1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Tegra20 External Memory Controller driver 4 * 5 * Author: Dmitry Osipenko <digetx@gmail.com> 6 */ 7 8 #include <linux/clk.h> 9 #include <linux/clk/tegra.h> 10 #include <linux/debugfs.h> 11 #include <linux/devfreq.h> 12 #include <linux/err.h> 13 #include <linux/interconnect-provider.h> 14 #include <linux/interrupt.h> 15 #include <linux/io.h> 16 #include <linux/iopoll.h> 17 #include <linux/kernel.h> 18 #include <linux/module.h> 19 #include <linux/mutex.h> 20 #include <linux/of.h> 21 #include <linux/platform_device.h> 22 #include <linux/pm_opp.h> 23 #include <linux/slab.h> 24 #include <linux/sort.h> 25 #include <linux/types.h> 26 27 #include <soc/tegra/common.h> 28 #include <soc/tegra/fuse.h> 29 30 #include "mc.h" 31 32 #define EMC_INTSTATUS 0x000 33 #define EMC_INTMASK 0x004 34 #define EMC_DBG 0x008 35 #define EMC_TIMING_CONTROL 0x028 36 #define EMC_RC 0x02c 37 #define EMC_RFC 0x030 38 #define EMC_RAS 0x034 39 #define EMC_RP 0x038 40 #define EMC_R2W 0x03c 41 #define EMC_W2R 0x040 42 #define EMC_R2P 0x044 43 #define EMC_W2P 0x048 44 #define EMC_RD_RCD 0x04c 45 #define EMC_WR_RCD 0x050 46 #define EMC_RRD 0x054 47 #define EMC_REXT 0x058 48 #define EMC_WDV 0x05c 49 #define EMC_QUSE 0x060 50 #define EMC_QRST 0x064 51 #define EMC_QSAFE 0x068 52 #define EMC_RDV 0x06c 53 #define EMC_REFRESH 0x070 54 #define EMC_BURST_REFRESH_NUM 0x074 55 #define EMC_PDEX2WR 0x078 56 #define EMC_PDEX2RD 0x07c 57 #define EMC_PCHG2PDEN 0x080 58 #define EMC_ACT2PDEN 0x084 59 #define EMC_AR2PDEN 0x088 60 #define EMC_RW2PDEN 0x08c 61 #define EMC_TXSR 0x090 62 #define EMC_TCKE 0x094 63 #define EMC_TFAW 0x098 64 #define EMC_TRPAB 0x09c 65 #define EMC_TCLKSTABLE 0x0a0 66 #define EMC_TCLKSTOP 0x0a4 67 #define EMC_TREFBW 0x0a8 68 #define EMC_QUSE_EXTRA 0x0ac 69 #define EMC_ODT_WRITE 0x0b0 70 #define EMC_ODT_READ 0x0b4 71 #define EMC_FBIO_CFG5 0x104 72 #define EMC_FBIO_CFG6 0x114 73 #define EMC_STAT_CONTROL 0x160 74 #define EMC_STAT_LLMC_CONTROL 0x178 75 #define EMC_STAT_PWR_CLOCK_LIMIT 0x198 76 #define EMC_STAT_PWR_CLOCKS 0x19c 77 #define EMC_STAT_PWR_COUNT 0x1a0 78 #define EMC_AUTO_CAL_INTERVAL 0x2a8 79 #define EMC_CFG_2 0x2b8 80 #define EMC_CFG_DIG_DLL 0x2bc 81 #define EMC_DLL_XFORM_DQS 0x2c0 82 #define EMC_DLL_XFORM_QUSE 0x2c4 83 #define EMC_ZCAL_REF_CNT 0x2e0 84 #define EMC_ZCAL_WAIT_CNT 0x2e4 85 #define EMC_CFG_CLKTRIM_0 0x2d0 86 #define EMC_CFG_CLKTRIM_1 0x2d4 87 #define EMC_CFG_CLKTRIM_2 0x2d8 88 89 #define EMC_CLKCHANGE_REQ_ENABLE BIT(0) 90 #define EMC_CLKCHANGE_PD_ENABLE BIT(1) 91 #define EMC_CLKCHANGE_SR_ENABLE BIT(2) 92 93 #define EMC_TIMING_UPDATE BIT(0) 94 95 #define EMC_REFRESH_OVERFLOW_INT BIT(3) 96 #define EMC_CLKCHANGE_COMPLETE_INT BIT(4) 97 98 #define EMC_DBG_READ_MUX_ASSEMBLY BIT(0) 99 #define EMC_DBG_WRITE_MUX_ACTIVE BIT(1) 100 #define EMC_DBG_FORCE_UPDATE BIT(2) 101 #define EMC_DBG_READ_DQM_CTRL BIT(9) 102 #define EMC_DBG_CFG_PRIORITY BIT(24) 103 104 #define EMC_FBIO_CFG5_DRAM_WIDTH_X16 BIT(4) 105 106 #define EMC_PWR_GATHER_CLEAR (1 << 8) 107 #define EMC_PWR_GATHER_DISABLE (2 << 8) 108 #define EMC_PWR_GATHER_ENABLE (3 << 8) 109 110 static const u16 emc_timing_registers[] = { 111 