xref: /openbmc/linux/drivers/memory/tegra/tegra210-emc-cc-r21021.c (revision f97cee494dc92395a668445bcd24d34c89f4ff8c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2014-2020, NVIDIA CORPORATION.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/io.h>
8 #include <linux/clk.h>
9 #include <linux/delay.h>
10 #include <linux/of.h>
11 
12 #include <soc/tegra/mc.h>
13 
14 #include "tegra210-emc.h"
15 #include "tegra210-mc.h"
16 
17 /*
18  * Enable flags for specifying verbosity.
19  */
20 #define INFO            (1 << 0)
21 #define STEPS           (1 << 1)
22 #define SUB_STEPS       (1 << 2)
23 #define PRELOCK         (1 << 3)
24 #define PRELOCK_STEPS   (1 << 4)
25 #define ACTIVE_EN       (1 << 5)
26 #define PRAMP_UP        (1 << 6)
27 #define PRAMP_DN        (1 << 7)
28 #define EMA_WRITES      (1 << 10)
29 #define EMA_UPDATES     (1 << 11)
30 #define PER_TRAIN       (1 << 16)
31 #define CC_PRINT        (1 << 17)
32 #define CCFIFO          (1 << 29)
33 #define REGS            (1 << 30)
34 #define REG_LISTS       (1 << 31)
35 
36 #define emc_dbg(emc, flags, ...) dev_dbg(emc->dev, __VA_ARGS__)
37 
38 #define DVFS_CLOCK_CHANGE_VERSION	21021
39 #define EMC_PRELOCK_VERSION		2101
40 
41 enum {
42 	DVFS_SEQUENCE = 1,
43 	WRITE_TRAINING_SEQUENCE = 2,
44 	PERIODIC_TRAINING_SEQUENCE = 3,
45 	DVFS_PT1 = 10,
46 	DVFS_UPDATE = 11,
47 	TRAINING_PT1 = 12,
48 	TRAINING_UPDATE = 13,
49 	PERIODIC_TRAINING_UPDATE = 14
50 };
51 
52 /*
53  * PTFV defines - basically just indexes into the per table PTFV array.
54  */
55 #define PTFV_DQSOSC_MOVAVG_C0D0U0_INDEX		0
56 #define PTFV_DQSOSC_MOVAVG_C0D0U1_INDEX		1
57 #define PTFV_DQSOSC_MOVAVG_C0D1U0_INDEX		2
58 #define PTFV_DQSOSC_MOVAVG_C0D1U1_INDEX		3
59 #define PTFV_DQSOSC_MOVAVG_C1D0U0_INDEX		4
60 #define PTFV_DQSOSC_MOVAVG_C1D0U1_INDEX		5
61 #define PTFV_DQSOSC_MOVAVG_C1D1U0_INDEX		6
62 #define PTFV_DQSOSC_MOVAVG_C1D1U1_INDEX		7
63 #define PTFV_DVFS_SAMPLES_INDEX			9
64 #define PTFV_MOVAVG_WEIGHT_INDEX		10
65 #define PTFV_CONFIG_CTRL_INDEX			11
66 
67 #define PTFV_CONFIG_CTRL_USE_PREVIOUS_EMA	(1 << 0)
68 
69 /*
70  * Do arithmetic in fixed point.
71  */
72 #define MOVAVG_PRECISION_FACTOR		100
73 
74 /*
75  * The division portion of the average operation.
76  */
77 #define __AVERAGE_PTFV(dev)						\
78 	({ next->ptfv_list[PTFV_DQSOSC_MOVAVG_ ## dev ## _INDEX] =	\
79 	   next->ptfv_list[PTFV_DQSOSC_MOVAVG_ ## dev ## _INDEX] /	\
80 	   next->ptfv_list[PTFV_DVFS_SAMPLES_INDEX]; })
81 
82 /*
83  * Convert val to fixed point and add it to the temporary average.
84  */
85 #define __INCREMENT_PTFV(dev, val)					\
86 	({ next->ptfv_list[PTFV_DQSOSC_MOVAVG_ ## dev ## _INDEX] +=	\
87 	   ((val) * MOVAVG_PRECISION_FACTOR); })
88 
89 /*
90  * Convert a moving average back to integral form and return the value.
91  */
92 #define __MOVAVG_AC(timing, dev)					\
93 	((timing)->ptfv_list[PTFV_DQSOSC_MOVAVG_ ## dev ## _INDEX] /	\
94 	 MOVAVG_PRECISION_FACTOR)
95 
96 /* Weighted update. */
97 #define __WEIGHTED_UPDATE_PTFV(dev, nval)				\
98 	do {								\
99 		int w = PTFV_MOVAVG_WEIGHT_INDEX;			\
100 		int dqs = PTFV_DQSOSC_MOVAVG_ ## dev ## _INDEX;		\
101 									\
102 		next->ptfv_list[dqs] =					\
103 			((nval * MOVAVG_PRECISION_FACTOR) +		\
104 			 (next->ptfv_list[dqs] *			\
105 			  next->ptfv_list[w])) /			\
106 			(next->ptfv_list[w] + 1);			\
107 									\
108 		emc_dbg(emc, EMA_UPDATES, "%s: (s=%lu) EMA: %u\n",	\
109 			__stringify(dev), nval, next->ptfv_list[dqs]);	\
110 	} while (0)
111 
112 /* Access a particular average. */
113 #define __MOVAVG(timing, dev)                      \
114 	((timing)->ptfv_list[PTFV_DQSOSC_MOVAVG_ ## dev ## _INDEX])
115 
116 static u32 update_clock_tree_delay(struct tegra210_emc *emc, int type)
117 {
118 	bool periodic_training_update = type == PERIODIC_TRAINING_UPDATE;
119 	struct tegra210_emc_timing *last = emc->last;
120 	struct tegra210_emc_timing *next = emc->next;
121 	u32 last_timing_rate_mhz = last->rate / 1000;
122 	u32 next_timing_rate_mhz = next->rate / 1000;
123 	bool dvfs_update = type == DVFS_UPDATE;
124 	s32 tdel = 0, tmdel = 0, adel = 0;
125 	bool dvfs_pt1 = type == DVFS_PT1;
126 	unsigned long cval = 0;
127 	u32 temp[2][2], value;
128 	unsigned int i;
129 
130 	/*
131 	 * Dev0 MSB.
132 	 */
133 	if (dvfs_pt1 || periodic_training_update) {
134 		value = tegra210_emc_mrr_read(emc, 2, 19);
135 
136 		for (i = 0; i < emc->num_channels; i++) {
137 			temp[i][0] = (value & 0x00ff) << 8;
138 			temp[i][1] = (value & 0xff00) << 0;
139 			value >>= 16;
140 		}
141 
142 		/*
143 		 * Dev0 LSB.
144 		 */
145 		value = tegra210_emc_mrr_read(emc, 2, 18);
146 
147 		for (i = 0; i < emc->num_channels; i++) {
148 			temp[i][0] |= (value & 0x00ff) >> 0;
149 			temp[i][1] |= (value & 0xff00) >> 8;
150 			value >>= 16;
151 		}
152 	}
153 
154 	if (dvfs_pt1 || periodic_training_update) {
155 		cval = tegra210_emc_actual_osc_clocks(last->run_clocks);
156 		cval *= 1000000;
157 		cval /= last_timing_rate_mhz * 2 * temp[0][0];
158 	}
159 
160 	if (dvfs_pt1)
161 		__INCREMENT_PTFV(C0D0U0, cval);
162 	else if (dvfs_update)
163 		__AVERAGE_PTFV(C0D0U0);
164 	else if (periodic_training_update)
165 		__WEIGHTED_UPDATE_PTFV(C0D0U0, cval);
166 
167 	if (dvfs_update || periodic_training_update) {
168 		tdel = next->current_dram_clktree[C0D0U0] -
169 				__MOVAVG_AC(next, C0D0U0);
170 		tmdel = (tdel < 0) ? -1 * tdel : tdel;
171 		adel = tmdel;
172 
173 		if (tmdel * 128 * next_timing_rate_mhz / 1000000 >
174 		    next->tree_margin)
175 			next->current_dram_clktree[C0D0U0] =
176 				__MOVAVG_AC(next, C0D0U0);
177 	}
178 
179 	if (dvfs_pt1 || periodic_training_update) {
180 		cval = tegra210_emc_actual_osc_clocks(last->run_clocks);
181 		cval *= 1000000;
182 		cval /= last_timing_rate_mhz * 2 * temp[0][1];
183 	}
184 
185 	if (dvfs_pt1)
186 		__INCREMENT_PTFV(C0D0U1, cval);
187 	else if (dvfs_update)
188 		__AVERAGE_PTFV(C0D0U1);
189 	else if (periodic_training_update)
190 		__WEIGHTED_UPDATE_PTFV(C0D0U1, cval);
191 
192 	if (dvfs_update || periodic_training_update) {
193 		tdel = next->current_dram_clktree[C0D0U1] -
194 				__MOVAVG_AC(next, C0D0U1);
195 		tmdel = (tdel < 0) ? -1 * tdel : tdel;
196 
197 		if (tmdel > adel)
198 			adel = tmdel;
199 
200 		if (tmdel * 128 * next_timing_rate_mhz / 1000000 >
201 		    next->tree_margin)
202 			next->current_dram_clktree[C0D0U1] =
203 				__MOVAVG_AC(next, C0D0U1);
204 	}
205 
206 	if (emc->num_channels > 1) {
207 		if (dvfs_pt1 || periodic_training_update) {
208 			cval = tegra210_emc_actual_osc_clocks(last->run_clocks);
209 			cval *= 1000000;
210 			cval /= last_timing_rate_mhz * 2 * temp[1][0];
211 		}
212 
213 		if (dvfs_pt1)
214 			__INCREMENT_PTFV(C1D0U0, cval);
215 		else if (dvfs_update)
216 			__AVERAGE_PTFV(C1D0U0);
217 		else if (periodic_training_update)
218 			__WEIGHTED_UPDATE_PTFV(C1D0U0, cval);
219 
220 		if (dvfs_update || periodic_training_update) {
221 			tdel = next->current_dram_clktree[C1D0U0] -
222 					__MOVAVG_AC(next, C1D0U0);
223 			tmdel = (tdel < 0) ? -1 * tdel : tdel;
224 
225 			if (tmdel > adel)
226 				adel = tmdel;
227 
228 			if (tmdel * 128 * next_timing_rate_mhz / 1000000 >
229 			    next->tree_margin)
230 				next->current_dram_clktree[C1D0U0] =
231 					__MOVAVG_AC(next, C1D0U0);
232 		}
233 
234 		if (dvfs_pt1 || periodic_training_update) {
235 			cval = tegra210_emc_actual_osc_clocks(last->run_clocks);
236 			cval *= 1000000;
237 			cval /= last_timing_rate_mhz * 2 * temp[1][1];
238 		}
239 
240 		if (dvfs_pt1)
241 			__INCREMENT_PTFV(C1D0U1, cval);
242 		else if (dvfs_update)
243 			__AVERAGE_PTFV(C1D0U1);
244 		else if (periodic_training_update)
245 			__WEIGHTED_UPDATE_PTFV(C1D0U1, cval);
246 
247 		if (dvfs_update || periodic_training_update) {
248 			tdel = next->current_dram_clktree[C1D0U1] -
249 					__MOVAVG_AC(next, C1D0U1);
250 			tmdel = (tdel < 0) ? -1 * tdel : tdel;
251 
252 			if (tmdel > adel)
253 				adel = tmdel;
254 
255 			if (tmdel * 128 * next_timing_rate_mhz / 1000000 >
256 			    next->tree_margin)
257 				next->current_dram_clktree[C1D0U1] =
258 					__MOVAVG_AC(next, C1D0U1);
259 		}
260 	}
261 
262 	if (emc->num_devices < 2)
263 		goto done;
264 
265 	/*
266 	 * Dev1 MSB.
