8500_prcmu_enable_dsipll(void)
581 {
582 	int i;
583 
584 	/* Clear DSIPLL_RESETN */
585 	writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR);
586 	/* Unclamp DSIPLL in/out */
587 	writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR);
588 
589 	/* Set DSI PLL FREQ */
590 	writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ);
591 	writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL);
592 	/* Enable Escape clocks */
593 	writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
594 
595 	/* Start DSI PLL */
596 	writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
597 	/* Reset DSI PLL */
598 	writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET);
599 	for (i = 0; i < 10; i++) {
600 		if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED)
601 					== PRCMU_PLLDSI_LOCKP_LOCKED)
602 			break;
603 		udelay(100);
604 	}
605 	/* Set DSIPLL_RESETN */
606 	writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET);
607 	return 0;
608 }
609 
610 int db8500_prcmu_disable_dsipll(void)
611 {
612 	/* Disable dsi pll */
613 	writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
614 	/* Disable  escapeclock */
615 	writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
616 	return 0;
617 }
618 
619 int db8500_prcmu_set_display_clocks(void)
620 {
621 	unsigned long flags;
622 
623 	spin_lock_irqsave(&clk_mgt_lock, flags);
624 
625 	/* Grab the HW semaphore. */
626 	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
627 		cpu_relax();
628 
629 	writel(PRCMU_DSI_CLOCK_SETTING, prcmu_base + PRCM_HDMICLK_MGT);
630 	writel(PRCMU_DSI_LP_CLOCK_SETTING, prcmu_base + PRCM_TVCLK_MGT);
631 	writel(PRCMU_DPI_CLOCK_SETTING, prcmu_base + PRCM_LCDCLK_MGT);
632 
633 	/* Release the HW semaphore. */
634 	writel(0, PRCM_SEM);
635 
636 	spin_unlock_irqrestore(&clk_mgt_lock, flags);
637 
638 	return 0;
639 }
640 
641 u32 db8500_prcmu_read(unsigned int reg)
642 {
643 	return readl(prcmu_base + reg);
644 }
645 
646 void db8500_prcmu_write(unsigned int reg, u32 value)
647 {
648 	unsigned long flags;
649 
650 	spin_lock_irqsave(&prcmu_lock, flags);
651 	writel(value, (prcmu_base + reg));
652 	spin_unlock_irqrestore(&prcmu_lock, flags);
653 }
654 
655 void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
656 {
657 	u32 val;
658 	unsigned long flags;
659 
660 	spin_lock_irqsave(&prcmu_lock, flags);
661 	val = readl(prcmu_base + reg);
662 	val = ((val & ~mask) | (value & mask));
663 	writel(val, (prcmu_base + reg));
664 	spin_unlock_irqrestore(&prcmu_lock, flags);
665 }
666 
667 struct prcmu_fw_version *prcmu_get_fw_version(void)
668 {
669 	return fw_info.valid ? &fw_info.version : NULL;
670 }
671 
672 bool prcmu_has_arm_maxopp(void)
673 {
674 	return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
675 		PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
676 }
677 
678 /**
679  * prcmu_set_rc_a2p - This function is used to run few power state sequences
680  * @val: Value to be set, i.e. transition requested
681  * Returns: 0 on success, -EINVAL on invalid argument
682  *
683  * This function is used to run the following power state sequences -
684  * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
685  */
686 int prcmu_set_rc_a2p(enum romcode_write val)
687 {
688 	if (val < RDY_2_DS || val > RDY_2_XP70_RST)
689 		return -EINVAL;
690 	writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
691 	return 0;
692 }
693 
694 /**
695  * prcmu_get_rc_p2a - This function is used to get power state sequences
696  * Returns: the power transition that has last happened
697  *
698  * This function can return the following transitions-
699  * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
700  */
701 enum romcode_read prcmu_get_rc_p2a(void)
702 {
703 	return readb(tcdm_base + PRCM_ROMCODE_P2A);
704 }
705 
706 /**
707  * prcmu_get_current_mode - Return the current XP70 power mode
708  * Returns: Returns the current AP(ARM) power mode: init,
709  * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
710  */
711 enum ap_pwrst prcmu_get_xp70_current_state(void)
712 {
713 	return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
714 }
715 
716 /**
717  * prcmu_config_clkout - Configure one of the programmable clock outputs.
718  * @clkout:	The CLKOUT number (0 or 1).
719  * @source:	The clock to be used (one of the PRCMU_CLKSRC_*).
720  * @div:	The divider to be applied.
721  *
722  * Configures one of the programmable clock outputs (CLKOUTs).
723  * @div should be in the range [1,63] to request a configuration, or 0 to
724  * inform that the configuration is no longer requested.
725  */
726 int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
727 {
728 	static int requests[2];
729 	int r = 0;
730 	unsigned long flags;
731 	u32 val;
732 	u32 bits;
733 	u32 mask;
734 	u32 div_mask;
735 
736 	BUG_ON(clkout > 1);
737 	BUG_ON(div > 63);
738 	BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
739 
740 	if (!div && !requests[clkout])
741 		return -EINVAL;
742 
743 	if (clkout == 0) {
744 		div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
745 		mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
746 		bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
747 			(div << PRCM_CLKOCR_CLKODIV0_SHIFT));
748 	} else {
749 		div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
750 		mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
751 			PRCM_CLKOCR_CLK1TYPE);
752 		bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
753 			(div << PRCM_CLKOCR_CLKODIV1_SHIFT));
754 	}
755 	bits &= mask;
756 
757 	spin_lock_irqsave(&clkout_lock, flags);
758 
759 	val = readl(PRCM_CLKOCR);
760 	if (val & div_mask) {
761 		if (div) {
762 			if ((val & mask) != bits) {
763 				r = -EBUSY;
764 				goto unlock_and_return;
765 			}
766 		} else {
767 			if ((val & mask & ~div_mask) != bits) {
768 				r = -EINVAL;
769 				goto unlock_and_return;
770 			}
771 		}
772 	}
773 	writel((bits | (val & ~mask)), PRCM_CLKOCR);
774 	requests[clkout] += (div ? 1 : -1);
775 
776 unlock_and_return:
777 	spin_unlock_irqrestore(&clkout_lock, flags);
778 
779 	return r;
780 }
781 
782 int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
783 {
784 	unsigned long flags;
785 
786 	BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
787 
788 	spin_lock_irqsave(&mb0_transfer.lock, flags);
789 
790 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
791 		cpu_relax();
792 
793 	writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
794 	writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
795 	writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
796 	writeb((keep_ulp_clk ? 1 : 0),
797 		(tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
798 	writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
799 	writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
800 
801 	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
802 
803 	return 0;
804 }
805 
806 u8 db8500_prcmu_get_power_state_result(void)
807 {
808 	return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
809 }
810 
811 /* This function should only be called while mb0_transfer.lock is held. */
812 static void config_wakeups(void)
813 {
814 	const u8 header[2] = {
815 		MB0H_CONFIG_WAKEUPS_EXE,
816 		MB0H_CONFIG_WAKEUPS_SLEEP
817 	};
818 	static u32 last_dbb_events;
819 	static u32 last_abb_events;
820 	u32 dbb_events;
821 	u32 abb_events;
822 	unsigned int i;
823 
824 	dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
825 	dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
826 
827 	abb_events = mb0_transfer.req.abb_events;
828 
829 	if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
830 		return;
831 
832 	for (i = 0; i < 2; i++) {
833 		while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
834 			cpu_relax();
835 		writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
836 		writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
837 		writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
838 		writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
839 	}
840 	last_dbb_events = dbb_events;
841 	last_abb_events = abb_events;
842 }
843 
844 void db8500_prcmu_enable_wakeups(u32 wakeups)
845 {
846 	unsigned long flags;
847 	u32 bits;
848 	int i;
849 
850 	BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
851 
852 	for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
853 		if (wakeups & BIT(i))
854 			bits |= prcmu_wakeup_bit[i];
855 	}
856 
857 	spin_lock_irqsave(&mb0_transfer.lock, flags);
858 
859 	mb0_transfer.req.dbb_wakeups = bits;
860 	config_wakeups();
861 
862 	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
863 }
864 
865 void db8500_prcmu_config_abb_event_readout(u32 abb_events)
866 {
867 	unsigned long flags;
868 
869 	spin_lock_irqsave(&mb0_transfer.lock, flags);
870 
871 	mb0_transfer.req.abb_events = abb_events;
872 	config_wakeups();
873 
874 	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
875 }
876 
877 void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
878 {
879 	if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
880 		*buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
881 	else
882 		*buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
883 }
884 
885 /**
886  * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
887  * @opp: The new ARM operating point to which transition is to be made
888  * Returns: 0 on success, non-zero on failure
889  *
890  * This function sets the the operating point of the ARM.
