1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Tegra30 External Memory Controller driver 4 * 5 * Based on downstream driver from NVIDIA and tegra124-emc.c 6 * Copyright (C) 2011-2014 NVIDIA Corporation 7 * 8 * Author: Dmitry Osipenko <digetx@gmail.com> 9 * Copyright (C) 2019 GRATE-DRIVER project 10 */ 11 12 #include <linux/clk.h> 13 #include <linux/clk/tegra.h> 14 #include <linux/debugfs.h> 15 #include <linux/delay.h> 16 #include <linux/err.h> 17 #include <linux/interconnect-provider.h> 18 #include <linux/interrupt.h> 19 #include <linux/io.h> 20 #include <linux/iopoll.h> 21 #include <linux/kernel.h> 22 #include <linux/module.h> 23 #include <linux/mutex.h> 24 #include <linux/of_platform.h> 25 #include <linux/platform_device.h> 26 #include <linux/pm_opp.h> 27 #include <linux/slab.h> 28 #include <linux/sort.h> 29 #include <linux/types.h> 30 31 #include <soc/tegra/common.h> 32 #include <soc/tegra/fuse.h> 33 34 #include "mc.h" 35 36 #define EMC_INTSTATUS 0x000 37 #define EMC_INTMASK 0x004 38 #define EMC_DBG 0x008 39 #define EMC_CFG 0x00c 40 #define EMC_REFCTRL 0x020 41 #define EMC_TIMING_CONTROL 0x028 42 #define EMC_RC 0x02c 43 #define EMC_RFC 0x030 44 #define EMC_RAS 0x034 45 #define EMC_RP 0x038 46 #define EMC_R2W 0x03c 47 #define EMC_W2R 0x040 48 #define EMC_R2P 0x044 49 #define EMC_W2P 0x048 50 #define EMC_RD_RCD 0x04c 51 #define EMC_WR_RCD 0x050 52 #define EMC_RRD 0x054 53 #define EMC_REXT 0x058 54 #define EMC_WDV 0x05c 55 #define EMC_QUSE 0x060 56 #define EMC_QRST 0x064 57 #define EMC_QSAFE 0x068 58 #define EMC_RDV 0x06c 59 #define EMC_REFRESH 0x070 60 #define EMC_BURST_REFRESH_NUM 0x074 61 #define EMC_PDEX2WR 0x078 62 #define EMC_PDEX2RD 0x07c 63 #define EMC_PCHG2PDEN 0x080 64 #define EMC_ACT2PDEN 0x084 65 #define EMC_AR2PDEN 0x088 66 #define EMC_RW2PDEN 0x08c 67 #define EMC_TXSR 0x090 68 #define EMC_TCKE 0x094 69 #define EMC_TFAW 0x098 70 #define EMC_TRPAB 0x09c 71 #define EMC_TCLKSTABLE 0x0a0 72 #define EMC_TCLKSTOP 0x0a4 73 #define EMC_TREFBW 0x0a8 74 #define EMC_QUSE_EXTRA 0x0ac 75 #define EMC_ODT_WRITE 0x0b0 76 #define EMC_ODT_READ 0x0b4 77 #define EMC_WEXT 0x0b8 78 #define EMC_CTT 0x0bc 79 #define EMC_MRS_WAIT_CNT 0x0c8 80 #define EMC_MRS 0x0cc 81 #define EMC_EMRS 0x0d0 82 #define EMC_SELF_REF 0x0e0 83 #define EMC_MRW 0x0e8 84 #define EMC_XM2DQSPADCTRL3 0x0f8 85 #define EMC_FBIO_SPARE 0x100 86 #define EMC_FBIO_CFG5 0x104 87 #define EMC_FBIO_CFG6 0x114 88 #define EMC_CFG_RSV 0x120 89 #define EMC_AUTO_CAL_CONFIG 0x2a4 90 #define EMC_AUTO_CAL_INTERVAL 0x2a8 91 #define EMC_AUTO_CAL_STATUS 0x2ac 92 #define EMC_STATUS 0x2b4 93 #define EMC_CFG_2 0x2b8 94 #define EMC_CFG_DIG_DLL 0x2bc 95 #define EMC_CFG_DIG_DLL_PERIOD 0x2c0 96 #define EMC_CTT_DURATION 0x2d8 97 #define EMC_CTT_TERM_CTRL 0x2dc 98 #define EMC_ZCAL_INTERVAL 0x2e0 99 #define EMC_ZCAL_WAIT_CNT 0x2e4 100 #define EMC_ZQ_CAL 0x2ec 101 #define EMC_XM2CMDPADCTRL 0x2f0 102 #define EMC_XM2DQSPADCTRL2 0x2fc 103 #define EMC_XM2DQPADCTRL2 0x304 104 #define EMC_XM2CLKPADCTRL 0x308 105 #define EMC_XM2COMPPADCTRL 0x30c 106 #define EMC_XM2VTTGENPADCTRL 0x310 107 #define EMC_XM2VTTGENPADCTRL2 0x314 108 #define EMC_XM2QUSEPADCTRL 0x318 109 #define EMC_DLL_XFORM_DQS0 0x328 110 #define EMC_DLL_XFORM_DQS1 0x32c 111 #define EMC_DLL_XFORM_DQS2 0x330 112 #define EMC_DLL_XFORM_DQS3 0x334 113 #define EMC_DLL_XFORM_DQS4 0x338 114 #define EMC_DLL_XFORM_DQS5 0x33c 115 #define EMC_DLL_XFORM_DQS6 0x340 116 #define EMC_DLL_XFORM_DQS7 0x344 117 #define EMC_DLL_XFORM_QUSE0 0x348 118 #define EMC_DLL_XFORM_QUSE1 0x34c 119 #define EMC_DLL_XFORM_QUSE2 0x350 120 #define EMC_DLL_XFORM_QUSE3 0x354 121 #define EMC_DLL_XFORM_QUSE4 0x358 122 #define EMC_DLL_XFORM_QUSE5 0x35c 123 #define EMC_DLL_XFORM_QUSE6 0x360 124 #define EMC_DLL_XFORM_QUSE7 0x364 125 #define EMC_DLL_XFORM_DQ0 0x368 126 #define EMC_DLL_XFORM_DQ1 0x36c 127 #define EMC_DLL_XFORM_DQ2 0x370 128 #define EMC_DLL_XFORM_DQ3 0x374 129 #define EMC_DLI_TRIM_TXDQS0 0x3a8 130 #define EMC_DLI_TRIM_TXDQS1 0x3ac 131 #define EMC_DLI_TRIM_TXDQS2 0x3b0 132 #define EMC_DLI_TRIM_TXDQS3 0x3b4 133 #define EMC_DLI_TRIM_TXDQS4 0x3b8 134 #define EMC_DLI_TRIM_TXDQS5 0x3bc 135 #define EMC_DLI_TRIM_TXDQS6 0x3c0 136 #define EMC_DLI_TRIM_TXDQS7 0x3c4 137 #define EMC_STALL_THEN_EXE_BEFORE_CLKCHANGE 0x3c8 138 #define EMC_STALL_THEN_EXE_AFTER_CLKCHANGE 0x3cc 139 #define EMC_UNSTALL_RW_AFTER_CLKCHANGE 0x3d0 140 #define EMC_SEL_DPD_CTRL 0x3d8 141 #define EMC_PRE_REFRESH_REQ_CNT 0x3dc 142 #define EMC_DYN_SELF_REF_CONTROL 0x3e0 143 #define EMC_TXSRDLL 0x3e4 144 145 #define EMC_STATUS_TIMING_UPDATE_STALLED BIT(23) 146 147 #define EMC_MODE_SET_DLL_RESET BIT(8) 148 #define EMC_MODE_SET_LONG_CNT BIT(26) 149 150 #define EMC_SELF_REF_CMD_ENABLED BIT(0) 151 152 #define DRAM_DEV_SEL_ALL (0 << 30) 153 #define DRAM_DEV_SEL_0 (2 << 30) 154 #define DRAM_DEV_SEL_1 (1 << 30) 155 #define DRAM_BROADCAST(num) \ 156 ((num) > 1 ? DRAM_DEV_SEL_ALL : DRAM_DEV_SEL_0) 157 158 #define EMC_ZQ_CAL_CMD BIT(0) 159 #define EMC_ZQ_CAL_LONG BIT(4) 160 #define EMC_ZQ_CAL_LONG_CMD_DEV0 \ 161 (DRAM_DEV_SEL_0 | EMC_ZQ_CAL_LONG | EMC_ZQ_CAL_CMD) 162 #define EMC_ZQ_CAL_LONG_CMD_DEV1 \ 163 (DRAM_DEV_SEL_1 | EMC_ZQ_CAL_LONG | EMC_ZQ_CAL_CMD) 164 165 #define EMC_DBG_READ_MUX_ASSEMBLY BIT(0) 166 #define EMC_DBG_WRITE_MUX_ACTIVE BIT(1) 167 #define EMC_DBG_FORCE_UPDATE BIT(2) 168 #define EMC_DBG_CFG_PRIORITY BIT(24) 169 170 #define EMC_CFG5_QUSE_MODE_SHIFT 13 171 #define EMC_CFG5_QUSE_MODE_MASK (7 << EMC_CFG5_QUSE_MODE_SHIFT) 172 173 #define EMC_CFG5_QUSE_MODE_INTERNAL_LPBK 2 174 #define EMC_CFG5_QUSE_MODE_PULSE_INTERN 3 175 176 #define EMC_SEL_DPD_CTRL_QUSE_DPD_ENABLE BIT(9) 177 178 #define EMC_XM2COMPPADCTRL_VREF_CAL_ENABLE BIT(10) 179 180 #define EMC_XM2QUSEPADCTRL_IVREF_ENABLE BIT(4) 181 182 #define EMC_XM2DQSPADCTRL2_VREF_ENABLE BIT(5) 183 #define EMC_XM2DQSPADCTRL3_VREF_ENABLE BIT(5) 184 185 #define EMC_AUTO_CAL_STATUS_ACTIVE BIT(31) 186 187 #define EMC_FBIO_CFG5_DRAM_TYPE_MASK 0x3 188 189 #define EMC_MRS_WAIT_CNT_SHORT_WAIT_MASK 0x3ff 190 #define EMC_MRS_WAIT_CNT_LONG_WAIT_SHIFT 16 191 #define EMC_MRS_WAIT_CNT_LONG_WAIT_MASK \ 192 (0x3ff << EMC_MRS_WAIT_CNT_LONG_WAIT_SHIFT) 193 194 #define EMC_REFCTRL_DEV_SEL_MASK 0x3 195 #define EMC_REFCTRL_ENABLE BIT(31) 196 #define EMC_REFCTRL_ENABLE_ALL(num) \ 197 (((num) > 1 ? 