267 	 */
268 	if (dvfs_pt1 || periodic_training_update) {
269 		value = tegra210_emc_mrr_read(emc, 1, 19);
270 
271 		for (i = 0; i < emc->num_channels; i++) {
272 			temp[i][0] = (value & 0x00ff) << 8;
273 			temp[i][1] = (value & 0xff00) << 0;
274 			value >>= 16;
275 		}
276 
277 		/*
278 		 * Dev1 LSB.
279 		 */
280 		value = tegra210_emc_mrr_read(emc, 2, 18);
281 
282 		for (i = 0; i < emc->num_channels; i++) {
283 			temp[i][0] |= (value & 0x00ff) >> 0;
284 			temp[i][1] |= (value & 0xff00) >> 8;
285 			value >>= 16;
286 		}
287 	}
288 
289 	if (dvfs_pt1 || periodic_training_update) {
290 		cval = tegra210_emc_actual_osc_clocks(last->run_clocks);
291 		cval *= 1000000;
292 		cval /= last_timing_rate_mhz * 2 * temp[0][0];
293 	}
294 
295 	if (dvfs_pt1)
296 		__INCREMENT_PTFV(C0D1U0, cval);
297 	else if (dvfs_update)
298 		__AVERAGE_PTFV(C0D1U0);
299 	else if (periodic_training_update)
300 		__WEIGHTED_UPDATE_PTFV(C0D1U0, cval);
301 
302 	if (dvfs_update || periodic_training_update) {
303 		tdel = next->current_dram_clktree[C0D1U0] -
304 				__MOVAVG_AC(next, C0D1U0);
305 		tmdel = (tdel < 0) ? -1 * tdel : tdel;
306 
307 		if (tmdel > adel)
308 			adel = tmdel;
309 
310 		if (tmdel * 128 * next_timing_rate_mhz / 1000000 >
311 		    next->tree_margin)
312 			next->current_dram_clktree[C0D1U0] =
313 				__MOVAVG_AC(next, C0D1U0);
314 	}
315 
316 	if (dvfs_pt1 || periodic_training_update) {
317 		cval = tegra210_emc_actual_osc_clocks(last->run_clocks);
318 		cval *= 1000000;
319 		cval /= last_timing_rate_mhz * 2 * temp[0][1];
320 	}
321 
322 	if (dvfs_pt1)
323 		__INCREMENT_PTFV(C0D1U1, cval);
324 	else if (dvfs_update)
325 		__AVERAGE_PTFV(C0D1U1);
326 	else if (periodic_training_update)
327 		__WEIGHTED_UPDATE_PTFV(C0D1U1, cval);
328 
329 	if (dvfs_update || periodic_training_update) {
330 		tdel = next->current_dram_clktree[C0D1U1] -
331 				__MOVAVG_AC(next, C0D1U1);
332 		tmdel = (tdel < 0) ? -1 * tdel : tdel;
333 
334 		if (tmdel > adel)
335 			adel = tmdel;
336 
337 		if (tmdel * 128 * next_timing_rate_mhz / 1000000 >
338 		    next->tree_margin)
339 			next->current_dram_clktree[C0D1U1] =
340 				__MOVAVG_AC(next, C0D1U1);
341 	}
342 
343 	if (emc->num_channels > 1) {
344 		if (dvfs_pt1 || periodic_training_update) {
345 			cval = tegra210_emc_actual_osc_clocks(last->run_clocks);
346 			cval *= 1000000;
347 			cval /= last_timing_rate_mhz * 2 * temp[1][0];
348 		}
349 
350 		if (dvfs_pt1)
351 			__INCREMENT_PTFV(C1D1U0, cval);
352 		else if (dvfs_update)
353 			__AVERAGE_PTFV(C1D1U0);
354 		else if (periodic_training_update)
355 			__WEIGHTED_UPDATE_PTFV(C1D1U0, cval);
356 
357 		if (dvfs_update || periodic_training_update) {
358 			tdel = next->current_dram_clktree[C1D1U0] -
359 					__MOVAVG_AC(next, C1D1U0);
360 			tmdel = (tdel < 0) ? -1 * tdel : tdel;
361 
362 			if (tmdel > adel)
363 				adel = tmdel;
364 
365 			if (tmdel * 128 * next_timing_rate_mhz / 1000000 >
366 			    next->tree_margin)
367 				next->current_dram_clktree[C1D1U0] =
368 					__MOVAVG_AC(next, C1D1U0);
369 		}
370 
371 		if (dvfs_pt1 || periodic_training_update) {
372 			cval = tegra210_emc_actual_osc_clocks(last->run_clocks);
373 			cval *= 1000000;
374 			cval /= last_timing_rate_mhz * 2 * temp[1][1];
375 		}
376 
377 		if (dvfs_pt1)
378 			__INCREMENT_PTFV(C1D1U1, cval);
379 		else if (dvfs_update)
380 			__AVERAGE_PTFV(C1D1U1);
381 		else if (periodic_training_update)
382 			__WEIGHTED_UPDATE_PTFV(C1D1U1, cval);
383 
384 		if (dvfs_update || periodic_training_update) {
385 			tdel = next->current_dram_clktree[C1D1U1] -
386 					__MOVAVG_AC(next, C1D1U1);
387 			tmdel = (tdel < 0) ? -1 * tdel : tdel;
388 
389 			if (tmdel > adel)
390 				adel = tmdel;
391 
392 			if (tmdel * 128 * next_timing_rate_mhz / 1000000 >
393 			    next->tree_margin)
394 				next->current_dram_clktree[C1D1U1] =
395 					__MOVAVG_AC(next, C1D1U1);
396 		}
397 	}
398 
399 done:
400 	return adel;
401 }
402 
403 static u32 periodic_compensation_handler(struct tegra210_emc *emc, u32 type,
404 					 struct tegra210_emc_timing *last,
405 					 struct tegra210_emc_timing *next)
406 {
407 #define __COPY_EMA(nt, lt, dev)						\
408 	({ __MOVAVG(nt, dev) = __MOVAVG(lt, dev) *			\
409 	   (nt)->ptfv_list[PTFV_DVFS_SAMPLES_INDEX]; })
410 
411 	u32 i, adel = 0, samples = next->ptfv_list[PTFV_DVFS_SAMPLES_INDEX];
412 	u32 delay;
413 
414 	delay = tegra210_emc_actual_osc_clocks(last->run_clocks);
415 	delay *= 1000;
416 	delay = 2 + (delay / last->rate);
417 
418 	if (!next->periodic_training)
419 		return 0;
420 
421 	if (type == DVFS_SEQUENCE) {
422 		if (last->periodic_training &&
423 		    (next->ptfv_list[PTFV_CONFIG_CTRL_INDEX] &
424 		     PTFV_CONFIG_CTRL_USE_PREVIOUS_EMA)) {
425 			/*
426 			 * If the previous frequency was using periodic
427 			 * calibration then we can reuse the previous
428 			 * frequencies EMA data.
429 			 */
430 			__COPY_EMA(next, last, C0D0U0);
431 			__COPY_EMA(next, last, C0D0U1);
432 			__COPY_EMA(next, last, C1D0U0);
433 			__COPY_EMA(next, last, C1D0U1);
434 			__COPY_EMA(next, last, C0D1U0);
435 			__COPY_EMA(next, last, C0D1U1);
436 			__COPY_EMA(next, last, C1D1U0);
437 			__COPY_EMA(next, last, C1D1U1);
438 		} else {
439 			/* Reset the EMA.*/
440 			__MOVAVG(next, C0D0U0) = 0;
441 			__MOVAVG(next, C0D0U1) = 0;
442 			__MOVAVG(next, C1D0U0) = 0;
443 			__MOVAVG(next, C1D0U1) = 0;
444 			__MOVAVG(next, C0D1U0) = 0;
445 			__MOVAVG(next, C0D1U1) = 0;
446 			__MOVAVG(next, C1D1U0) = 0;
447 			__MOVAVG(next, C1D1U1) = 0;
448 
449 			for (i = 0; i < samples; i++) {
450 				tegra210_emc_start_periodic_compensation(emc);
451 				udelay(delay);
452 
453 				/*
454 				 * Generate next sample of data.
455 				 */
456 				adel = update_clock_tree_delay(emc, DVFS_PT1);
457 			}
458 		}
459 
460 		/*
461 		 * Seems like it should be part of the
462 		 * 'if (last_timing->periodic_training)' conditional
463 		 * since is already done for the else clause.
464 		 */
465 		adel = update_clock_tree_delay(emc, DVFS_UPDATE);
466 	}
467 
468 	if (type == PERIODIC_TRAINING_SEQUENCE) {
469 		tegra210_emc_start_periodic_compensation(emc);
470 		udelay(delay);
471 
472 		adel = update_clock_tree_delay(emc, PERIODIC_TRAINING_UPDATE);
473 	}
474 
475 	return adel;
476 }
477 
478 static u32 tegra210_emc_r21021_periodic_compensation(struct tegra210_emc *emc)
479 {
480 	u32 emc_cfg, emc_cfg_o, emc_cfg_update, del, value;
481 	u32 list[] = {
482 		EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_0,
483 		EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_1,
484 		EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_2,
485 		EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_3,
486 		EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_0,
487 		EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_1,
488 		EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_2,
489 		EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_3,
490 		EMC_DATA_BRLSHFT_0,
491 		EMC_DATA_BRLSHFT_1
492 	};
493 	struct tegra210_emc_timing *last = emc->last;
494 	unsigned int items = ARRAY_SIZE(list), i;
495 	unsigned long delay;
496 
497 	if (last->periodic_training) {
498 		emc_dbg(emc, PER_TRAIN, "Periodic training starting\n");
499 
500 		value = emc_readl(emc, EMC_DBG);
501 		emc_cfg_o = emc_readl(emc, EMC_CFG);
502 		emc_cfg = emc_cfg_o & ~(EMC_CFG_DYN_SELF_REF |
503 					EMC_CFG_DRAM_ACPD |
504 					EMC_CFG_DRAM_CLKSTOP_PD |
505 					EMC_CFG_DRAM_CLKSTOP_PD);
506 
507 
508 		/*
509 		 * 1. Power optimizations should be off.
510 		 */
511 		emc_writel(emc, emc_cfg, EMC_CFG);
512 
513 		/* Does emc_timing_update() for above changes. */
514 		tegra210_emc_dll_disable(emc);
515 
516 		for (i = 0; i < emc->num_channels; i++)
517 			tegra210_emc_wait_for_update(emc, i, EMC_EMC_STATUS,
518 						     EMC_EMC_STATUS_DRAM_IN_POWERDOWN_MASK,
519 						     0);
520 
521 		for (i = 0; i < emc->num_channels; i++)
522 			tegra210_emc_wait_for_update(emc, i, EMC_EMC_STATUS,
523 						     EMC_EMC_STATUS_DRAM_IN_SELF_REFRESH_MASK,
524 						     0);
525 
526 		emc_cfg_update = value = emc_readl(emc, EMC_CFG_UPDATE);
527 		value &= ~EMC_CFG_UPDATE_UPDATE_DLL_IN_UPDATE_MASK;
528 		value |= (2 << EMC_CFG_UPDATE_UPDATE_DLL_IN_UPDATE_SHIFT);
529 		emc_writel(emc, value, EMC_CFG_UPDATE);
530 
531 		/*
532 		 * 2. osc kick off - this assumes training and dvfs have set
533 		 *    correct MR23.