891  */
892 int db8500_prcmu_set_arm_opp(u8 opp)
893 {
894 	int r;
895 
896 	if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
897 		return -EINVAL;
898 
899 	r = 0;
900 
901 	mutex_lock(&mb1_transfer.lock);
902 
903 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
904 		cpu_relax();
905 
906 	writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
907 	writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
908 	writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
909 
910 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
911 	wait_for_completion(&mb1_transfer.work);
912 
913 	if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
914 		(mb1_transfer.ack.arm_opp != opp))
915 		r = -EIO;
916 
917 	mutex_unlock(&mb1_transfer.lock);
918 
919 	return r;
920 }
921 
922 /**
923  * db8500_prcmu_get_arm_opp - get the current ARM OPP
924  *
925  * Returns: the current ARM OPP
926  */
927 int db8500_prcmu_get_arm_opp(void)
928 {
929 	return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
930 }
931 
932 /**
933  * db8500_prcmu_get_ddr_opp - get the current DDR OPP
934  *
935  * Returns: the current DDR OPP
936  */
937 int db8500_prcmu_get_ddr_opp(void)
938 {
939 	return readb(PRCM_DDR_SUBSYS_APE_MINBW);
940 }
941 
942 /* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
943 static void request_even_slower_clocks(bool enable)
944 {
945 	u32 clock_reg[] = {
946 		PRCM_ACLK_MGT,
947 		PRCM_DMACLK_MGT
948 	};
949 	unsigned long flags;
950 	unsigned int i;
951 
952 	spin_lock_irqsave(&clk_mgt_lock, flags);
953 
954 	/* Grab the HW semaphore. */
955 	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
956 		cpu_relax();
957 
958 	for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
959 		u32 val;
960 		u32 div;
961 
962 		val = readl(prcmu_base + clock_reg[i]);
963 		div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
964 		if (enable) {
965 			if ((div <= 1) || (div > 15)) {
966 				pr_err("prcmu: Bad clock divider %d in %s\n",
967 					div, __func__);
968 				goto unlock_and_return;
969 			}
970 			div <<= 1;
971 		} else {
972 			if (div <= 2)
973 				goto unlock_and_return;
974 			div >>= 1;
975 		}
976 		val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
977 			(div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
978 		writel(val, prcmu_base + clock_reg[i]);
979 	}
980 
981 unlock_and_return:
982 	/* Release the HW semaphore. */
983 	writel(0, PRCM_SEM);
984 
985 	spin_unlock_irqrestore(&clk_mgt_lock, flags);
986 }
987 
988 /**
989  * db8500_set_ape_opp - set the appropriate APE OPP
990  * @opp: The new APE operating point to which transition is to be made
991  * Returns: 0 on success, non-zero on failure
992  *
993  * This function sets the operating point of the APE.
994  */
995 int db8500_prcmu_set_ape_opp(u8 opp)
996 {
997 	int r = 0;
998 
999 	if (opp == mb1_transfer.ape_opp)
1000 		return 0;
1001 
1002 	mutex_lock(&mb1_transfer.lock);
1003 
1004 	if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
1005 		request_even_slower_clocks(false);
1006 
1007 	if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
1008 		goto skip_message;
1009 
1010 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1011 		cpu_relax();
1012 
1013 	writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1014 	writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
1015 	writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
1016 		(tcdm_base + PRCM_REQ_MB1_APE_OPP));
1017 
1018 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1019 	wait_for_completion(&mb1_transfer.work);
1020 
1021 	if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
1022 		(mb1_transfer.ack.ape_opp != opp))
1023 		r = -EIO;
1024 
1025 skip_message:
1026 	if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
1027 		(r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
1028 		request_even_slower_clocks(true);
1029 	if (!r)
1030 		mb1_transfer.ape_opp = opp;
1031 
1032 	mutex_unlock(&mb1_transfer.lock);
1033 
1034 	return r;
1035 }
1036 
1037 /**
1038  * db8500_prcmu_get_ape_opp - get the current APE OPP
1039  *
1040  * Returns: the current APE OPP
1041  */
1042 int db8500_prcmu_get_ape_opp(void)
1043 {
1044 	return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
1045 }
1046 
1047 /**
1048  * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
1049  * @enable: true to request the higher voltage, false to drop a request.
1050  *
1051  * Calls to this function to enable and disable requests must be balanced.
1052  */
1053 int db8500_prcmu_request_ape_opp_100_voltage(bool enable)
1054 {
1055 	int r = 0;
1056 	u8 header;
1057 	static unsigned int requests;
1058 
1059 	mutex_lock(&mb1_transfer.lock);
1060 
1061 	if (enable) {
1062 		if (0 != requests++)
1063 			goto unlock_and_return;
1064 		header = MB1H_REQUEST_APE_OPP_100_VOLT;
1065 	} else {
1066 		if (requests == 0) {
1067 			r = -EIO;
1068 			goto unlock_and_return;
1069 		} else if (1 != requests--) {
1070 			goto unlock_and_return;
1071 		}
1072 		header = MB1H_RELEASE_APE_OPP_100_VOLT;
1073 	}
1074 
1075 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1076 		cpu_relax();
1077 
1078 	writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1079 
1080 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1081 	wait_for_completion(&mb1_transfer.work);
1082 
1083 	if ((mb1_transfer.ack.header != header) ||
1084 		((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1085 		r = -EIO;
1086 
1087 unlock_and_return:
1088 	mutex_unlock(&mb1_transfer.lock);
1089 
1090 	return r;
1091 }
1092 
1093 /**
1094  * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
1095  *
1096  * This function releases the power state requirements of a USB wakeup.
1097  */
1098 int prcmu_release_usb_wakeup_state(void)
1099 {
1100 	int r = 0;
1101 
1102 	mutex_lock(&mb1_transfer.lock);
1103 
1104 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1105 		cpu_relax();
1106 
1107 	writeb(MB1H_RELEASE_USB_WAKEUP,
1108 		(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1109 
1110 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1111 	wait_for_completion(&mb1_transfer.work);
1112 
1113 	if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
1114 		((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1115 		r = -EIO;
1116 
1117 	mutex_unlock(&mb1_transfer.lock);
1118 
1119 	return r;
1120 }
1121 
1122 static int request_pll(u8 clock, bool enable)
1123 {
1124 	int r = 0;
1125 
1126 	if (clock == PRCMU_PLLSOC0)
1127 		clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
1128 	else if (clock == PRCMU_PLLSOC1)
1129 		clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
1130 	else
1131 		return -EINVAL;
1132 
1133 	mutex_lock(&mb1_transfer.lock);
1134 
1135 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1136 		cpu_relax();
1137 
1138 	writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1139 	writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
1140 
1141 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1142 	wait_for_completion(&mb1_transfer.work);
1143 
1144 	if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
1145 		r = -EIO;
1146 
1147 	mutex_unlock(&mb1_transfer.lock);
1148 
1149 	return r;
1150 }
1151 
1152 /**
1153  * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
1154  * @epod_id: The EPOD to set
1155  * @epod_state: The new EPOD state
1156  *
1157  * This function sets the state of a EPOD (power domain). It may not be called
1158  * from interrupt context.
1159  */
1160 int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
1161 {
1162 	int r = 0;
1163 	bool ram_retention = false;
1164 	int i;
1165 
1166 	/* check argument */
1167 	BUG_ON(epod_id >= NUM_EPOD_ID);
1168 
1169 	/* set flag if retention is possible */
1170 	switch (epod_id) {
1171 	case EPOD_ID_SVAMMDSP:
1172 	case EPOD_ID_SIAMMDSP:
1173 	case EPOD_ID_ESRAM12:
1174 	case EPOD_ID_ESRAM34:
1175 		ram_retention = true;
1176 		break;
1177 	}
1178 
1179 	/* check argument */
1180 	BUG_ON(epod_state > EPOD_STATE_ON);
1181 	BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
1182 
1183 	/* get lock */
1184 	mutex_lock(&mb2_transfer.lock);
1185 
1186 	/* wait for mailbox */
1187 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
1188 		cpu_relax();
1189 
1190 	/* fill in mailbox */
1191 	for (i = 0; i < NUM_EPOD_ID; i++)
1192 		writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
1193 	writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
1194 
1195 	writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
1196 
1197 	writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
1198 
1199 	/*
1200 	 * The current firmware version does not handle errors correctly,
1201 	 * and we cannot recover if there is an error.
1202 	 * This is expected to change when the firmware is updated.
1203 	 */
1204 	if (!wait_for_completion_timeout(&mb2_transfer.work,
1205 			msecs_to_jiffies(20000))) {
1206 		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1207 			__func__);
1208 		r = -EIO;
1209 		goto unlock_and_return;
1210 	}
1211 
1212 	if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
1213 		r = -EIO;
1214 
1215 unlock_and_return:
1216 	mutex_unlock(&mb2_transfer.lock);
1217 	return r;
1218 }
1219 
1220 /**
1221  * prcmu_configure_auto_pm - Configure autonomous power management.
1222  * @sleep: Configuration for ApSleep.
1223  * @idle:  Configuration for ApIdle.
1224  */
1225 void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
1226 	struct prcmu_auto_pm_config *idle)
1227 {
1228 	u32 sleep_cfg;
1229 	u32 idle_cfg;
1230 	unsigned long flags;
1231 
1232 	BUG_ON((sleep == NULL) || (idle == NULL));
1233 
1234 	sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
1235 	sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
1236 	sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
1237 	sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
1238 	sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
1239 	sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
1240 
1241 	idle_cfg = (idle->sva_auto_pm_enable & 0xF);
1242 	idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
1243 	idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
1244 	idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
1245 	idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
1246 	idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
1247 
1248 	spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
1249 
1250 	/*
1251 	 * The autonomous power management configuration is done through
1252 	 * fields in mailbox 2, but these fields are only used as shared
1253 	 * variables - i.e. there is no need to send a message.
1254 	 */
1255 	writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
1256 	writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
1257 
1258 	mb2_transfer.auto_pm_enabled =
1259 		((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1260 		 (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1261 		 (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1262 		 (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
1263 
1264 	spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
1265 }
1266 EXPORT_SYMBOL(prcmu_configure_auto_pm);
1267 
1268 bool prcmu_is_auto_pm_enabled(void)
1269 {
1270 	return mb2_transfer.auto_pm_enabled;
1271 }
1272 
1273 static int request_sysclk(bool enable)
1274 {
1275 	int r;
1276 	unsigned long flags;
1277 
1278 	r = 0;
1279 
1280 	mutex_lock(&mb3_transfer.sysclk_lock);
1281 
1282 	spin_lock_irqsave(&mb3_transfer.lock, flags);
1283 
1284 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
1285 		cpu_relax();
1286 
1287 	writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
1288 
1289 	writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
1290 	writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
1291 
1292 	spin_unlock_irqrestore(&mb3_transfer.lock, flags);
1293 
1294 	/*
1295 	 * The firmware only sends an ACK if we want to enable the
1296 	 * SysClk, and it succeeds.
