xref: /openbmc/linux/drivers/memory/tegra/tegra30-emc.c (revision a1dff44b354c0e2721aeae075a287d07daf1c76b)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Tegra30 External Memory Controller driver
4  *
5  * Based on downstream driver from NVIDIA and tegra124-emc.c
6  * Copyright (C) 2011-2014 NVIDIA Corporation
7  *
8  * Author: Dmitry Osipenko <digetx@gmail.com>
9  * Copyright (C) 2019 GRATE-DRIVER project
10  */
11 
12 #include <linux/clk.h>
13 #include <linux/clk/tegra.h>
14 #include <linux/debugfs.h>
15 #include <linux/delay.h>
16 #include <linux/err.h>
17 #include <linux/interconnect-provider.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/iopoll.h>
21 #include <linux/kernel.h>
22 #include <linux/module.h>
23 #include <linux/mutex.h>
24 #include <linux/of_platform.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_opp.h>
27 #include <linux/slab.h>
28 #include <linux/sort.h>
29 #include <linux/types.h>
30 
31 #include <soc/tegra/common.h>
32 #include <soc/tegra/fuse.h>
33 
34 #include "mc.h"
35 
36 #define EMC_INTSTATUS				0x000
37 #define EMC_INTMASK				0x004
38 #define EMC_DBG					0x008
39 #define EMC_CFG					0x00c
40 #define EMC_REFCTRL				0x020
41 #define EMC_TIMING_CONTROL			0x028
42 #define EMC_RC					0x02c
43 #define EMC_RFC					0x030
44 #define EMC_RAS					0x034
45 #define EMC_RP					0x038
46 #define EMC_R2W					0x03c
47 #define EMC_W2R					0x040
48 #define EMC_R2P					0x044
49 #define EMC_W2P					0x048
50 #define EMC_RD_RCD				0x04c
51 #define EMC_WR_RCD				0x050
52 #define EMC_RRD					0x054
53 #define EMC_REXT				0x058
54 #define EMC_WDV					0x05c
55 #define EMC_QUSE				0x060
56 #define EMC_QRST				0x064
57 #define EMC_QSAFE				0x068
58 #define EMC_RDV					0x06c
59 #define EMC_REFRESH				0x070
60 #define EMC_BURST_REFRESH_NUM			0x074
61 #define EMC_PDEX2WR				0x078
62 #define EMC_PDEX2RD				0x07c
63 #define EMC_PCHG2PDEN				0x080
64 #define EMC_ACT2PDEN				0x084
65 #define EMC_AR2PDEN				0x088
66 #define EMC_RW2PDEN				0x08c
67 #define EMC_TXSR				0x090
68 #define EMC_TCKE				0x094
69 #define EMC_TFAW				0x098
70 #define EMC_TRPAB				0x09c
71 #define EMC_TCLKSTABLE				0x0a0
72 #define EMC_TCLKSTOP				0x0a4
73 #define EMC_TREFBW				0x0a8
74 #define EMC_QUSE_EXTRA				0x0ac
75 #define EMC_ODT_WRITE				0x0b0
76 #define EMC_ODT_READ				0x0b4
77 #define EMC_WEXT				0x0b8
78 #define EMC_CTT					0x0bc
79 #define EMC_MRS_WAIT_CNT			0x0c8
80 #define EMC_MRS					0x0cc
81 #define EMC_EMRS				0x0d0
82 #define EMC_SELF_REF				0x0e0
83 #define EMC_MRW					0x0e8
84 #define EMC_XM2DQSPADCTRL3			0x0f8
85 #define EMC_FBIO_SPARE				0x100
86 #define EMC_FBIO_CFG5				0x104
87 #define EMC_FBIO_CFG6				0x114
88 #define EMC_CFG_RSV				0x120
89 #define EMC_AUTO_CAL_CONFIG			0x2a4
90 #define EMC_AUTO_CAL_INTERVAL			0x2a8
91 #define EMC_AUTO_CAL_STATUS			0x2ac
92 #define EMC_STATUS				0x2b4
93 #define EMC_CFG_2				0x2b8
94 #define EMC_CFG_DIG_DLL				0x2bc
95 #define EMC_CFG_DIG_DLL_PERIOD			0x2c0
96 #define EMC_CTT_DURATION			0x2d8
97 #define EMC_CTT_TERM_CTRL			0x2dc
98 #define EMC_ZCAL_INTERVAL			0x2e0
99 #define EMC_ZCAL_WAIT_CNT			0x2e4
100 #define EMC_ZQ_CAL				0x2ec
101 #define EMC_XM2CMDPADCTRL			0x2f0
102 #define EMC_XM2DQSPADCTRL2			0x2fc
103 #define EMC_XM2DQPADCTRL2			0x304
104 #define EMC_XM2CLKPADCTRL			0x308
105 #define EMC_XM2COMPPADCTRL			0x30c
106 #define EMC_XM2VTTGENPADCTRL			0x310
107 #define EMC_XM2VTTGENPADCTRL2			0x314
108 #define EMC_XM2QUSEPADCTRL			0x318
109 #define EMC_DLL_XFORM_DQS0			0x328
110 #define EMC_DLL_XFORM_DQS1			0x32c
111 #define EMC_DLL_XFORM_DQS2			0x330
112 #define EMC_DLL_XFORM_DQS3			0x334
113 #define EMC_DLL_XFORM_DQS4			0x338
114 #define EMC_DLL_XFORM_DQS5			0x33c
115 #define EMC_DLL_XFORM_DQS6			0x340
116 #define EMC_DLL_XFORM_DQS7			0x344
117 #define EMC_DLL_XFORM_QUSE0			0x348
118 #define EMC_DLL_XFORM_QUSE1			0x34c
119 #define EMC_DLL_XFORM_QUSE2			0x350
120 #define EMC_DLL_XFORM_QUSE3			0x354
121 #define EMC_DLL_XFORM_QUSE4			0x358
122 #define EMC_DLL_XFORM_QUSE5			0x35c
123 #define EMC_DLL_XFORM_QUSE6			0x360
124 #define EMC_DLL_XFORM_QUSE7			0x364
125 #define EMC_DLL_XFORM_DQ0			0x368
126 #define EMC_DLL_XFORM_DQ1			0x36c
127 #define EMC_DLL_XFORM_DQ2			0x370
128 #define EMC_DLL_XFORM_DQ3			0x374
129 #define EMC_DLI_TRIM_TXDQS0			0x3a8
130 #define EMC_DLI_TRIM_TXDQS1			0x3ac
131 #define EMC_DLI_TRIM_TXDQS2			0x3b0
132 #define EMC_DLI_TRIM_TXDQS3			0x3b4
133 #define EMC_DLI_TRIM_TXDQS4			0x3b8
134 #define EMC_DLI_TRIM_TXDQS5			0x3bc
135 #define EMC_DLI_TRIM_TXDQS6			0x3c0
136 #define EMC_DLI_TRIM_TXDQS7			0x3c4
137 #define EMC_STALL_THEN_EXE_BEFORE_CLKCHANGE	0x3c8
138 #define EMC_STALL_THEN_EXE_AFTER_CLKCHANGE	0x3cc
139 #define EMC_UNSTALL_RW_AFTER_CLKCHANGE		0x3d0
140 #define EMC_SEL_DPD_CTRL			0x3d8
141 #define EMC_PRE_REFRESH_REQ_CNT			0x3dc
142 #define EMC_DYN_SELF_REF_CONTROL		0x3e0
143 #define EMC_TXSRDLL				0x3e4
144 
145 #define EMC_STATUS_TIMING_UPDATE_STALLED	BIT(23)
146 
147 #define EMC_MODE_SET_DLL_RESET			BIT(8)
148 #define EMC_MODE_SET_LONG_CNT			BIT(26)
149 
150 #define EMC_SELF_REF_CMD_ENABLED		BIT(0)
151 
152 #define DRAM_DEV_SEL_ALL			(0 << 30)
153 #define DRAM_DEV_SEL_0				(2 << 30)
154 #define DRAM_DEV_SEL_1				(1 << 30)
155 #define DRAM_BROADCAST(num) \
156 	((num) > 1 ? DRAM_DEV_SEL_ALL : DRAM_DEV_SEL_0)
157 
158 #define EMC_ZQ_CAL_CMD				BIT(0)
159 #define EMC_ZQ_CAL_LONG				BIT(4)
160 #define EMC_ZQ_CAL_LONG_CMD_DEV0 \
161 	(DRAM_DEV_SEL_0 | EMC_ZQ_CAL_LONG | EMC_ZQ_CAL_CMD)
162 #define EMC_ZQ_CAL_LONG_CMD_DEV1 \
163 	(DRAM_DEV_SEL_1 | EMC_ZQ_CAL_LONG | EMC_ZQ_CAL_CMD)
164 
165 #define EMC_DBG_READ_MUX_ASSEMBLY		BIT(0)
166 #define EMC_DBG_WRITE_MUX_ACTIVE		BIT(1)