0 : 2) | EMC_REFCTRL_ENABLE) 198 #define EMC_REFCTRL_DISABLE_ALL(num) ((num) > 1 ? 0 : 2) 199 200 #define EMC_CFG_PERIODIC_QRST BIT(21) 201 #define EMC_CFG_DYN_SREF_ENABLE BIT(28) 202 203 #define EMC_CLKCHANGE_REQ_ENABLE BIT(0) 204 #define EMC_CLKCHANGE_PD_ENABLE BIT(1) 205 #define EMC_CLKCHANGE_SR_ENABLE BIT(2) 206 207 #define EMC_TIMING_UPDATE BIT(0) 208 209 #define EMC_REFRESH_OVERFLOW_INT BIT(3) 210 #define EMC_CLKCHANGE_COMPLETE_INT BIT(4) 211 212 enum emc_dram_type { 213 DRAM_TYPE_DDR3, 214 DRAM_TYPE_DDR1, 215 DRAM_TYPE_LPDDR2, 216 DRAM_TYPE_DDR2, 217 }; 218 219 enum emc_dll_change { 220 DLL_CHANGE_NONE, 221 DLL_CHANGE_ON, 222 DLL_CHANGE_OFF 223 }; 224 225 static const u16 emc_timing_registers[] = { 226 [0] = EMC_RC, 227 [1] = EMC_RFC, 228 [2] = EMC_RAS, 229 [3] = EMC_RP, 230 [4] = EMC_R2W, 231 [5] = EMC_W2R, 232 [6] = EMC_R2P, 233 [7] = EMC_W2P, 234 [8] = EMC_RD_RCD, 235 [9] = EMC_WR_RCD, 236 [10] = EMC_RRD, 237 [11] = EMC_REXT, 238 [12] = EMC_WEXT, 239 [13] = EMC_WDV, 240 [14] = EMC_QUSE, 241 [15] = EMC_QRST, 242 [16] = EMC_QSAFE, 243 [17] = EMC_RDV, 244 [18] = EMC_REFRESH, 245 [19] = EMC_BURST_REFRESH_NUM, 246 [20] = EMC_PRE_REFRESH_REQ_CNT, 247 [21] = EMC_PDEX2WR, 248 [22] = EMC_PDEX2RD, 249 [23] = EMC_PCHG2PDEN, 250 [24] = EMC_ACT2PDEN, 251 [25] = EMC_AR2PDEN, 252 [26] = EMC_RW2PDEN, 253 [27] = EMC_TXSR, 254 [28] = EMC_TXSRDLL, 255 [29] = EMC_TCKE, 256 [30] = EMC_TFAW, 257 [31] = EMC_TRPAB, 258 [32] = EMC_TCLKSTABLE, 259 [33] = EMC_TCLKSTOP, 260 [34] = EMC_TREFBW, 261 [35] = EMC_QUSE_EXTRA, 262 [36] = EMC_FBIO_CFG6, 263 [37] = EMC_ODT_WRITE, 264 [38] = EMC_ODT_READ, 265 [39] = EMC_FBIO_CFG5, 266 [40] = EMC_CFG_DIG_DLL, 267 [41] = EMC_CFG_DIG_DLL_PERIOD, 268 [42] = EMC_DLL_XFORM_DQS0, 269 [43] = EMC_DLL_XFORM_DQS1, 270 [44] = EMC_DLL_XFORM_DQS2, 271 [45] = EMC_DLL_XFORM_DQS3, 272 [46] = EMC_DLL_XFORM_DQS4, 273 [47] = EMC_DLL_XFORM_DQS5, 274 [48] = EMC_DLL_XFORM_DQS6, 275 [49] = EMC_DLL_XFORM_DQS7, 276 [50] = EMC_DLL_XFORM_QUSE0, 277 [51] = EMC_DLL_XFORM_QUSE1, 278 [52] = EMC_DLL_XFORM_QUSE2, 279 [53] = EMC_DLL_XFORM_QUSE3, 280 [54] = EMC_DLL_XFORM_QUSE4, 281 [55] = EMC_DLL_XFORM_QUSE5, 282 [56] = EMC_DLL_XFORM_QUSE6, 283 [57] = EMC_DLL_XFORM_QUSE7, 284 [58] = EMC_DLI_TRIM_TXDQS0, 285 [59] = EMC_DLI_TRIM_TXDQS1, 286 [60] = EMC_DLI_TRIM_TXDQS2, 287 [61] = EMC_DLI_TRIM_TXDQS3, 288 [62] = EMC_DLI_TRIM_TXDQS4, 289 [63] = EMC_DLI_TRIM_TXDQS5, 290 [64] = EMC_DLI_TRIM_TXDQS6, 291 [65] = EMC_DLI_TRIM_TXDQS7, 292 [66] = EMC_DLL_XFORM_DQ0, 293 [67] = EMC_DLL_XFORM_DQ1, 294 [68] = EMC_DLL_XFORM_DQ2, 295 [69] = EMC_DLL_XFORM_DQ3, 296 [70] = EMC_XM2CMDPADCTRL, 297 [71] = EMC_XM2DQSPADCTRL2, 298 [72] = EMC_XM2DQPADCTRL2, 299 [73] = EMC_XM2CLKPADCTRL, 300 [74] = EMC_XM2COMPPADCTRL, 301 [75] = EMC_XM2VTTGENPADCTRL, 302 [76] = EMC_XM2VTTGENPADCTRL2, 303 [77] = EMC_XM2QUSEPADCTRL, 304 [78] = EMC_XM2DQSPADCTRL3, 305 [79] = EMC_CTT_TERM_CTRL, 306 [80] = EMC_ZCAL_INTERVAL, 307 [81] = EMC_ZCAL_WAIT_CNT, 308 [82] = EMC_MRS_WAIT_CNT, 309 [83] = EMC_AUTO_CAL_CONFIG, 310 [84] = EMC_CTT, 311 [85] = EMC_CTT_DURATION, 312 [86] = EMC_DYN_SELF_REF_CONTROL, 313 [87] = EMC_FBIO_SPARE, 314 [88] = EMC_CFG_RSV, 315 }; 316 317 struct emc_timing { 318 unsigned long rate; 319 320 u32 data[ARRAY_SIZE(emc_timing_registers)]; 321 322 u32 emc_auto_cal_interval; 323 u32 emc_mode_1; 324 u32 emc_mode_2; 325 u32 emc_mode_reset; 326 u32 emc_zcal_cnt_long; 327 bool emc_cfg_periodic_qrst; 328 bool emc_cfg_dyn_self_ref; 329 }; 330 331 enum emc_rate_request_type { 332 EMC_RATE_DEBUG, 333 EMC_RATE_ICC, 334 EMC_RATE_TYPE_MAX, 335 }; 336 337 struct emc_rate_request { 338 unsigned long min_rate; 339 unsigned long max_rate; 340 }; 341 342 struct tegra_emc { 343 struct device *dev; 344 struct tegra_mc *mc; 345 struct icc_provider provider; 346 struct notifier_block clk_nb; 347 struct clk *clk; 348 void __iomem *regs; 349 unsigned int irq; 350 bool bad_state; 351 352 struct emc_timing *new_timing; 353 struct emc_timing *timings; 354 unsigned int num_timings; 355 356 u32 mc_override; 357 u32 emc_cfg; 358 359 u32 emc_mode_1; 360 u32 emc_mode_2; 361 u32 emc_mode_reset; 362 363 bool vref_cal_toggle : 1; 364 bool zcal_long : 1; 365 bool dll_on : 1; 366 367 struct { 368 struct dentry *root; 369 unsigned long min_rate; 370 unsigned long max_rate; 371 } debugfs; 372 373 /* 374 * There are multiple sources in the EMC driver which could request 375 * a min/max clock rate, these rates are contained in this array. 376 */ 377 struct emc_rate_request requested_rate[EMC_RATE_TYPE_MAX]; 378 379 /* protect shared rate-change code path */ 380 struct mutex rate_lock; 381 }; 382 383 static int emc_seq_update_timing(struct tegra_emc *emc) 384 { 385 u32 val; 386 int err; 387 388 writel_relaxed(EMC_TIMING_UPDATE, emc->regs + EMC_TIMING_CONTROL); 389 390 err = readl_relaxed_poll_timeout_atomic(emc->regs + EMC_STATUS, val, 391 !