1297 	 */
1298 	if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
1299 			msecs_to_jiffies(20000))) {
1300 		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1301 			__func__);
1302 		r = -EIO;
1303 	}
1304 
1305 	mutex_unlock(&mb3_transfer.sysclk_lock);
1306 
1307 	return r;
1308 }
1309 
1310 static int request_timclk(bool enable)
1311 {
1312 	u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
1313 
1314 	if (!enable)
1315 		val |= PRCM_TCR_STOP_TIMERS;
1316 	writel(val, PRCM_TCR);
1317 
1318 	return 0;
1319 }
1320 
1321 static int request_clock(u8 clock, bool enable)
1322 {
1323 	u32 val;
1324 	unsigned long flags;
1325 
1326 	spin_lock_irqsave(&clk_mgt_lock, flags);
1327 
1328 	/* Grab the HW semaphore. */
1329 	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1330 		cpu_relax();
1331 
1332 	val = readl(prcmu_base + clk_mgt[clock].offset);
1333 	if (enable) {
1334 		val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
1335 	} else {
1336 		clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1337 		val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
1338 	}
1339 	writel(val, prcmu_base + clk_mgt[clock].offset);
1340 
1341 	/* Release the HW semaphore. */
1342 	writel(0, PRCM_SEM);
1343 
1344 	spin_unlock_irqrestore(&clk_mgt_lock, flags);
1345 
1346 	return 0;
1347 }
1348 
1349 static int request_sga_clock(u8 clock, bool enable)
1350 {
1351 	u32 val;
1352 	int ret;
1353 
1354 	if (enable) {
1355 		val = readl(PRCM_CGATING_BYPASS);
1356 		writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1357 	}
1358 
1359 	ret = request_clock(clock, enable);
1360 
1361 	if (!ret && !enable) {
1362 		val = readl(PRCM_CGATING_BYPASS);
1363 		writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1364 	}
1365 
1366 	return ret;
1367 }
1368 
1369 static inline bool plldsi_locked(void)
1370 {
1371 	return (readl(PRCM_PLLDSI_LOCKP) &
1372 		(PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1373 		 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
1374 		(PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1375 		 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
1376 }
1377 
1378 static int request_plldsi(bool enable)
1379 {
1380 	int r = 0;
1381 	u32 val;
1382 
1383 	writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1384 		PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
1385 		PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
1386 
1387 	val = readl(PRCM_PLLDSI_ENABLE);
1388 	if (enable)
1389 		val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1390 	else
1391 		val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1392 	writel(val, PRCM_PLLDSI_ENABLE);
1393 
1394 	if (enable) {
1395 		unsigned int i;
1396 		bool locked = plldsi_locked();
1397 
1398 		for (i = 10; !locked && (i > 0); --i) {
1399 			udelay(100);
1400 			locked = plldsi_locked();
1401 		}
1402 		if (locked) {
1403 			writel(PRCM_APE_RESETN_DSIPLL_RESETN,
1404 				PRCM_APE_RESETN_SET);
1405 		} else {
1406 			writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1407 				PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
1408 				PRCM_MMIP_LS_CLAMP_SET);
1409 			val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1410 			writel(val, PRCM_PLLDSI_ENABLE);
1411 			r = -EAGAIN;
1412 		}
1413 	} else {
1414 		writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
1415 	}
1416 	return r;
1417 }
1418 
1419 static int request_dsiclk(u8 n, bool enable)
1420 {
1421 	u32 val;
1422 
1423 	val = readl(PRCM_DSI_PLLOUT_SEL);
1424 	val &= ~dsiclk[n].divsel_mask;
1425 	val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
1426 		dsiclk[n].divsel_shift);
1427 	writel(val, PRCM_DSI_PLLOUT_SEL);
1428 	return 0;
1429 }
1430 
1431 static int request_dsiescclk(u8 n, bool enable)
1432 {
1433 	u32 val;
1434 
1435 	val = readl(PRCM_DSITVCLK_DIV);
1436 	enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
1437 	writel(val, PRCM_DSITVCLK_DIV);
1438 	return 0;
1439 }
1440 
1441 /**
1442  * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
1443  * @clock:      The clock for which the request is made.
1444  * @enable:     Whether the clock should be enabled (true) or disabled (false).
1445  *
1446  * This function should only be used by the clock implementation.
1447  * Do not use it from any other place!
1448  */
1449 int db8500_prcmu_request_clock(u8 clock, bool enable)
1450 {
1451 	if (clock == PRCMU_SGACLK)
1452 		return request_sga_clock(clock, enable);
1453 	else if (clock < PRCMU_NUM_REG_CLOCKS)
1454 		return request_clock(clock, enable);
1455 	else if (clock == PRCMU_TIMCLK)
1456 		return request_timclk(enable);
1457 	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1458 		return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
1459 	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1460 		return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
1461 	else if (clock == PRCMU_PLLDSI)
1462 		return request_plldsi(enable);
1463 	else if (clock == PRCMU_SYSCLK)
1464 		return request_sysclk(enable);
1465 	else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
1466 		return request_pll(clock, enable);
1467 	else
1468 		return -EINVAL;
1469 }
1470 
1471 static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
1472 	int branch)
1473 {
1474 	u64 rate;
1475 	u32 val;
1476 	u32 d;
1477 	u32 div = 1;
1478 
1479 	val = readl(reg);
1480 
1481 	rate = src_rate;
1482 	rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
1483 
1484 	d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
1485 	if (d > 1)
1486 		div *= d;
1487 
1488 	d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
1489 	if (d > 1)
1490 		div *= d;
1491 
1492 	if (val & PRCM_PLL_FREQ_SELDIV2)
1493 		div *= 2;
1494 
1495 	if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
1496 		(val & PRCM_PLL_FREQ_DIV2EN) &&
1497 		((reg == PRCM_PLLSOC0_FREQ) ||
1498 		 (reg == PRCM_PLLARM_FREQ) ||
1499 		 (reg == PRCM_PLLDDR_FREQ))))
1500 		div *= 2;
1501 
1502 	(void)do_div(rate, div);
1503 
1504 	return (unsigned long)rate;
1505 }
1506 
1507 #define ROOT_CLOCK_RATE 38400000
1508 
1509 static unsigned long clock_rate(u8 clock)
1510 {
1511 	u32 val;
1512 	u32 pllsw;
1513 	unsigned long rate = ROOT_CLOCK_RATE;
1514 
1515 	val = readl(prcmu_base + clk_mgt[clock].offset);
1516 
1517 	if (val & PRCM_CLK_MGT_CLK38) {
1518 		if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
1519 			rate /= 2;
1520 		return rate;
1521 	}
1522 
1523 	val |= clk_mgt[clock].pllsw;
1524 	pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1525 
1526 	if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1527 		rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
1528 	else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1529 		rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
1530 	else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
1531 		rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
1532 	else
1533 		return 0;
1534 
1535 	if ((clock == PRCMU_SGACLK) &&
1536 		(val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
1537 		u64 r = (rate * 10);
1538 
1539 		(void)do_div(r, 25);
1540 		return (unsigned long)r;
1541 	}
1542 	val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1543 	if (val)
1544 		return rate / val;
1545 	else
1546 		return 0;
1547 }
1548 
1549 static unsigned long armss_rate(void)
1550 {
1551 	u32 r;
1552 	unsigned long rate;
1553 
1554 	r = readl(PRCM_ARM_CHGCLKREQ);
1555 
1556 	if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) {
1557 		/* External ARMCLKFIX clock */
1558 
1559 		rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX);
1560 
1561 		/* Check PRCM_ARM_CHGCLKREQ divider */
1562 		if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL))
1563 			rate /= 2;
1564 
1565 		/* Check PRCM_ARMCLKFIX_MGT divider */
1566 		r = readl(PRCM_ARMCLKFIX_MGT);
1567 		r &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1568 		rate /= r;
1569 
1570 	} else {/* ARM PLL */
1571 		rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV);
1572 	}
1573 
1574 	return rate;
1575 }
1576 
1577 static unsigned long dsiclk_rate(u8 n)
1578 {
1579 	u32 divsel;
1580 	u32 div = 1;
1581 
1582 	divsel = readl(PRCM_DSI_PLLOUT_SEL);
1583 	divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
1584 
1585 	if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
1586 		divsel = dsiclk[n].divsel;
1587 	else
1588 		dsiclk[n].divsel = divsel;
1589 
1590 	switch (divsel) {
1591 	case PRCM_DSI_PLLOUT_SEL_PHI_4:
1592 		div *= 2;
1593 		/* Fall through */
1594 	case PRCM_DSI_PLLOUT_SEL_PHI_2:
1595 		div *= 2;
1596 		/* Fall through */
1597 	case PRCM_DSI_PLLOUT_SEL_PHI:
1598 		return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1599 			PLL_RAW) / div;
1600 	default:
1601 		return 0;
1602 	}
1603 }
1604 
1605 static unsigned long dsiescclk_rate(u8 n)
1606 {
1607 	u32 div;
1608 
1609 	div = readl(PRCM_DSITVCLK_DIV);
1610 	div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
1611 	return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
1612 }
1613 
1614 unsigned long prcmu_clock_rate(u8 clock)
1615 {
1616 	if (clock < PRCMU_NUM_REG_CLOCKS)
1617 		return clock_rate(clock);
1618 	else if (clock == PRCMU_TIMCLK)
1619 		return ROOT_CLOCK_RATE / 16;
1620 	else if (clock == PRCMU_SYSCLK)
1621 		return ROOT_CLOCK_RATE;
1622 	else if (clock == PRCMU_PLLSOC0)
1623 		return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1624 	else if (clock == PRCMU_PLLSOC1)
1625 		return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1626 	else if (clock == PRCMU_ARMSS)
1627 		return armss_rate();
1628 	else if (clock == PRCMU_PLLDDR)
1629 		return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1630 	else if (clock == PRCMU_PLLDSI)
1631 		return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1632 			PLL_RAW);
1633 	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1634 		return dsiclk_rate(clock - PRCMU_DSI0CLK);
1635 	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1636 		return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
1637 	else
1638 		return 0;
1639 }
1640 
1641 static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
1642 {
1643 	if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