167 #define EMC_DBG_FORCE_UPDATE			BIT(2)
168 #define EMC_DBG_CFG_PRIORITY			BIT(24)
169 
170 #define EMC_CFG5_QUSE_MODE_SHIFT		13
171 #define EMC_CFG5_QUSE_MODE_MASK			(7 << EMC_CFG5_QUSE_MODE_SHIFT)
172 
173 #define EMC_CFG5_QUSE_MODE_INTERNAL_LPBK	2
174 #define EMC_CFG5_QUSE_MODE_PULSE_INTERN		3
175 
176 #define EMC_SEL_DPD_CTRL_QUSE_DPD_ENABLE	BIT(9)
177 
178 #define EMC_XM2COMPPADCTRL_VREF_CAL_ENABLE	BIT(10)
179 
180 #define EMC_XM2QUSEPADCTRL_IVREF_ENABLE		BIT(4)
181 
182 #define EMC_XM2DQSPADCTRL2_VREF_ENABLE		BIT(5)
183 #define EMC_XM2DQSPADCTRL3_VREF_ENABLE		BIT(5)
184 
185 #define EMC_AUTO_CAL_STATUS_ACTIVE		BIT(31)
186 
187 #define	EMC_FBIO_CFG5_DRAM_TYPE_MASK		0x3
188 
189 #define EMC_MRS_WAIT_CNT_SHORT_WAIT_MASK	0x3ff
190 #define EMC_MRS_WAIT_CNT_LONG_WAIT_SHIFT	16
191 #define EMC_MRS_WAIT_CNT_LONG_WAIT_MASK \
192 	(0x3ff << EMC_MRS_WAIT_CNT_LONG_WAIT_SHIFT)
193 
194 #define EMC_REFCTRL_DEV_SEL_MASK		0x3
195 #define EMC_REFCTRL_ENABLE			BIT(31)
196 #define EMC_REFCTRL_ENABLE_ALL(num) \
197 	(((num) > 1 ? 0 : 2) | EMC_REFCTRL_ENABLE)
198 #define EMC_REFCTRL_DISABLE_ALL(num)		((num) > 1 ? 0 : 2)
199 
200 #define EMC_CFG_PERIODIC_QRST			BIT(21)
201 #define EMC_CFG_DYN_SREF_ENABLE			BIT(28)
202 
203 #define EMC_CLKCHANGE_REQ_ENABLE		BIT(0)
204 #define EMC_CLKCHANGE_PD_ENABLE			BIT(1)
205 #define EMC_CLKCHANGE_SR_ENABLE			BIT(2)
206 
207 #define EMC_TIMING_UPDATE			BIT(0)
208 
209 #define EMC_REFRESH_OVERFLOW_INT		BIT(3)
210 #define EMC_CLKCHANGE_COMPLETE_INT		BIT(4)
211 
212 enum emc_dram_type {
213 	DRAM_TYPE_DDR3,
214 	DRAM_TYPE_DDR1,
215 	DRAM_TYPE_LPDDR2,
216 	DRAM_TYPE_DDR2,
217 };
218 
219 enum emc_dll_change {
220 	DLL_CHANGE_NONE,
221 	DLL_CHANGE_ON,
222 	DLL_CHANGE_OFF
223 };
224 
225 static const u16 emc_timing_registers[] = {
226 	[0] = EMC_RC,
227 	[1] = EMC_RFC,
228 	[2] = EMC_RAS,
229 	[3] = EMC_RP,
230 	[4] = EMC_R2W,
231 	[5] = EMC_W2R,
232 	[6] = EMC_R2P,
233 	[7] = EMC_W2P,
234 	[8] = EMC_RD_RCD,
235 	[9] = EMC_WR_RCD,
236 	[10] = EMC_RRD,
237 	[11] = EMC_REXT,
238 	[12] = EMC_WEXT,
239 	[13] = EMC_WDV,
240 	[14] = EMC_QUSE,
241 	[15] = EMC_QRST,
242 	[16] = EMC_QSAFE,
243 	[17] = EMC_RDV,
244 	[18] = EMC_REFRESH,
245 	[19] = EMC_BURST_REFRESH_NUM,
246 	[20] = EMC_PRE_REFRESH_REQ_CNT,
247 	[21] = EMC_PDEX2WR,
248 	[22] = EMC_PDEX2RD,
249 	[23] = EMC_PCHG2PDEN,
250 	[24] = EMC_ACT2PDEN,
251 	[25] = EMC_AR2PDEN,
252 	[26] = EMC_RW2PDEN,
253 	[27] = EMC_TXSR,
254 	[28] = EMC_TXSRDLL,
255 	[29] = EMC_TCKE,
256 	[30] = EMC_TFAW,
257 	[31] = EMC_TRPAB,
258 	[32] = EMC_TCLKSTABLE,
259 	[33] = EMC_TCLKSTOP,
260 	[34] = EMC_TREFBW,
261 	[35] = EMC_QUSE_EXTRA,
262 	[36] = EMC_FBIO_CFG6,
263 	[37] = EMC_ODT_WRITE,
264 	[38] = EMC_ODT_READ,
265 	[39] = EMC_FBIO_CFG5,
266 	[40] = EMC_CFG_DIG_DLL,
267 	[41] = EMC_CFG_DIG_DLL_PERIOD,
268 	[42] = EMC_DLL_XFORM_DQS0,
269 	[43] = EMC_DLL_XFORM_DQS1,
270 	[44] = EMC_DLL_XFORM_DQS2,
271 	[45] = EMC_DLL_XFORM_DQS3,
272 	[46] = EMC_DLL_XFORM_DQS4,
273 	[47] = EMC_DLL_XFORM_DQS5,
274 	[48] = EMC_DLL_XFORM_DQS6,
275 	[49] = EMC_DLL_XFORM_DQS7,
276 	[50] = EMC_DLL_XFORM_QUSE0,
277 	[51] = EMC_DLL_XFORM_QUSE1,
278 	[52] = EMC_DLL_XFORM_QUSE2,
279 	[53] = EMC_DLL_XFORM_QUSE3,
280 	[54] = EMC_DLL_XFORM_QUSE4,
281 	[55] = EMC_DLL_XFORM_QUSE5,
282 	[56] = EMC_DLL_XFORM_QUSE6,
283 	[57] = EMC_DLL_XFORM_QUSE7,
284 	[58] = EMC_DLI_TRIM_TXDQS0,
285 	[59] = EMC_DLI_TRIM_TXDQS1,
286 	[60] = EMC_DLI_TRIM_TXDQS2,
287 	[61] = EMC_DLI_TRIM_TXDQS3,
288 	[62] = EMC_DLI_TRIM_TXDQS4,
289 	[63] = EMC_DLI_TRIM_TXDQS5,
290 	[64] = EMC_DLI_TRIM_TXDQS6,
291 	[65] = EMC_DLI_TRIM_TXDQS7,
292 	[66] = EMC_DLL_XFORM_DQ0,
293 	[67] = EMC_DLL_XFORM_DQ1,
294 	[68] = EMC_DLL_XFORM_DQ2,
295 	[69] = EMC_DLL_XFORM_DQ3,
296 	[70] = EMC_XM2CMDPADCTRL,
297 	[71] = EMC_XM2DQSPADCTRL2,
298 	[72] = EMC_XM2DQPADCTRL2,
299 	[73] = EMC_XM2CLKPADCTRL,
300 	[74] = EMC_XM2COMPPADCTRL,
301 	[75] = EMC_XM2VTTGENPADCTRL,
302 	[76] = EMC_XM2VTTGENPADCTRL2,
303 	[77] = EMC_XM2QUSEPADCTRL,
304 	[78] = EMC_XM2DQSPADCTRL3,
305 	[79] = EMC_CTT_TERM_CTRL,
306 	[80] = EMC_ZCAL_INTERVAL,
307 	[81] = EMC_ZCAL_WAIT_CNT,
308 	[82] = EMC_MRS_WAIT_CNT,
309 	[83] = EMC_AUTO_CAL_CONFIG,
310 	[84] = EMC_CTT,
311 	[85] = EMC_CTT_DURATION,
312 	[86] = EMC_DYN_SELF_REF_CONTROL,
313 	[87] = EMC_FBIO_SPARE,
314 	[88] = EMC_CFG_RSV,
315 };
316 
317 struct emc_timing {
318 	unsigned long rate;
319 
320 	u32 data[ARRAY_SIZE(emc_timing_registers)];
321 
322 	u32 emc_auto_cal_interval;
323 	u32 emc_mode_1;
324 	u32 emc_mode_2;
325 	u32 emc_mode_reset;
326 	u32 emc_zcal_cnt_long;
327 	bool emc_cfg_periodic_qrst;
328 	bool emc_cfg_dyn_self_ref;
329 };
330 
331 enum emc_rate_request_type {
332 	EMC_RATE_DEBUG,
333 	EMC_RATE_ICC,
334 	EMC_RATE_TYPE_MAX,
335 };
336 
337 struct emc_rate_request {
338 	unsigned long min_rate;
339 	unsigned long max_rate;
340 };
341 
342 struct tegra_emc {
343 	struct device *dev;
344 	struct tegra_mc *mc;
345 	struct icc_provider provider;
346 	struct notifier_block clk_nb;
347 	struct clk *clk;
348 	void __iomem *regs;
349 	unsigned int irq;
350 	bool bad_state;
351 
352 	struct emc_timing *new_timing;
353 	struct emc_timing *timings;
354 	unsigned int num_timings;
355 
356 	u32 mc_override;
357 	u32 emc_cfg;
358 
359 	u32 emc_mode_1;
360 	u32 emc_mode_2;
361 	u32 emc_mode_reset;
362 
363 	bool vref_cal_toggle : 1;
364 	bool zcal_long : 1;
365 	bool dll_on : 1;
366 
367 	struct {
368 		struct dentry *root;
369 		unsigned long min_rate;
370 		unsigned long max_rate;
371 	} debugfs;
372 
373 	/*
374 	 * There are multiple sources in the EMC driver which could request
375 	 * a min/max clock rate, these rates are contained in this array.