534 		 */
535 		tegra210_emc_start_periodic_compensation(emc);
536 
537 		/*
538 		 * 3. Let dram capture its clock tree delays.
539 		 */
540 		delay = tegra210_emc_actual_osc_clocks(last->run_clocks);
541 		delay *= 1000;
542 		delay /= last->rate + 1;
543 		udelay(delay);
544 
545 		/*
546 		 * 4. Check delta wrt previous values (save value if margin
547 		 *    exceeds what is set in table).
548 		 */
549 		del = periodic_compensation_handler(emc,
550 						    PERIODIC_TRAINING_SEQUENCE,
551 						    last, last);
552 
553 		/*
554 		 * 5. Apply compensation w.r.t. trained values (if clock tree
555 		 *    has drifted more than the set margin).
556 		 */
557 		if (last->tree_margin < ((del * 128 * (last->rate / 1000)) / 1000000)) {
558 			for (i = 0; i < items; i++) {
559 				value = tegra210_emc_compensate(last, list[i]);
560 				emc_dbg(emc, EMA_WRITES, "0x%08x <= 0x%08x\n",
561 					list[i], value);
562 				emc_writel(emc, value, list[i]);
563 			}
564 		}
565 
566 		emc_writel(emc, emc_cfg_o, EMC_CFG);
567 
568 		/*
569 		 * 6. Timing update actally applies the new trimmers.
570 		 */
571 		tegra210_emc_timing_update(emc);
572 
573 		/* 6.1. Restore the UPDATE_DLL_IN_UPDATE field. */
574 		emc_writel(emc, emc_cfg_update, EMC_CFG_UPDATE);
575 
576 		/* 6.2. Restore the DLL. */
577 		tegra210_emc_dll_enable(emc);
578 	}
579 
580 	return 0;
581 }
582 
583 /*
584  * Do the clock change sequence.
585  */
586 static void tegra210_emc_r21021_set_clock(struct tegra210_emc *emc, u32 clksrc)
587 {
588 	/* state variables */
589 	static bool fsp_for_next_freq;
590 	/* constant configuration parameters */
591 	const bool save_restore_clkstop_pd = true;
592 	const u32 zqcal_before_cc_cutoff = 2400;
593 	const bool cya_allow_ref_cc = false;
594 	const bool cya_issue_pc_ref = false;
595 	const bool opt_cc_short_zcal = true;
596 	const bool ref_b4_sref_en = false;
597 	const u32 tZQCAL_lpddr4 = 1000000;
598 	const bool opt_short_zcal = true;
599 	const bool opt_do_sw_qrst = true;
600 	const u32 opt_dvfs_mode = MAN_SR;
601 	/*
602 	 * This is the timing table for the source frequency. It does _not_
603 	 * necessarily correspond to the actual timing values in the EMC at the
604 	 * moment. If the boot BCT differs from the table then this can happen.
605 	 * However, we need it for accessing the dram_timings (which are not
606 	 * really registers) array for the current frequency.
607 	 */
608 	struct tegra210_emc_timing *fake, *last = emc->last, *next = emc->next;
609 	u32 tRTM, RP_war, R2P_war, TRPab_war, deltaTWATM, W2P_war, tRPST;
610 	u32 mr13_flip_fspwr, mr13_flip_fspop, ramp_up_wait, ramp_down_wait;
611 	u32 zq_wait_long, zq_latch_dvfs_wait_time, tZQCAL_lpddr4_fc_adj;
612 	u32 emc_auto_cal_config, auto_cal_en, emc_cfg, emc_sel_dpd_ctrl;
613 	u32 tFC_lpddr4 = 1000 * next->dram_timings[T_FC_LPDDR4];
614 	u32 bg_reg_mode_change, enable_bglp_reg, enable_bg_reg;
615 	bool opt_zcal_en_cc = false, is_lpddr3 = false;
616 	bool compensate_trimmer_applicable = false;
617 	u32 emc_dbg, emc_cfg_pipe_clk, emc_pin;
618 	u32 src_clk_period, dst_clk_period; /* in picoseconds */
619 	bool shared_zq_resistor = false;
620 	u32 value, dram_type;
621 	u32 opt_dll_mode = 0;
622 	unsigned long delay;
623 	unsigned int i;
624 
625 	emc_dbg(emc, INFO, "Running clock change.\n");
626 
627 	/* XXX fake == last */
628 	fake = tegra210_emc_find_timing(emc, last->rate * 1000UL);
629 	fsp_for_next_freq = !fsp_for_next_freq;
630 
631 	value = emc_readl(emc, EMC_FBIO_CFG5) & EMC_FBIO_CFG5_DRAM_TYPE_MASK;
632 	dram_type = value >> EMC_FBIO_CFG5_DRAM_TYPE_SHIFT;
633 
634 	if (last->burst_regs[EMC_ZCAL_WAIT_CNT_INDEX] & BIT(31))
635 		shared_zq_resistor = true;
636 
637 	if ((next->burst_regs[EMC_ZCAL_INTERVAL_INDEX] != 0 &&
638 	     last->burst_regs[EMC_ZCAL_INTERVAL_INDEX] == 0) ||
639 	    dram_type == DRAM_TYPE_LPDDR4)
640 		opt_zcal_en_cc = true;
641 
642 	if (dram_type == DRAM_TYPE_DDR3)
643 		opt_dll_mode = tegra210_emc_get_dll_state(next);
644 
645 	if ((next->burst_regs[EMC_FBIO_CFG5_INDEX] & BIT(25)) &&
646 	    (dram_type == DRAM_TYPE_LPDDR2))
647 		is_lpddr3 = true;
648 
649 	emc_readl(emc, EMC_CFG);
650 	emc_readl(emc, EMC_AUTO_CAL_CONFIG);
651 
652 	src_clk_period = 1000000000 / last->rate;
653 	dst_clk_period = 1000000000 / next->rate;
654 
655 	if (dst_clk_period <= zqcal_before_cc_cutoff)
656 		tZQCAL_lpddr4_fc_adj = tZQCAL_lpddr4 - tFC_lpddr4;
657 	else
658 		tZQCAL_lpddr4_fc_adj = tZQCAL_lpddr4;
659 
660 	tZQCAL_lpddr4_fc_adj /= dst_clk_period;
661 
662 	emc_dbg = emc_readl(emc, EMC_DBG);
663 	emc_pin = emc_readl(emc, EMC_PIN);
664 	emc_cfg_pipe_clk = emc_readl(emc, EMC_CFG_PIPE_CLK);
665 
666 	emc_cfg = next->burst_regs[EMC_CFG_INDEX];
667 	emc_cfg &= ~(EMC_CFG_DYN_SELF_REF | EMC_CFG_DRAM_ACPD |
668 		     EMC_CFG_DRAM_CLKSTOP_SR | EMC_CFG_DRAM_CLKSTOP_PD);
669 	emc_sel_dpd_ctrl = next->emc_sel_dpd_ctrl;
670 	emc_sel_dpd_ctrl &= ~(EMC_SEL_DPD_CTRL_CLK_SEL_DPD_EN |
671 			      EMC_SEL_DPD_CTRL_CA_SEL_DPD_EN |
672 			      EMC_SEL_DPD_CTRL_RESET_SEL_DPD_EN |
673 			      EMC_SEL_DPD_CTRL_ODT_SEL_DPD_EN |
674 			      EMC_SEL_DPD_CTRL_DATA_SEL_DPD_EN);
675 
676 	emc_dbg(emc, INFO, "Clock change version: %d\n",
677 		DVFS_CLOCK_CHANGE_VERSION);
678 	emc_dbg(emc, INFO, "DRAM type = %d\n", dram_type);
679 	emc_dbg(emc, INFO, "DRAM dev #: %u\n", emc->num_devices);
680 	emc_dbg(emc, INFO, "Next EMC clksrc: 0x%08x\n", clksrc);
681 	emc_dbg(emc, INFO, "DLL clksrc:      0x%08x\n", next->dll_clk_src);
682 	emc_dbg(emc, INFO, "last rate: %u, next rate %u\n", last->rate,
683 		next->rate);
684 	emc_dbg(emc, INFO, "last period: %u, next period: %u\n",
685 		src_clk_period, dst_clk_period);
686 	emc_dbg(emc, INFO, "  shared_zq_resistor: %d\n", !!shared_zq_resistor);
687 	emc_dbg(emc, INFO, "  num_channels: %u\n", emc->num_channels);
688 	emc_dbg(emc, INFO, "  opt_dll_mode: %d\n", opt_dll_mode);
689 
690 	/*
691 	 * Step 1:
692 	 *   Pre DVFS SW sequence.