1644 		return ROOT_CLOCK_RATE;
1645 	clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
1646 	if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1647 		return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
1648 	else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1649 		return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
1650 	else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
1651 		return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
1652 	else
1653 		return 0;
1654 }
1655 
1656 static u32 clock_divider(unsigned long src_rate, unsigned long rate)
1657 {
1658 	u32 div;
1659 
1660 	div = (src_rate / rate);
1661 	if (div == 0)
1662 		return 1;
1663 	if (rate < (src_rate / div))
1664 		div++;
1665 	return div;
1666 }
1667 
1668 static long round_clock_rate(u8 clock, unsigned long rate)
1669 {
1670 	u32 val;
1671 	u32 div;
1672 	unsigned long src_rate;
1673 	long rounded_rate;
1674 
1675 	val = readl(prcmu_base + clk_mgt[clock].offset);
1676 	src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1677 		clk_mgt[clock].branch);
1678 	div = clock_divider(src_rate, rate);
1679 	if (val & PRCM_CLK_MGT_CLK38) {
1680 		if (clk_mgt[clock].clk38div) {
1681 			if (div > 2)
1682 				div = 2;
1683 		} else {
1684 			div = 1;
1685 		}
1686 	} else if ((clock == PRCMU_SGACLK) && (div == 3)) {
1687 		u64 r = (src_rate * 10);
1688 
1689 		(void)do_div(r, 25);
1690 		if (r <= rate)
1691 			return (unsigned long)r;
1692 	}
1693 	rounded_rate = (src_rate / min(div, (u32)31));
1694 
1695 	return rounded_rate;
1696 }
1697 
1698 static const unsigned long armss_freqs[] = {
1699 	200000000,
1700 	400000000,
1701 	800000000,
1702 	998400000
1703 };
1704 
1705 static long round_armss_rate(unsigned long rate)
1706 {
1707 	unsigned long freq = 0;
1708 	int i;
1709 
1710 	/* Find the corresponding arm opp from the cpufreq table. */
1711 	for (i = 0; i < ARRAY_SIZE(armss_freqs); i++) {
1712 		freq = armss_freqs[i];
1713 		if (rate <= freq)
1714 			break;
1715 	}
1716 
1717 	/* Return the last valid value, even if a match was not found. */
1718 	return freq;
1719 }
1720 
1721 #define MIN_PLL_VCO_RATE 600000000ULL
1722 #define MAX_PLL_VCO_RATE 1680640000ULL
1723 
1724 static long round_plldsi_rate(unsigned long rate)
1725 {
1726 	long rounded_rate = 0;
1727 	unsigned long src_rate;
1728 	unsigned long rem;
1729 	u32 r;
1730 
1731 	src_rate = clock_rate(PRCMU_HDMICLK);
1732 	rem = rate;
1733 
1734 	for (r = 7; (rem > 0) && (r > 0); r--) {
1735 		u64 d;
1736 
1737 		d = (r * rate);
1738 		(void)do_div(d, src_rate);
1739 		if (d < 6)
1740 			d = 6;
1741 		else if (d > 255)
1742 			d = 255;
1743 		d *= src_rate;
1744 		if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
1745 			((r * MAX_PLL_VCO_RATE) < (2 * d)))
1746 			continue;
1747 		(void)do_div(d, r);
1748 		if (rate < d) {
1749 			if (rounded_rate == 0)
1750 				rounded_rate = (long)d;
1751 			break;
1752 		}
1753 		if ((rate - d) < rem) {
1754 			rem = (rate - d);
1755 			rounded_rate = (long)d;
1756 		}
1757 	}
1758 	return rounded_rate;
1759 }
1760 
1761 static long round_dsiclk_rate(unsigned long rate)
1762 {
1763 	u32 div;
1764 	unsigned long src_rate;
1765 	long rounded_rate;
1766 
1767 	src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1768 		PLL_RAW);
1769 	div = clock_divider(src_rate, rate);
1770 	rounded_rate = (src_rate / ((div > 2) ? 4 : div));
1771 
1772 	return rounded_rate;
1773 }
1774 
1775 static long round_dsiescclk_rate(unsigned long rate)
1776 {
1777 	u32 div;
1778 	unsigned long src_rate;
1779 	long rounded_rate;
1780 
1781 	src_rate = clock_rate(PRCMU_TVCLK);
1782 	div = clock_divider(src_rate, rate);
1783 	rounded_rate = (src_rate / min(div, (u32)255));
1784 
1785 	return rounded_rate;
1786 }
1787 
1788 long prcmu_round_clock_rate(u8 clock, unsigned long rate)
1789 {
1790 	if (clock < PRCMU_NUM_REG_CLOCKS)
1791 		return round_clock_rate(clock, rate);
1792 	else if (clock == PRCMU_ARMSS)
1793 		return round_armss_rate(rate);
1794 	else if (clock == PRCMU_PLLDSI)
1795 		return round_plldsi_rate(rate);
1796 	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1797 		return round_dsiclk_rate(rate);
1798 	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1799 		return round_dsiescclk_rate(rate);
1800 	else
1801 		return (long)prcmu_clock_rate(clock);
1802 }
1803 
1804 static void set_clock_rate(u8 clock, unsigned long rate)
1805 {
1806 	u32 val;
1807 	u32 div;
1808 	unsigned long src_rate;
1809 	unsigned long flags;
1810 
1811 	spin_lock_irqsave(&clk_mgt_lock, flags);
1812 
1813 	/* Grab the HW semaphore. */
1814 	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1815 		cpu_relax();
1816 
1817 	val = readl(prcmu_base + clk_mgt[clock].offset);
1818 	src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1819 		clk_mgt[clock].branch);
1820 	div = clock_divider(src_rate, rate);
1821 	if (val & PRCM_CLK_MGT_CLK38) {
1822 		if (clk_mgt[clock].clk38div) {
1823 			if (div > 1)
1824 				val |= PRCM_CLK_MGT_CLK38DIV;
1825 			else
1826 				val &= ~PRCM_CLK_MGT_CLK38DIV;
1827 		}
1828 	} else if (clock == PRCMU_SGACLK) {
1829 		val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
1830 			PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
1831 		if (div == 3) {
1832 			u64 r = (src_rate * 10);
1833 
1834 			(void)do_div(r, 25);
1835 			if (r <= rate) {
1836 				val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
1837 				div = 0;
1838 			}
1839 		}
1840 		val |= min(div, (u32)31);
1841 	} else {
1842 		val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
1843 		val |= min(div, (u32)31);
1844 	}
1845 	writel(val, prcmu_base + clk_mgt[clock].offset);
1846 
1847 	/* Release the HW semaphore. */
1848 	writel(0, PRCM_SEM);
1849 
1850 	spin_unlock_irqrestore(&clk_mgt_lock, flags);
1851 }
1852 
1853 static int set_armss_rate(unsigned long rate)
1854 {
1855 	unsigned long freq;
1856 	u8 opps[] = { ARM_EXTCLK, ARM_50_OPP, ARM_100_OPP, ARM_MAX_OPP };
1857 	int i;
1858 
1859 	/* Find the corresponding arm opp from the cpufreq table. */
1860 	for (i = 0; i < ARRAY_SIZE(armss_freqs); i++) {
1861 		freq = armss_freqs[i];
1862 		if (rate == freq)
1863 			break;
1864 	}
1865 
1866 	if (rate != freq)
1867 		return -EINVAL;
1868 
1869 	/* Set the new arm opp. */
1870 	pr_debug("SET ARM OPP 0x%02x\n", opps[i]);
1871 	return db8500_prcmu_set_arm_opp(opps[i]);
1872 }
1873 
1874 static int set_plldsi_rate(unsigned long rate)
1875 {
1876 	unsigned long src_rate;
1877 	unsigned long rem;
1878 	u32 pll_freq = 0;
1879 	u32 r;
1880 
1881 	src_rate = clock_rate(PRCMU_HDMICLK);
1882 	rem = rate;
1883 
1884 	for (r = 7; (rem > 0) && (r > 0); r--) {
1885 		u64 d;
1886 		u64 hwrate;
1887 
1888 		d = (r * rate);
1889 		(void)do_div(d, src_rate);
1890 		if (d < 6)
1891 			d = 6;
1892 		else if (d > 255)
1893 			d = 255;
1894 		hwrate = (d * src_rate);
1895 		if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
1896 			((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
1897 			continue;
1898 		(void)do_div(hwrate, r);
1899 		if (rate < hwrate) {
1900 			if (pll_freq == 0)
1901 				pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1902 					(r << PRCM_PLL_FREQ_R_SHIFT));
1903 			break;
1904 		}
1905 		if ((rate - hwrate) < rem) {
1906 			rem = (rate - hwrate);
1907 			pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1908 				(r << PRCM_PLL_FREQ_R_SHIFT));
1909 		}
1910 	}
1911 	if (pll_freq == 0)
1912 		return -EINVAL;
1913 
1914 	pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
1915 	writel(pll_freq, PRCM_PLLDSI_FREQ);
1916 
1917 	return 0;
1918 }
1919 
1920 static void set_dsiclk_rate(u8 n, unsigned long rate)
1921 {
1922 	u32 val;
1923 	u32 div;
1924 
1925 	div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
1926 			clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
1927 
1928 	dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
1929 			   (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
1930 			   /* else */	PRCM_DSI_PLLOUT_SEL_PHI_4;
1931 
1932 	val = readl(PRCM_DSI_PLLOUT_SEL);
1933 	val &= ~dsiclk[n].divsel_mask;
1934 	val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
1935 	writel(val, PRCM_DSI_PLLOUT_SEL);
1936 }
1937 
1938 static void set_dsiescclk_rate(u8 n, unsigned long rate)
1939 {
1940 	u32 val;
1941 	u32 div;
1942 
1943 	div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
1944 	val = readl(PRCM_DSITVCLK_DIV);
1945 	val &= ~dsiescclk[n].div_mask;
1946 	val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
1947 	writel(val, PRCM_DSITVCLK_DIV);
1948 }
1949 
1950 int prcmu_set_clock_rate(u8 clock, unsigned long rate)
1951 {
1952 	if (clock < PRCMU_NUM_REG_CLOCKS)
1953 		set_clock_rate(clock, rate);
1954 	else if (clock == PRCMU_ARMSS)
1955 		return set_armss_rate(rate);
1956 	else if (clock == PRCMU_PLLDSI)
1957 		return set_plldsi_rate(rate);
1958 	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1959 		set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
1960 	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1961 		set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
1962 	return 0;
1963 }
1964 
1965 int db8500_prcmu_config_esram0_deep_sleep(u8 state)
1966 {
1967 	if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
1968 	    (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
1969 		return -EINVAL;
1970 
1971 	mutex_lock(&mb4_transfer.lock);
1972 
1973 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1974 		cpu_relax();
1975 
1976 	writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1977 	writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
1978 	       (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
1979 	writeb(DDR_PWR_STATE_ON,
1980 	       (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
1981 	writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
1982 
1983 	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1984 	wait_for_completion(&mb4_transfer.work);
1985 
1986 	mutex_unlock(&mb4_transfer.lock);
1987 
1988 	return 0;
1989 }
1990 
1991 int db8500_prcmu_config_hotdog(u8 threshold)
1992 {
1993 	mutex_lock(&mb4_transfer.lock);
1994 
1995 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1996 		cpu_relax();
1997 