376 	 */
377 	struct emc_rate_request requested_rate[EMC_RATE_TYPE_MAX];
378 
379 	/* protect shared rate-change code path */
380 	struct mutex rate_lock;
381 };
382 
383 static int emc_seq_update_timing(struct tegra_emc *emc)
384 {
385 	u32 val;
386 	int err;
387 
388 	writel_relaxed(EMC_TIMING_UPDATE, emc->regs + EMC_TIMING_CONTROL);
389 
390 	err = readl_relaxed_poll_timeout_atomic(emc->regs + EMC_STATUS, val,
391 				!(val & EMC_STATUS_TIMING_UPDATE_STALLED),
392 				1, 200);
393 	if (err) {
394 		dev_err(emc->dev, "failed to update timing: %d\n", err);
395 		return err;
396 	}
397 
398 	return 0;
399 }
400 
401 static irqreturn_t tegra_emc_isr(int irq, void *data)
402 {
403 	struct tegra_emc *emc = data;
404 	u32 intmask = EMC_REFRESH_OVERFLOW_INT;
405 	u32 status;
406 
407 	status = readl_relaxed(emc->regs + EMC_INTSTATUS) & intmask;
408 	if (!status)
409 		return IRQ_NONE;
410 
411 	/* notify about HW problem */
412 	if (status & EMC_REFRESH_OVERFLOW_INT)
413 		dev_err_ratelimited(emc->dev,
414 				    "refresh request overflow timeout\n");
415 
416 	/* clear interrupts */
417 	writel_relaxed(status, emc->regs + EMC_INTSTATUS);
418 
419 	return IRQ_HANDLED;
420 }
421 
422 static struct emc_timing *emc_find_timing(struct tegra_emc *emc,
423 					  unsigned long rate)
424 {
425 	struct emc_timing *timing = NULL;
426 	unsigned int i;
427 
428 	for (i = 0; i < emc->num_timings; i++) {
429 		if (emc->timings[i].rate >= rate) {
430 			timing = &emc->timings[i];
431 			break;
432 		}
433 	}
434 
435 	if (!timing) {
436 		dev_err(emc->dev, "no timing for rate %lu\n", rate);
437 		return NULL;
438 	}
439 
440 	return timing;
441 }
442 
443 static bool emc_dqs_preset(struct tegra_emc *emc, struct emc_timing *timing,
444 			   bool *schmitt_to_vref)
445 {
446 	bool preset = false;
447 	u32 val;
448 
449 	if (timing->data[71] & EMC_XM2DQSPADCTRL2_VREF_ENABLE) {
450 		val = readl_relaxed(emc->regs + EMC_XM2DQSPADCTRL2);
451 
452 		if (!(val & EMC_XM2DQSPADCTRL2_VREF_ENABLE)) {
453 			val |= EMC_XM2DQSPADCTRL2_VREF_ENABLE;
454 			writel_relaxed(val, emc->regs + EMC_XM2DQSPADCTRL2);
455 
456 			preset = true;
457 		}
458 	}
459 
460 	if (timing->data[78] & EMC_XM2DQSPADCTRL3_VREF_ENABLE) {
461 		val = readl_relaxed(emc->regs + EMC_XM2DQSPADCTRL3);
462 
463 		if (!(val & EMC_XM2DQSPADCTRL3_VREF_ENABLE)) {
464 			val |= EMC_XM2DQSPADCTRL3_VREF_ENABLE;
465 			writel_relaxed(val, emc->regs + EMC_XM2DQSPADCTRL3);
466 
467 			preset = true;
468 		}
469 	}
470 
471 	if (timing->data[77] & EMC_XM2QUSEPADCTRL_IVREF_ENABLE) {
472 		val = readl_relaxed(emc->regs + EMC_XM2QUSEPADCTRL);
473 
474 		if (!(val & EMC_XM2QUSEPADCTRL_IVREF_ENABLE)) {
475 			val |= EMC_XM2QUSEPADCTRL_IVREF_ENABLE;
476 			writel_relaxed(val, emc->regs + EMC_XM2QUSEPADCTRL);
477 
478 			*schmitt_to_vref = true;
479 			preset = true;
480 		}
481 	}
482 
483 	return preset;
484 }
485 
486 static int emc_prepare_mc_clk_cfg(struct tegra_emc *emc, unsigned long rate)
487 {
488 	struct tegra_mc *mc = emc->mc;
489 	unsigned int misc0_index = 16;
490 	unsigned int i;
491 	bool same;
492 
493 	for (i = 0; i < mc->num_timings; i++) {
494 		if (mc->timings[i].rate != rate)
495 			continue;
496 
497 		if (mc->timings[i].emem_data[misc0_index] & BIT(27))
498 			same = true;
499 		else
500 			same = false;
501 
502 		return tegra20_clk_prepare_emc_mc_same_freq(emc->clk, same);
503 	}
504 
505 	return -EINVAL;
506 }
507 
508 static int emc_prepare_timing_change(struct tegra_emc *emc, unsigned long rate)
509 {
510 	struct emc_timing *timing = emc_find_timing(emc, rate);
511 	enum emc_dll_change dll_change;
512 	enum emc_dram_type dram_type;
513 	bool schmitt_to_vref = false;
514 	unsigned int pre_wait = 0;
515 	bool qrst_used = false;
516 	unsigned int dram_num;
517 	unsigned int i;
518 	u32 fbio_cfg5;
519 	u32 emc_dbg;
520 	u32 val;
521 	int err;
522 
523 	if (!timing || emc->bad_state)
524 		return -EINVAL;
525 
526 	dev_dbg(emc->dev, "%s: using timing rate %lu for requested rate %lu\n",
527 		__func__, timing->rate, rate);
528 
529 	emc->bad_state = true;
530 
531 	err = emc_prepare_mc_clk_cfg(emc, rate);
532 	if (err) {
533 		dev_err(emc->dev, "mc clock preparation failed: %d\n", err);
534 		return err;
535 	}
536 
537 	emc->vref_cal_toggle = false;
538 	emc->mc_override = mc_readl(emc->mc, MC_EMEM_ARB_OVERRIDE);
539 	emc->emc_cfg = readl_relaxed(emc->regs + EMC_CFG);
540 	emc_dbg = readl_relaxed(emc->regs + EMC_DBG);
541 
542 	if (emc->dll_on == !!(timing->emc_mode_1 & 0x1))
543 		dll_change = DLL_CHANGE_NONE;
544 	else if (timing->emc_mode_1 & 0x1)
545 		dll_change = DLL_CHANGE_ON;
546 	else
547 		dll_change = DLL_CHANGE_OFF;
548 
549 	emc->dll_on = !!(timing->emc_mode_1 & 0x1);
550 
551 	if (timing->data[80] && !readl_relaxed(emc->regs + EMC_ZCAL_INTERVAL))
552 		emc->zcal_long = true;
553 	else
554 		emc->zcal_long = false;
555 
556 	fbio_cfg5 = readl_relaxed(emc->regs + EMC_FBIO_CFG5);
557 	dram_type = fbio_cfg5 & EMC_FBIO_CFG5_DRAM_TYPE_MASK;
558 
559 	dram_num = tegra_mc_get_emem_device_count(emc->mc);
560 
561 	/* disable dynamic self-refresh */
562 	if (emc->emc_cfg & EMC_CFG_DYN_SREF_ENABLE) {
563 		emc->emc_cfg &= ~EMC_CFG_DYN_SREF_ENABLE;
564 		writel_relaxed(emc->emc_cfg, emc->regs + EMC_CFG);
565 
566 		pre_wait = 5;
567 	}
568 
569 	/* update MC arbiter settings */
570 	val = mc_readl(emc->mc, MC_EMEM_ARB_OUTSTANDING_REQ);
571 	if (!(val & MC_EMEM_ARB_OUTSTANDING_REQ_HOLDOFF_OVERRIDE) ||
572 	    ((val & MC_EMEM_ARB_OUTSTANDING_REQ_MAX_MASK) > 0x50)) {
573 
574 		val = MC_EMEM_ARB_OUTSTANDING_REQ_LIMIT_ENABLE |
575 		      MC_EMEM_ARB_OUTSTANDING_REQ_HOLDOFF_OVERRIDE | 0x50;
576 		mc_writel(emc->mc, val, MC_EMEM_ARB_OUTSTANDING_REQ);
577 		mc_writel(emc->mc, MC_TIMING_UPDATE, MC_TIMING_CONTROL);
578 	}
579 
580 	if (emc->mc_override & MC_EMEM_ARB_OVERRIDE_EACK_MASK)
581 		mc_writel(emc->mc,
582 			  emc->mc_override & ~MC_EMEM_ARB_OVERRIDE_EACK_MASK,
583 			  MC_EMEM_ARB_OVERRIDE);
584 
585 	/* check DQ/DQS VREF delay */
586 	if (emc_dqs_preset(emc, timing, &schmitt_to_vref)) {