EMC_RC, 112 EMC_RFC, 113 EMC_RAS, 114 EMC_RP, 115 EMC_R2W, 116 EMC_W2R, 117 EMC_R2P, 118 EMC_W2P, 119 EMC_RD_RCD, 120 EMC_WR_RCD, 121 EMC_RRD, 122 EMC_REXT, 123 EMC_WDV, 124 EMC_QUSE, 125 EMC_QRST, 126 EMC_QSAFE, 127 EMC_RDV, 128 EMC_REFRESH, 129 EMC_BURST_REFRESH_NUM, 130 EMC_PDEX2WR, 131 EMC_PDEX2RD, 132 EMC_PCHG2PDEN, 133 EMC_ACT2PDEN, 134 EMC_AR2PDEN, 135 EMC_RW2PDEN, 136 EMC_TXSR, 137 EMC_TCKE, 138 EMC_TFAW, 139 EMC_TRPAB, 140 EMC_TCLKSTABLE, 141 EMC_TCLKSTOP, 142 EMC_TREFBW, 143 EMC_QUSE_EXTRA, 144 EMC_FBIO_CFG6, 145 EMC_ODT_WRITE, 146 EMC_ODT_READ, 147 EMC_FBIO_CFG5, 148 EMC_CFG_DIG_DLL, 149 EMC_DLL_XFORM_DQS, 150 EMC_DLL_XFORM_QUSE, 151 EMC_ZCAL_REF_CNT, 152 EMC_ZCAL_WAIT_CNT, 153 EMC_AUTO_CAL_INTERVAL, 154 EMC_CFG_CLKTRIM_0, 155 EMC_CFG_CLKTRIM_1, 156 EMC_CFG_CLKTRIM_2, 157 }; 158 159 struct emc_timing { 160 unsigned long rate; 161 u32 data[ARRAY_SIZE(emc_timing_registers)]; 162 }; 163 164 enum emc_rate_request_type { 165 EMC_RATE_DEVFREQ, 166 EMC_RATE_DEBUG, 167 EMC_RATE_ICC, 168 EMC_RATE_TYPE_MAX, 169 }; 170 171 struct emc_rate_request { 172 unsigned long min_rate; 173 unsigned long max_rate; 174 }; 175 176 struct tegra_emc { 177 struct device *dev; 178 struct tegra_mc *mc; 179 struct icc_provider provider; 180 struct notifier_block clk_nb; 181 struct clk *clk; 182 void __iomem *regs; 183 unsigned int dram_bus_width; 184 185 struct emc_timing *timings; 186 unsigned int num_timings; 187 188 struct { 189 struct dentry *root; 190 unsigned long min_rate; 191 unsigned long max_rate; 192 } debugfs; 193 194 /* 195 * There are multiple sources in the EMC driver which could request 196 * a min/max clock rate, these rates are contained in this array. 197 */ 198 struct emc_rate_request requested_rate[EMC_RATE_TYPE_MAX]; 199 200 /* protect shared rate-change code path */ 201 struct mutex rate_lock; 202 203 struct devfreq_simple_ondemand_data ondemand_data; 204 }; 205 206 static irqreturn_t tegra_emc_isr(int irq, void *data) 207 { 208 struct tegra_emc *emc = data; 209 u32 intmask = EMC_REFRESH_OVERFLOW_INT; 210 u32 status; 211 212 status = readl_relaxed(emc->regs + EMC_INTSTATUS) & intmask; 213 if (!status) 214 return IRQ_NONE; 215 216 /* notify about HW problem */ 217 if (status & EMC_REFRESH_OVERFLOW_INT) 218 dev_err_ratelimited(emc->dev, 219 "refresh request overflow timeout\n"); 220 221 /* clear interrupts */ 222 writel_relaxed(status, emc->regs + EMC_INTSTATUS); 223 224 return IRQ_HANDLED; 225 } 226 227 static struct emc_timing *tegra_emc_find_timing(struct tegra_emc *emc, 228 unsigned long rate) 229 { 230 struct emc_timing *timing = NULL; 231 unsigned int i; 232 233 for (i = 0; i < emc->num_timings; i++) { 234 if (emc->timings[i].rate >= rate) { 235 timing = &emc->timings[i]; 236 break; 237 } 238 } 239 240 if (!timing) { 241 dev_err(emc->dev, "no timing for rate %lu\n", rate); 242 return NULL; 243 } 244 245 return timing; 246 } 247 248 static int emc_prepare_timing_change(struct tegra_emc *emc, unsigned long rate) 249 { 250 struct emc_timing *timing = tegra_emc_find_timing(emc, rate); 251 unsigned int i; 252 253 if (!timing) 254 return -EINVAL; 255 256 dev_dbg(emc->dev, "%s: using timing rate %lu for requested