1998 	writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
1999 	writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2000 
2001 	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2002 	wait_for_completion(&mb4_transfer.work);
2003 
2004 	mutex_unlock(&mb4_transfer.lock);
2005 
2006 	return 0;
2007 }
2008 
2009 int db8500_prcmu_config_hotmon(u8 low, u8 high)
2010 {
2011 	mutex_lock(&mb4_transfer.lock);
2012 
2013 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2014 		cpu_relax();
2015 
2016 	writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
2017 	writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
2018 	writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
2019 		(tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
2020 	writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2021 
2022 	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2023 	wait_for_completion(&mb4_transfer.work);
2024 
2025 	mutex_unlock(&mb4_transfer.lock);
2026 
2027 	return 0;
2028 }
2029 EXPORT_SYMBOL_GPL(db8500_prcmu_config_hotmon);
2030 
2031 static int config_hot_period(u16 val)
2032 {
2033 	mutex_lock(&mb4_transfer.lock);
2034 
2035 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2036 		cpu_relax();
2037 
2038 	writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
2039 	writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2040 
2041 	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2042 	wait_for_completion(&mb4_transfer.work);
2043 
2044 	mutex_unlock(&mb4_transfer.lock);
2045 
2046 	return 0;
2047 }
2048 
2049 int db8500_prcmu_start_temp_sense(u16 cycles32k)
2050 {
2051 	if (cycles32k == 0xFFFF)
2052 		return -EINVAL;
2053 
2054 	return config_hot_period(cycles32k);
2055 }
2056 EXPORT_SYMBOL_GPL(db8500_prcmu_start_temp_sense);
2057 
2058 int db8500_prcmu_stop_temp_sense(void)
2059 {
2060 	return config_hot_period(0xFFFF);
2061 }
2062 EXPORT_SYMBOL_GPL(db8500_prcmu_stop_temp_sense);
2063 
2064 static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
2065 {
2066 
2067 	mutex_lock(&mb4_transfer.lock);
2068 
2069 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2070 		cpu_relax();
2071 
2072 	writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
2073 	writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
2074 	writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
2075 	writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
2076 
2077 	writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2078 
2079 	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2080 	wait_for_completion(&mb4_transfer.work);
2081 
2082 	mutex_unlock(&mb4_transfer.lock);
2083 
2084 	return 0;
2085 
2086 }
2087 
2088 int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
2089 {
2090 	BUG_ON(num == 0 || num > 0xf);
2091 	return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
2092 			    sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
2093 			    A9WDOG_AUTO_OFF_DIS);
2094 }
2095 EXPORT_SYMBOL(db8500_prcmu_config_a9wdog);
2096 
2097 int db8500_prcmu_enable_a9wdog(u8 id)
2098 {
2099 	return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
2100 }
2101 EXPORT_SYMBOL(db8500_prcmu_enable_a9wdog);
2102 
2103 int db8500_prcmu_disable_a9wdog(u8 id)
2104 {
2105 	return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
2106 }
2107 EXPORT_SYMBOL(db8500_prcmu_disable_a9wdog);
2108 
2109 int db8500_prcmu_kick_a9wdog(u8 id)
2110 {
2111 	return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
2112 }
2113 EXPORT_SYMBOL(db8500_prcmu_kick_a9wdog);
2114 
2115 /*
2116  * timeout is 28 bit, in ms.
2117  */
2118 int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
2119 {
2120 	return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
2121 			    (id & A9WDOG_ID_MASK) |
2122 			    /*
2123 			     * Put the lowest 28 bits of timeout at
2124 			     * offset 4. Four first bits are used for id.
2125 			     */
2126 			    (u8)((timeout << 4) & 0xf0),
2127 			    (u8)((timeout >> 4) & 0xff),
2128 			    (u8)((timeout >> 12) & 0xff),
2129 			    (u8)((timeout >> 20) & 0xff));
2130 }
2131 EXPORT_SYMBOL(db8500_prcmu_load_a9wdog);
2132 
2133 /**
2134  * prcmu_abb_read() - Read register value(s) from the ABB.
2135  * @slave:	The I2C slave address.
2136  * @reg:	The (start) register address.
2137  * @value:	The read out value(s).
2138  * @size:	The number of registers to read.
2139  *
2140  * Reads register value(s) from the ABB.
2141  * @size has to be 1 for the current firmware version.
2142  */
2143 int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
2144 {
2145 	int r;
2146 
2147 	if (size != 1)
2148 		return -EINVAL;
2149 
2150 	mutex_lock(&mb5_transfer.lock);
2151 
2152 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2153 		cpu_relax();
2154 
2155 	writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2156 	writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2157 	writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2158 	writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2159 	writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2160 
2161 	writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2162 
2163 	if (!wait_for_completion_timeout(&mb5_transfer.work,
2164 				msecs_to_jiffies(20000))) {
2165 		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2166 			__func__);
2167 		r = -EIO;
2168 	} else {
2169 		r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
2170 	}
2171 
2172 	if (!r)
2173 		*value = mb5_transfer.ack.value;
2174 
2175 	mutex_unlock(&mb5_transfer.lock);
2176 
2177 	return r;
2178 }
2179 
2180 /**
2181  * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
2182  * @slave:	The I2C slave address.
2183  * @reg:	The (start) register address.
2184  * @value:	The value(s) to write.
2185  * @mask:	The mask(s) to use.
2186  * @size:	The number of registers to write.
2187  *
2188  * Writes masked register value(s) to the ABB.
2189  * For each @value, only the bits set to 1 in the corresponding @mask
2190  * will be written. The other bits are not changed.
2191  * @size has to be 1 for the current firmware version.
2192  */
2193 int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
2194 {
2195 	int r;
2196 
2197 	if (size != 1)
2198 		return -EINVAL;
2199 
2200 	mutex_lock(&mb5_transfer.lock);
2201 
2202 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2203 		cpu_relax();
2204 
2205 	writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2206 	writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2207 	writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2208 	writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2209 	writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2210 
2211 	writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2212 
2213 	if (!wait_for_completion_timeout(&mb5_transfer.work,
2214 				msecs_to_jiffies(20000))) {
2215 		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2216 			__func__);
2217 		r = -EIO;
2218 	} else {
2219 		r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
2220 	}
2221 
2222 	mutex_unlock(&mb5_transfer.lock);
2223 
2224 	return r;
2225 }
2226 
2227 /**
2228  * prcmu_abb_write() - Write register value(s) to the ABB.
2229  * @slave:	The I2C slave address.
2230  * @reg:	The (start) register address.
2231  * @value:	The value(s) to write.
2232  * @size:	The number of registers to write.
2233  *
2234  * Writes register value(s) to the ABB.
2235  * @size has to be 1 for the current firmware version.
2236  */
2237 int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
2238 {
2239 	u8 mask = ~0;
2240 
2241 	return prcmu_abb_write_masked(slave, reg, value, &mask, size);
2242 }
2243 
2244 /**
2245  * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
2246  */
2247 int prcmu_ac_wake_req(void)
2248 {
2249 	u32 val;
2250 	int ret = 0;
2251 
2252 	mutex_lock(&mb0_transfer.ac_wake_lock);
2253 
2254 	val = readl(PRCM_HOSTACCESS_REQ);
2255 	if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
2256 		goto unlock_and_return;
2257 
2258 	atomic_set(&ac_wake_req_state, 1);
2259 
2260 	/*
2261 	 * Force Modem Wake-up before hostaccess_req ping-pong.
2262 	 * It prevents Modem to enter in Sleep while acking the hostaccess
2263 	 * request. The 31us delay has been calculated by HWI.
2264 	 */
2265 	val |= PRCM_HOSTACCESS_REQ_WAKE_REQ;
2266 	writel(val, PRCM_HOSTACCESS_REQ);
2267 
2268 	udelay(31);
2269 
2270 	val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ;
2271 	writel(val, PRCM_HOSTACCESS_REQ);
2272 
2273 	if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2274 			msecs_to_jiffies(5000))) {
2275 		pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2276 			__func__);
2277 		ret = -EFAULT;
2278 	}
2279 
2280 unlock_and_return:
2281 	mutex_unlock(&mb0_transfer.ac_wake_lock);
2282 	return ret;
2283 }
2284 
2285 /**
2286  * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
2287  */
2288 void prcmu_ac_sleep_req(void)
2289 {
2290 	u32 val;
2291 
2292 	mutex_lock(&mb0_transfer.ac_wake_lock);
2293 
2294 	val = readl(PRCM_HOSTACCESS_REQ);
2295 	if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
2296 		goto unlock_and_return;
2297 
2298 	writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
2299 		PRCM_HOSTACCESS_REQ);
2300 
2301 	if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2302 			msecs_to_jiffies(5000))) {
2303 		pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2304 			__func__);
2305 	}
2306 
2307 	atomic_set(&ac_wake_req_state, 0);
2308 
2309 unlock_and_return:
2310 	mutex_unlock(&mb0_transfer.ac_wake_lock);
2311 }
2312 
2313 bool db8500_prcmu_is_ac_wake_requested(void)
2314 {
2315 	return (atomic_read(&ac_wake_req_state) != 0);
2316 }
2317 
2318 /**
2319  * db8500_prcmu_system_reset - System reset
2320  *
2321  * Saves the reset reason code and then sets the APE_SOFTRST register which
2322  * fires interrupt to fw
2323  */
2324 void db8500_prcmu_system_reset(u16 reset_code)
2325 {
2326 	writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
2327 	writel(1, PRCM_APE_SOFTRST);
2328 }
2329 
2330 /**
2331  * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
2332  *
2333  * Retrieves the reset reason code stored by prcmu_system_reset() before
2334  * last restart.