587 		if (pre_wait < 3)
588 			pre_wait = 3;
589 	}
590 
591 	if (pre_wait) {
592 		err = emc_seq_update_timing(emc);
593 		if (err)
594 			return err;
595 
596 		udelay(pre_wait);
597 	}
598 
599 	/* disable auto-calibration if VREF mode is switching */
600 	if (timing->emc_auto_cal_interval) {
601 		val = readl_relaxed(emc->regs + EMC_XM2COMPPADCTRL);
602 		val ^= timing->data[74];
603 
604 		if (val & EMC_XM2COMPPADCTRL_VREF_CAL_ENABLE) {
605 			writel_relaxed(0, emc->regs + EMC_AUTO_CAL_INTERVAL);
606 
607 			err = readl_relaxed_poll_timeout_atomic(
608 				emc->regs + EMC_AUTO_CAL_STATUS, val,
609 				!(val & EMC_AUTO_CAL_STATUS_ACTIVE), 1, 300);
610 			if (err) {
611 				dev_err(emc->dev,
612 					"auto-cal finish timeout: %d\n", err);
613 				return err;
614 			}
615 
616 			emc->vref_cal_toggle = true;
617 		}
618 	}
619 
620 	/* program shadow registers */
621 	for (i = 0; i < ARRAY_SIZE(timing->data); i++) {
622 		/* EMC_XM2CLKPADCTRL should be programmed separately */
623 		if (i != 73)
624 			writel_relaxed(timing->data[i],
625 				       emc->regs + emc_timing_registers[i]);
626 	}
627 
628 	err = tegra_mc_write_emem_configuration(emc->mc, timing->rate);
629 	if (err)
630 		return err;
631 
632 	/* DDR3: predict MRS long wait count */
633 	if (dram_type == DRAM_TYPE_DDR3 && dll_change == DLL_CHANGE_ON) {
634 		u32 cnt = 512;
635 
636 		if (emc->zcal_long)
637 			cnt -= dram_num * 256;
638 
639 		val = timing->data[82] & EMC_MRS_WAIT_CNT_SHORT_WAIT_MASK;
640 		if (cnt < val)
641 			cnt = val;
642 
643 		val = timing->data[82] & ~EMC_MRS_WAIT_CNT_LONG_WAIT_MASK;
644 		val |= (cnt << EMC_MRS_WAIT_CNT_LONG_WAIT_SHIFT) &
645 			EMC_MRS_WAIT_CNT_LONG_WAIT_MASK;
646 
647 		writel_relaxed(val, emc->regs + EMC_MRS_WAIT_CNT);
648 	}
649 
650 	/* this read also completes the writes */
651 	val = readl_relaxed(emc->regs + EMC_SEL_DPD_CTRL);
652 
653 	if (!(val & EMC_SEL_DPD_CTRL_QUSE_DPD_ENABLE) && schmitt_to_vref) {
654 		u32 cur_mode, new_mode;
655 
656 		cur_mode = fbio_cfg5 & EMC_CFG5_QUSE_MODE_MASK;
657 		cur_mode >>= EMC_CFG5_QUSE_MODE_SHIFT;
658 
659 		new_mode = timing->data[39] & EMC_CFG5_QUSE_MODE_MASK;
660 		new_mode >>= EMC_CFG5_QUSE_MODE_SHIFT;
661 
662 		if ((cur_mode != EMC_CFG5_QUSE_MODE_PULSE_INTERN &&
663 		     cur_mode != EMC_CFG5_QUSE_MODE_INTERNAL_LPBK) ||
664 		    (new_mode != EMC_CFG5_QUSE_MODE_PULSE_INTERN &&
665 		     new_mode != EMC_CFG5_QUSE_MODE_INTERNAL_LPBK))
666 			qrst_used = true;
667 	}
668 
669 	/* flow control marker 1 */
670 	writel_relaxed(0x1, emc->regs + EMC_STALL_THEN_EXE_BEFORE_CLKCHANGE);
671 
672 	/* enable periodic reset */
673 	if (qrst_used) {
674 		writel_relaxed(emc_dbg | EMC_DBG_WRITE_MUX_ACTIVE,
675 			       emc->regs + EMC_DBG);
676 		writel_relaxed(emc->emc_cfg | EMC_CFG_PERIODIC_QRST,
677 			       emc->regs + EMC_CFG);
678 		writel_relaxed(emc_dbg, emc->regs + EMC_DBG);
679 	}
680 
681 	/* disable auto-refresh to save time after clock change */
682 	writel_relaxed(EMC_REFCTRL_DISABLE_ALL(dram_num),
683 		       emc->regs + EMC_REFCTRL);
684 
685 	/* turn off DLL and enter self-refresh on DDR3 */
686 	if (dram_type == DRAM_TYPE_DDR3) {
687 		if (dll_change == DLL_CHANGE_OFF)
688 			writel_relaxed(timing->emc_mode_1,
689 				       emc->regs + EMC_EMRS);
690 
691 		writel_relaxed(DRAM_BROADCAST(dram_num) |
692 			       EMC_SELF_REF_CMD_ENABLED,
693 			       emc->regs + EMC_SELF_REF);
694 	}
695 
696 	/* flow control marker 2 */
697 	writel_relaxed(0x1, emc->regs + EMC_STALL_THEN_EXE_AFTER_CLKCHANGE);
698 
699 	/* enable write-active MUX, update unshadowed pad control */
700 	writel_relaxed(emc_dbg | EMC_DBG_WRITE_MUX_ACTIVE, emc->regs + EMC_DBG);
701 	writel_relaxed(timing->data[73], emc->regs + EMC_XM2CLKPADCTRL);
702 
703 	/* restore periodic QRST and disable write-active MUX */
704 	val = !!(emc->emc_cfg & EMC_CFG_PERIODIC_QRST);
705 	if (qrst_used || timing->emc_cfg_periodic_qrst != val) {
706 		if (timing->emc_cfg_periodic_qrst)
707 			emc->emc_cfg |= EMC_CFG_PERIODIC_QRST;
708 		else
709 			emc->emc_cfg &= ~EMC_CFG_PERIODIC_QRST;
710 
711 		writel_relaxed(emc->emc_cfg, emc->regs + EMC_CFG);
712 	}
713 	writel_relaxed(emc_dbg, emc->regs + EMC_DBG);
714 
715 	/* exit self-refresh on DDR3 */
716 	if (dram_type == DRAM_TYPE_DDR3)
717 		writel_relaxed(DRAM_BROADCAST(dram_num),
718 			       emc->regs + EMC_SELF_REF);
719 
720 	/* set DRAM-mode registers */
721 	if (dram_type == DRAM_TYPE_DDR3) {
722 		if (timing->emc_mode_1 != emc->emc_mode_1)
723 			writel_relaxed(timing->emc_mode_1,
724 				       emc->regs + EMC_EMRS);
725 
726 		if (timing->emc_mode_2 != emc->emc_mode_2)
727 			writel_relaxed(timing->emc_mode_2,
728 				       emc->regs + EMC_EMRS);
729 
730 		if (timing->emc_mode_reset != emc->emc_mode_reset ||
731 		    dll_change == DLL_CHANGE_ON) {
732 			val = timing->emc_mode_reset;
733 			if (dll_change == DLL_CHANGE_ON) {
734 				val |= EMC_MODE_SET_DLL_RESET;
735 				val |= EMC_MODE_SET_LONG_CNT;
736 			} else {
737 				val &= ~EMC_MODE_SET_DLL_RESET;
738 			}
739 			writel_relaxed(val, emc->regs + EMC_MRS);
740 		}
741 	} else {
742 		if (timing->emc_mode_2 != emc->emc_mode_2)
743 			writel_relaxed(timing->emc_mode_2,
744 				       emc->regs + EMC_MRW);
745 
746 		if (timing->emc_mode_1 != emc->emc_mode_1)
747 			writel_relaxed(timing->emc_mode_1,
748 				       emc->regs + EMC_MRW);
749 	}
750 
751 	emc->emc_mode_1 = timing->emc_mode_1;
752 	emc->emc_mode_2 = timing->emc_mode_2;
753 	emc->emc_mode_reset = timing->emc_mode_reset;
754 
755 	/* issue ZCAL command if turning ZCAL on */
756 	if (emc->zcal_long) {
757 		writel_relaxed(EMC_ZQ_CAL_LONG_CMD_DEV0,
758 			       emc->regs + EMC_ZQ_CAL);
759 
760 		if (dram_num > 1)
761 			writel_relaxed(EMC_ZQ_CAL_LONG_CMD_DEV1,
762 				       emc->regs + EMC_ZQ_CAL);
763 	}
764 
765 	/* flow control marker 3 */
766 	writel_relaxed(0x1, emc->regs + EMC_UNSTALL_RW_AFTER_CLKCHANGE);
767 
768 	/*
769 	 * Read and discard an arbitrary MC register (Note: EMC registers
770 	 * can't be used) to ensure the register writes are completed.