rate %lu\n", 257 __func__, timing->rate, rate); 258 259 /* program shadow registers */ 260 for (i = 0; i < ARRAY_SIZE(timing->data); i++) 261 writel_relaxed(timing->data[i], 262 emc->regs + emc_timing_registers[i]); 263 264 /* wait until programming has settled */ 265 readl_relaxed(emc->regs + emc_timing_registers[i - 1]); 266 267 return 0; 268 } 269 270 static int emc_complete_timing_change(struct tegra_emc *emc, bool flush) 271 { 272 int err; 273 u32 v; 274 275 dev_dbg(emc->dev, "%s: flush %d\n", __func__, flush); 276 277 if (flush) { 278 /* manually initiate memory timing update */ 279 writel_relaxed(EMC_TIMING_UPDATE, 280 emc->regs + EMC_TIMING_CONTROL); 281 return 0; 282 } 283 284 err = readl_relaxed_poll_timeout_atomic(emc->regs + EMC_INTSTATUS, v, 285 v & EMC_CLKCHANGE_COMPLETE_INT, 286 1, 100); 287 if (err) { 288 dev_err(emc->dev, "emc-car handshake timeout: %d\n", err); 289 return err; 290 } 291 292 return 0; 293 } 294 295 static int tegra_emc_clk_change_notify(struct notifier_block *nb, 296 unsigned long msg, void *data) 297 { 298 struct tegra_emc *emc = container_of(nb, struct tegra_emc, clk_nb); 299 struct clk_notifier_data *cnd = data; 300 int err; 301 302 switch (msg) { 303 case PRE_RATE_CHANGE: 304 err = emc_prepare_timing_change(emc, cnd->new_rate); 305 break; 306 307 case ABORT_RATE_CHANGE: 308 err = emc_prepare_timing_change(emc, cnd->old_rate); 309 if (err) 310 break; 311 312 err = emc_complete_timing_change(emc, true); 313 break; 314 315 case POST_RATE_CHANGE: 316 err = emc_complete_timing_change(emc, false); 317 break; 318 319 default: 320 return NOTIFY_DONE; 321 } 322 323 return notifier_from_errno(err); 324 } 325 326 static int load_one_timing_from_dt(struct tegra_emc *emc, 327 struct emc_timing *timing, 328 struct device_node *node) 329 { 330 u32 rate; 331 int err; 332 333 if (!of_device_is_compatible(node, "nvidia,tegra20-emc-table")) { 334 dev_err(emc->dev, "incompatible DT node: %pOF\n", node); 335 return -EINVAL; 336 } 337 338 err = of_property_read_u32(node, "clock-frequency", &rate); 339 if (err) { 340 dev_err(emc->dev, "timing %pOF: failed to read rate: %d\n", 341 node, err); 342 return err; 343 } 344 345 err = of_property_read_u32_array(node, "nvidia,emc-registers", 346 timing->data, 347 ARRAY_SIZE(emc_timing_registers)); 348 if (err) { 349 dev_err(emc->dev, 350 "timing %pOF: failed to read emc timing data: %d\n", 351 node, err); 352 return err; 353 } 354 355 /* 356 * The EMC clock rate is twice the bus rate, and the bus rate is 357 * measured in kHz. 358 */ 359 timing->rate = rate * 2 * 1000; 360 361 dev_dbg(emc->dev, "%s: %pOF: EMC rate %lu\n", 362 __func__, node, timing->rate); 363 364 return 0; 365 } 366 367 static int cmp_timings(const void *_a, const void *_b) 368 { 369 const struct emc_timing *a = _a; 370 const struct emc_timing *b = _b; 371 372 if (a->rate < b->rate) 373 return -1; 374 375 if (a->rate > b->rate) 376 return 1; 377 378 return 0; 379 } 380 381 static int tegra_emc_load_timings_from_dt(struct tegra_emc *emc, 382 struct device_node *node) 383 { 384 struct device_node *child; 385 struct emc_timing *timing; 386 int child_count; 387 int err; 388 389 child_count = of_get_child_count(node); 390 if (!child_count) { 391 dev_err(emc->dev, "no memory timings in DT node: %pOF\n", node); 392 return -EINVAL; 393 } 394 395 emc->timings = devm_kcalloc(emc->dev, child_count, sizeof(*timing), 396 GFP_KERNEL); 397 if (!emc->timings) 398 return -ENOMEM; 399 400 emc->num_timings = child_count; 401 timing = emc->timings; 402 403 for_each_child_of_node(node, child) { 404 err = load_one_timing_from_dt(emc, timing++, child); 405 if (err) { 406 of_node_put(child); 407 return err; 408 } 409 } 410 411 sort(emc->timings, emc->num_timings, sizeof(*timing), cmp_timings, 412 NULL); 413 414 dev_info_once(emc->dev, 415 "got %u timings for RAM code %u (min %luMHz max %luMHz)\n", 416 emc->num_timings, 417 tegra_read_ram_code(), 418 emc->timings[0].rate / 1000000, 419 emc->timings[emc->num_timings - 1].rate / 1000000); 420 421 return 0; 422 } 423 424 static struct device_node * 425 tegra_emc_find_node_by_ram_code(struct device *dev) 426 { 427 struct device_node *np; 428 u32 value, ram_code; 429 int err; 430 431 if (of_get_child_count(dev->of_node) == 0) { 432 dev_info_once(dev, "device-tree doesn't have memory timings\n"); 433 return NULL; 434 } 435 436 if (!of_property_read_bool(dev->of_node, "nvidia,use-ram-code")) 437 return of_node_get(dev->of_node); 438 439 ram_code = tegra_read_ram_code(); 440 441 for (np = of_find_node_by_name(dev->of_node, "emc-tables"); np; 442 np = of_find_node_by_name(np, "emc-tables")) { 443 err = of_property_read_u32(np, "nvidia,ram-code", &value); 444 if (err || value != ram_code) { 445 of_node_put(np); 446 continue; 447 } 448 449 return np; 450 } 451 452 dev_err(dev, "no memory timings for RAM code %u found in device tree\n", 453 ram_code); 454 455 return NULL; 456 } 457 458 static int emc_setup_hw(struct tegra_emc *emc) 459 { 460 u32 intmask = EMC_REFRESH_OVERFLOW_INT; 461 u32 emc_cfg, emc_dbg, emc_fbio; 462 463 emc_cfg = readl_relaxed(emc->regs + EMC_CFG_2); 464 465 /* 466 * Depending on a memory type, DRAM should enter either self-refresh 467 * or power-down state on EMC clock change. 468 */ 469 if (!(emc_cfg & EMC_CLKCHANGE_PD_ENABLE) && 470 !(emc_cfg & EMC_CLKCHANGE_SR_ENABLE)) { 471 dev_err(emc->dev, 472 "bootloader didn't specify DRAM auto-suspend mode\n"); 473 return -EINVAL; 474 } 475 476 /* enable EMC and CAR to handshake on PLL divider/source changes */ 477 emc_cfg |= EMC_CLKCHANGE_REQ_ENABLE; 478 writel_relaxed(emc_cfg, emc->regs + EMC_CFG_2); 479 480 /* initialize interrupt */ 481 writel_relaxed(intmask, emc->regs + EMC_INTMASK); 482 writel_relaxed(intmask, emc->regs + EMC_INTSTATUS); 483 484 /* ensure that unwanted debug features are disabled */ 485 emc_dbg = readl_relaxed(emc->regs + EMC_DBG); 486 emc_dbg |= EMC_DBG_CFG_PRIORITY; 487 emc_dbg &= ~EMC_DBG_READ_MUX_ASSEMBLY; 488 emc_dbg &= ~EMC_DBG_WRITE_MUX_ACTIVE; 489 emc_dbg &= ~EMC_DBG_FORCE_UPDATE; 490 writel_relaxed(emc_dbg, emc->regs + EMC_DBG); 491 492 emc_fbio = readl_relaxed(emc->regs + EMC_FBIO_CFG5); 493 494 if (emc_fbio & EMC_FBIO_CFG5_DRAM_WIDTH_X16) 495 emc->dram_bus_width = 16; 496 else 497 emc->dram_bus_width = 32; 498 499 dev_info_once(emc->dev, "%ubit DRAM bus\n", emc->dram_bus_width); 500 501 