(val & EMC_STATUS_TIMING_UPDATE_STALLED), 392 1, 200); 393 if (err) { 394 dev_err(emc->dev, "failed to update timing: %d\n", err); 395 return err; 396 } 397 398 return 0; 399 } 400 401 static irqreturn_t tegra_emc_isr(int irq, void *data) 402 { 403 struct tegra_emc *emc = data; 404 u32 intmask = EMC_REFRESH_OVERFLOW_INT; 405 u32 status; 406 407 status = readl_relaxed(emc->regs + EMC_INTSTATUS) & intmask; 408 if (!status) 409 return IRQ_NONE; 410 411 /* notify about HW problem */ 412 if (status & EMC_REFRESH_OVERFLOW_INT) 413 dev_err_ratelimited(emc->dev, 414 "refresh request overflow timeout\n"); 415 416 /* clear interrupts */ 417 writel_relaxed(status, emc->regs + EMC_INTSTATUS); 418 419 return IRQ_HANDLED; 420 } 421 422 static struct emc_timing *emc_find_timing(struct tegra_emc *emc, 423 unsigned long rate) 424 { 425 struct emc_timing *timing = NULL; 426 unsigned int i; 427 428 for (i = 0; i < emc->num_timings; i++) { 429 if (emc->timings[i].rate >= rate) { 430 timing = &emc->timings[i]; 431 break; 432 } 433 } 434 435 if (!timing) { 436 dev_err(emc->dev, "no timing for rate %lu\n", rate); 437 return NULL; 438 } 439 440 return timing; 441 } 442 443 static bool emc_dqs_preset(struct tegra_emc *emc, struct emc_timing *timing, 444 bool *schmitt_to_vref) 445 { 446 bool preset = false; 447 u32 val; 448 449 if (timing->data[71] & EMC_XM2DQSPADCTRL2_VREF_ENABLE) { 450 val = readl_relaxed(emc->regs + EMC_XM2DQSPADCTRL2); 451 452 if (!(val & EMC_XM2DQSPADCTRL2_VREF_ENABLE)) { 453 val |= EMC_XM2DQSPADCTRL2_VREF_ENABLE; 454 writel_relaxed(val, emc->regs + EMC_XM2DQSPADCTRL2); 455 456 preset = true; 457 } 458 } 459 460 if (timing->data[78] & EMC_XM2DQSPADCTRL3_VREF_ENABLE) { 461 val = readl_relaxed(emc->regs + EMC_XM2DQSPADCTRL3); 462 463 if (!(val & EMC_XM2DQSPADCTRL3_VREF_ENABLE)) { 464 val |= EMC_XM2DQSPADCTRL3_VREF_ENABLE; 465 writel_relaxed(val, emc->regs + EMC_XM2DQSPADCTRL3); 466 467 preset = true; 468 } 469 } 470 471 if (timing->data[77] & EMC_XM2QUSEPADCTRL_IVREF_ENABLE) { 472 val = readl_relaxed(emc->regs + EMC_XM2QUSEPADCTRL); 473 474 if (!(val & EMC_XM2QUSEPADCTRL_IVREF_ENABLE)) { 475 val |= EMC_XM2QUSEPADCTRL_IVREF_ENABLE; 476 writel_relaxed(val, emc->regs + EMC_XM2QUSEPADCTRL); 477 478 *schmitt_to_vref = true; 479 preset = true; 480 } 481 } 482 483 return preset; 484 } 485 486 static int emc_prepare_mc_clk_cfg(struct tegra_emc *emc, unsigned long rate) 487 { 488 struct tegra_mc *mc = emc->mc; 489 unsigned int misc0_index = 16; 490 unsigned int i; 491 bool same; 492 493 for (i = 0; i < mc->num_timings; i++) { 494 if (mc->timings[i].rate != rate) 495 continue; 496 497 if (mc->timings[i].emem_data[misc0_index] & BIT(27)) 498 same = true; 499 else 500 same = false; 501 502 return tegra20_clk_prepare_emc_mc_same_freq(emc->clk, same); 503 } 504 505 return -EINVAL; 506 } 507 508 static int emc_prepare_timing_change(struct tegra_emc *emc, unsigned long rate) 509 { 510 struct emc_timing *timing = emc_find_timing(emc, rate); 511 enum emc_dll_change dll_change; 512 enum emc_dram_type dram_type; 513 bool schmitt_to_vref = false; 514 unsigned int pre_wait = 0; 515 bool qrst_used = false; 516 unsigned int dram_num; 517 unsigned int i; 518 u32 fbio_cfg5; 519 u32 emc_dbg; 520 u32 val; 521 int err; 522 523 if (!timing || emc->bad_state) 524 return -EINVAL; 525 526 dev_dbg(emc->dev, "%s: using timing rate %lu for requested rate %lu\n", 527 __func__, timing->rate, rate); 528 529 emc->bad_state = true; 530 531 err = emc_prepare_mc_clk_cfg(emc, rate); 532 if (err) { 533 dev_err(emc->dev, "mc clock preparation failed: %d\n", err); 534 return err; 535 } 536 537 emc->vref_cal_toggle = false; 538 emc->mc_override = mc_readl(emc->mc, MC_EMEM_ARB_OVERRIDE); 539 emc->emc_cfg = readl_relaxed(emc->regs + EMC_CFG); 540 emc_dbg = readl_relaxed(emc->regs + EMC_DBG); 541 542 if (emc->dll_on == !!(timing->emc_mode_1 & 0x1)) 543 dll_change = DLL_CHANGE_NONE; 544 else if (timing->emc_mode_1 & 0x1) 545 dll_change = DLL_CHANGE_ON; 546 else 547 dll_change = DLL_CHANGE_OFF; 548 549 emc->dll_on = !!(timing->emc_mode_1 & 0x1); 550 551 if (timing->data[80] && !readl_relaxed(emc->regs + EMC_ZCAL_INTERVAL)) 552 emc->zcal_long = true; 553 else 554 emc->zcal_long = false; 555 556 fbio_cfg5 = readl_relaxed(emc->regs + EMC_FBIO_CFG5); 557 dram_type = fbio_cfg5 & EMC_FBIO_CFG5_DRAM_TYPE_MASK; 558 559 dram_num = tegra_mc_get_emem_device_count(emc->mc); 560 561 /* disable dynamic self-refresh */ 562 if (emc->emc_cfg & EMC_CFG_DYN_SREF_ENABLE) { 563 emc->emc_cfg &= ~EMC_CFG_DYN_SREF_ENABLE; 564 writel_relaxed(emc->emc_cfg, emc->regs + EMC_CFG); 565 566 pre_wait = 5; 567 } 568 569 /* update MC arbiter settings */ 570 val = mc_readl(emc->mc, MC_EMEM_ARB_OUTSTANDING_REQ); 571 if (!(val & MC_EMEM_ARB_OUTSTANDING_REQ_HOLDOFF_OVERRIDE) || 572 ((val & MC_EMEM_ARB_OUTSTANDING_REQ_MAX_MASK) > 0x50)) { 573 574 val = MC_EMEM_ARB_OUTSTANDING_REQ_LIMIT_ENABLE | 575 MC_EMEM_ARB_OUTSTANDING_REQ_HOLDOFF_OVERRIDE | 0x50; 576 mc_writel(emc->mc, val, MC_EMEM_ARB_OUTSTANDING_REQ); 577 mc_writel(emc->mc, MC_TIMING_UPDATE, MC_TIMING_CONTROL); 578 } 579 580 if (emc->mc_override & MC_EMEM_ARB_OVERRIDE_EACK_MASK) 581 mc_writel(emc->mc, 582 emc->mc_override & ~MC_EMEM_ARB_OVERRIDE_EACK_MASK, 583 MC_EMEM_ARB_OVERRIDE); 584 585 /* check DQ/DQS VREF delay */ 586 if (emc_dqs_preset(emc, timing, &schmitt_to_vref)) { 587 if (pre_wait < 3) 588 pre_wait = 3; 589 } 590 591 if (pre_wait) { 592 err = emc_seq_update_timing(emc); 593 if (err) 594 return err; 595 596 udelay(pre_wait); 597 } 598 599 /* disable auto-calibration if VREF mode is switching */ 600 if (timing->emc_auto_cal_interval) { 601 val = readl_relaxed(emc->regs + EMC_XM2COMPPADCTRL); 602 val ^= timing->data[74]; 603 604 if (val & EMC_XM2COMPPADCTRL_VREF_CAL_ENABLE) { 605 writel_relaxed(0, emc->regs + EMC_AUTO_CAL_INTERVAL); 606 607 err = readl_relaxed_poll_timeout_atomic( 608 emc->regs + EMC_AUTO_CAL_STATUS, val, 609 !(val & EMC_AUTO_CAL_STATUS_ACTIVE), 1, 300); 610 if (err) { 611 dev_err(emc->dev, 612 "auto-cal finish timeout: %d\n", err); 613 return err; 614 } 615 616 emc->vref_cal_toggle = true; 617 } 618 } 619 620 /* program shadow registers */ 621 for (i = 0; i < ARRAY_SIZE(timing->data); i++) { 622 /* EMC_XM2CLKPADCTRL should be programmed separately */ 623 if (i != 73) 624 writel_relaxed(timing->data[i], 625 emc->regs + emc_timing_registers[i]); 626 } 627 628 err = tegra_mc_write_emem_configuration(emc->mc, timing->rate); 629 if (err) 630 return err; 631 632 /* DDR3: predict MRS long wait count */ 633 if (dram_type == DRAM_TYPE_DDR3 && dll_change == DLL_CHANGE_ON) { 634 u32 cnt = 512; 635 636 if (emc->zcal_long) 637 cnt -= dram_num * 256; 638 639 val = timing->data[82] & EMC_MRS_WAIT_CNT_SHORT_WAIT_MASK; 640 if (cnt < val) 641 cnt = val; 642 643 val = timing->data[82] & ~EMC_MRS_WAIT_CNT_LONG_WAIT_MASK; 644 val |= (cnt << EMC_MRS_WAIT_CNT_LONG_WAIT_SHIFT) & 645 EMC_MRS_WAIT_CNT_LONG_WAIT_MASK; 646 647 writel_relaxed(val, emc->regs + EMC_MRS_WAIT_CNT); 648 } 649 650 /* this read also completes the writes */ 651 val = readl_relaxed(emc->regs + EMC_SEL_DPD_CTRL); 652 653 if (!