771 	 */
772 	mc_readl(emc->mc, MC_EMEM_ARB_OVERRIDE);
773 
774 	return 0;
775 }
776 
777 static int emc_complete_timing_change(struct tegra_emc *emc,
778 				      unsigned long rate)
779 {
780 	struct emc_timing *timing = emc_find_timing(emc, rate);
781 	unsigned int dram_num;
782 	int err;
783 	u32 v;
784 
785 	err = readl_relaxed_poll_timeout_atomic(emc->regs + EMC_INTSTATUS, v,
786 						v & EMC_CLKCHANGE_COMPLETE_INT,
787 						1, 100);
788 	if (err) {
789 		dev_err(emc->dev, "emc-car handshake timeout: %d\n", err);
790 		return err;
791 	}
792 
793 	/* re-enable auto-refresh */
794 	dram_num = tegra_mc_get_emem_device_count(emc->mc);
795 	writel_relaxed(EMC_REFCTRL_ENABLE_ALL(dram_num),
796 		       emc->regs + EMC_REFCTRL);
797 
798 	/* restore auto-calibration */
799 	if (emc->vref_cal_toggle)
800 		writel_relaxed(timing->emc_auto_cal_interval,
801 			       emc->regs + EMC_AUTO_CAL_INTERVAL);
802 
803 	/* restore dynamic self-refresh */
804 	if (timing->emc_cfg_dyn_self_ref) {
805 		emc->emc_cfg |= EMC_CFG_DYN_SREF_ENABLE;
806 		writel_relaxed(emc->emc_cfg, emc->regs + EMC_CFG);
807 	}
808 
809 	/* set number of clocks to wait after each ZQ command */
810 	if (emc->zcal_long)
811 		writel_relaxed(timing->emc_zcal_cnt_long,
812 			       emc->regs + EMC_ZCAL_WAIT_CNT);
813 
814 	/* wait for writes to settle */
815 	udelay(2);
816 
817 	/* update restored timing */
818 	err = emc_seq_update_timing(emc);
819 	if (!err)
820 		emc->bad_state = false;
821 
822 	/* restore early ACK */
823 	mc_writel(emc->mc, emc->mc_override, MC_EMEM_ARB_OVERRIDE);
824 
825 	return err;
826 }
827 
828 static int emc_unprepare_timing_change(struct tegra_emc *emc,
829 				       unsigned long rate)
830 {
831 	if (!emc->bad_state) {
832 		/* shouldn't ever happen in practice */
833 		dev_err(emc->dev, "timing configuration can't be reverted\n");
834 		emc->bad_state = true;
835 	}
836 
837 	return 0;
838 }
839 
840 static int emc_clk_change_notify(struct notifier_block *nb,
841 				 unsigned long msg, void *data)
842 {
843 	struct tegra_emc *emc = container_of(nb, struct tegra_emc, clk_nb);
844 	struct clk_notifier_data *cnd = data;
845 	int err;
846 
847 	switch (msg) {
848 	case PRE_RATE_CHANGE:
849 		/*
850 		 * Disable interrupt since read accesses are prohibited after
851 		 * stalling.
852 		 */
853 		disable_irq(emc->irq);
854 		err = emc_prepare_timing_change(emc, cnd->new_rate);
855 		enable_irq(emc->irq);
856 		break;
857 
858 	case ABORT_RATE_CHANGE:
859 		err = emc_unprepare_timing_change(emc, cnd->old_rate);
860 		break;
861 
862 	case POST_RATE_CHANGE:
863 		err = emc_complete_timing_change(emc, cnd->new_rate);
864 		break;
865 
866 	default:
867 		return NOTIFY_DONE;
868 	}
869 
870 	return notifier_from_errno(err);
871 }
872 
873 static int load_one_timing_from_dt(struct tegra_emc *emc,
874 				   struct emc_timing *timing,
875 				   struct device_node *node)
876 {
877 	u32 value;
878 	int err;
879 
880 	err = of_property_read_u32(node, "clock-frequency", &value);
881 	if (err) {
882 		dev_err(emc->dev, "timing %pOF: failed to read rate: %d\n",
883 			node, err);
884 		return err;
885 	}
886 
887 	timing->rate = value;
888 
889 	err = of_property_read_u32_array(node, "nvidia,emc-configuration",
890 					 timing->data,
891 					 ARRAY_SIZE(emc_timing_registers));
892 	if (err) {
893 		dev_err(emc->dev,
894 			"timing %pOF: failed to read emc timing data: %d\n",
895 			node, err);
896 		return err;
897 	}
898 
899 #define EMC_READ_BOOL(prop, dtprop) \
900 	timing->prop = of_property_read_bool(node, dtprop);
901 
902 #define EMC_READ_U32(prop, dtprop) \
903 	err = of_property_read_u32(node, dtprop, &timing->prop); \
904 	if (err) { \
905 		dev_err(emc->dev, \
906 			"timing %pOFn: failed to read " #prop ": %d\n", \
907 			node, err); \
908 		return err; \
909 	}
910 
911 	EMC_READ_U32(emc_auto_cal_interval, "nvidia,emc-auto-cal-interval")
912 	EMC_READ_U32(emc_mode_1, "nvidia,emc-mode-1")
913 	EMC_READ_U32(emc_mode_2, "nvidia,emc-mode-2")
914 	EMC_READ_U32(emc_mode_reset, "nvidia,emc-mode-reset")
915 	EMC_READ_U32(emc_zcal_cnt_long, "nvidia,emc-zcal-cnt-long")
916 	EMC_READ_BOOL(emc_cfg_dyn_self_ref, "nvidia,emc-cfg-dyn-self-ref")
917 	EMC_READ_BOOL(emc_cfg_periodic_qrst, "nvidia,emc-cfg-periodic-qrst")
918 
919 #undef EMC_READ_U32
920 #undef EMC_READ_BOOL
921 
922 	dev_dbg(emc->dev, "%s: %pOF: rate %lu\n", __func__, node, timing->rate);
923 
924 	return 0;
925 }
926 
927 static int cmp_timings(const void *_a, const void *_b)
928 {
929 	const struct emc_timing *a = _a;
930 	const struct emc_timing *b = _b;
931 
932 	if (a->rate < b->rate)
933 		return -1;
934 
935 	if (a->rate > b->rate)
936 		return 1;
937 
938 	return 0;
939 }
940 
941 static int emc_check_mc_timings(struct tegra_emc *emc)
942 {
943 	struct tegra_mc *mc = emc->mc;
944 	unsigned int i;
945 
946 	if (emc->num_timings != mc->num_timings) {
947 		dev_err(emc->dev, "emc/mc timings number mismatch: %u %u\n",
948 			emc->num_timings, mc->num_timings);
949 		return -EINVAL;
950 	}
951 
952 	for (i = 0; i < mc->num_timings; i++) {
953 		if (emc->timings[i].rate != mc->timings[i].rate) {
954 			dev_err(emc->dev,
955 				"emc/mc timing rate mismatch: %lu %lu\n",
956 				emc->timings[i].rate, mc->timings[i].rate);
957 			return -EINVAL;
958 		}
959 	}
960 
961 	return 0;
962 }
963 
964 static int emc_load_timings_from_dt(struct tegra_emc *emc,
965 				    struct device_node *node)
966 {
967 	struct device_node *child;
968 	struct emc_timing *timing;
969 	int child_count;
970 	int err;
971 
972 	child_count = of_get_child_count(node);
973 	if (!child_count) {
974 		dev_err(emc->dev, "no memory timings in: %pOF\n", node);
975 		return -EINVAL;
976 	}
977 
978 	emc->timings = devm_kcalloc(emc->dev, child_count, sizeof(*timing),
979 				    GFP_KERNEL);
980 	if (!emc->timings)
981 		return -ENOMEM;
982 
983 	emc->num_timings = child_count;
984 	timing = emc->timings;
985 
986 	for_each_child_of_node(node, child) {
987 		err = load_one_timing_from_dt(emc, timing++, child);
988 		if (err) {
989 			of_node_put(child);
990 			return err;
991 		}
992 	}
993 
994 	sort(emc->timings, emc->num_timings, sizeof(*timing), cmp_timings,
995 	     NULL);
996 
997 	err = emc_check_mc_timings(emc);
998 	if (err)
999 		return err;
1000 
1001 	dev_info_once(emc->dev,
1002 		      "got %u timings for RAM code %u (min %luMHz max %luMHz)\n",
1003 		      emc->num_timings,
1004 		      tegra_read_ram_code(),
1005 		      emc->timings[0].rate / 1000000,
1006 		      emc->timings[emc->num_timings - 1].rate / 1000000);
1007 
1008 	return 0;
1009 }