return 0; 502 } 503 504 static long emc_round_rate(unsigned long rate, 505 unsigned long min_rate, 506 unsigned long max_rate, 507 void *arg) 508 { 509 struct emc_timing *timing = NULL; 510 struct tegra_emc *emc = arg; 511 unsigned int i; 512 513 if (!emc->num_timings) 514 return clk_get_rate(emc->clk); 515 516 min_rate = min(min_rate, emc->timings[emc->num_timings - 1].rate); 517 518 for (i = 0; i < emc->num_timings; i++) { 519 if (emc->timings[i].rate < rate && i != emc->num_timings - 1) 520 continue; 521 522 if (emc->timings[i].rate > max_rate) { 523 i = max(i, 1u) - 1; 524 525 if (emc->timings[i].rate < min_rate) 526 break; 527 } 528 529 if (emc->timings[i].rate < min_rate) 530 continue; 531 532 timing = &emc->timings[i]; 533 break; 534 } 535 536 if (!timing) { 537 dev_err(emc->dev, "no timing for rate %lu min %lu max %lu\n", 538 rate, min_rate, max_rate); 539 return -EINVAL; 540 } 541 542 return timing->rate; 543 } 544 545 static void tegra_emc_rate_requests_init(struct tegra_emc *emc) 546 { 547 unsigned int i; 548 549 for (i = 0; i < EMC_RATE_TYPE_MAX; i++) { 550 emc->requested_rate[i].min_rate = 0; 551 emc->requested_rate[i].max_rate = ULONG_MAX; 552 } 553 } 554 555 static int emc_request_rate(struct tegra_emc *emc, 556 unsigned long new_min_rate, 557 unsigned long new_max_rate, 558 enum emc_rate_request_type type) 559 { 560 struct emc_rate_request *req = emc->requested_rate; 561 unsigned long min_rate = 0, max_rate = ULONG_MAX; 562 unsigned int i; 563 int err; 564 565 /* select minimum and maximum rates among the requested rates */ 566 for (i = 0; i < EMC_RATE_TYPE_MAX; i++, req++) { 567 if (i == type) { 568 min_rate = max(new_min_rate, min_rate); 569 max_rate = min(new_max_rate, max_rate); 570 } else { 571 min_rate = max(req->min_rate, min_rate); 572 max_rate = min(req->max_rate, max_rate); 573 } 574 } 575 576 if (min_rate > max_rate) { 577 dev_err_ratelimited(emc->dev, "%s: type %u: out of range: %lu %lu\n", 578 __func__, type, min_rate, max_rate); 579 return -ERANGE; 580 } 581 582 /* 583 * EMC rate-changes should go via OPP API because it manages voltage 584 * changes. 585 */ 586 err = dev_pm_opp_set_rate(emc->dev, min_rate); 587 if (err) 588 return err; 589 590 emc->requested_rate[type].min_rate = new_min_rate; 591 emc->requested_rate[type].max_rate = new_max_rate; 592 593 return 0; 594 } 595 596 static int emc_set_min_rate(struct tegra_emc *emc, unsigned long rate, 597 enum emc_rate_request_type type) 598 { 599 struct emc_rate_request *req = &emc->requested_rate[type]; 600 int ret; 601 602 mutex_lock(&emc->rate_lock); 603 ret = emc_request_rate(emc, rate, req->max_rate, type); 604 mutex_unlock(&emc->rate_lock); 605 606 return ret; 607 } 608 609 static int emc_set_max_rate(struct tegra_emc *emc, unsigned long rate, 610 enum emc_rate_request_type type) 611 { 612 struct emc_rate_request *req = &emc->requested_rate[type]; 613 int ret; 614 615 mutex_lock(&emc->rate_lock); 616 ret = emc_request_rate(emc, req->min_rate, rate, type); 617 mutex_unlock(&emc->rate_lock); 618 619 return ret; 620 } 621 622 /* 623 * debugfs interface 624 * 625 * The memory controller driver exposes some files in debugfs that can be used 626 * to control the EMC frequency. The top-level directory can be found here: 627 * 628 * /sys/kernel/debug/emc 629 * 630 * It contains the following files: 631 * 632 * - available_rates: This file contains a list of valid, space-separated 633 * EMC frequencies. 