693 	 */
694 	emc_dbg(emc, STEPS, "Step 1\n");
695 	emc_dbg(emc, STEPS, "Step 1.1: Disable DLL temporarily.\n");
696 
697 	value = emc_readl(emc, EMC_CFG_DIG_DLL);
698 	value &= ~EMC_CFG_DIG_DLL_CFG_DLL_EN;
699 	emc_writel(emc, value, EMC_CFG_DIG_DLL);
700 
701 	tegra210_emc_timing_update(emc);
702 
703 	for (i = 0; i < emc->num_channels; i++)
704 		tegra210_emc_wait_for_update(emc, i, EMC_CFG_DIG_DLL,
705 					     EMC_CFG_DIG_DLL_CFG_DLL_EN, 0);
706 
707 	emc_dbg(emc, STEPS, "Step 1.2: Disable AUTOCAL temporarily.\n");
708 
709 	emc_auto_cal_config = next->emc_auto_cal_config;
710 	auto_cal_en = emc_auto_cal_config & EMC_AUTO_CAL_CONFIG_AUTO_CAL_ENABLE;
711 	emc_auto_cal_config &= ~EMC_AUTO_CAL_CONFIG_AUTO_CAL_START;
712 	emc_auto_cal_config |= EMC_AUTO_CAL_CONFIG_AUTO_CAL_MEASURE_STALL;
713 	emc_auto_cal_config |= EMC_AUTO_CAL_CONFIG_AUTO_CAL_UPDATE_STALL;
714 	emc_auto_cal_config |= auto_cal_en;
715 	emc_writel(emc, emc_auto_cal_config, EMC_AUTO_CAL_CONFIG);
716 	emc_readl(emc, EMC_AUTO_CAL_CONFIG); /* Flush write. */
717 
718 	emc_dbg(emc, STEPS, "Step 1.3: Disable other power features.\n");
719 
720 	tegra210_emc_set_shadow_bypass(emc, ACTIVE);
721 	emc_writel(emc, emc_cfg, EMC_CFG);
722 	emc_writel(emc, emc_sel_dpd_ctrl, EMC_SEL_DPD_CTRL);
723 	tegra210_emc_set_shadow_bypass(emc, ASSEMBLY);
724 
725 	if (next->periodic_training) {
726 		tegra210_emc_reset_dram_clktree_values(next);
727 
728 		for (i = 0; i < emc->num_channels; i++)
729 			tegra210_emc_wait_for_update(emc, i, EMC_EMC_STATUS,
730 						     EMC_EMC_STATUS_DRAM_IN_POWERDOWN_MASK,
731 						     0);
732 
733 		for (i = 0; i < emc->num_channels; i++)
734 			tegra210_emc_wait_for_update(emc, i, EMC_EMC_STATUS,
735 						     EMC_EMC_STATUS_DRAM_IN_SELF_REFRESH_MASK,
736 						     0);
737 
738 		tegra210_emc_start_periodic_compensation(emc);
739 
740 		delay = 1000 * tegra210_emc_actual_osc_clocks(last->run_clocks);
741 		udelay((delay / last->rate) + 2);
742 
743 		value = periodic_compensation_handler(emc, DVFS_SEQUENCE, fake,
744 						      next);
745 		value = (value * 128 * next->rate / 1000) / 1000000;
746 
747 		if (next->periodic_training && value > next->tree_margin)
748 			compensate_trimmer_applicable = true;
749 	}
750 
751 	emc_writel(emc, EMC_INTSTATUS_CLKCHANGE_COMPLETE, EMC_INTSTATUS);
752 	tegra210_emc_set_shadow_bypass(emc, ACTIVE);
753 	emc_writel(emc, emc_cfg, EMC_CFG);
754 	emc_writel(emc, emc_sel_dpd_ctrl, EMC_SEL_DPD_CTRL);
755 	emc_writel(emc, emc_cfg_pipe_clk | EMC_CFG_PIPE_CLK_CLK_ALWAYS_ON,
756 		   EMC_CFG_PIPE_CLK);
757 	emc_writel(emc, next->emc_fdpd_ctrl_cmd_no_ramp &
758 			~EMC_FDPD_CTRL_CMD_NO_RAMP_CMD_DPD_NO_RAMP_ENABLE,
759 		   EMC_FDPD_CTRL_CMD_NO_RAMP);
760 
761 	bg_reg_mode_change =
762 		((next->burst_regs[EMC_PMACRO_BG_BIAS_CTRL_0_INDEX] &
763 		  EMC_PMACRO_BG_BIAS_CTRL_0_BGLP_E_PWRD) ^
764 		 (last->burst_regs[EMC_PMACRO_BG_BIAS_CTRL_0_INDEX] &
765 		  EMC_PMACRO_BG_BIAS_CTRL_0_BGLP_E_PWRD)) ||
766 		((next->burst_regs[EMC_PMACRO_BG_BIAS_CTRL_0_INDEX] &
767 		  EMC_PMACRO_BG_BIAS_CTRL_0_BG_E_PWRD) ^
768 		 (last->burst_regs[EMC_PMACRO_BG_BIAS_CTRL_0_INDEX] &
769 		  EMC_PMACRO_BG_BIAS_CTRL_0_BG_E_PWRD));
770 	enable_bglp_reg =
771 		(next->burst_regs[EMC_PMACRO_BG_BIAS_CTRL_0_INDEX] &
772 		 EMC_PMACRO_BG_BIAS_CTRL_0_BGLP_E_PWRD) == 0;
773 	enable_bg_reg =
774 		(next->burst_regs[EMC_PMACRO_BG_BIAS_CTRL_0_INDEX] &
775 		 EMC_PMACRO_BG_BIAS_CTRL_0_BG_E_PWRD) == 0;
776 
777 	if (bg_reg_mode_change) {
778 		if (enable_bg_reg)
779 			emc_writel(emc, last->burst_regs
780 				   [EMC_PMACRO_BG_BIAS_CTRL_0_INDEX] &
781 				   ~EMC_PMACRO_BG_BIAS_CTRL_0_BG_E_PWRD,
782 				   EMC_PMACRO_BG_BIAS_CTRL_0);
783 
784 		if (enable_bglp_reg)
785 			emc_writel(emc, last->burst_regs
786 				   [EMC_PMACRO_BG_BIAS_CTRL_0_INDEX] &
787 				   ~EMC_PMACRO_BG_BIAS_CTRL_0_BGLP_E_PWRD,
788 				   EMC_PMACRO_BG_BIAS_CTRL_0);
789 	}
790 
791 	/* Check if we need to turn on VREF generator. */
792 	if ((((last->burst_regs[EMC_PMACRO_DATA_PAD_TX_CTRL_INDEX] &
793 	       EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQ_E_IVREF) == 0) &&
794 	     ((next->burst_regs[EMC_PMACRO_DATA_PAD_TX_CTRL_INDEX] &
795 	       EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQ_E_IVREF) == 1)) ||
796 	    (((last->burst_regs[EMC_PMACRO_DATA_PAD_TX_CTRL_INDEX] &
797 	       EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQS_E_IVREF) == 0) &&
798 	     ((next->burst_regs[EMC_PMACRO_DATA_PAD_TX_CTRL_INDEX] &
799 	       EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQS_E_IVREF) != 0))) {
800 		u32 pad_tx_ctrl =
801 		    next->burst_regs[EMC_PMACRO_DATA_PAD_TX_CTRL_INDEX];
802 		u32 last_pad_tx_ctrl =
803 		    last->burst_regs[EMC_PMACRO_DATA_PAD_TX_CTRL_INDEX];
804 		u32 next_dq_e_ivref, next_dqs_e_ivref;
805 
806 		next_dqs_e_ivref = pad_tx_ctrl &
807 				   EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQS_E_IVREF;
808 		next_dq_e_ivref = pad_tx_ctrl &
809 				  EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQ_E_IVREF;
810 		value = (last_pad_tx_ctrl &
811 				~EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQ_E_IVREF &
812 				~EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQS_E_IVREF) |
813 			next_dq_e_ivref | next_dqs_e_ivref;
814 		emc_writel(emc, value, EMC_PMACRO_DATA_PAD_TX_CTRL);
815 		udelay(1);
816 	} else if (bg_reg_mode_change) {
817 		udelay(1);
818 	}
819 
820 	tegra210_emc_set_shadow_bypass(emc, ASSEMBLY);
821 
822 	/*
823 	 * Step 2:
824 	 *   Prelock the DLL.
825 	 */
826 	emc_dbg(emc, STEPS, "Step 2\n");
827 
828 	if (next->burst_regs[EMC_CFG_DIG_DLL_INDEX] &
829 	    EMC_CFG_DIG_DLL_CFG_DLL_EN) {
830 		emc_dbg(emc, INFO, "Prelock enabled for target frequency.\n");
831 		value = tegra210_emc_dll_prelock(emc, clksrc);
832 		emc_dbg(emc, INFO, "DLL out: 0x%03x\n", value);
833 	} else {
834 		emc_dbg(emc, INFO, "Disabling DLL for target frequency.\n");
835 		tegra210_emc_dll_disable(emc);
836 	}
837 
838 	/*
839 	 * Step 3:
840 	 *   Prepare autocal for the clock change.
841 	 */
842 	emc_dbg(emc, STEPS, "Step 3\n");
843 
844 	tegra210_emc_set_shadow_bypass(emc, ACTIVE);
845 	emc_writel(emc, next->emc_auto_cal_config2, EMC_AUTO_CAL_CONFIG2);
846 	emc_writel(emc, next->emc_auto_cal_config3, EMC_AUTO_CAL_CONFIG3);
847 	emc_writel(emc, next->emc_auto_cal_config4, EMC_AUTO_CAL_CONFIG4);
848 	emc_writel(emc, next->emc_auto_cal_config5, EMC_AUTO_CAL_CONFIG5);
849 	emc_writel(emc, next->emc_auto_cal_config6, EMC_AUTO_CAL_CONFIG6);
850 	emc_writel(emc, next->emc_auto_cal_config7, EMC_AUTO_CAL_CONFIG7);
851 	emc_writel(emc, next->emc_auto_cal_config8, EMC_AUTO_CAL_CONFIG8);
852 	tegra210_emc_set_shadow_bypass(emc, ASSEMBLY);
853 
854 	emc_auto_cal_config |= (EMC_AUTO_CAL_CONFIG_AUTO_CAL_COMPUTE_START |
855 				auto_cal_en);
856 	emc_writel(emc, emc_auto_cal_config, EMC_AUTO_CAL_CONFIG);
857 
858 	/*
859 	 * Step 4:
860 	 *   Update EMC_CFG. (??)
861 	 */
862 	emc_dbg(emc, STEPS, "Step 4\n");
863 
864 	if (src_clk_period > 50000 && dram_type == DRAM_TYPE_LPDDR4)
865 		ccfifo_writel(emc, 1, EMC_SELF_REF, 0);
866 	else
867 		emc_writel(emc, next->emc_cfg_2, EMC_CFG_2);
868 
869 	/*
870 	 * Step 5:
871 	 *   Prepare reference variables for ZQCAL regs.
872 	 */
873 	emc_dbg(emc, STEPS, "Step 5\n");
874 
875 	if (dram_type == DRAM_TYPE_LPDDR4)
876 		zq_wait_long = max((u32)1, div_o3(1000000, dst_clk_period));
877 	else if (dram_type == DRAM_TYPE_LPDDR2 || is_lpddr3)
878 		zq_wait_long = max(next->min_mrs_wait,
879 				   div_o3(360000, dst_clk_period)) + 4;
880 	else if (dram_type == DRAM_TYPE_DDR3)
881 		zq_wait_long = max((u32)256,
882 				   div_o3(320000, dst_clk_period) + 2);
883 	else
884 		zq_wait_long = 0;
885 
886 	/*
887 	 * Step 6:
888 	 *   Training code - removed.
889 	 */
890 	emc_dbg(emc, STEPS, "Step 6\n");
891 
892 	/*
893 	 * Step 7:
894 	 *   Program FSP reference registers and send MRWs to new FSPWR.
895 	 */
896 	emc_dbg(emc, STEPS, "Step 7\n");
897 	emc_dbg(emc, SUB_STEPS, "Step 7.1: Bug 200024907 - Patch RP R2P");
898 
899 	/* WAR 200024907 */
900 	if (dram_type == DRAM_TYPE_LPDDR4) {
901 		u32 nRTP = 16;
902 
903 		if (src_clk_period >= 1000000 / 1866) /* 535.91 ps */
904 			nRTP = 14;
905 
906 		if (src_clk_period >= 1000000 / 1600) /* 625.00 ps */
907 			nRTP = 12;
908 
909 		if (src_clk_period >= 1000000 / 1333) /* 750.19 ps */
910 			nRTP = 10;
911 
912 		if (src_clk_period >= 1000000 / 1066) /* 938.09 ps */
913 			nRTP = 8;
914 
915 		deltaTWATM = max_t(u32, div_o3(7500, src_clk_period), 8);
916 
917 		/*
918 		 * Originally there was a + .5 in the tRPST calculation.