1010 
1011 static struct device_node *emc_find_node_by_ram_code(struct device *dev)
1012 {
1013 	struct device_node *np;
1014 	u32 value, ram_code;
1015 	int err;
1016 
1017 	if (of_get_child_count(dev->of_node) == 0) {
1018 		dev_info_once(dev, "device-tree doesn't have memory timings\n");
1019 		return NULL;
1020 	}
1021 
1022 	ram_code = tegra_read_ram_code();
1023 
1024 	for_each_child_of_node(dev->of_node, np) {
1025 		err = of_property_read_u32(np, "nvidia,ram-code", &value);
1026 		if (err || value != ram_code)
1027 			continue;
1028 
1029 		return np;
1030 	}
1031 
1032 	dev_err(dev, "no memory timings for RAM code %u found in device-tree\n",
1033 		ram_code);
1034 
1035 	return NULL;
1036 }
1037 
1038 static int emc_setup_hw(struct tegra_emc *emc)
1039 {
1040 	u32 intmask = EMC_REFRESH_OVERFLOW_INT;
1041 	u32 fbio_cfg5, emc_cfg, emc_dbg;
1042 	enum emc_dram_type dram_type;
1043 
1044 	fbio_cfg5 = readl_relaxed(emc->regs + EMC_FBIO_CFG5);
1045 	dram_type = fbio_cfg5 & EMC_FBIO_CFG5_DRAM_TYPE_MASK;
1046 
1047 	emc_cfg = readl_relaxed(emc->regs + EMC_CFG_2);
1048 
1049 	/* enable EMC and CAR to handshake on PLL divider/source changes */
1050 	emc_cfg |= EMC_CLKCHANGE_REQ_ENABLE;
1051 
1052 	/* configure clock change mode accordingly to DRAM type */
1053 	switch (dram_type) {
1054 	case DRAM_TYPE_LPDDR2:
1055 		emc_cfg |= EMC_CLKCHANGE_PD_ENABLE;
1056 		emc_cfg &= ~EMC_CLKCHANGE_SR_ENABLE;
1057 		break;
1058 
1059 	default:
1060 		emc_cfg &= ~EMC_CLKCHANGE_SR_ENABLE;
1061 		emc_cfg &= ~EMC_CLKCHANGE_PD_ENABLE;
1062 		break;
1063 	}
1064 
1065 	writel_relaxed(emc_cfg, emc->regs + EMC_CFG_2);
1066 
1067 	/* initialize interrupt */
1068 	writel_relaxed(intmask, emc->regs + EMC_INTMASK);
1069 	writel_relaxed(0xffffffff, emc->regs + EMC_INTSTATUS);
1070 
1071 	/* ensure that unwanted debug features are disabled */
1072 	emc_dbg = readl_relaxed(emc->regs + EMC_DBG);
1073 	emc_dbg |= EMC_DBG_CFG_PRIORITY;
1074 	emc_dbg &= ~EMC_DBG_READ_MUX_ASSEMBLY;
1075 	emc_dbg &= ~EMC_DBG_WRITE_MUX_ACTIVE;
1076 	emc_dbg &= ~EMC_DBG_FORCE_UPDATE;
1077 	writel_relaxed(emc_dbg, emc->regs + EMC_DBG);
1078 
1079 	return 0;
1080 }
1081 
1082 static long emc_round_rate(unsigned long rate,
1083 			   unsigned long min_rate,
1084 			   unsigned long max_rate,
1085 			   void *arg)
1086 {
1087 	struct emc_timing *timing = NULL;
1088 	struct tegra_emc *emc = arg;
1089 	unsigned int i;
1090 
1091 	if (!emc->num_timings)
1092 		return clk_get_rate(emc->clk);
1093 
1094 	min_rate = min(min_rate, emc->timings[emc->num_timings - 1].rate);
1095 
1096 	for (i = 0; i < emc->num_timings; i++) {
1097 		if (emc->timings[i].rate < rate && i != emc->num_timings - 1)
1098 			continue;
1099 
1100 		if (emc->timings[i].rate > max_rate) {
1101 			i = max(i, 1u) - 1;
1102 
1103 			if (emc->timings[i].rate < min_rate)
1104 				break;
1105 		}
1106 
1107 		if (emc->timings[i].rate < min_rate)
1108 			continue;
1109 
1110 		timing = &emc->timings[i];
1111 		break;
1112 	}
1113 
1114 	if (!timing) {
1115 		dev_err(emc->dev, "no timing for rate %lu min %lu max %lu\n",
1116 			rate, min_rate, max_rate);
1117 		return -EINVAL;
1118 	}
1119 
1120 	return timing->rate;
1121 }
1122 
1123 static void tegra_emc_rate_requests_init(struct tegra_emc *emc)
1124 {
1125 	unsigned int i;
1126 
1127 	for (i = 0; i < EMC_RATE_TYPE_MAX; i++) {
1128 		emc->requested_rate[i].min_rate = 0;
1129 		emc->requested_rate[i].max_rate = ULONG_MAX;
1130 	}
1131 }
1132 
1133 static int emc_request_rate(struct tegra_emc *emc,
1134 			    unsigned long new_min_rate,
1135 			    unsigned long new_max_rate,
1136 			    enum emc_rate_request_type type)
1137 {
1138 	struct emc_rate_request *req = emc->requested_rate;
1139 	unsigned long min_rate = 0, max_rate = ULONG_MAX;
1140 	unsigned int i;
1141 	int err;
1142 
1143 	/* select minimum and maximum rates among the requested rates */
1144 	for (i = 0; i < EMC_RATE_TYPE_MAX; i++, req++) {
1145 		if (i == type) {
1146 			min_rate = max(new_min_rate, min_rate);
1147 			max_rate = min(new_max_rate, max_rate);
1148 		} else {
1149 			min_rate = max(req->min_rate, min_rate);
1150 			max_rate = min(req->max_rate, max_rate);
1151 		}
1152 	}
1153 
1154 	if (min_rate > max_rate) {
1155 		dev_err_ratelimited(emc->dev, "%s: type %u: out of range: %lu %lu\n",
1156 				    __func__, type, min_rate, max_rate);
1157 		return -ERANGE;
1158 	}
1159 
1160 	/*
1161 	 * EMC rate-changes should go via OPP API because it manages voltage
1162 	 * changes.
1163 	 */
1164 	err = dev_pm_opp_set_rate(emc->dev, min_rate);
1165 	if (err)
1166 		return err;
1167 
1168 	emc->requested_rate[type].min_rate = new_min_rate;
1169 	emc->requested_rate[type].max_rate = new_max_rate;
1170 
1171 	return 0;
1172 }
1173 
1174 static int emc_set_min_rate(struct tegra_emc *emc, unsigned long rate,
1175 			    enum emc_rate_request_type type)
1176 {
1177 	struct emc_rate_request *req = &emc->requested_rate[type];
1178 	int ret;
1179 
1180 	mutex_lock(&emc->rate_lock);
1181 	ret = emc_request_rate(emc, rate, req->max_rate, type);
1182 	mutex_unlock(&emc->rate_lock);
1183 
1184 	return ret;
1185 }
1186 
1187 static int emc_set_max_rate(struct tegra_emc *emc, unsigned long rate,
1188 			    enum emc_rate_request_type type)
1189 {
1190 	struct emc_rate_request *req = &emc->requested_rate[type];
1191 	int ret;
1192 
1193 	mutex_lock(&emc->rate_lock);
1194 	ret = emc_request_rate(emc, req->min_rate, rate, type);
1195 	mutex_unlock(&emc->rate_lock);
1196 
1197 	return ret;
1198 }
1199 
1200 /*
1201  * debugfs interface
1202  *
1203  * The memory controller driver exposes some files in debugfs that can be used
1204  * to control the EMC frequency. The top-level directory can be found here:
1205  *
1206  *   /sys/kernel/debug/emc
1207  *
1208  * It contains the following files:
1209  *
1210  *   - available_rates: This file contains a list of valid, space-separated
1211  *     EMC frequencies.
1212  *
1213  *   - min_rate: Writing a value to this file sets the given frequency as the
1214  *       floor of the permitted range. If this is higher than the currently
1215  *       configured EMC frequency, this will cause the frequency to be
1216  *       increased so that it stays within the valid range.
1217  *
1218  *   - max_rate: Similarily to the min_rate file, writing a value to this file
1219  *       sets the given frequency as the ceiling of the permitted range. If
1220  *       the value is lower than the currently configured EMC frequency, this
1221  *       will cause the frequency to be decreased so that it stays within the
1222  *       valid range.