(val & EMC_SEL_DPD_CTRL_QUSE_DPD_ENABLE) && schmitt_to_vref) { 654 u32 cur_mode, new_mode; 655 656 cur_mode = fbio_cfg5 & EMC_CFG5_QUSE_MODE_MASK; 657 cur_mode >>= EMC_CFG5_QUSE_MODE_SHIFT; 658 659 new_mode = timing->data[39] & EMC_CFG5_QUSE_MODE_MASK; 660 new_mode >>= EMC_CFG5_QUSE_MODE_SHIFT; 661 662 if ((cur_mode != EMC_CFG5_QUSE_MODE_PULSE_INTERN && 663 cur_mode != EMC_CFG5_QUSE_MODE_INTERNAL_LPBK) || 664 (new_mode != EMC_CFG5_QUSE_MODE_PULSE_INTERN && 665 new_mode != EMC_CFG5_QUSE_MODE_INTERNAL_LPBK)) 666 qrst_used = true; 667 } 668 669 /* flow control marker 1 */ 670 writel_relaxed(0x1, emc->regs + EMC_STALL_THEN_EXE_BEFORE_CLKCHANGE); 671 672 /* enable periodic reset */ 673 if (qrst_used) { 674 writel_relaxed(emc_dbg | EMC_DBG_WRITE_MUX_ACTIVE, 675 emc->regs + EMC_DBG); 676 writel_relaxed(emc->emc_cfg | EMC_CFG_PERIODIC_QRST, 677 emc->regs + EMC_CFG); 678 writel_relaxed(emc_dbg, emc->regs + EMC_DBG); 679 } 680 681 /* disable auto-refresh to save time after clock change */ 682 writel_relaxed(EMC_REFCTRL_DISABLE_ALL(dram_num), 683 emc->regs + EMC_REFCTRL); 684 685 /* turn off DLL and enter self-refresh on DDR3 */ 686 if (dram_type == DRAM_TYPE_DDR3) { 687 if (dll_change == DLL_CHANGE_OFF) 688 writel_relaxed(timing->emc_mode_1, 689 emc->regs + EMC_EMRS); 690 691 writel_relaxed(DRAM_BROADCAST(dram_num) | 692 EMC_SELF_REF_CMD_ENABLED, 693 emc->regs + EMC_SELF_REF); 694 } 695 696 /* flow control marker 2 */ 697 writel_relaxed(0x1, emc->regs + EMC_STALL_THEN_EXE_AFTER_CLKCHANGE); 698 699 /* enable write-active MUX, update unshadowed pad control */ 700 writel_relaxed(emc_dbg | EMC_DBG_WRITE_MUX_ACTIVE, emc->regs + EMC_DBG); 701 writel_relaxed(timing->data[73], emc->regs + EMC_XM2CLKPADCTRL); 702 703 /* restore periodic QRST and disable write-active MUX */ 704 val = !!(emc->emc_cfg & EMC_CFG_PERIODIC_QRST); 705 if (qrst_used || timing->emc_cfg_periodic_qrst != val) { 706 if (timing->emc_cfg_periodic_qrst) 707 emc->emc_cfg |= EMC_CFG_PERIODIC_QRST; 708 else 709 emc->emc_cfg &= ~EMC_CFG_PERIODIC_QRST; 710 711 writel_relaxed(emc->emc_cfg, emc->regs + EMC_CFG); 712 } 713 writel_relaxed(emc_dbg, emc->regs + EMC_DBG); 714 715 /* exit self-refresh on DDR3 */ 716 if (dram_type == DRAM_TYPE_DDR3) 717 writel_relaxed(DRAM_BROADCAST(dram_num), 718 emc->regs + EMC_SELF_REF); 719 720 /* set DRAM-mode registers */ 721 if (dram_type == DRAM_TYPE_DDR3) { 722 if (timing->emc_mode_1 != emc->emc_mode_1) 723 writel_relaxed(timing->emc_mode_1, 724 emc->regs + EMC_EMRS); 725 726 if (timing->emc_mode_2 != emc->emc_mode_2) 727 writel_relaxed(timing->emc_mode_2, 728 emc->regs + EMC_EMRS); 729 730 if (timing->emc_mode_reset != emc->emc_mode_reset || 731 dll_change == DLL_CHANGE_ON) { 732 val = timing->emc_mode_reset; 733 if (dll_change == DLL_CHANGE_ON) { 734 val |= EMC_MODE_SET_DLL_RESET; 735 val |= EMC_MODE_SET_LONG_CNT; 736 } else { 737 val &= ~EMC_MODE_SET_DLL_RESET; 738 } 739 writel_relaxed(val, emc->regs + EMC_MRS); 740 } 741 } else { 742 if (timing->emc_mode_2 != emc->emc_mode_2) 743 writel_relaxed(timing->emc_mode_2, 744 emc->regs + EMC_MRW); 745 746 if (timing->emc_mode_1 != emc->emc_mode_1) 747 writel_relaxed(timing->emc_mode_1, 748 emc->regs + EMC_MRW); 749 } 750 751 emc->emc_mode_1 = timing->emc_mode_1; 752 emc->emc_mode_2 = timing->emc_mode_2; 753 emc->emc_mode_reset = timing->emc_mode_reset; 754 755 /* issue ZCAL command if turning ZCAL on */ 756 if (emc->zcal_long) { 757 writel_relaxed(EMC_ZQ_CAL_LONG_CMD_DEV0, 758 emc->regs + EMC_ZQ_CAL); 759 760 if (dram_num > 1) 761 writel_relaxed(EMC_ZQ_CAL_LONG_CMD_DEV1, 762 emc->regs + EMC_ZQ_CAL); 763 } 764 765 /* flow control marker 3 */ 766 writel_relaxed(0x1, emc->regs + EMC_UNSTALL_RW_AFTER_CLKCHANGE); 767 768 /* 769 * Read and discard an arbitrary MC register (Note: EMC registers 770 * can't be used) to ensure the register writes are completed. 771 */ 772 mc_readl(emc->mc, MC_EMEM_ARB_OVERRIDE); 773 774 return 0; 775 } 776 777 static int emc_complete_timing_change(struct tegra_emc *emc, 778 unsigned long rate) 779 { 780 struct emc_timing *timing = emc_find_timing(emc, rate); 781 unsigned int dram_num; 782 int err; 783 u32 v; 784 785 err = readl_relaxed_poll_timeout_atomic(emc->regs + EMC_INTSTATUS, v, 786 v & EMC_CLKCHANGE_COMPLETE_INT, 787 1, 100); 788 if (err) { 789 dev_err(emc->dev, "emc-car handshake timeout: %d\n", err); 790 return err; 791 } 792 793 /* re-enable auto-refresh */ 794 dram_num = tegra_mc_get_emem_device_count(emc->mc); 795 writel_relaxed(EMC_REFCTRL_ENABLE_ALL(dram_num), 796 emc->regs + EMC_REFCTRL); 797 798 /* restore auto-calibration */ 799 if (emc->vref_cal_toggle) 800 writel_relaxed(timing->emc_auto_cal_interval, 801 emc->regs + EMC_AUTO_CAL_INTERVAL); 802 803 /* restore dynamic self-refresh */ 804 if (timing->emc_cfg_dyn_self_ref) { 805 emc->emc_cfg |= EMC_CFG_DYN_SREF_ENABLE; 806 writel_relaxed(emc->emc_cfg, emc->regs + EMC_CFG); 807 } 808 809 /* set number of clocks to wait after each ZQ command */ 810 if (emc->zcal_long) 811 writel_relaxed(timing->emc_zcal_cnt_long, 812 emc->regs + EMC_ZCAL_WAIT_CNT); 813 814 /* wait for writes to settle */ 815 udelay(2); 816 817 /* update restored timing */ 818 err = emc_seq_update_timing(emc); 819 if (!err) 820 emc->bad_state = false; 821 822 /* restore early ACK */ 823 mc_writel(emc->mc, emc->mc_override, MC_EMEM_ARB_OVERRIDE); 824 825 return err; 826 } 827 828 static int emc_unprepare_timing_change(struct tegra_emc *emc, 829 unsigned long rate) 830 { 831 if (!emc->bad_state) { 832 /* shouldn't ever happen in practice */ 833 dev_err(emc->dev, "timing configuration can't be reverted\n"); 834 emc->bad_state = true; 835 } 836 837 return 0; 838 } 839 840 static int emc_clk_change_notify(struct notifier_block *nb, 841 unsigned long msg, void *data) 842 { 843 struct tegra_emc *emc = container_of(nb, struct tegra_emc, clk_nb); 844 struct clk_notifier_data *cnd = data; 845 int err; 846 847 switch (msg) { 848 case PRE_RATE_CHANGE: 849 /* 850 * Disable interrupt since read accesses are prohibited after 851 * stalling. 