919 		 * However since we can't do FP in the kernel and the tRTM
920 		 * computation was in a floating point ceiling function, adding
921 		 * one to tRTP should be ok. There is no other source of non
922 		 * integer values, so the result was always going to be
923 		 * something for the form: f_ceil(N + .5) = N + 1;
924 		 */
925 		tRPST = (last->emc_mrw & 0x80) >> 7;
926 		tRTM = fake->dram_timings[RL] + div_o3(3600, src_clk_period) +
927 			max_t(u32, div_o3(7500, src_clk_period), 8) + tRPST +
928 			1 + nRTP;
929 
930 		emc_dbg(emc, INFO, "tRTM = %u, EMC_RP = %u\n", tRTM,
931 			next->burst_regs[EMC_RP_INDEX]);
932 
933 		if (last->burst_regs[EMC_RP_INDEX] < tRTM) {
934 			if (tRTM > (last->burst_regs[EMC_R2P_INDEX] +
935 				    last->burst_regs[EMC_RP_INDEX])) {
936 				R2P_war = tRTM - last->burst_regs[EMC_RP_INDEX];
937 				RP_war = last->burst_regs[EMC_RP_INDEX];
938 				TRPab_war = last->burst_regs[EMC_TRPAB_INDEX];
939 
940 				if (R2P_war > 63) {
941 					RP_war = R2P_war +
942 						 last->burst_regs[EMC_RP_INDEX] - 63;
943 
944 					if (TRPab_war < RP_war)
945 						TRPab_war = RP_war;
946 
947 					R2P_war = 63;
948 				}
949 			} else {
950 				R2P_war = last->burst_regs[EMC_R2P_INDEX];
951 				RP_war = last->burst_regs[EMC_RP_INDEX];
952 				TRPab_war = last->burst_regs[EMC_TRPAB_INDEX];
953 			}
954 
955 			if (RP_war < deltaTWATM) {
956 				W2P_war = last->burst_regs[EMC_W2P_INDEX]
957 					  + deltaTWATM - RP_war;
958 				if (W2P_war > 63) {
959 					RP_war = RP_war + W2P_war - 63;
960 					if (TRPab_war < RP_war)
961 						TRPab_war = RP_war;
962 					W2P_war = 63;
963 				}
964 			} else {
965 				W2P_war = last->burst_regs[
966 					  EMC_W2P_INDEX];
967 			}
968 
969 			if ((last->burst_regs[EMC_W2P_INDEX] ^ W2P_war) ||
970 			    (last->burst_regs[EMC_R2P_INDEX] ^ R2P_war) ||
971 			    (last->burst_regs[EMC_RP_INDEX] ^ RP_war) ||
972 			    (last->burst_regs[EMC_TRPAB_INDEX] ^ TRPab_war)) {
973 				emc_writel(emc, RP_war, EMC_RP);
974 				emc_writel(emc, R2P_war, EMC_R2P);
975 				emc_writel(emc, W2P_war, EMC_W2P);
976 				emc_writel(emc, TRPab_war, EMC_TRPAB);
977 			}
978 
979 			tegra210_emc_timing_update(emc);
980 		} else {
981 			emc_dbg(emc, INFO, "Skipped WAR\n");
982 		}
983 	}
984 
985 	if (!fsp_for_next_freq) {
986 		mr13_flip_fspwr = (next->emc_mrw3 & 0xffffff3f) | 0x80;
987 		mr13_flip_fspop = (next->emc_mrw3 & 0xffffff3f) | 0x00;
988 	} else {
989 		mr13_flip_fspwr = (next->emc_mrw3 & 0xffffff3f) | 0x40;
990 		mr13_flip_fspop = (next->emc_mrw3 & 0xffffff3f) | 0xc0;
991 	}
992 
993 	if (dram_type == DRAM_TYPE_LPDDR4) {
994 		emc_writel(emc, mr13_flip_fspwr, EMC_MRW3);
995 		emc_writel(emc, next->emc_mrw, EMC_MRW);
996 		emc_writel(emc, next->emc_mrw2, EMC_MRW2);
997 	}
998 
999 	/*
1000 	 * Step 8:
1001 	 *   Program the shadow registers.
1002 	 */
1003 	emc_dbg(emc, STEPS, "Step 8\n");
1004 	emc_dbg(emc, SUB_STEPS, "Writing burst_regs\n");
1005 
1006 	for (i = 0; i < next->num_burst; i++) {
1007 		const u16 *offsets = emc->offsets->burst;
1008 		u16 offset;
1009 
1010 		if (!offsets[i])
1011 			continue;
1012 
1013 		value = next->burst_regs[i];
1014 		offset = offsets[i];
1015 
1016 		if (dram_type != DRAM_TYPE_LPDDR4 &&
1017 		    (offset == EMC_MRW6 || offset == EMC_MRW7 ||
1018 		     offset == EMC_MRW8 || offset == EMC_MRW9 ||
1019 		     offset == EMC_MRW10 || offset == EMC_MRW11 ||
1020 		     offset == EMC_MRW12 || offset == EMC_MRW13 ||
1021 		     offset == EMC_MRW14 || offset == EMC_MRW15 ||
1022 		     offset == EMC_TRAINING_CTRL))
1023 			continue;
1024 
1025 		/* Pain... And suffering. */
1026 		if (offset == EMC_CFG) {
1027 			value &= ~EMC_CFG_DRAM_ACPD;
1028 			value &= ~EMC_CFG_DYN_SELF_REF;
1029 
1030 			if (dram_type == DRAM_TYPE_LPDDR4) {
1031 				value &= ~EMC_CFG_DRAM_CLKSTOP_SR;
1032 				value &= ~EMC_CFG_DRAM_CLKSTOP_PD;
1033 			}
1034 		} else if (offset == EMC_MRS_WAIT_CNT &&
1035 			   dram_type == DRAM_TYPE_LPDDR2 &&
1036 			   opt_zcal_en_cc && !opt_cc_short_zcal &&
1037 			   opt_short_zcal) {
1038 			value = (value & ~(EMC_MRS_WAIT_CNT_SHORT_WAIT_MASK <<
1039 					   EMC_MRS_WAIT_CNT_SHORT_WAIT_SHIFT)) |
1040 				((zq_wait_long & EMC_MRS_WAIT_CNT_SHORT_WAIT_MASK) <<
1041 						 EMC_MRS_WAIT_CNT_SHORT_WAIT_SHIFT);
1042 		} else if (offset == EMC_ZCAL_WAIT_CNT &&
1043 			   dram_type == DRAM_TYPE_DDR3 && opt_zcal_en_cc &&
1044 			   !opt_cc_short_zcal && opt_short_zcal) {
1045 			value = (value & ~(EMC_ZCAL_WAIT_CNT_ZCAL_WAIT_CNT_MASK <<
1046 					   EMC_ZCAL_WAIT_CNT_ZCAL_WAIT_CNT_SHIFT)) |
1047 			        ((zq_wait_long & EMC_ZCAL_WAIT_CNT_ZCAL_WAIT_CNT_MASK) <<
1048 						 EMC_MRS_WAIT_CNT_SHORT_WAIT_SHIFT);
1049 		} else if (offset == EMC_ZCAL_INTERVAL && opt_zcal_en_cc) {
1050 			value = 0; /* EMC_ZCAL_INTERVAL reset value. */
1051 		} else if (offset == EMC_PMACRO_AUTOCAL_CFG_COMMON) {
1052 			value |= EMC_PMACRO_AUTOCAL_CFG_COMMON_E_CAL_BYPASS_DVFS;
1053 		} else if (offset == EMC_PMACRO_DATA_PAD_TX_CTRL) {
1054 			value &= ~(EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQSP_TX_E_DCC |
1055 				   EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQSN_TX_E_DCC |
1056 				   EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQ_TX_E_DCC |
1057 				   EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_CMD_TX_E_DCC);
1058 		} else if (offset == EMC_PMACRO_CMD_PAD_TX_CTRL) {
1059 			value |= EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQ_TX_DRVFORCEON;
1060 			value &= ~(EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQSP_TX_E_DCC |
1061 				   EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQSN_TX_E_DCC |
1062 				   EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQ_TX_E_DCC |
1063 				   EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_CMD_TX_E_DCC);
1064 		} else if (offset == EMC_PMACRO_BRICK_CTRL_RFU1) {
1065 			value &= 0xf800f800;
1066 		} else if (offset == EMC_PMACRO_COMMON_PAD_TX_CTRL) {
1067 			value &= 0xfffffff0;
1068 		}
1069 
1070 		emc_writel(emc, value, offset);
1071 	}
1072 
1073 	/* SW addition: do EMC refresh adjustment here. */
1074 	tegra210_emc_adjust_timing(emc, next);
1075 
1076 	if (dram_type == DRAM_TYPE_LPDDR4) {
1077 		value = (23 << EMC_MRW_MRW_MA_SHIFT) |
1078 			(next->run_clocks & EMC_MRW_MRW_OP_MASK);
1079 		emc_writel(emc, value, EMC_MRW);
1080 	}
1081 
1082 	/* Per channel burst registers. */
1083 	emc_dbg(emc, SUB_STEPS, "Writing burst_regs_per_ch\n");
1084 
1085 	for (i = 0; i < next->num_burst_per_ch; i++) {
1086 		const struct tegra210_emc_per_channel_regs *burst =
1087 				emc->offsets->burst_per_channel;
1088 
1089 		if (!burst[i].offset)
1090 			continue;
1091 
1092 		if (dram_type != DRAM_TYPE_LPDDR4 &&
1093 		    (burst[i].offset == EMC_MRW6 ||
1094 		     burst[i].offset == EMC_MRW7 ||
1095 		     burst[i].offset == EMC_MRW8 ||
1096 		     burst[i].offset == EMC_MRW9 ||
1097 		     burst[i].offset == EMC_MRW10 ||
1098 		     burst[i].offset == EMC_MRW11 ||
1099 		     burst[i].offset == EMC_MRW12 ||
1100 		     burst[i].offset == EMC_MRW13 ||
1101 		     burst[i].offset == EMC_MRW14 ||
1102 		     burst[i].offset == EMC_MRW15))
1103 			continue;
1104 
1105 		/* Filter out second channel if not in DUAL_CHANNEL mode. */
1106 		if (emc->num_channels < 2 && burst[i].bank >= 1)
1107 			continue;
1108 
1109 		emc_dbg(emc, REG_LISTS, "(%u) 0x%08x => 0x%08x\n", i,
1110 			next->burst_reg_per_ch[i], burst[i].offset);
1111 		emc_channel_writel(emc, burst[i].bank,
1112 				   next->burst_reg_per_ch[i],
1113 				   burst[i].offset);
1114 	}
1115 
1116 	/* Vref regs. */
1117 	emc_dbg(emc, SUB_STEPS, "Writing vref_regs\n");
1118 
1119 	for (i = 0; i < next->vref_num; i++) {
1120 		const struct tegra210_emc_per_channel_regs *vref =
1121 					emc->offsets->vref_per_channel;
1122 
1123 		if (!vref[i].offset)
1124 			continue;
1125 
1126 		if (emc->num_channels < 2 && vref[i].bank >= 1)
1127 			continue;
1128 
1129 		emc_dbg(emc, REG_LISTS, "(%u) 0x%08x => 0x%08x\n", i,
1130 			next->vref_perch_regs[i], vref[i].offset);
1131 		emc_channel_writel(emc, vref[i].bank, next->vref_perch_regs[i],
1132 				   vref[i].offset);
1133 	}
1134 
1135 	/* Trimmers. */
1136 	emc_dbg(emc, SUB_STEPS, "Writing trim_regs\n");
1137 
1138 	for (i = 0; i < next->num_trim; i++) {
1139 		const u16 *offsets = emc->offsets->trim;
1140 
1141 		if (!offsets[i])
1142 			continue;
1143 