1223  */
1224 
1225 static bool tegra_emc_validate_rate(struct tegra_emc *emc, unsigned long rate)
1226 {
1227 	unsigned int i;
1228 
1229 	for (i = 0; i < emc->num_timings; i++)
1230 		if (rate == emc->timings[i].rate)
1231 			return true;
1232 
1233 	return false;
1234 }
1235 
1236 static int tegra_emc_debug_available_rates_show(struct seq_file *s, void *data)
1237 {
1238 	struct tegra_emc *emc = s->private;
1239 	const char *prefix = "";
1240 	unsigned int i;
1241 
1242 	for (i = 0; i < emc->num_timings; i++) {
1243 		seq_printf(s, "%s%lu", prefix, emc->timings[i].rate);
1244 		prefix = " ";
1245 	}
1246 
1247 	seq_puts(s, "\n");
1248 
1249 	return 0;
1250 }
1251 
1252 static int tegra_emc_debug_available_rates_open(struct inode *inode,
1253 						struct file *file)
1254 {
1255 	return single_open(file, tegra_emc_debug_available_rates_show,
1256 			   inode->i_private);
1257 }
1258 
1259 static const struct file_operations tegra_emc_debug_available_rates_fops = {
1260 	.open = tegra_emc_debug_available_rates_open,
1261 	.read = seq_read,
1262 	.llseek = seq_lseek,
1263 	.release = single_release,
1264 };
1265 
1266 static int tegra_emc_debug_min_rate_get(void *data, u64 *rate)
1267 {
1268 	struct tegra_emc *emc = data;
1269 
1270 	*rate = emc->debugfs.min_rate;
1271 
1272 	return 0;
1273 }
1274 
1275 static int tegra_emc_debug_min_rate_set(void *data, u64 rate)
1276 {
1277 	struct tegra_emc *emc = data;
1278 	int err;
1279 
1280 	if (!tegra_emc_validate_rate(emc, rate))
1281 		return -EINVAL;
1282 
1283 	err = emc_set_min_rate(emc, rate, EMC_RATE_DEBUG);
1284 	if (err < 0)
1285 		return err;
1286 
1287 	emc->debugfs.min_rate = rate;
1288 
1289 	return 0;
1290 }
1291 
1292 DEFINE_SIMPLE_ATTRIBUTE(tegra_emc_debug_min_rate_fops,
1293 			tegra_emc_debug_min_rate_get,
1294 			tegra_emc_debug_min_rate_set, "%llu\n");
1295 
1296 static int tegra_emc_debug_max_rate_get(void *data, u64 *rate)
1297 {
1298 	struct tegra_emc *emc = data;
1299 
1300 	*rate = emc->debugfs.max_rate;
1301 
1302 	return 0;
1303 }
1304 
1305 static int tegra_emc_debug_max_rate_set(void *data, u64 rate)
1306 {
1307 	struct tegra_emc *emc = data;
1308 	int err;
1309 
1310 	if (!tegra_emc_validate_rate(emc, rate))
1311 		return -EINVAL;
1312 
1313 	err = emc_set_max_rate(emc, rate, EMC_RATE_DEBUG);
1314 	if (err < 0)
1315 		return err;
1316 
1317 	emc->debugfs.max_rate = rate;
1318 
1319 	return 0;
1320 }
1321 
1322 DEFINE_SIMPLE_ATTRIBUTE(tegra_emc_debug_max_rate_fops,
1323 			tegra_emc_debug_max_rate_get,
1324 			tegra_emc_debug_max_rate_set, "%llu\n");
1325 
1326 static void tegra_emc_debugfs_init(struct tegra_emc *emc)
1327 {
1328 	struct device *dev = emc->dev;
1329 	unsigned int i;
1330 	int err;
1331 
1332 	emc->debugfs.min_rate = ULONG_MAX;
1333 	emc->debugfs.max_rate = 0;
1334 
1335 	for (i = 0; i < emc->num_timings; i++) {
1336 		if (emc->timings[i].rate < emc->debugfs.min_rate)
1337 			emc->debugfs.min_rate = emc->timings[i].rate;
1338 
1339 		if (emc->timings[i].rate > emc->debugfs.max_rate)
1340 			emc->debugfs.max_rate = emc->timings[i].rate;
1341 	}
1342 
1343 	if (!emc->num_timings) {
1344 		emc->debugfs.min_rate = clk_get_rate(emc->clk);
1345 		emc->debugfs.max_rate = emc->debugfs.min_rate;
1346 	}
1347 
1348 	err = clk_set_rate_range(emc->clk, emc->debugfs.min_rate,
1349 				 emc->debugfs.max_rate);
1350 	if (err < 0) {
1351 		dev_err(dev, "failed to set rate range [%lu-%lu] for %pC\n",
1352 			emc->debugfs.min_rate, emc->debugfs.max_rate,
1353 			emc->clk);
1354 	}
1355 
1356 	emc->debugfs.root = debugfs_create_dir("emc", NULL);
1357 	if (!emc->debugfs.root) {
1358 		dev_err(emc->dev, "failed to create debugfs directory\n");
1359 		return;
1360 	}
1361 
1362 	debugfs_create_file("available_rates", 0444, emc->debugfs.root,
1363 			    emc, &tegra_emc_debug_available_rates_fops);
1364 	debugfs_create_file("min_rate", 0644, emc->debugfs.root,
1365 			    emc, &tegra_emc_debug_min_rate_fops);
1366 	debugfs_create_file("max_rate", 0644, emc->debugfs.root,
1367 			    emc, &tegra_emc_debug_max_rate_fops);
1368 }
1369 
1370 static inline struct tegra_emc *
1371 to_tegra_emc_provider(struct icc_provider *provider)
1372 {
1373 	return container_of(provider, struct tegra_emc, provider);
1374 }
1375 
1376 static struct icc_node_data *
1377 emc_of_icc_xlate_extended(struct of_phandle_args *spec, void *data)
1378 {
1379 	struct icc_provider *provider = data;
1380 	struct icc_node_data *ndata;
1381 	struct icc_node *node;
1382 
1383 	/* External Memory is the only possible ICC route */
1384 	list_for_each_entry(node, &provider->nodes, node_list) {
1385 		if (node->id != TEGRA_ICC_EMEM)
1386 			continue;
1387 
1388 		ndata = kzalloc(sizeof(*ndata), GFP_KERNEL);
1389 		if (!ndata)
1390 			return ERR_PTR(-ENOMEM);
1391 
1392 		/*
1393 		 * SRC and DST nodes should have matching TAG in order to have
1394 		 * it set by default for a requested path.
1395 		 */
1396 		ndata->tag = TEGRA_MC_ICC_TAG_ISO;
1397 		ndata->node = node;
1398 
1399 		return ndata;
1400 	}
1401 
1402 	return ERR_PTR(-EPROBE_DEFER);
1403 }
1404 
1405 static int emc_icc_set(struct icc_node *src, struct icc_node *dst)
1406 {
1407 	struct tegra_emc *emc = to_tegra_emc_provider(dst->provider);
1408 	unsigned long long peak_bw = icc_units_to_bps(dst->peak_bw);
1409 	unsigned long long avg_bw = icc_units_to_bps(dst->avg_bw);
1410 	unsigned long long rate = max(avg_bw, peak_bw);
1411 	const unsigned int dram_data_bus_width_bytes = 4;
1412 	const unsigned int ddr = 2;
1413 	int err;
1414 
1415 	/*
1416 	 * Tegra30 EMC runs on a clock rate of SDRAM bus.  This means that
1417 	 * EMC clock rate is twice smaller than the peak data rate because
1418 	 * data is sampled on both EMC clock edges.