634 * 635 * - min_rate: Writing a value to this file sets the given frequency as the 636 * floor of the permitted range. If this is higher than the currently 637 * configured EMC frequency, this will cause the frequency to be 638 * increased so that it stays within the valid range. 639 * 640 * - max_rate: Similarily to the min_rate file, writing a value to this file 641 * sets the given frequency as the ceiling of the permitted range. If 642 * the value is lower than the currently configured EMC frequency, this 643 * will cause the frequency to be decreased so that it stays within the 644 * valid range. 645 */ 646 647 static bool tegra_emc_validate_rate(struct tegra_emc *emc, unsigned long rate) 648 { 649 unsigned int i; 650 651 for (i = 0; i < emc->num_timings; i++) 652 if (rate == emc->timings[i].rate) 653 return true; 654 655 return false; 656 } 657 658 static int tegra_emc_debug_available_rates_show(struct seq_file *s, void *data) 659 { 660 struct tegra_emc *emc = s->private; 661 const char *prefix = ""; 662 unsigned int i; 663 664 for (i = 0; i < emc->num_timings; i++) { 665 seq_printf(s, "%s%lu", prefix, emc->timings[i].rate); 666 prefix = " "; 667 } 668 669 seq_puts(s, "\n"); 670 671 return 0; 672 } 673 674 static int tegra_emc_debug_available_rates_open(struct inode *inode, 675 struct file *file) 676 { 677 return single_open(file, tegra_emc_debug_available_rates_show, 678 inode->i_private); 679 } 680 681 static const struct file_operations tegra_emc_debug_available_rates_fops = { 682 .open = tegra_emc_debug_available_rates_open, 683 .read = seq_read, 684 .llseek = seq_lseek, 685 .release = single_release, 686 }; 687 688 static int tegra_emc_debug_min_rate_get(void *data, u64 *rate) 689 { 690 struct tegra_emc *emc = data; 691 692 *rate = emc->debugfs.min_rate; 693 694 return 0; 695 } 696 697 static int tegra_emc_debug_min_rate_set(void *data, u64 rate) 698 { 699 struct tegra_emc *emc = data; 700 int err; 701 702 if (!tegra_emc_validate_rate(emc, rate)) 703 return -EINVAL; 704 705 err = emc_set_min_rate(emc, rate, EMC_RATE_DEBUG); 706 if (err < 0) 707 return err; 708 709 emc->debugfs.min_rate = rate; 710 711 return 0; 712 } 713 714 DEFINE_SIMPLE_ATTRIBUTE(tegra_emc_debug_min_rate_fops, 715 tegra_emc_debug_min_rate_get, 716 tegra_emc_debug_min_rate_set, "%llu\n"); 717 718 static int tegra_emc_debug_max_rate_get(void *data, u64 *rate) 719 { 720 struct tegra_emc *emc = data; 721 722 *rate = emc->debugfs.max_rate; 723 724 return 0; 725 } 726 727 static int tegra_emc_debug_max_rate_set(void *data, u64 rate) 728 { 729 struct tegra_emc *emc = data; 730 int err; 731 732 if (!tegra_emc_validate_rate(emc, rate)) 733 return -EINVAL; 734 735 err = emc_set_max_rate(emc, rate, EMC_RATE_DEBUG); 736 if (err < 0) 737 return err; 738 739 emc->debugfs.max_rate = rate; 740 741 return 0; 742 } 743 744 DEFINE_SIMPLE_ATTRIBUTE(tegra_emc_debug_max_rate_fops, 745 