2335  */
2336 u16 db8500_prcmu_get_reset_code(void)
2337 {
2338 	return readw(tcdm_base + PRCM_SW_RST_REASON);
2339 }
2340 
2341 /**
2342  * db8500_prcmu_reset_modem - ask the PRCMU to reset modem
2343  */
2344 void db8500_prcmu_modem_reset(void)
2345 {
2346 	mutex_lock(&mb1_transfer.lock);
2347 
2348 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
2349 		cpu_relax();
2350 
2351 	writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
2352 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
2353 	wait_for_completion(&mb1_transfer.work);
2354 
2355 	/*
2356 	 * No need to check return from PRCMU as modem should go in reset state
2357 	 * This state is already managed by upper layer
2358 	 */
2359 
2360 	mutex_unlock(&mb1_transfer.lock);
2361 }
2362 
2363 static void ack_dbb_wakeup(void)
2364 {
2365 	unsigned long flags;
2366 
2367 	spin_lock_irqsave(&mb0_transfer.lock, flags);
2368 
2369 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
2370 		cpu_relax();
2371 
2372 	writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
2373 	writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
2374 
2375 	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2376 }
2377 
2378 static inline void print_unknown_header_warning(u8 n, u8 header)
2379 {
2380 	pr_warn("prcmu: Unknown message header (%d) in mailbox %d\n",
2381 		header, n);
2382 }
2383 
2384 static bool read_mailbox_0(void)
2385 {
2386 	bool r;
2387 	u32 ev;
2388 	unsigned int n;
2389 	u8 header;
2390 
2391 	header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
2392 	switch (header) {
2393 	case MB0H_WAKEUP_EXE:
2394 	case MB0H_WAKEUP_SLEEP:
2395 		if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
2396 			ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
2397 		else
2398 			ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
2399 
2400 		if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
2401 			complete(&mb0_transfer.ac_wake_work);
2402 		if (ev & WAKEUP_BIT_SYSCLK_OK)
2403 			complete(&mb3_transfer.sysclk_work);
2404 
2405 		ev &= mb0_transfer.req.dbb_irqs;
2406 
2407 		for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
2408 			if (ev & prcmu_irq_bit[n])
2409 				generic_handle_irq(irq_find_mapping(db8500_irq_domain, n));
2410 		}
2411 		r = true;
2412 		break;
2413 	default:
2414 		print_unknown_header_warning(0, header);
2415 		r = false;
2416 		break;
2417 	}
2418 	writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
2419 	return r;
2420 }
2421 
2422 static bool read_mailbox_1(void)
2423 {
2424 	mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
2425 	mb1_transfer.ack.arm_opp = readb(tcdm_base +
2426 		PRCM_ACK_MB1_CURRENT_ARM_OPP);
2427 	mb1_transfer.ack.ape_opp = readb(tcdm_base +
2428 		PRCM_ACK_MB1_CURRENT_APE_OPP);
2429 	mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
2430 		PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
2431 	writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
2432 	complete(&mb1_transfer.work);
2433 	return false;
2434 }
2435 
2436 static bool read_mailbox_2(void)
2437 {
2438 	mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
2439 	writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
2440 	complete(&mb2_transfer.work);
2441 	return false;
2442 }
2443 
2444 static bool read_mailbox_3(void)
2445 {
2446 	writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
2447 	return false;
2448 }
2449 
2450 static bool read_mailbox_4(void)
2451 {
2452 	u8 header;
2453 	bool do_complete = true;
2454 
2455 	header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
2456 	switch (header) {
2457 	case MB4H_MEM_ST:
2458 	case MB4H_HOTDOG:
2459 	case MB4H_HOTMON:
2460 	case MB4H_HOT_PERIOD:
2461 	case MB4H_A9WDOG_CONF:
2462 	case MB4H_A9WDOG_EN:
2463 	case MB4H_A9WDOG_DIS:
2464 	case MB4H_A9WDOG_LOAD:
2465 	case MB4H_A9WDOG_KICK:
2466 		break;
2467 	default:
2468 		print_unknown_header_warning(4, header);
2469 		do_complete = false;
2470 		break;
2471 	}
2472 
2473 	writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
2474 
2475 	if (do_complete)
2476 		complete(&mb4_transfer.work);
2477 
2478 	return false;
2479 }
2480 
2481 static bool read_mailbox_5(void)
2482 {
2483 	mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
2484 	mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
2485 	writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
2486 	complete(&mb5_transfer.work);
2487 	return false;
2488 }
2489 
2490 static bool read_mailbox_6(void)
2491 {
2492 	writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
2493 	return false;
2494 }
2495 
2496 static bool read_mailbox_7(void)
2497 {
2498 	writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
2499 	return false;
2500 }
2501 
2502 static bool (* const read_mailbox[NUM_MB])(void) = {
2503 	read_mailbox_0,
2504 	read_mailbox_1,
2505 	read_mailbox_2,
2506 	read_mailbox_3,
2507 	read_mailbox_4,
2508 	read_mailbox_5,
2509 	read_mailbox_6,
2510 	read_mailbox_7
2511 };
2512 
2513 static irqreturn_t prcmu_irq_handler(int irq, void *data)
2514 {
2515 	u32 bits;
2516 	u8 n;
2517 	irqreturn_t r;
2518 
2519 	bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
2520 	if (unlikely(!bits))
2521 		return IRQ_NONE;
2522 
2523 	r = IRQ_HANDLED;
2524 	for (n = 0; bits; n++) {
2525 		if (bits & MBOX_BIT(n)) {
2526 			bits -= MBOX_BIT(n);
2527 			if (read_mailbox[n]())
2528 				r = IRQ_WAKE_THREAD;
2529 		}
2530 	}
2531 	return r;
2532 }
2533 
2534 static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
2535 {
2536 	ack_dbb_wakeup();
2537 	return IRQ_HANDLED;
2538 }
2539 
2540 static void prcmu_mask_work(struct work_struct *work)
2541 {
2542 	unsigned long flags;
2543 
2544 	spin_lock_irqsave(&mb0_transfer.lock, flags);
2545 
2546 	config_wakeups();
2547 
2548 	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2549 }
2550 
2551 static void prcmu_irq_mask(struct irq_data *d)
2552 {
2553 	unsigned long flags;
2554 
2555 	spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2556 
2557 	mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq];
2558 
2559 	spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2560 
2561 	if (d->irq != IRQ_PRCMU_CA_SLEEP)
2562 		schedule_work(&mb0_transfer.mask_work);
2563 }
2564 
2565 static void prcmu_irq_unmask(struct irq_data *d)
2566 {
2567 	unsigned long flags;
2568 
2569 	spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2570 
2571 	mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq];
2572 
2573 	spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2574 
2575 	if (d->irq != IRQ_PRCMU_CA_SLEEP)
2576 		schedule_work(&mb0_transfer.mask_work);
2577 }
2578 
2579 static void noop(struct irq_data *d)
2580 {
2581 }
2582 
2583 static struct irq_chip prcmu_irq_chip = {
2584 	.name		= "prcmu",
2585 	.irq_disable	= prcmu_irq_mask,
2586 	.irq_ack	= noop,
2587 	.irq_mask	= prcmu_irq_mask,
2588 	.irq_unmask	= prcmu_irq_unmask,
2589 };
2590 
2591 static char *fw_project_name(u32 project)
2592 {
2593 	switch (project) {
2594 	case PRCMU_FW_PROJECT_U8500:
2595 		return "U8500";
2596 	case PRCMU_FW_PROJECT_U8400:
2597 		return "U8400";
2598 	case PRCMU_FW_PROJECT_U9500:
2599 		return "U9500";
2600 	case PRCMU_FW_PROJECT_U8500_MBB:
2601 		return "U8500 MBB";
2602 	case PRCMU_FW_PROJECT_U8500_C1:
2603 		return "U8500 C1";
2604 	case PRCMU_FW_PROJECT_U8500_C2:
2605 		return "U8500 C2";
2606 	case PRCMU_FW_PROJECT_U8500_C3:
2607 		return "U8500 C3";
2608 	case PRCMU_FW_PROJECT_U8500_C4:
2609 		return "U8500 C4";
2610 	case PRCMU_FW_PROJECT_U9500_MBL:
2611 		return "U9500 MBL";
2612 	case PRCMU_FW_PROJECT_U8500_MBL:
2613 		return "U8500 MBL";
2614 	case PRCMU_FW_PROJECT_U8500_MBL2:
2615 		return "U8500 MBL2";
2616 	case PRCMU_FW_PROJECT_U8520:
2617 		return "U8520 MBL";
2618 	case PRCMU_FW_PROJECT_U8420:
2619 		return "U8420";
2620 	case PRCMU_FW_PROJECT_U9540:
2621 		return "U9540";
2622 	case PRCMU_FW_PROJECT_A9420:
2623 		return "A9420";
2624 	case PRCMU_FW_PROJECT_L8540:
2625 		return "L8540";
2626 	case PRCMU_FW_PROJECT_L8580:
2627 		return "L8580";
2628 	default:
2629 		return "Unknown";
2630 	}
2631 }
2632 
2633 static int db8500_irq_map(struct irq_domain *d, unsigned int virq,
2634 				irq_hw_number_t hwirq)
2635 {
2636 	irq_set_chip_and_handler(virq, &prcmu_irq_chip,
2637 				handle_simple_irq);
2638 
2639 	return 0;
2640 }
2641 
2642 static const struct irq_domain_ops db8500_irq_ops = {
2643 	.map    = db8500_irq_map,
2644 	.xlate  = irq_domain_xlate_twocell,
2645 };
2646 
2647 static int db8500_irq_init(struct device_node *np)
2648 {
2649 	int i;
2650 
2651 	db8500_irq_domain = irq_domain_add_simple(
2652 		np, NUM_PRCMU_WAKEUPS, 0,
2653 		&db8500_irq_ops, NULL);
2654 
2655 	if (!db8500_irq_domain) {
2656 		pr_err("Failed to create irqdomain\n");
2657 		return -ENOSYS;
2658 	}
2659 
2660 	/* All wakeups will be used, so create mappings for all */
2661 	for (i = 0; i < NUM_PRCMU_WAKEUPS; i++)
2662 		irq_create_mapping(db8500_irq_domain, i);
2663 
2664 	return 0;
2665 }
2666 
2667 static void dbx500_fw_version_init(struct platform_device *pdev,
2668 			    u32 version_offset)
2669 {
2670 	struct resource *res;
2671 	void __iomem *tcpm_base;
2672 	u32 version;
2673 
2674 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
2675 					   "prcmu-tcpm");
2676 	if (!res) {
2677 		dev_err(&pdev->dev,
2678 			"Error: no prcmu tcpm memory region provided\n");
2679 		return;
2680 	}
2681 	tcpm_base = ioremap(res->start, resource_size(res));
2682 	if (!tcpm_base) {
2683 		dev_err(&pdev->dev, "no prcmu tcpm mem region provided\n");
2684 		return;
2685 	}
2686 
2687 	version = readl(tcpm_base + version_offset);
2688 	fw_info.version.project = (version & 0xFF);
2689 	fw_info.version.api_version = (version >> 8) & 0xFF;
2690 	fw_info.version.func_version = (version >> 16) & 0xFF;
2691 	fw_info.version.errata = (version >> 24) & 0xFF;
2692 	strncpy(fw_info.version.project_name,
2693 		fw_project_name(fw_info.version.project),
2694 		PRCMU_FW_PROJECT_NAME_LEN);
2695 	fw_info.valid = true;
2696 	pr_info("PRCMU firmware: %s(%d), version %d.%d.%d\n",
2697 		fw_info.version.project_name,
2698 		fw_info.version.project,
2699 		fw_info.version.api_version,
2700 		fw_info.version.func_version,
2701 		fw_info.version.errata);
2702 	iounmap(tcpm_base);
2703 }
2704 
2705 void __init db8500_prcmu_early_init(u32 phy_base, u32 size)
2706 {
2707 	/*
2708 	 * This is a temporary remap to bring up the clocks. It is
2709 	 * subsequently replaces with a real remap. After the merge of
2710 	 * the mailbox subsystem all of this early code goes away, and the
2711 	 * clock driver can probe independently. An early initcall will
2712 	 * still be needed, but it can be diverted into drivers/clk/ux500.