852 */ 853 disable_irq(emc->irq); 854 err = emc_prepare_timing_change(emc, cnd->new_rate); 855 enable_irq(emc->irq); 856 break; 857 858 case ABORT_RATE_CHANGE: 859 err = emc_unprepare_timing_change(emc, cnd->old_rate); 860 break; 861 862 case POST_RATE_CHANGE: 863 err = emc_complete_timing_change(emc, cnd->new_rate); 864 break; 865 866 default: 867 return NOTIFY_DONE; 868 } 869 870 return notifier_from_errno(err); 871 } 872 873 static int load_one_timing_from_dt(struct tegra_emc *emc, 874 struct emc_timing *timing, 875 struct device_node *node) 876 { 877 u32 value; 878 int err; 879 880 err = of_property_read_u32(node, "clock-frequency", &value); 881 if (err) { 882 dev_err(emc->dev, "timing %pOF: failed to read rate: %d\n", 883 node, err); 884 return err; 885 } 886 887 timing->rate = value; 888 889 err = of_property_read_u32_array(node, "nvidia,emc-configuration", 890 timing->data, 891 ARRAY_SIZE(emc_timing_registers)); 892 if (err) { 893 dev_err(emc->dev, 894 "timing %pOF: failed to read emc timing data: %d\n", 895 node, err); 896 return err; 897 } 898 899 #define EMC_READ_BOOL(prop, dtprop) \ 900 timing->prop = of_property_read_bool(node, dtprop); 901 902 #define EMC_READ_U32(prop, dtprop) \ 903 err = of_property_read_u32(node, dtprop, &timing->prop); \ 904 if (err) { \ 905 dev_err(emc->dev, \ 906 "timing %pOFn: failed to read " #prop ": %d\n", \ 907 node, err); \ 908 return err; \ 909 } 910 911 EMC_READ_U32(emc_auto_cal_interval, "nvidia,emc-auto-cal-interval") 912 EMC_READ_U32(emc_mode_1, "nvidia,emc-mode-1") 913 EMC_READ_U32(emc_mode_2, "nvidia,emc-mode-2") 914 EMC_READ_U32(emc_mode_reset, "nvidia,emc-mode-reset") 915 EMC_READ_U32(emc_zcal_cnt_long, "nvidia,emc-zcal-cnt-long") 916 EMC_READ_BOOL(emc_cfg_dyn_self_ref, "nvidia,emc-cfg-dyn-self-ref") 917 EMC_READ_BOOL(emc_cfg_periodic_qrst, "nvidia,emc-cfg-periodic-qrst") 918 919 #undef EMC_READ_U32 920 #undef EMC_READ_BOOL 921 922 dev_dbg(emc->dev, "%s: %pOF: rate %lu\n", __func__, node, timing->rate); 923 924 return 0; 925 } 926 927 static int cmp_timings(const void *_a, const void *_b) 928 { 929 const struct emc_timing *a = _a; 930 const struct emc_timing *b = _b; 931 932 if (a->rate < b->rate) 933 return -1; 934 935 if (a->rate > b->rate) 936 return 1; 937 938 return 0; 939 } 940 941 static int emc_check_mc_timings(struct tegra_emc *emc) 942 { 943 struct tegra_mc *mc = emc->mc; 944 unsigned int i; 945 946 if (emc->num_timings != mc->num_timings) { 947 dev_err(emc->dev, "emc/mc timings number mismatch: %u %u\n", 948 emc->num_timings, mc->num_timings); 949 return -EINVAL; 950 } 951 952 for (i = 0; i < mc->num_timings; i++) { 953 if (emc->timings[i].rate != mc->timings[i].rate) { 954 dev_err(emc->dev, 955 "emc/mc timing rate mismatch: %lu %lu\n", 956 emc->timings[i].rate, mc->timings[i].rate); 957 return -EINVAL; 958 } 959 } 960 961 return 0; 962 } 963 964 static int emc_load_timings_from_dt(struct tegra_emc *emc, 965 struct device_node *node) 966 { 967 struct device_node *child; 968 struct emc_timing *timing; 969 int child_count; 970 int err; 971 972 child_count = of_get_child_count(node); 973 if (!child_count) { 974 dev_err(emc->dev, "no memory timings in: %pOF\n", node); 975 return -EINVAL; 976 } 977 978 emc->timings = devm_kcalloc(emc->dev, child_count, sizeof(*timing), 979 GFP_KERNEL); 980 if (!emc->timings) 981 return -ENOMEM; 982 983 emc->num_timings = child_count; 984 timing = emc->timings; 985 986 for_each_child_of_node(node, child) { 987 err = load_one_timing_from_dt(emc, timing++, child); 988 if (err) { 989 of_node_put(child); 990 return err; 991 } 992 } 993 994 sort(emc->timings, emc->num_timings, sizeof(*timing), cmp_timings, 995 NULL); 996 997 err = emc_check_mc_timings(emc); 998 if (err) 999 return err; 1000 1001 dev_info(emc->dev, 1002 "got %u timings for RAM code %u (min %luMHz max %luMHz)\n", 1003 emc->num_timings, 1004 tegra_read_ram_code(), 1005 emc->timings[0].rate / 1000000, 1006 emc->timings[emc->num_timings - 1].rate / 1000000); 1007 1008 return 0; 1009 } 1010 1011 static struct device_node *emc_find_node_by_ram_code(struct device *dev) 1012 { 1013 struct device_node *np; 1014 u32 value, ram_code; 1015 int err; 1016 1017 if (of_get_child_count(dev->of_node) == 0) { 1018 dev_info(dev, "device-tree doesn't have memory timings\n"); 1019 return NULL; 1020 } 1021 1022 ram_code = tegra_read_ram_code(); 1023 1024 for_each_child_of_node(dev->of_node, np) { 1025 err = of_property_read_u32(np, "nvidia,ram-code", &value); 1026 if (err || value != ram_code) 1027 continue; 1028 1029 return np; 1030 } 1031 1032 dev_err(dev, "no memory timings for RAM code %u found in device-tree\n", 1033 ram_code); 1034 1035 return NULL; 1036 } 1037 1038 static int emc_setup_hw(struct tegra_emc *emc) 1039 { 1040 u32 intmask = EMC_REFRESH_OVERFLOW_INT; 1041 u32 fbio_cfg5, emc_cfg, emc_dbg; 1042 enum emc_dram_type dram_type; 1043 1044 fbio_cfg5 = readl_relaxed(emc->regs + EMC_FBIO_CFG5); 1045 dram_type = fbio_cfg5 & EMC_FBIO_CFG5_DRAM_TYPE_MASK; 1046 1047 emc_cfg = readl_relaxed(emc->regs + EMC_CFG_2); 1048 1049 /* enable EMC and CAR to handshake on PLL divider/source changes */ 1050 emc_cfg |= EMC_CLKCHANGE_REQ_ENABLE; 1051 1052 /* configure clock change mode accordingly to DRAM type */ 1053 switch (dram_type) { 1054 case DRAM_TYPE_LPDDR2: 1055 emc_cfg |= EMC_CLKCHANGE_PD_ENABLE; 1056 emc_cfg &= ~EMC_CLKCHANGE_SR_ENABLE; 1057 break; 1058 1059 default: 1060 emc_cfg &= ~EMC_CLKCHANGE_SR_ENABLE; 1061 emc_cfg &= ~EMC_CLKCHANGE_PD_ENABLE; 1062 break; 1063 } 1064 1065 writel_relaxed(emc_cfg, emc->regs + EMC_CFG_2); 1066 1067 /* initialize interrupt */ 1068 writel_relaxed(intmask, emc->regs + EMC_INTMASK); 1069 writel_relaxed(0xffffffff, emc->regs + EMC_INTSTATUS); 1070 1071 /* ensure that unwanted debug features are disabled */ 1072 emc_dbg = readl_relaxed(emc->regs + EMC_DBG); 1073 emc_dbg |= EMC_DBG_CFG_PRIORITY; 1074 emc_dbg &= ~EMC_DBG_READ_MUX_ASSEMBLY; 1075 emc_dbg &= ~EMC_DBG_WRITE_MUX_ACTIVE; 1076 emc_dbg &= ~EMC_DBG_FORCE_UPDATE; 1077 writel_relaxed(emc_dbg, emc->regs + EMC_DBG); 1078 1079 return 0; 1080 } 1081 1082 static long emc_round_rate(unsigned long rate, 1083 unsigned long min_rate, 1084 unsigned long max_rate, 1085 void *arg) 1086 { 1087 struct emc_timing *timing = NULL; 1088 struct tegra_emc *emc = arg; 1089 unsigned int i; 1090 1091 if (!emc->num_timings) 1092 return clk_get_rate(emc->clk); 1093 1094 min_rate = min(min_rate, emc->timings[emc->num_timings - 1].rate); 1095 1096 for (i = 0; i < emc->num_timings; i++) { 1097 if (emc->timings[i].rate < rate && i != emc->num_timings - 1) 1098 continue; 1099 1100 if (emc->timings[i].rate > max_rate) { 1101 i = max(i, 1u) - 1; 1102 1103 if (emc->timings[i].rate < min_rate) 1104 break; 1105 } 1106 1107 if (emc->timings[i].rate < min_rate) 1108 continue; 1109 1110 timing = &emc->timings[i]; 1111 break; 1112 } 1113 1114 if (!timing) { 1115 dev_err(emc->dev, "no timing for rate %lu min %lu max %lu\n", 1116 rate, min_rate, max_rate); 1117 return -EINVAL; 1118 } 1119 1120 return timing->rate; 1121 } 1122 1123 static void tegra_emc_rate_requests_init(struct tegra_emc *emc) 1124 { 1125 unsigned int i; 1126 1127 for (i = 0; i < EMC_RATE_TYPE_MAX; i++) { 1128 emc->requested_rate[i].min_rate = 0; 1129 emc->requested_rate[i].max_rate = ULONG_MAX; 1130 } 1131 } 1132 1133 static int emc_request_rate(struct tegra_emc *emc, 1134 unsigned long new_min_rate, 1135 unsigned long new_max_rate, 1136 enum emc_rate_request_type type) 1137 { 1138 struct emc_rate_request *req = emc->requested_rate; 1139 unsigned long min_rate = 0, max_rate = ULONG_MAX; 1140 unsigned int i; 1141 int err; 1142 1143 /* select minimum and maximum rates among the requested rates */ 1144 for (i = 0; i < EMC_RATE_TYPE_MAX; i++, req++) { 1145 if (i == type) { 1146 min_rate = max(new_min_rate, min_rate); 1147 max_rate = min(new_max_rate, max_rate); 1148 } else { 1149 min_rate = max(req->min_rate, min_rate); 1150 max_rate = min(req->max_rate, max_rate); 1151 } 1152 } 1153 1154 if (min_rate > max_rate) { 1155 dev_err_ratelimited(emc->dev, "%s: type %u: out of range: %lu %lu\n", 1156 __func__, type, min_rate, max_rate); 1157 return -ERANGE; 1158 } 1159 1160 /* 1161 * EMC rate-changes should go via OPP API because it manages voltage 1162 * changes. 1163 */ 1164 err = dev_pm_opp_set_rate(emc->dev, min_rate); 1165 if (err) 1166 return err; 1167 1168 emc->requested_rate[type].min_rate = new_min_rate; 1169 emc->requested_rate[type].max_rate = new_max_rate; 1170 1171 return 0; 1172 } 1173 1174 static int emc_set_min_rate(struct tegra_emc *emc, unsigned long rate, 1175 enum emc_rate_request_type type) 1176 { 1177 struct emc_rate_request *req = &emc->requested_rate[type]; 1178 int ret; 1179 1180 mutex_lock(&emc->rate_lock); 1181 ret = emc_request_rate(emc, rate, req->max_rate, type); 1182 mutex_unlock(&emc->rate_lock); 1183 1184 return ret; 1185 } 1186 1187 static int emc_set_max_rate(struct tegra_emc *emc, unsigned long rate, 1188 enum emc_rate_request_type type) 1189 { 1190 struct emc_rate_request *req = &emc->requested_rate[type]; 1191 int ret; 1192 1193 mutex_lock(&emc->rate_lock); 1194 ret = emc_request_rate(emc, req->min_rate, rate, type); 1195 mutex_unlock(&emc->rate_lock); 1196 1197 return ret; 1198 } 1199 1200 /* 1201 * debugfs interface 1202 * 1203 * The memory controller driver exposes some files in debugfs that can be used 1204 * to control the EMC frequency. The top-level directory can be found here: 1205 * 1206 * /sys/kernel/debug/emc 1207 * 1208 * It contains the following files: 1209 * 1210 * - available_rates: This file contains a list of valid, space-separated 1211 * EMC frequencies. 1212 * 1213 * - min_rate: Writing a value to this file sets the given frequency as the 1214 * floor of the permitted range. If this is higher than the currently 1215 * configured EMC frequency, this will cause the frequency to be 1216 * increased so that it stays within the valid range. 1217 * 1218 * - max_rate: Similarily to the min_rate file, writing a value to this file 1219 * sets the given frequency as the ceiling of the permitted range. If 1220 * the value is lower than the currently configured EMC frequency, this 1221 * will cause the frequency to be decreased so that it stays within the 1222 * valid range. 1223 */ 1224 1225 static bool tegra_emc_validate_rate(struct tegra_emc *emc, unsigned long rate) 1226 { 1227 unsigned int i; 1228 1229 for (i = 0; i < emc->num_timings; i++) 1230 if (rate == emc->timings[i].rate) 1231 return true; 1232 1233 return false; 1234 } 1235 1236 static int tegra_emc_debug_available_rates_show(struct seq_file *s, void *data) 1237 { 1238 struct tegra_emc *emc = s->private; 1239 const char *prefix = ""; 1240 unsigned int i; 1241 1242 for (i = 0; i < emc->num_timings; i++) { 1243 seq_printf(s, "%s%lu", prefix, emc->timings[i].rate); 1244 prefix = " "; 1245 } 1246 1247 seq_puts(s, "\n"); 1248 1249 return 0; 1250 } 1251 1252 static int tegra_emc_debug_available_rates_open(struct inode *inode, 1253 struct file *file) 1254 { 1255 return single_open(file, tegra_emc_debug_available_rates_show, 1256 inode->i_private); 1257 } 1258 1259 static const struct file_operations tegra_emc_debug_available_rates_fops = { 1260 .open = tegra_emc_debug_available_rates_open, 1261 .read = seq_read, 1262 .llseek = seq_lseek, 1263 .release = single_release, 1264 }; 1265 1266 static int tegra_emc_debug_min_rate_get(void *data, u64 *rate) 1267 { 1268 struct tegra_emc *emc = data; 1269 1270 *rate = emc->debugfs.min_rate; 1271 1272 return 0; 1273 } 1274 1275 static int tegra_emc_debug_min_rate_set(void *data, u64 rate) 1276 { 1277 struct tegra_emc *emc = data; 1278 int err; 1279 1280 if (!tegra_emc_validate_rate(emc, rate)) 1281 return -EINVAL; 1282 1283 err = emc_set_min_rate(emc, rate, EMC_RATE_DEBUG); 1284 if (err < 0) 1285 return err; 1286 1287 emc->debugfs.min_rate = rate; 1288 1289 return 0; 1290 } 1291 1292 DEFINE_SIMPLE_ATTRIBUTE(tegra_emc_debug_min_rate_fops, 1293 tegra_emc_debug_min_rate_get, 1294 tegra_emc_debug_min_rate_set, "%llu\n"); 1295 1296 static int tegra_emc_debug_max_rate_get(void *data, u64 *rate) 1297 { 1298 struct tegra_emc *emc = data; 1299 1300 *rate = emc->debugfs.max_rate; 1301 1302 return 0; 1303 } 1304 1305 static int tegra_emc_debug_max_rate_set(void *data, u64 rate) 1306 { 1307 struct tegra_emc *emc = data; 1308 int err; 1309 1310 if (!tegra_emc_validate_rate(emc, rate)) 1311 return -EINVAL; 1312 1313 err = emc_set_max_rate(emc, rate, EMC_RATE_DEBUG); 1314 if (err < 0) 1315 return err; 1316 1317 emc->debugfs.max_rate = rate; 1318 1319 return 0; 1320 } 1321 1322 DEFINE_SIMPLE_ATTRIBUTE(tegra_emc_debug_max_rate_fops, 1323 tegra_emc_debug_max_rate_get, 1324 tegra_emc_debug_max_rate_set, "%llu\n"); 1325 1326 static void tegra_emc_debugfs_init(struct tegra_emc *emc) 1327 { 1328 struct device *dev = emc->dev; 1329 unsigned int i; 1330 int err; 1331 1332 emc->debugfs.min_rate = ULONG_MAX; 1333 emc->debugfs.max_rate = 0; 1334 1335 for (i = 0; i < emc->num_timings; i++) { 1336 if (emc->timings[i].rate < emc->debugfs.min_rate) 1337 emc->debugfs.min_rate = emc->timings[i].rate; 1338 1339 if (emc->timings[i].rate > emc->debugfs.max_rate) 1340 emc->debugfs.max_rate = emc->timings[i].rate; 1341 } 1342 1343 if (!emc->num_timings) { 1344 emc->debugfs.min_rate = clk_get_rate(emc->clk); 1345 emc->debugfs.max_rate = emc->debugfs.min_rate; 1346 } 1347 1348 err = clk_set_rate_range(emc->clk, emc->debugfs.min_rate, 1349 emc->debugfs.max_rate); 1350 if (err < 0) { 1351 dev_err(dev, "failed to set rate range [%lu-%lu] for %pC\n", 1352 emc->debugfs.min_rate, emc->debugfs.max_rate, 1353 emc->clk); 1354 } 1355 1356 emc->debugfs.root = debugfs_create_dir("emc", NULL); 1357 if (!emc->debugfs.root) { 1358 dev_err(emc->dev, "failed to create debugfs directory\n"); 1359 return; 1360 } 1361 1362 debugfs_create_file("available_rates", 0444, emc->debugfs.root, 1363 emc, &tegra_emc_debug_available_rates_fops); 1364 debugfs_create_file("min_rate", 0644, emc->debugfs.root, 1365 emc, &tegra_emc_debug_min_rate_fops); 1366 debugfs_create_file("max_rate", 0644, emc->debugfs.root, 1367 emc, &tegra_emc_debug_max_rate_fops); 1368 } 1369 1370 static inline struct tegra_emc * 1371 to_tegra_emc_provider(struct icc_provider *provider) 1372 { 1373 return container_of(provider, struct tegra_emc, provider); 1374 } 1375 1376 static struct icc_node_data * 1377 emc_of_icc_xlate_extended(struct of_phandle_args *spec, void *data) 1378 { 1379 struct icc_provider *provider = data; 1380 struct icc_node_data *ndata; 1381 struct icc_node *node; 1382 1383 /* External Memory is the only possible ICC route */ 1384 list_for_each_entry(node, &provider->nodes, node_list) { 1385 if (node->id != TEGRA_ICC_EMEM) 1386 continue; 1387 1388 ndata = kzalloc(sizeof(*ndata), GFP_KERNEL); 1389 if (!ndata) 1390 return ERR_PTR(-ENOMEM); 1391 1392 /* 1393 * SRC and DST nodes should have matching TAG in order to have 1394 * it set by default for a requested path. 1395 */ 1396 ndata->tag = TEGRA_MC_ICC_TAG_ISO; 1397 ndata->node = node; 1398 1399 return ndata; 1400 } 1401 1402 return ERR_PTR(-EPROBE_DEFER); 1403 } 1404 1405 static int emc_icc_set(struct icc_node *src, struct icc_node *dst) 1406 { 1407 struct tegra_emc *emc = to_tegra_emc_provider(dst->provider); 1408 unsigned long long peak_bw = icc_units_to_bps(dst->peak_bw); 1409 unsigned long long avg_bw = icc_units_to_bps(dst->avg_bw); 1410 unsigned long long rate = max(avg_bw, peak_bw); 1411 const unsigned int dram_data_bus_width_bytes = 4; 1412 const unsigned int ddr = 2; 1413 int err; 1414 1415 /* 1416 * Tegra30 EMC runs on a clock rate of SDRAM bus. This means that 1417 * EMC clock rate is twice smaller than the peak data rate because 1418 * data is sampled on both EMC clock edges. 1419 */ 1420 do_div(rate, ddr * dram_data_bus_width_bytes); 1421 rate = min_t(u64, rate, U32_MAX); 1422 1423 err = emc_set_min_rate(emc, rate, EMC_RATE_ICC); 1424 if (err) 1425 return err; 1426 1427 return 0; 1428 } 1429 1430 static int tegra_emc_interconnect_init(struct tegra_emc *emc) 1431 { 1432 const struct tegra_mc_soc *soc = emc->mc->soc; 1433 struct icc_node *node; 1434 int err; 1435 1436 emc->provider.dev = emc->dev; 1437 emc->provider.set = emc_icc_set; 1438 emc->provider.data = &emc->provider; 1439 emc->provider.aggregate = soc->icc_ops->aggregate; 1440 emc->provider.xlate_extended = emc_of_icc_xlate_extended; 1441 1442 err = icc_provider_add(&emc->provider); 1443 if (err) 1444 goto err_msg; 1445 1446 /* create External Memory Controller node */ 1447 node = icc_node_create(TEGRA_ICC_EMC); 1448 if (IS_ERR(node)) { 1449 err = PTR_ERR(node); 1450 goto del_provider; 1451 } 1452 1453 node->name = "External Memory Controller"; 1454 icc_node_add(node, &emc->provider); 1455 1456 /* link External Memory Controller to External Memory (DRAM) */ 1457 err = icc_link_create(node, TEGRA_ICC_EMEM); 1458 if (err) 1459 goto remove_nodes; 1460 1461 /* create External Memory node */ 1462 node = icc_node_create(TEGRA_ICC_EMEM); 1463 if (IS_ERR(node)) { 1464 err = PTR_ERR(node); 1465 goto remove_nodes; 1466 } 1467 1468 node->name = "External Memory (DRAM)"; 1469 icc_node_add(node, &emc->provider); 1470 1471 