tegra_emc_debug_max_rate_get, 746 tegra_emc_debug_max_rate_set, "%llu\n"); 747 748 static void tegra_emc_debugfs_init(struct tegra_emc *emc) 749 { 750 struct device *dev = emc->dev; 751 unsigned int i; 752 int err; 753 754 emc->debugfs.min_rate = ULONG_MAX; 755 emc->debugfs.max_rate = 0; 756 757 for (i = 0; i < emc->num_timings; i++) { 758 if (emc->timings[i].rate < emc->debugfs.min_rate) 759 emc->debugfs.min_rate = emc->timings[i].rate; 760 761 if (emc->timings[i].rate > emc->debugfs.max_rate) 762 emc->debugfs.max_rate = emc->timings[i].rate; 763 } 764 765 if (!emc->num_timings) { 766 emc->debugfs.min_rate = clk_get_rate(emc->clk); 767 emc->debugfs.max_rate = emc->debugfs.min_rate; 768 } 769 770 err = clk_set_rate_range(emc->clk, emc->debugfs.min_rate, 771 emc->debugfs.max_rate); 772 if (err < 0) { 773 dev_err(dev, "failed to set rate range [%lu-%lu] for %pC\n", 774 emc->debugfs.min_rate, emc->debugfs.max_rate, 775 emc->clk); 776 } 777 778 emc->debugfs.root = debugfs_create_dir("emc", NULL); 779 780 debugfs_create_file("available_rates", 0444, emc->debugfs.root, 781 emc, &tegra_emc_debug_available_rates_fops); 782 debugfs_create_file("min_rate", 0644, emc->debugfs.root, 783 emc, &tegra_emc_debug_min_rate_fops); 784 debugfs_create_file("max_rate", 0644, emc->debugfs.root, 785 emc, &tegra_emc_debug_max_rate_fops); 786 } 787 788 static inline struct tegra_emc * 789 to_tegra_emc_provider(struct icc_provider *provider) 790 { 791 return container_of(provider, struct tegra_emc, provider); 792 } 793 794 static struct icc_node_data * 795 emc_of_icc_xlate_extended(struct of_phandle_args *spec, void *data) 796 { 797 struct icc_provider *provider = data; 798 struct icc_node_data *ndata; 799 struct icc_node *node; 800 801 /* External Memory is the only possible ICC route */ 802 list_for_each_entry(node, &provider->nodes, node_list) { 803 if (node->id != TEGRA_ICC_EMEM) 804 continue; 805 806 ndata = kzalloc(sizeof(*ndata), GFP_KERNEL); 807 if (!ndata) 808 return ERR_PTR(-ENOMEM); 809 810 /* 811 * SRC and DST nodes should have matching TAG in order to have 812 * it set by default for a requested path. 813 */ 814 ndata->tag = TEGRA_MC_ICC_TAG_ISO; 815 ndata->node = node; 816 817 return ndata; 818 } 819 820 return ERR_PTR(-EPROBE_DEFER); 821 } 822 823 static int emc_icc_set(struct icc_node *src, struct icc_node *dst) 824 { 825 struct tegra_emc *emc = to_tegra_emc_provider(dst->provider); 826 unsigned long long peak_bw = icc_units_to_bps(dst->peak_bw); 827 unsigned long long avg_bw = icc_units_to_bps(dst->avg_bw); 828 unsigned long long rate = max(avg_bw, peak_bw); 829 unsigned int dram_data_bus_width_bytes; 830 int err; 831 832 /* 833 * Tegra20 EMC runs on x2 clock rate of SDRAM bus because DDR data 834 * is sampled on both clock edges. This means that EMC clock rate 835 * equals to the peak data-rate. 836 */ 837 dram_data_bus_width_bytes = emc->dram_bus_width / 8; 838 do_div(rate, dram_data_bus_width_bytes); 839 rate = min_t(u64, rate, U32_MAX); 840 841 err = emc_set_min_rate(emc, rate, EMC_RATE_ICC); 842 if (err) 843 return err; 844 845 return 0; 846 } 847 848 static int tegra_emc_interconnect_init(struct tegra_emc *emc) 849 { 850 const