1419 	 */
1420 	do_div(rate, ddr * dram_data_bus_width_bytes);
1421 	rate = min_t(u64, rate, U32_MAX);
1422 
1423 	err = emc_set_min_rate(emc, rate, EMC_RATE_ICC);
1424 	if (err)
1425 		return err;
1426 
1427 	return 0;
1428 }
1429 
1430 static int tegra_emc_interconnect_init(struct tegra_emc *emc)
1431 {
1432 	const struct tegra_mc_soc *soc = emc->mc->soc;
1433 	struct icc_node *node;
1434 	int err;
1435 
1436 	emc->provider.dev = emc->dev;
1437 	emc->provider.set = emc_icc_set;
1438 	emc->provider.data = &emc->provider;
1439 	emc->provider.aggregate = soc->icc_ops->aggregate;
1440 	emc->provider.xlate_extended = emc_of_icc_xlate_extended;
1441 
1442 	err = icc_provider_add(&emc->provider);
1443 	if (err)
1444 		goto err_msg;
1445 
1446 	/* create External Memory Controller node */
1447 	node = icc_node_create(TEGRA_ICC_EMC);
1448 	if (IS_ERR(node)) {
1449 		err = PTR_ERR(node);
1450 		goto del_provider;
1451 	}
1452 
1453 	node->name = "External Memory Controller";
1454 	icc_node_add(node, &emc->provider);
1455 
1456 	/* link External Memory Controller to External Memory (DRAM) */
1457 	err = icc_link_create(node, TEGRA_ICC_EMEM);
1458 	if (err)
1459 		goto remove_nodes;
1460 
1461 	/* create External Memory node */
1462 	node = icc_node_create(TEGRA_ICC_EMEM);
1463 	if (IS_ERR(node)) {
1464 		err = PTR_ERR(node);
1465 		goto remove_nodes;
1466 	}
1467 
1468 	node->name = "External Memory (DRAM)";
1469 	icc_node_add(node, &emc->provider);
1470 
1471 	return 0;
1472 
1473 remove_nodes:
1474 	icc_nodes_remove(&emc->provider);
1475 del_provider:
1476 	icc_provider_del(&emc->provider);
1477 err_msg:
1478 	dev_err(emc->dev, "failed to initialize ICC: %d\n", err);
1479 
1480 	return err;
1481 }
1482 
1483 static int tegra_emc_opp_table_init(struct tegra_emc *emc)
1484 {
1485 	u32 hw_version = BIT(tegra_sku_info.soc_speedo_id);
1486 	struct opp_table *hw_opp_table;
1487 	int err;
1488 
1489 	hw_opp_table = dev_pm_opp_set_supported_hw(emc->dev, &hw_version, 1);
1490 	err = PTR_ERR_OR_ZERO(hw_opp_table);
1491 	if (err) {
1492 		dev_err(emc->dev, "failed to set OPP supported HW: %d\n", err);
1493 		return err;
1494 	}
1495 
1496 	err = dev_pm_opp_of_add_table(emc->dev);
1497 	if (err) {
1498 		if (err == -ENODEV)
1499 			dev_err(emc->dev, "OPP table not found, please update your device tree\n");
1500 		else
1501 			dev_err(emc->dev, "failed to add OPP table: %d\n", err);
1502 
1503 		goto put_hw_table;
1504 	}
1505 
1506 	dev_info_once(emc->dev, "OPP HW ver. 0x%x, current clock rate %lu MHz\n",
1507 		      hw_version, clk_get_rate(emc->clk) / 1000000);
1508 
1509 	/* first dummy rate-set initializes voltage state */
1510 	err = dev_pm_opp_set_rate(emc->dev, clk_get_rate(emc->clk));
1511 	if (err) {
1512 		dev_err(emc->dev, "failed to initialize OPP clock: %d\n", err);
1513 		goto remove_table;
1514 	}
1515 
1516 	return 0;
1517 
1518 remove_table:
1519 	dev_pm_opp_of_remove_table(emc->dev);
1520 put_hw_table:
1521 	dev_pm_opp_put_supported_hw(hw_opp_table);
1522 
1523 	return err;
1524 }
1525 
1526 static void devm_tegra_emc_unset_callback(void *data)
1527 {
1528 	tegra20_clk_set_emc_round_callback(NULL, NULL);
1529 }
1530 
1531 static void devm_tegra_emc_unreg_clk_notifier(void *data)
1532 {
1533 	struct tegra_emc *emc = data;
1534 
1535 	clk_notifier_unregister(emc->clk, &emc->clk_nb);
1536 }
1537 
1538 static int tegra_emc_init_clk(struct tegra_emc *emc)
1539 {
1540 	int err;
1541 
1542 	tegra20_clk_set_emc_round_callback(emc_round_rate, emc);
1543 
1544 	err = devm_add_action_or_reset(emc->dev, devm_tegra_emc_unset_callback,
1545 				       NULL);
1546 	if (err)
1547 		return err;
1548 
1549 	emc->clk = devm_clk_get(emc->dev, NULL);
1550 	if (IS_ERR(emc->clk)) {
1551 		dev_err(emc->dev, "failed to get EMC clock: %pe\n", emc->clk);
1552 		return PTR_ERR(emc->clk);
1553 	}
1554 
1555 	err = clk_notifier_register(emc->clk, &emc->clk_nb);
1556 	if (err) {
1557 		dev_err(emc->dev, "failed to register clk notifier: %d\n", err);
1558 		return err;
1559 	}
1560 
1561 	err = devm_add_action_or_reset(emc->dev,
1562 				       devm_tegra_emc_unreg_clk_notifier, emc);
1563 	if (err)
1564 		return err;
1565 
1566 	return 0;
1567 }
1568 
1569 static int tegra_emc_probe(struct platform_device *pdev)
1570 {
1571 	struct device_node *np;
1572 	struct tegra_emc *emc;
1573 	int err;
1574 
1575 	emc = devm_kzalloc(&pdev->dev, sizeof(*emc), GFP_KERNEL);
1576 	if (!emc)
1577 		return -ENOMEM;
1578 
1579 	emc->mc = devm_tegra_memory_controller_get(&pdev->dev);
1580 	if (IS_ERR(emc->mc))
1581 		return PTR_ERR(emc->mc);
1582 
1583 	mutex_init(&emc->rate_lock);
1584 	emc->clk_nb.notifier_call = emc_clk_change_notify;
1585 	emc->dev = &pdev->dev;
1586 
1587 	np = emc_find_node_by_ram_code(&pdev->dev);
1588 	if (np) {
1589 		err = emc_load_timings_from_dt(emc, np);
1590 		of_node_put(np);
1591 		if (err)
1592 			return err;
1593 	}
1594 
1595 	emc->regs = devm_platform_ioremap_resource(pdev, 0);
1596 	if (IS_ERR(emc->regs))
1597 		return PTR_ERR(emc->regs);
1598 
1599 	err = emc_setup_hw(emc);
1600 	if (err)
1601 		return err;
1602 
1603 	err = platform_get_irq(pdev, 0);
1604 	if (err < 0)
1605 		return err;
1606 
1607 	emc->irq = err;
1608 
1609 	err = devm_request_irq(&pdev->dev, emc->irq, tegra_emc_isr, 0,
1610 			       dev_name(&pdev->dev), emc);
1611 	if (err) {
1612 		dev_err(&pdev->dev, "failed to request irq: %d\n", err);
1613 		return err;
1614 	}
1615 
1616 	err = tegra_emc_init_clk(emc);
1617 	if (err)
1618 		return err;
1619 
1620 	err = tegra_emc_opp_table_init(emc);
1621 	if (err)
1622 		return err;
1623 
1624 	platform_set_drvdata(pdev, emc);
1625 	tegra_emc_rate_requests_init(emc);
1626 	tegra_emc_debugfs_init(emc);
1627 	tegra_emc_interconnect_init(emc);
1628 
1629 	/*
1630 	 * Don't allow the kernel module to be unloaded. Unloading adds some
1631 	 * extra complexity which doesn't really worth the effort in a case of
1632 	 * this driver.
1633 	 */
1634 	try_module_get(THIS_MODULE);
1635 
1636 	return 0;
1637 }
1638 
1639 static int tegra_emc_suspend(struct device *dev)
1640 {
1641 	struct tegra_emc *emc = dev_get_drvdata(dev);
1642 	int err;
1643 
1644 	/* take exclusive control over the clock's rate */
1645 	err = clk_rate_exclusive_get(emc->clk);
1646 	if (err) {
1647 		dev_err(emc->dev, "failed to acquire clk: %d\n", err);
1648 		return err;
1649 	}
1650 
1651 	/* suspending in a bad state will hang machine */
1652 	if (WARN(emc->bad_state, "hardware in a bad state\n"))
1653 		return -EINVAL;
1654 
1655 	emc->bad_state = true;
1656 
1657 	return 0;
1658 }
1659 
1660 static int tegra_emc_resume(struct device *dev)
1661 {
1662 	struct tegra_emc *emc = dev_get_drvdata(dev);
1663 
1664 	emc_setup_hw(emc);
1665 	emc->bad_state = false;
1666 
1667 	clk_rate_exclusive_put(emc->clk);
1668 
1669 	return 0;
1670 }
1671 
1672 static const struct dev_pm_ops tegra_emc_pm_ops = {
1673 	.suspend = tegra_emc_suspend,
1674 	.resume = tegra_emc_resume,
1675 };
1676 
1677 static const struct of_device_id tegra_emc_of_match[] = {
1678 	{ .compatible = "nvidia,tegra30-emc", },
1679 	{},
1680 };
1681 MODULE_DEVICE_TABLE(of, tegra_emc_of_match);
1682 
1683 static struct platform_driver tegra_emc_driver = {
1684 	.probe = tegra_emc_probe,
1685 	.driver = {
1686 		.name = "tegra30-emc",
1687 		.of_match_table = tegra_emc_of_match,
1688 		.pm = &tegra_emc_pm_ops,
1689 		.suppress_bind_attrs = true,
1690 		.sync_state = icc_sync_state,
1691 	},
1692 };
1693 module_platform_driver(tegra_emc_driver);
1694 
1695 MODULE_AUTHOR("Dmitry Osipenko <digetx@gmail.com>");
1696 MODULE_DESCRIPTION("NVIDIA Tegra30 EMC driver");
1697 MODULE_LICENSE("GPL v2");
1698