1144 		if (compensate_trimmer_applicable &&
1145 		    (offsets[i] == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_0 ||
1146 		     offsets[i] == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_1 ||
1147 		     offsets[i] == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_2 ||
1148 		     offsets[i] == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_3 ||
1149 		     offsets[i] == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_0 ||
1150 		     offsets[i] == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_1 ||
1151 		     offsets[i] == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_2 ||
1152 		     offsets[i] == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_3 ||
1153 		     offsets[i] == EMC_DATA_BRLSHFT_0 ||
1154 		     offsets[i] == EMC_DATA_BRLSHFT_1)) {
1155 			value = tegra210_emc_compensate(next, offsets[i]);
1156 			emc_dbg(emc, REG_LISTS, "(%u) 0x%08x => 0x%08x\n", i,
1157 				value, offsets[i]);
1158 			emc_dbg(emc, EMA_WRITES, "0x%08x <= 0x%08x\n",
1159 				(u32)(u64)offsets[i], value);
1160 			emc_writel(emc, value, offsets[i]);
1161 		} else {
1162 			emc_dbg(emc, REG_LISTS, "(%u) 0x%08x => 0x%08x\n", i,
1163 				next->trim_regs[i], offsets[i]);
1164 			emc_writel(emc, next->trim_regs[i], offsets[i]);
1165 		}
1166 	}
1167 
1168 	/* Per channel trimmers. */
1169 	emc_dbg(emc, SUB_STEPS, "Writing trim_regs_per_ch\n");
1170 
1171 	for (i = 0; i < next->num_trim_per_ch; i++) {
1172 		const struct tegra210_emc_per_channel_regs *trim =
1173 				&emc->offsets->trim_per_channel[0];
1174 		unsigned int offset;
1175 
1176 		if (!trim[i].offset)
1177 			continue;
1178 
1179 		if (emc->num_channels < 2 && trim[i].bank >= 1)
1180 			continue;
1181 
1182 		offset = trim[i].offset;
1183 
1184 		if (compensate_trimmer_applicable &&
1185 		    (offset == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_0 ||
1186 		     offset == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_1 ||
1187 		     offset == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_2 ||
1188 		     offset == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_3 ||
1189 		     offset == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_0 ||
1190 		     offset == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_1 ||
1191 		     offset == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_2 ||
1192 		     offset == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_3 ||
1193 		     offset == EMC_DATA_BRLSHFT_0 ||
1194 		     offset == EMC_DATA_BRLSHFT_1)) {
1195 			value = tegra210_emc_compensate(next, offset);
1196 			emc_dbg(emc, REG_LISTS, "(%u) 0x%08x => 0x%08x\n", i,
1197 				value, offset);
1198 			emc_dbg(emc, EMA_WRITES, "0x%08x <= 0x%08x\n", offset,
1199 				value);
1200 			emc_channel_writel(emc, trim[i].bank, value, offset);
1201 		} else {
1202 			emc_dbg(emc, REG_LISTS, "(%u) 0x%08x => 0x%08x\n", i,
1203 				next->trim_perch_regs[i], offset);
1204 			emc_channel_writel(emc, trim[i].bank,
1205 					   next->trim_perch_regs[i], offset);
1206 		}
1207 	}
1208 
1209 	emc_dbg(emc, SUB_STEPS, "Writing burst_mc_regs\n");
1210 
1211 	for (i = 0; i < next->num_mc_regs; i++) {
1212 		const u16 *offsets = emc->offsets->burst_mc;
1213 		u32 *values = next->burst_mc_regs;
1214 
1215 		emc_dbg(emc, REG_LISTS, "(%u) 0x%08x => 0x%08x\n", i,
1216 			values[i], offsets[i]);
1217 		mc_writel(emc->mc, values[i], offsets[i]);
1218 	}
1219 
1220 	/* Registers to be programmed on the faster clock. */
1221 	if (next->rate < last->rate) {
1222 		const u16 *la = emc->offsets->la_scale;
1223 
1224 		emc_dbg(emc, SUB_STEPS, "Writing la_scale_regs\n");
1225 
1226 		for (i = 0; i < next->num_up_down; i++) {
1227 			emc_dbg(emc, REG_LISTS, "(%u) 0x%08x => 0x%08x\n", i,
1228 				next->la_scale_regs[i], la[i]);
1229 			mc_writel(emc->mc, next->la_scale_regs[i], la[i]);
1230 		}
1231 	}
1232 
1233 	/* Flush all the burst register writes. */
1234 	mc_readl(emc->mc, MC_EMEM_ADR_CFG);
1235 
1236 	/*
1237 	 * Step 9:
1238 	 *   LPDDR4 section A.
1239 	 */
1240 	emc_dbg(emc, STEPS, "Step 9\n");
1241 
1242 	value = next->burst_regs[EMC_ZCAL_WAIT_CNT_INDEX];
1243 	value &= ~EMC_ZCAL_WAIT_CNT_ZCAL_WAIT_CNT_MASK;
1244 
1245 	if (dram_type == DRAM_TYPE_LPDDR4) {
1246 		emc_writel(emc, 0, EMC_ZCAL_INTERVAL);
1247 		emc_writel(emc, value, EMC_ZCAL_WAIT_CNT);
1248 
1249 		value = emc_dbg | (EMC_DBG_WRITE_MUX_ACTIVE |
1250 				   EMC_DBG_WRITE_ACTIVE_ONLY);
1251 
1252 		emc_writel(emc, value, EMC_DBG);
1253 		emc_writel(emc, 0, EMC_ZCAL_INTERVAL);
1254 		emc_writel(emc, emc_dbg, EMC_DBG);
1255 	}
1256 
1257 	/*
1258 	 * Step 10:
1259 	 *   LPDDR4 and DDR3 common section.
1260 	 */
1261 	emc_dbg(emc, STEPS, "Step 10\n");
1262 
1263 	if (opt_dvfs_mode == MAN_SR || dram_type == DRAM_TYPE_LPDDR4) {
1264 		if (dram_type == DRAM_TYPE_LPDDR4)
1265 			ccfifo_writel(emc, 0x101, EMC_SELF_REF, 0);
1266 		else
1267 			ccfifo_writel(emc, 0x1, EMC_SELF_REF, 0);
1268 
1269 		if (dram_type == DRAM_TYPE_LPDDR4 &&
1270 		    dst_clk_period <= zqcal_before_cc_cutoff) {
1271 			ccfifo_writel(emc, mr13_flip_fspwr ^ 0x40, EMC_MRW3, 0);
1272 			ccfifo_writel(emc, (next->burst_regs[EMC_MRW6_INDEX] &
1273 						0xFFFF3F3F) |
1274 					   (last->burst_regs[EMC_MRW6_INDEX] &
1275 						0x0000C0C0), EMC_MRW6, 0);
1276 			ccfifo_writel(emc, (next->burst_regs[EMC_MRW14_INDEX] &
1277 						0xFFFF0707) |
1278 					   (last->burst_regs[EMC_MRW14_INDEX] &
1279 						0x00003838), EMC_MRW14, 0);
1280 
1281 			if (emc->num_devices > 1) {
1282 				ccfifo_writel(emc,
1283 				      (next->burst_regs[EMC_MRW7_INDEX] &
1284 				       0xFFFF3F3F) |
1285 				      (last->burst_regs[EMC_MRW7_INDEX] &
1286 				       0x0000C0C0), EMC_MRW7, 0);
1287 				ccfifo_writel(emc,
1288 				     (next->burst_regs[EMC_MRW15_INDEX] &
1289 				      0xFFFF0707) |
1290 				     (last->burst_regs[EMC_MRW15_INDEX] &
1291 				      0x00003838), EMC_MRW15, 0);
1292 			}
1293 
1294 			if (opt_zcal_en_cc) {
1295 				if (emc->num_devices < 2)
1296 					ccfifo_writel(emc,
1297 						2UL << EMC_ZQ_CAL_DEV_SEL_SHIFT
1298 						| EMC_ZQ_CAL_ZQ_CAL_CMD,
1299 						EMC_ZQ_CAL, 0);
1300 				else if (shared_zq_resistor)
1301 					ccfifo_writel(emc,
1302 						2UL << EMC_ZQ_CAL_DEV_SEL_SHIFT
1303 						| EMC_ZQ_CAL_ZQ_CAL_CMD,
1304 						EMC_ZQ_CAL, 0);
1305 				else
1306 					ccfifo_writel(emc,
1307 						      EMC_ZQ_CAL_ZQ_CAL_CMD,
1308 						      EMC_ZQ_CAL, 0);
1309 			}
1310 		}
1311 	}
1312 
1313 	if (dram_type == DRAM_TYPE_LPDDR4) {
1314 		value = (1000 * fake->dram_timings[T_RP]) / src_clk_period;
1315 		ccfifo_writel(emc, mr13_flip_fspop | 0x8, EMC_MRW3, value);
1316 		ccfifo_writel(emc, 0, 0, tFC_lpddr4 / src_clk_period);
1317 	}
1318 
1319 	if (dram_type == DRAM_TYPE_LPDDR4 || opt_dvfs_mode != MAN_SR) {
1320 		delay = 30;
1321 
1322 		if (cya_allow_ref_cc) {
1323 			delay += (1000 * fake->dram_timings[T_RP]) /
1324 					src_clk_period;
1325 			delay += 4000 * fake->dram_timings[T_RFC];
1326 		}
1327 
1328 		ccfifo_writel(emc, emc_pin & ~(EMC_PIN_PIN_CKE_PER_DEV |
1329 					       EMC_PIN_PIN_CKEB |
1330 					       EMC_PIN_PIN_CKE),
1331 			      EMC_PIN, delay);
1332 	}
1333 
1334 	/* calculate reference delay multiplier */
1335 	value = 1;
1336 
1337 	if (ref_b4_sref_en)
1338 		value++;
1339 
1340 	if (cya_allow_ref_cc)
1341 		value++;
1342 
1343 	if (cya_issue_pc_ref)
1344 		value++;
1345 
1346 	if (dram_type != DRAM_TYPE_LPDDR4) {
1347 		delay = ((1000 * fake->dram_timings[T_RP] / src_clk_period) +
1348 			 (1000 * fake->dram_timings[T_RFC] / src_clk_period));
1349 		delay = value * delay + 20;
1350 	} else {
1351 		delay = 0;
1352 	}
1353 
1354 	/*
1355 	 * Step 11:
1356 	 *   Ramp down.
1357 	 */
1358 	emc_dbg(emc, STEPS, "Step 11\n");
1359 
1360 	ccfifo_writel(emc, 0x0, EMC_CFG_SYNC, delay);
1361 
1362 	value = emc_dbg | EMC_DBG_WRITE_MUX_ACTIVE | EMC_DBG_WRITE_ACTIVE_ONLY;
1363 	ccfifo_writel(emc, value, EMC_DBG, 0);
1364 
1365 	ramp_down_wait = tegra210_emc_dvfs_power_ramp_down(emc, src_clk_period,
1366 							   0);
1367 
1368 	/*
1369 	 * Step 12:
1370 	 *   And finally - trigger the clock change.
1371 	 */
1372 	emc_dbg(emc, STEPS, "Step 12\n");
1373 
1374 	ccfifo_writel(emc, 1, EMC_STALL_THEN_EXE_AFTER_CLKCHANGE, 0);
1375 	value &= ~EMC_DBG_WRITE_ACTIVE_ONLY;
1376 	ccfifo_writel(emc, value, EMC_DBG, 0);
1377 
1378 	/*
1379 	 * Step 13:
1380 	 *   Ramp up.