return 0; 1472 1473 remove_nodes: 1474 icc_nodes_remove(&emc->provider); 1475 del_provider: 1476 icc_provider_del(&emc->provider); 1477 err_msg: 1478 dev_err(emc->dev, "failed to initialize ICC: %d\n", err); 1479 1480 return err; 1481 } 1482 1483 static int tegra_emc_opp_table_init(struct tegra_emc *emc) 1484 { 1485 u32 hw_version = BIT(tegra_sku_info.soc_speedo_id); 1486 struct opp_table *hw_opp_table; 1487 int err; 1488 1489 hw_opp_table = dev_pm_opp_set_supported_hw(emc->dev, &hw_version, 1); 1490 err = PTR_ERR_OR_ZERO(hw_opp_table); 1491 if (err) { 1492 dev_err(emc->dev, "failed to set OPP supported HW: %d\n", err); 1493 return err; 1494 } 1495 1496 err = dev_pm_opp_of_add_table(emc->dev); 1497 if (err) { 1498 if (err == -ENODEV) 1499 dev_err(emc->dev, "OPP table not found, please update your device tree\n"); 1500 else 1501 dev_err(emc->dev, "failed to add OPP table: %d\n", err); 1502 1503 goto put_hw_table; 1504 } 1505 1506 dev_info(emc->dev, "OPP HW ver. 0x%x, current clock rate %lu MHz\n", 1507 hw_version, clk_get_rate(emc->clk) / 1000000); 1508 1509 /* first dummy rate-set initializes voltage state */ 1510 err = dev_pm_opp_set_rate(emc->dev, clk_get_rate(emc->clk)); 1511 if (err) { 1512 dev_err(emc->dev, "failed to initialize OPP clock: %d\n", err); 1513 goto remove_table; 1514 } 1515 1516 return 0; 1517 1518 remove_table: 1519 dev_pm_opp_of_remove_table(emc->dev); 1520 put_hw_table: 1521 dev_pm_opp_put_supported_hw(hw_opp_table); 1522 1523 return err; 1524 } 1525 1526 static void devm_tegra_emc_unset_callback(void *data) 1527 { 1528 tegra20_clk_set_emc_round_callback(NULL, NULL); 1529 } 1530 1531 static void devm_tegra_emc_unreg_clk_notifier(void *data) 1532 { 1533 struct tegra_emc *emc = data; 1534 1535 clk_notifier_unregister(emc->clk, &emc->clk_nb); 1536 } 1537 1538 static int tegra_emc_init_clk(struct tegra_emc *emc) 1539 { 1540 int err; 1541 1542 tegra20_clk_set_emc_round_callback(emc_round_rate, emc); 1543 1544 err = devm_add_action_or_reset(emc->dev, devm_tegra_emc_unset_callback, 1545 NULL); 1546 if (err) 1547 return err; 1548 1549 emc->clk = devm_clk_get(emc->dev, NULL); 1550 if (IS_ERR(emc->clk)) { 1551 dev_err(emc->dev, "failed to get EMC clock: %pe\n", emc->clk); 1552 return PTR_ERR(emc->clk); 1553 } 1554 1555 err = clk_notifier_register(emc->clk, &emc->clk_nb); 1556 if (err) { 1557 dev_err(emc->dev, "failed to register clk notifier: %d\n", err); 1558 return err; 1559 } 1560 1561 err = devm_add_action_or_reset(emc->dev, 1562 devm_tegra_emc_unreg_clk_notifier, emc); 1563 if (err) 1564 return err; 1565 1566 return 0; 1567 } 1568 1569 static int tegra_emc_probe(struct platform_device *pdev) 1570 { 1571 struct device_node *np; 1572 struct tegra_emc *emc; 1573 int err; 1574 1575 emc = devm_kzalloc(&pdev->dev, sizeof(*emc), GFP_KERNEL); 1576 if (!emc) 1577 return -ENOMEM; 1578 1579 emc->mc = devm_tegra_memory_controller_get(&pdev->dev); 1580 if (IS_ERR(emc->mc)) 1581 return PTR_ERR(emc->mc); 1582 1583 mutex_init(&emc->rate_lock); 1584 emc->clk_nb.notifier_call = emc_clk_change_notify; 1585 emc->dev = &pdev->dev; 1586 1587 np = emc_find_node_by_ram_code(&pdev->dev); 1588 if (np) { 1589 err = emc_load_timings_from_dt(emc, np); 1590 of_node_put(np); 1591 if (err) 1592 return err; 1593 } 1594 1595 emc->regs = devm_platform_ioremap_resource(pdev, 0); 1596 if (IS_ERR(emc->regs)) 1597 return PTR_ERR(emc->regs); 1598 1599 err = emc_setup_hw(emc); 1600 if (err) 1601 return err; 1602 1603 err = platform_get_irq(pdev, 0); 1604 if (err < 0) 1605 return err; 1606 1607 emc->irq = err; 1608 1609 err = devm_request_irq(&pdev->dev, emc->irq, tegra_emc_isr, 0, 1610 dev_name(&pdev->dev), emc); 1611 if (err) { 1612 dev_err(&pdev->dev, "failed to request irq: %d\n", err); 1613 return err; 1614 } 1615 1616 err = tegra_emc_init_clk(emc); 1617 if (err) 1618 return err; 1619 1620 err = tegra_emc_opp_table_init(emc); 1621 if (err) 1622 return err; 1623 1624 platform_set_drvdata(pdev, emc); 1625 tegra_emc_rate_requests_init(emc); 1626 tegra_emc_debugfs_init(emc); 1627 tegra_emc_interconnect_init(emc); 1628 1629 /* 1630 * Don't allow the kernel module to be unloaded. Unloading adds some 1631 * extra complexity which doesn't really worth the effort in a case of 1632 * this driver. 1633 */ 1634 try_module_get(THIS_MODULE); 1635 1636 return 0; 1637 } 1638 1639 static int tegra_emc_suspend(struct device *dev) 1640 { 1641 struct tegra_emc *emc = dev_get_drvdata(dev); 1642 int err; 1643 1644 /* take exclusive control over the clock's rate */ 1645 err = clk_rate_exclusive_get(emc->clk); 1646 if (err) { 1647 dev_err(emc->dev, "failed to acquire clk: %d\n", err); 1648 return err; 1649 } 1650 1651 /* suspending in a bad state will hang machine */ 1652 if (WARN(emc->bad_state, "hardware in a bad state\n")) 1653 return -EINVAL; 1654 1655 emc->bad_state = true; 1656 1657 return 0; 1658 } 1659 1660 static int tegra_emc_resume(struct device *dev) 1661 { 1662 struct tegra_emc *emc = dev_get_drvdata(dev); 1663 1664 emc_setup_hw(emc); 1665 emc->bad_state = false; 1666 1667 clk_rate_exclusive_put(emc->clk); 1668 1669 return 0; 1670 } 1671 1672 static const struct dev_pm_ops tegra_emc_pm_ops = { 1673 .suspend = tegra_emc_suspend, 1674 .resume = tegra_emc_resume, 1675 }; 1676 1677 static const struct of_device_id tegra_emc_of_match[] = { 1678 { .compatible = "nvidia,tegra30-emc", }, 1679 {}, 1680 }; 1681 MODULE_DEVICE_TABLE(of, tegra_emc_of_match); 1682 1683 static struct platform_driver tegra_emc_driver = { 1684 .probe = tegra_emc_probe, 1685 .driver = { 1686 .name = "tegra30-emc", 1687 .of_match_table = tegra_emc_of_match, 1688 .pm = &tegra_emc_pm_ops, 1689 .suppress_bind_attrs = true, 1690 .sync_state = icc_sync_state, 1691 }, 1692 }; 1693 module_platform_driver(tegra_emc_driver); 1694 1695 MODULE_AUTHOR("Dmitry Osipenko <digetx@gmail.com>"); 1696 MODULE_DESCRIPTION("NVIDIA Tegra30 EMC driver"); 1697 MODULE_LICENSE("GPL v2"); 1698