2713 	 */
2714 	prcmu_base = ioremap(phy_base, size);
2715 	if (!prcmu_base)
2716 		pr_err("%s: ioremap() of prcmu registers failed!\n", __func__);
2717 
2718 	spin_lock_init(&mb0_transfer.lock);
2719 	spin_lock_init(&mb0_transfer.dbb_irqs_lock);
2720 	mutex_init(&mb0_transfer.ac_wake_lock);
2721 	init_completion(&mb0_transfer.ac_wake_work);
2722 	mutex_init(&mb1_transfer.lock);
2723 	init_completion(&mb1_transfer.work);
2724 	mb1_transfer.ape_opp = APE_NO_CHANGE;
2725 	mutex_init(&mb2_transfer.lock);
2726 	init_completion(&mb2_transfer.work);
2727 	spin_lock_init(&mb2_transfer.auto_pm_lock);
2728 	spin_lock_init(&mb3_transfer.lock);
2729 	mutex_init(&mb3_transfer.sysclk_lock);
2730 	init_completion(&mb3_transfer.sysclk_work);
2731 	mutex_init(&mb4_transfer.lock);
2732 	init_completion(&mb4_transfer.work);
2733 	mutex_init(&mb5_transfer.lock);
2734 	init_completion(&mb5_transfer.work);
2735 
2736 	INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
2737 }
2738 
2739 static void init_prcm_registers(void)
2740 {
2741 	u32 val;
2742 
2743 	val = readl(PRCM_A9PL_FORCE_CLKEN);
2744 	val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
2745 		PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
2746 	writel(val, (PRCM_A9PL_FORCE_CLKEN));
2747 }
2748 
2749 /*
2750  * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
2751  */
2752 static struct regulator_consumer_supply db8500_vape_consumers[] = {
2753 	REGULATOR_SUPPLY("v-ape", NULL),
2754 	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2755 	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2756 	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2757 	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
2758 	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
2759 	/* "v-mmc" changed to "vcore" in the mainline kernel */
2760 	REGULATOR_SUPPLY("vcore", "sdi0"),
2761 	REGULATOR_SUPPLY("vcore", "sdi1"),
2762 	REGULATOR_SUPPLY("vcore", "sdi2"),
2763 	REGULATOR_SUPPLY("vcore", "sdi3"),
2764 	REGULATOR_SUPPLY("vcore", "sdi4"),
2765 	REGULATOR_SUPPLY("v-dma", "dma40.0"),
2766 	REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2767 	/* "v-uart" changed to "vcore" in the mainline kernel */
2768 	REGULATOR_SUPPLY("vcore", "uart0"),
2769 	REGULATOR_SUPPLY("vcore", "uart1"),
2770 	REGULATOR_SUPPLY("vcore", "uart2"),
2771 	REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
2772 	REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
2773 	REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
2774 };
2775 
2776 static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
2777 	REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2778 	/* AV8100 regulator */
2779 	REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2780 };
2781 
2782 static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
2783 	REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
2784 	REGULATOR_SUPPLY("vsupply", "mcde"),
2785 };
2786 
2787 /* SVA MMDSP regulator switch */
2788 static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
2789 	REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2790 };
2791 
2792 /* SVA pipe regulator switch */
2793 static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
2794 	REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2795 };
2796 
2797 /* SIA MMDSP regulator switch */
2798 static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
2799 	REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2800 };
2801 
2802 /* SIA pipe regulator switch */
2803 static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
2804 	REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2805 };
2806 
2807 static struct regulator_consumer_supply db8500_sga_consumers[] = {
2808 	REGULATOR_SUPPLY("v-mali", NULL),
2809 };
2810 
2811 /* ESRAM1 and 2 regulator switch */
2812 static struct regulator_consumer_supply db8500_esram12_consumers[] = {
2813 	REGULATOR_SUPPLY("esram12", "cm_control"),
2814 };
2815 
2816 /* ESRAM3 and 4 regulator switch */
2817 static struct regulator_consumer_supply db8500_esram34_consumers[] = {
2818 	REGULATOR_SUPPLY("v-esram34", "mcde"),
2819 	REGULATOR_SUPPLY("esram34", "cm_control"),
2820 	REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
2821 };
2822 
2823 static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
2824 	[DB8500_REGULATOR_VAPE] = {
2825 		.constraints = {
2826 			.name = "db8500-vape",
2827 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2828 			.always_on = true,
2829 		},
2830 		.consumer_supplies = db8500_vape_consumers,
2831 		.num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
2832 	},
2833 	[DB8500_REGULATOR_VARM] = {
2834 		.constraints = {
2835 			.name = "db8500-varm",
2836 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2837 		},
2838 	},
2839 	[DB8500_REGULATOR_VMODEM] = {
2840 		.constraints = {
2841 			.name = "db8500-vmodem",
2842 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2843 		},
2844 	},
2845 	[DB8500_REGULATOR_VPLL] = {
2846 		.constraints = {
2847 			.name = "db8500-vpll",
2848 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2849 		},
2850 	},
2851 	[DB8500_REGULATOR_VSMPS1] = {
2852 		.constraints = {
2853 			.name = "db8500-vsmps1",
2854 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2855 		},
2856 	},
2857 	[DB8500_REGULATOR_VSMPS2] = {
2858 		.constraints = {
2859 			.name = "db8500-vsmps2",
2860 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2861 		},
2862 		.consumer_supplies = db8500_vsmps2_consumers,
2863 		.num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
2864 	},
2865 	[DB8500_REGULATOR_VSMPS3] = {
2866 		.constraints = {
2867 			.name = "db8500-vsmps3",
2868 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2869 		},
2870 	},
2871 	[DB8500_REGULATOR_VRF1] = {
2872 		.constraints = {
2873 			.name = "db8500-vrf1",
2874 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2875 		},
2876 	},
2877 	[DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
2878 		/* dependency to u8500-vape is handled outside regulator framework */
2879 		.constraints = {
2880 			.name = "db8500-sva-mmdsp",
2881 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2882 		},
2883 		.consumer_supplies = db8500_svammdsp_consumers,
2884 		.num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
2885 	},
2886 	[DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
2887 		.constraints = {
2888 			/* "ret" means "retention" */
2889 			.name = "db8500-sva-mmdsp-ret",
2890 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2891 		},
2892 	},
2893 	[DB8500_REGULATOR_SWITCH_SVAPIPE] = {
2894 		/* dependency to u8500-vape is handled outside regulator framework */
2895 		.constraints = {
2896 			.name = "db8500-sva-pipe",
2897 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2898 		},
2899 		.consumer_supplies = db8500_svapipe_consumers,
2900 		.num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
2901 	},
2902 	[DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
2903 		/* dependency to u8500-vape is handled outside regulator framework */
2904 		.constraints = {
2905 			.name = "db8500-sia-mmdsp",
2906 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2907 		},
2908 		.consumer_supplies = db8500_siammdsp_consumers,
2909 		.num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
2910 	},
2911 	[DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
2912 		.constraints = {
2913 			.name = "db8500-sia-mmdsp-ret",
2914 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2915 		},
2916 	},
2917 	[DB8500_REGULATOR_SWITCH_SIAPIPE] = {
2918 		/* dependency to u8500-vape is handled outside regulator framework */
2919 		.constraints = {
2920 			.name = "db8500-sia-pipe",
2921 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2922 		},
2923 		.consumer_supplies = db8500_siapipe_consumers,
2924 		.num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
2925 	},
2926 	[DB8500_REGULATOR_SWITCH_SGA] = {
2927 		.supply_regulator = "db8500-vape",
2928 		.constraints = {
2929 			.name = "db8500-sga",
2930 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2931 		},