1381 	 */
1382 	emc_dbg(emc, STEPS, "Step 13\n");
1383 
1384 	ramp_up_wait = tegra210_emc_dvfs_power_ramp_up(emc, dst_clk_period, 0);
1385 	ccfifo_writel(emc, emc_dbg, EMC_DBG, 0);
1386 
1387 	/*
1388 	 * Step 14:
1389 	 *   Bringup CKE pins.
1390 	 */
1391 	emc_dbg(emc, STEPS, "Step 14\n");
1392 
1393 	if (dram_type == DRAM_TYPE_LPDDR4) {
1394 		value = emc_pin | EMC_PIN_PIN_CKE;
1395 
1396 		if (emc->num_devices <= 1)
1397 			value &= ~(EMC_PIN_PIN_CKEB | EMC_PIN_PIN_CKE_PER_DEV);
1398 		else
1399 			value |= EMC_PIN_PIN_CKEB | EMC_PIN_PIN_CKE_PER_DEV;
1400 
1401 		ccfifo_writel(emc, value, EMC_PIN, 0);
1402 	}
1403 
1404 	/*
1405 	 * Step 15: (two step 15s ??)
1406 	 *   Calculate zqlatch wait time; has dependency on ramping times.
1407 	 */
1408 	emc_dbg(emc, STEPS, "Step 15\n");
1409 
1410 	if (dst_clk_period <= zqcal_before_cc_cutoff) {
1411 		s32 t = (s32)(ramp_up_wait + ramp_down_wait) /
1412 			(s32)dst_clk_period;
1413 		zq_latch_dvfs_wait_time = (s32)tZQCAL_lpddr4_fc_adj - t;
1414 	} else {
1415 		zq_latch_dvfs_wait_time = tZQCAL_lpddr4_fc_adj -
1416 			div_o3(1000 * next->dram_timings[T_PDEX],
1417 			       dst_clk_period);
1418 	}
1419 
1420 	emc_dbg(emc, INFO, "tZQCAL_lpddr4_fc_adj = %u\n", tZQCAL_lpddr4_fc_adj);
1421 	emc_dbg(emc, INFO, "dst_clk_period = %u\n",
1422 		dst_clk_period);
1423 	emc_dbg(emc, INFO, "next->dram_timings[T_PDEX] = %u\n",
1424 		next->dram_timings[T_PDEX]);
1425 	emc_dbg(emc, INFO, "zq_latch_dvfs_wait_time = %d\n",
1426 		max_t(s32, 0, zq_latch_dvfs_wait_time));
1427 
1428 	if (dram_type == DRAM_TYPE_LPDDR4 && opt_zcal_en_cc) {
1429 		delay = div_o3(1000 * next->dram_timings[T_PDEX],
1430 			       dst_clk_period);
1431 
1432 		if (emc->num_devices < 2) {
1433 			if (dst_clk_period > zqcal_before_cc_cutoff)
1434 				ccfifo_writel(emc,
1435 					      2UL << EMC_ZQ_CAL_DEV_SEL_SHIFT |
1436 					      EMC_ZQ_CAL_ZQ_CAL_CMD, EMC_ZQ_CAL,
1437 					      delay);
1438 
1439 			value = (mr13_flip_fspop & 0xfffffff7) | 0x0c000000;
1440 			ccfifo_writel(emc, value, EMC_MRW3, delay);
1441 			ccfifo_writel(emc, 0, EMC_SELF_REF, 0);
1442 			ccfifo_writel(emc, 0, EMC_REF, 0);
1443 			ccfifo_writel(emc, 2UL << EMC_ZQ_CAL_DEV_SEL_SHIFT |
1444 				      EMC_ZQ_CAL_ZQ_LATCH_CMD,
1445 				      EMC_ZQ_CAL,
1446 				      max_t(s32, 0, zq_latch_dvfs_wait_time));
1447 		} else if (shared_zq_resistor) {
1448 			if (dst_clk_period > zqcal_before_cc_cutoff)
1449 				ccfifo_writel(emc,
1450 					      2UL << EMC_ZQ_CAL_DEV_SEL_SHIFT |
1451 					      EMC_ZQ_CAL_ZQ_CAL_CMD, EMC_ZQ_CAL,
1452 					      delay);
1453 
1454 			ccfifo_writel(emc, 2UL << EMC_ZQ_CAL_DEV_SEL_SHIFT |
1455 				      EMC_ZQ_CAL_ZQ_LATCH_CMD, EMC_ZQ_CAL,
1456 				      max_t(s32, 0, zq_latch_dvfs_wait_time) +
1457 					delay);
1458 			ccfifo_writel(emc, 1UL << EMC_ZQ_CAL_DEV_SEL_SHIFT |
1459 				      EMC_ZQ_CAL_ZQ_LATCH_CMD,
1460 				      EMC_ZQ_CAL, 0);
1461 
1462 			value = (mr13_flip_fspop & 0xfffffff7) | 0x0c000000;
1463 			ccfifo_writel(emc, value, EMC_MRW3, 0);
1464 			ccfifo_writel(emc, 0, EMC_SELF_REF, 0);
1465 			ccfifo_writel(emc, 0, EMC_REF, 0);
1466 
1467 			ccfifo_writel(emc, 1UL << EMC_ZQ_CAL_DEV_SEL_SHIFT |
1468 				      EMC_ZQ_CAL_ZQ_LATCH_CMD, EMC_ZQ_CAL,
1469 				      tZQCAL_lpddr4 / dst_clk_period);
1470 		} else {
1471 			if (dst_clk_period > zqcal_before_cc_cutoff)
1472 				ccfifo_writel(emc, EMC_ZQ_CAL_ZQ_CAL_CMD,
1473 					      EMC_ZQ_CAL, delay);
1474 
1475 			value = (mr13_flip_fspop & 0xfffffff7) | 0x0c000000;
1476 			ccfifo_writel(emc, value, EMC_MRW3, delay);
1477 			ccfifo_writel(emc, 0, EMC_SELF_REF, 0);
1478 			ccfifo_writel(emc, 0, EMC_REF, 0);
1479 
1480 			ccfifo_writel(emc, EMC_ZQ_CAL_ZQ_LATCH_CMD, EMC_ZQ_CAL,
1481 				      max_t(s32, 0, zq_latch_dvfs_wait_time));
1482 		}
1483 	}
1484 
1485 	/* WAR: delay for zqlatch */
1486 	ccfifo_writel(emc, 0, 0, 10);
1487 
1488 	/*
1489 	 * Step 16:
1490 	 *   LPDDR4 Conditional Training Kickoff. Removed.
1491 	 */
1492 
1493 	/*
1494 	 * Step 17:
1495 	 *   MANSR exit self refresh.
1496 	 */
1497 	emc_dbg(emc, STEPS, "Step 17\n");
1498 
1499 	if (opt_dvfs_mode == MAN_SR && dram_type != DRAM_TYPE_LPDDR4)
1500 		ccfifo_writel(emc, 0, EMC_SELF_REF, 0);
1501 
1502 	/*
1503 	 * Step 18:
1504 	 *   Send MRWs to LPDDR3/DDR3.
1505 	 */
1506 	emc_dbg(emc, STEPS, "Step 18\n");
1507 
1508 	if (dram_type == DRAM_TYPE_LPDDR2) {
1509 		ccfifo_writel(emc, next->emc_mrw2, EMC_MRW2, 0);
1510 		ccfifo_writel(emc, next->emc_mrw,  EMC_MRW,  0);
1511 		if (is_lpddr3)
1512 			ccfifo_writel(emc, next->emc_mrw4, EMC_MRW4, 0);
1513 	} else if (dram_type == DRAM_TYPE_DDR3) {
1514 		if (opt_dll_mode)
1515 			ccfifo_writel(emc, next->emc_emrs &
1516 				      ~EMC_EMRS_USE_EMRS_LONG_CNT, EMC_EMRS, 0);
1517 		ccfifo_writel(emc, next->emc_emrs2 &
1518 			      ~EMC_EMRS2_USE_EMRS2_LONG_CNT, EMC_EMRS2, 0);
1519 		ccfifo_writel(emc, next->emc_mrs |
1520 			      EMC_EMRS_USE_EMRS_LONG_CNT, EMC_MRS, 0);
1521 	}
1522 
1523 	/*
1524 	 * Step 19:
1525 	 *   ZQCAL for LPDDR3/DDR3
1526 	 */
1527 	emc_dbg(emc, STEPS, "Step 19\n");
1528 
1529 	if (opt_zcal_en_cc) {
1530 		if (dram_type == DRAM_TYPE_LPDDR2) {
1531 			value = opt_cc_short_zcal ? 90000 : 360000;
1532 			value = div_o3(value, dst_clk_period);
1533 			value = value <<
1534 				EMC_MRS_WAIT_CNT2_MRS_EXT2_WAIT_CNT_SHIFT |
1535 				value <<
1536 				EMC_MRS_WAIT_CNT2_MRS_EXT1_WAIT_CNT_SHIFT;
1537 			ccfifo_writel(emc, value, EMC_MRS_WAIT_CNT2, 0);
1538 
1539 			value = opt_cc_short_zcal ? 0x56 : 0xab;
1540 			ccfifo_writel(emc, 2 << EMC_MRW_MRW_DEV_SELECTN_SHIFT |
1541 					   EMC_MRW_USE_MRW_EXT_CNT |
1542 					   10 << EMC_MRW_MRW_MA_SHIFT |
1543 					   value << EMC_MRW_MRW_OP_SHIFT,
1544 				      EMC_MRW, 0);
1545 
1546 			if (emc->num_devices > 1) {
1547 				value = 1 << EMC_MRW_MRW_DEV_SELECTN_SHIFT |
1548 					EMC_MRW_USE_MRW_EXT_CNT |
1549 					10 << EMC_MRW_MRW_MA_SHIFT |
1550 					value << EMC_MRW_MRW_OP_SHIFT;
1551 				ccfifo_writel(emc, value, EMC_MRW, 0);
1552 			}
1553 		} else if (dram_type == DRAM_TYPE_DDR3) {
1554 			value = opt_cc_short_zcal ? 0 : EMC_ZQ_CAL_LONG;
1555 
1556 			ccfifo_writel(emc, value |
1557 					   2 << EMC_ZQ_CAL_DEV_SEL_SHIFT |
1558 					   EMC_ZQ_CAL_ZQ_CAL_CMD, EMC_ZQ_CAL,
1559 					   0);
1560 
1561 			if (emc->num_devices > 1) {
1562 				value = value | 1 << EMC_ZQ_CAL_DEV_SEL_SHIFT |
1563 						EMC_ZQ_CAL_ZQ_CAL_CMD;
1564 				ccfifo_writel(emc, value, EMC_ZQ_CAL, 0);
1565 			}
1566 		}
1567 	}
1568 
1569 	if (bg_reg_mode_change) {
1570 		tegra210_emc_set_shadow_bypass(emc, ACTIVE);
1571 
1572 		if (ramp_up_wait <= 1250000)
1573 			delay = (1250000 - ramp_up_wait) / dst_clk_period;
1574 		else
1575 			delay = 0;
1576 
1577 		ccfifo_writel(emc,
1578 			      next->burst_regs[EMC_PMACRO_BG_BIAS_CTRL_0_INDEX],
1579 			      EMC_PMACRO_BG_BIAS_CTRL_0, delay);
1580 		tegra210_emc_set_shadow_bypass(emc, ASSEMBLY);
1581 	}
1582 
1583 	/*
1584 	 * Step 20:
1585 	 *   Issue ref and optional QRST.