2932 		.consumer_supplies = db8500_sga_consumers,
2933 		.num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
2934 
2935 	},
2936 	[DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
2937 		.supply_regulator = "db8500-vape",
2938 		.constraints = {
2939 			.name = "db8500-b2r2-mcde",
2940 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2941 		},
2942 		.consumer_supplies = db8500_b2r2_mcde_consumers,
2943 		.num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
2944 	},
2945 	[DB8500_REGULATOR_SWITCH_ESRAM12] = {
2946 		/*
2947 		 * esram12 is set in retention and supplied by Vsafe when Vape is off,
2948 		 * no need to hold Vape
2949 		 */
2950 		.constraints = {
2951 			.name = "db8500-esram12",
2952 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2953 		},
2954 		.consumer_supplies = db8500_esram12_consumers,
2955 		.num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
2956 	},
2957 	[DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
2958 		.constraints = {
2959 			.name = "db8500-esram12-ret",
2960 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2961 		},
2962 	},
2963 	[DB8500_REGULATOR_SWITCH_ESRAM34] = {
2964 		/*
2965 		 * esram34 is set in retention and supplied by Vsafe when Vape is off,
2966 		 * no need to hold Vape
2967 		 */
2968 		.constraints = {
2969 			.name = "db8500-esram34",
2970 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2971 		},
2972 		.consumer_supplies = db8500_esram34_consumers,
2973 		.num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
2974 	},
2975 	[DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
2976 		.constraints = {
2977 			.name = "db8500-esram34-ret",
2978 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2979 		},
2980 	},
2981 };
2982 
2983 static struct ux500_wdt_data db8500_wdt_pdata = {
2984 	.timeout = 600, /* 10 minutes */
2985 	.has_28_bits_resolution = true,
2986 };
2987 /*
2988  * Thermal Sensor
2989  */
2990 
2991 static struct resource db8500_thsens_resources[] = {
2992 	{
2993 		.name = "IRQ_HOTMON_LOW",
2994 		.start  = IRQ_PRCMU_HOTMON_LOW,
2995 		.end    = IRQ_PRCMU_HOTMON_LOW,
2996 		.flags  = IORESOURCE_IRQ,
2997 	},
2998 	{
2999 		.name = "IRQ_HOTMON_HIGH",
3000 		.start  = IRQ_PRCMU_HOTMON_HIGH,
3001 		.end    = IRQ_PRCMU_HOTMON_HIGH,
3002 		.flags  = IORESOURCE_IRQ,
3003 	},
3004 };
3005 
3006 static struct db8500_thsens_platform_data db8500_thsens_data = {
3007 	.trip_points[0] = {
3008 		.temp = 70000,
3009 		.type = THERMAL_TRIP_ACTIVE,
3010 		.cdev_name = {
3011 			[0] = "thermal-cpufreq-0",
3012 		},
3013 	},
3014 	.trip_points[1] = {
3015 		.temp = 75000,
3016 		.type = THERMAL_TRIP_ACTIVE,
3017 		.cdev_name = {
3018 			[0] = "thermal-cpufreq-0",
3019 		},
3020 	},
3021 	.trip_points[2] = {
3022 		.temp = 80000,
3023 		.type = THERMAL_TRIP_ACTIVE,
3024 		.cdev_name = {
3025 			[0] = "thermal-cpufreq-0",
3026 		},
3027 	},
3028 	.trip_points[3] = {
3029 		.temp = 85000,
3030 		.type = THERMAL_TRIP_CRITICAL,
3031 	},
3032 	.num_trips = 4,
3033 };
3034 
3035 static const struct mfd_cell common_prcmu_devs[] = {
3036 	{
3037 		.name = "ux500_wdt",
3038 		.platform_data = &db8500_wdt_pdata,
3039 		.pdata_size = sizeof(db8500_wdt_pdata),
3040 		.id = -1,
3041 	},
3042 };
3043 
3044 static const struct mfd_cell db8500_prcmu_devs[] = {
3045 	{
3046 		.name = "db8500-prcmu-regulators",
3047 		.of_compatible = "stericsson,db8500-prcmu-regulator",
3048 		.platform_data = &db8500_regulators,
3049 		.pdata_size = sizeof(db8500_regulators),
3050 	},
3051 	{
3052 		.name = "cpuidle-dbx500",
3053 		.of_compatible = "stericsson,cpuidle-dbx500",
3054 	},
3055 	{
3056 		.name = "db8500-thermal",
3057 		.num_resources = ARRAY_SIZE(db8500_thsens_resources),
3058 		.resources = db8500_thsens_resources,
3059 		.platform_data = &db8500_thsens_data,
3060 		.pdata_size = sizeof(db8500_thsens_data),
3061 	},
3062 };
3063 
3064 static int db8500_prcmu_register_ab8500(struct device *parent)
3065 {
3066 	struct device_node *np;
3067 	struct resource ab8500_resource;
3068 	const struct mfd_cell ab8500_cell = {
3069 		.name = "ab8500-core",
3070 		.of_compatible = "stericsson,ab8500",
3071 		.id = AB8500_VERSION_AB8500,
3072 		.resources = &ab8500_resource,
3073 		.num_resources = 1,
3074 	};
3075 
3076 	if (!parent->of_node)
3077 		return -ENODEV;
3078 
3079 	/* Look up the device node, sneak the IRQ out of it */
3080 	for_each_child_of_node(parent->of_node, np) {
3081 		if (of_device_is_compatible(np, ab8500_cell.of_compatible))
3082 			break;
3083 	}
3084 	if (!np) {
3085 		dev_info(parent, "could not find AB8500 node in the device tree\n");
3086 		return -ENODEV;
3087 	}
3088 	of_irq_to_resource_table(np, &ab8500_resource, 1);
3089 
3090 	return mfd_add_devices(parent, 0, &ab8500_cell, 1, NULL, 0, NULL);
3091 }
3092 
3093 /**
3094  * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
3095  *
3096  */
3097 static int db8500_prcmu_probe(struct platform_device *pdev)
3098 {
3099 	struct device_node *np = pdev->dev.of_node;
3100 	int irq = 0, err = 0;
3101 	struct resource *res;
3102 
3103 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu");
3104 	if (!res) {
3105 		dev_err(&pdev->dev, "no prcmu memory region provided\n");
3106 		return -EINVAL;
3107 	}
3108 	prcmu_base = devm_ioremap(&pdev->dev, res->start, resource_size(res));
3109 	if (!prcmu_base) {
3110 		dev_err(&pdev->dev,
3111 			"failed to ioremap prcmu register memory\n");
3112 		return -ENOMEM;
3113 	}
3114 	init_prcm_registers();
3115 	dbx500_fw_version_init(pdev, DB8500_PRCMU_FW_VERSION_OFFSET);
3116 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu-tcdm");
3117 	if (!res) {
3118 		dev_err(&pdev->dev, "no prcmu tcdm region provided\n");
3119 		return -EINVAL;
3120 	}
3121 	tcdm_base = devm_ioremap(&pdev->dev, res->start,
3122 			resource_size(res));
3123 	if (!tcdm_base) {
3124 		dev_err(&pdev->dev,
3125 			"failed to ioremap prcmu-tcdm register memory\n");
3126 		return -ENOMEM;
3127 	}
3128 
3129 	/* Clean up the mailbox interrupts after pre-kernel code. */
3130 	writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
3131 
3132 	irq = platform_get_irq(pdev, 0);
3133 	if (irq <= 0) {
3134 		dev_err(&pdev->dev, "no prcmu irq provided\n");
3135 		return irq;
3136 	}
3137 
3138 	err = request_threaded_irq(irq, prcmu_irq_handler,
3139 	        prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
3140 	if (err < 0) {
3141 		pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
3142 		return err;
3143 	}
3144 
3145 	db8500_irq_init(np);
3146 
3147 	prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
3148 
3149 	err = mfd_add_devices(&pdev->dev, 0, common_prcmu_devs,
3150 			      ARRAY_SIZE(common_prcmu_devs), NULL, 0, db8500_irq_domain);
3151 	if (err) {
3152 		pr_err("prcmu: Failed to add subdevices\n");
3153 		return err;
3154 	}
3155 
3156 	/* TODO: Remove restriction when clk definitions are available. */
3157 	if (!of_machine_is_compatible("st-ericsson,u8540")) {
3158 		err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
3159 				      ARRAY_SIZE(db8500_prcmu_devs), NULL, 0,
3160 				      db8500_irq_domain);
3161 		if (err) {
3162 			mfd_remove_devices(&pdev->dev);
3163 			pr_err("prcmu: Failed to add subdevices\n");
3164 			return err;
3165 		}
3166 	}
3167 
3168 	err = db8500_prcmu_register_ab8500(&pdev->dev);
3169 	if (err) {
3170 		mfd_remove_devices(&pdev->dev);
3171 		pr_err("prcmu: Failed to add ab8500 subdevice\n");
3172 		return err;
3173 	}
3174 
3175 	pr_info("DB8500 PRCMU initialized\n");
3176 	return err;
3177 }
3178 static const struct of_device_id db8500_prcmu_match[] = {
3179 	{ .compatible = "stericsson,db8500-prcmu"},
3180 	{ },
3181 };
3182 
3183 static struct platform_driver db8500_prcmu_driver = {
3184 	.driver = {
3185 		.name = "db8500-prcmu",
3186 		.of_match_table = db8500_prcmu_match,
3187 	},
3188 	.probe = db8500_prcmu_probe,
3189 };
3190 
3191 static int __init db8500_prcmu_init(void)
3192 {
3193 	return platform_driver_register(&db8500_prcmu_driver);
3194 }
3195 core_initcall(db8500_prcmu_init);
3196