1586 	 */
1587 	emc_dbg(emc, STEPS, "Step 20\n");
1588 
1589 	if (dram_type != DRAM_TYPE_LPDDR4)
1590 		ccfifo_writel(emc, 0, EMC_REF, 0);
1591 
1592 	if (opt_do_sw_qrst) {
1593 		ccfifo_writel(emc, 1, EMC_ISSUE_QRST, 0);
1594 		ccfifo_writel(emc, 0, EMC_ISSUE_QRST, 2);
1595 	}
1596 
1597 	/*
1598 	 * Step 21:
1599 	 *   Restore ZCAL and ZCAL interval.
1600 	 */
1601 	emc_dbg(emc, STEPS, "Step 21\n");
1602 
1603 	if (save_restore_clkstop_pd || opt_zcal_en_cc) {
1604 		ccfifo_writel(emc, emc_dbg | EMC_DBG_WRITE_MUX_ACTIVE,
1605 			      EMC_DBG, 0);
1606 		if (opt_zcal_en_cc && dram_type != DRAM_TYPE_LPDDR4)
1607 			ccfifo_writel(emc, next->burst_regs[EMC_ZCAL_INTERVAL_INDEX],
1608 				      EMC_ZCAL_INTERVAL, 0);
1609 
1610 		if (save_restore_clkstop_pd)
1611 			ccfifo_writel(emc, next->burst_regs[EMC_CFG_INDEX] &
1612 						~EMC_CFG_DYN_SELF_REF,
1613 				      EMC_CFG, 0);
1614 		ccfifo_writel(emc, emc_dbg, EMC_DBG, 0);
1615 	}
1616 
1617 	/*
1618 	 * Step 22:
1619 	 *   Restore EMC_CFG_PIPE_CLK.
1620 	 */
1621 	emc_dbg(emc, STEPS, "Step 22\n");
1622 
1623 	ccfifo_writel(emc, emc_cfg_pipe_clk, EMC_CFG_PIPE_CLK, 0);
1624 
1625 	if (bg_reg_mode_change) {
1626 		if (enable_bg_reg)
1627 			emc_writel(emc,
1628 				   next->burst_regs[EMC_PMACRO_BG_BIAS_CTRL_0_INDEX] &
1629 					~EMC_PMACRO_BG_BIAS_CTRL_0_BGLP_E_PWRD,
1630 				   EMC_PMACRO_BG_BIAS_CTRL_0);
1631 		else
1632 			emc_writel(emc,
1633 				   next->burst_regs[EMC_PMACRO_BG_BIAS_CTRL_0_INDEX] &
1634 					~EMC_PMACRO_BG_BIAS_CTRL_0_BG_E_PWRD,
1635 				   EMC_PMACRO_BG_BIAS_CTRL_0);
1636 	}
1637 
1638 	/*
1639 	 * Step 23:
1640 	 */
1641 	emc_dbg(emc, STEPS, "Step 23\n");
1642 
1643 	value = emc_readl(emc, EMC_CFG_DIG_DLL);
1644 	value |= EMC_CFG_DIG_DLL_CFG_DLL_STALL_ALL_TRAFFIC;
1645 	value &= ~EMC_CFG_DIG_DLL_CFG_DLL_STALL_RW_UNTIL_LOCK;
1646 	value &= ~EMC_CFG_DIG_DLL_CFG_DLL_STALL_ALL_UNTIL_LOCK;
1647 	value &= ~EMC_CFG_DIG_DLL_CFG_DLL_EN;
1648 	value = (value & ~EMC_CFG_DIG_DLL_CFG_DLL_MODE_MASK) |
1649 		(2 << EMC_CFG_DIG_DLL_CFG_DLL_MODE_SHIFT);
1650 	emc_writel(emc, value, EMC_CFG_DIG_DLL);
1651 
1652 	tegra210_emc_do_clock_change(emc, clksrc);
1653 
1654 	/*
1655 	 * Step 24:
1656 	 *   Save training results. Removed.
1657 	 */
1658 
1659 	/*
1660 	 * Step 25:
1661 	 *   Program MC updown registers.
1662 	 */
1663 	emc_dbg(emc, STEPS, "Step 25\n");
1664 
1665 	if (next->rate > last->rate) {
1666 		for (i = 0; i < next->num_up_down; i++)
1667 			mc_writel(emc->mc, next->la_scale_regs[i],
1668 				  emc->offsets->la_scale[i]);
1669 
1670 		tegra210_emc_timing_update(emc);
1671 	}
1672 
1673 	/*
1674 	 * Step 26:
1675 	 *   Restore ZCAL registers.
1676 	 */
1677 	emc_dbg(emc, STEPS, "Step 26\n");
1678 
1679 	if (dram_type == DRAM_TYPE_LPDDR4) {
1680 		tegra210_emc_set_shadow_bypass(emc, ACTIVE);
1681 		emc_writel(emc, next->burst_regs[EMC_ZCAL_WAIT_CNT_INDEX],
1682 			   EMC_ZCAL_WAIT_CNT);
1683 		emc_writel(emc, next->burst_regs[EMC_ZCAL_INTERVAL_INDEX],
1684 			   EMC_ZCAL_INTERVAL);
1685 		tegra210_emc_set_shadow_bypass(emc, ASSEMBLY);
1686 	}
1687 
1688 	if (dram_type != DRAM_TYPE_LPDDR4 && opt_zcal_en_cc &&
1689 	    !opt_short_zcal && opt_cc_short_zcal) {
1690 		udelay(2);
1691 
1692 		tegra210_emc_set_shadow_bypass(emc, ACTIVE);
1693 		if (dram_type == DRAM_TYPE_LPDDR2)
1694 			emc_writel(emc, next->burst_regs[EMC_MRS_WAIT_CNT_INDEX],
1695 				   EMC_MRS_WAIT_CNT);
1696 		else if (dram_type == DRAM_TYPE_DDR3)
1697 			emc_writel(emc, next->burst_regs[EMC_ZCAL_WAIT_CNT_INDEX],
1698 				   EMC_ZCAL_WAIT_CNT);
1699 		tegra210_emc_set_shadow_bypass(emc, ASSEMBLY);
1700 	}
1701 
1702 	/*
1703 	 * Step 27:
1704 	 *   Restore EMC_CFG, FDPD registers.
1705 	 */
1706 	emc_dbg(emc, STEPS, "Step 27\n");
1707 
1708 	tegra210_emc_set_shadow_bypass(emc, ACTIVE);
1709 	emc_writel(emc, next->burst_regs[EMC_CFG_INDEX], EMC_CFG);
1710 	tegra210_emc_set_shadow_bypass(emc, ASSEMBLY);
1711 	emc_writel(emc, next->emc_fdpd_ctrl_cmd_no_ramp,
1712 		   EMC_FDPD_CTRL_CMD_NO_RAMP);
1713 	emc_writel(emc, next->emc_sel_dpd_ctrl, EMC_SEL_DPD_CTRL);
1714 
1715 	/*
1716 	 * Step 28:
1717 	 *   Training recover. Removed.
1718 	 */
1719 	emc_dbg(emc, STEPS, "Step 28\n");
1720 
1721 	tegra210_emc_set_shadow_bypass(emc, ACTIVE);
1722 	emc_writel(emc,
1723 		   next->burst_regs[EMC_PMACRO_AUTOCAL_CFG_COMMON_INDEX],
1724 		   EMC_PMACRO_AUTOCAL_CFG_COMMON);
1725 	tegra210_emc_set_shadow_bypass(emc, ASSEMBLY);
1726 
1727 	/*
1728 	 * Step 29:
1729 	 *   Power fix WAR.
1730 	 */
1731 	emc_dbg(emc, STEPS, "Step 29\n");
1732 
1733 	emc_writel(emc, EMC_PMACRO_CFG_PM_GLOBAL_0_DISABLE_CFG_BYTE0 |
1734 		   EMC_PMACRO_CFG_PM_GLOBAL_0_DISABLE_CFG_BYTE1 |
1735 		   EMC_PMACRO_CFG_PM_GLOBAL_0_DISABLE_CFG_BYTE2 |
1736 		   EMC_PMACRO_CFG_PM_GLOBAL_0_DISABLE_CFG_BYTE3 |
1737 		   EMC_PMACRO_CFG_PM_GLOBAL_0_DISABLE_CFG_BYTE4 |
1738 		   EMC_PMACRO_CFG_PM_GLOBAL_0_DISABLE_CFG_BYTE5 |
1739 		   EMC_PMACRO_CFG_PM_GLOBAL_0_DISABLE_CFG_BYTE6 |
1740 		   EMC_PMACRO_CFG_PM_GLOBAL_0_DISABLE_CFG_BYTE7,
1741 		   EMC_PMACRO_CFG_PM_GLOBAL_0);
1742 	emc_writel(emc, EMC_PMACRO_TRAINING_CTRL_0_CH0_TRAINING_E_WRPTR,
1743 		   EMC_PMACRO_TRAINING_CTRL_0);
1744 	emc_writel(emc, EMC_PMACRO_TRAINING_CTRL_1_CH1_TRAINING_E_WRPTR,
1745 		   EMC_PMACRO_TRAINING_CTRL_1);
1746 	emc_writel(emc, 0, EMC_PMACRO_CFG_PM_GLOBAL_0);
1747 
1748 	/*
1749 	 * Step 30:
1750 	 *   Re-enable autocal.
1751 	 */
1752 	emc_dbg(emc, STEPS, "Step 30: Re-enable DLL and AUTOCAL\n");
1753 
1754 	if (next->burst_regs[EMC_CFG_DIG_DLL_INDEX] & EMC_CFG_DIG_DLL_CFG_DLL_EN) {
1755 		value = emc_readl(emc, EMC_CFG_DIG_DLL);
1756 		value |=  EMC_CFG_DIG_DLL_CFG_DLL_STALL_ALL_TRAFFIC;
1757 		value |=  EMC_CFG_DIG_DLL_CFG_DLL_EN;
1758 		value &= ~EMC_CFG_DIG_DLL_CFG_DLL_STALL_RW_UNTIL_LOCK;
1759 		value &= ~EMC_CFG_DIG_DLL_CFG_DLL_STALL_ALL_UNTIL_LOCK;
1760 		value = (value & ~EMC_CFG_DIG_DLL_CFG_DLL_MODE_MASK) |
1761 			(2 << EMC_CFG_DIG_DLL_CFG_DLL_MODE_SHIFT);
1762 		emc_writel(emc, value, EMC_CFG_DIG_DLL);
1763 		tegra210_emc_timing_update(emc);
1764 	}
1765 
1766 	emc_writel(emc, next->emc_auto_cal_config, EMC_AUTO_CAL_CONFIG);
1767 
1768 	/* Done! Yay. */
1769 }
1770 
1771 const struct tegra210_emc_sequence tegra210_emc_r21021 = {
1772 	.revision = 0x7,
1773 	.set_clock = tegra210_emc_r21021_set_clock,
1774 	.periodic_compensation = tegra210_emc_r21021_periodic_compensation,
1775 };
1776