struct tegra_mc_soc *soc; 851 struct icc_node *node; 852 int err; 853 854 emc->mc = devm_tegra_memory_controller_get(emc->dev); 855 if (IS_ERR(emc->mc)) 856 return PTR_ERR(emc->mc); 857 858 soc = emc->mc->soc; 859 860 emc->provider.dev = emc->dev; 861 emc->provider.set = emc_icc_set; 862 emc->provider.data = &emc->provider; 863 emc->provider.aggregate = soc->icc_ops->aggregate; 864 emc->provider.xlate_extended = emc_of_icc_xlate_extended; 865 866 err = icc_provider_add(&emc->provider); 867 if (err) 868 goto err_msg; 869 870 /* create External Memory Controller node */ 871 node = icc_node_create(TEGRA_ICC_EMC); 872 if (IS_ERR(node)) { 873 err = PTR_ERR(node); 874 goto del_provider; 875 } 876 877 node->name = "External Memory Controller"; 878 icc_node_add(node, &emc->provider); 879 880 /* link External Memory Controller to External Memory (DRAM) */ 881 err = icc_link_create(node, TEGRA_ICC_EMEM); 882 if (err) 883 goto remove_nodes; 884 885 /* create External Memory node */ 886 node = icc_node_create(TEGRA_ICC_EMEM); 887 if (IS_ERR(node)) { 888 err = PTR_ERR(node); 889 goto remove_nodes; 890 } 891 892 node->name = "External Memory (DRAM)"; 893 icc_node_add(node, &emc->provider); 894 895 return 0; 896 897 remove_nodes: 898 icc_nodes_remove(&emc->provider); 899 del_provider: 900 icc_provider_del(&emc->provider); 901 err_msg: 902 dev_err(emc->dev, "failed to initialize ICC: %d\n", err); 903 904 return err; 905 } 906 907 static void devm_tegra_emc_unset_callback(void *data) 908 { 909 tegra20_clk_set_emc_round_callback(NULL, NULL); 910 } 911 912 static void devm_tegra_emc_unreg_clk_notifier(void *data) 913 { 914 struct tegra_emc *emc = data; 915 916 clk_notifier_unregister(emc->clk, &emc->clk_nb); 917 } 918 919 static int tegra_emc_init_clk(struct tegra_emc *emc) 920 { 921 int err; 922 923 tegra20_clk_set_emc_round_callback(emc_round_rate, emc); 924 925 err = devm_add_action_or_reset(emc->dev, devm_tegra_emc_unset_callback, 926 NULL); 927 if (err) 928 return err; 929 930 emc->clk = devm_clk_get(emc->dev, NULL); 931 if (IS_ERR(emc->clk)) { 932 dev_err(emc->dev, "failed to get EMC clock: %pe\n", emc->clk); 933 return PTR_ERR(emc->clk); 934 } 935 936 err = clk_notifier_register(emc->clk, &emc->clk_nb); 937 if (err) { 938 dev_err(emc->dev, "failed to register clk notifier: %d\n", err); 939 return err; 940 } 941 942 err = devm_add_action_or_reset(emc->dev, 943 devm_tegra_emc_unreg_clk_notifier, emc); 944 if (err) 945 return err; 946 947 return 0; 948 } 949 950 static int tegra_emc_devfreq_target(struct device *dev, unsigned long *freq, 951 u32 flags) 952 { 953 struct tegra_emc *emc = dev_get_drvdata(dev); 954 struct dev_pm_opp *opp; 955 unsigned long rate; 956 957 opp = devfreq_recommended_opp(dev, freq, flags); 958 if (IS_ERR(opp)) { 959 dev_err(dev, "failed to find opp for %lu Hz\n", *freq); 960 return PTR_ERR(opp); 961 } 962 963 rate = dev_pm_opp_get_freq(opp); 964 dev_pm_opp_put(opp); 965 966 return emc_set_min_rate(emc, rate, EMC_RATE_DEVFREQ); 967 } 968 969 static int tegra_emc_devfreq_get_dev_status(struct device *dev, 970 struct devfreq_dev_status *stat) 971 { 972 struct tegra_emc *emc = dev_get_drvdata(dev); 973 974 /* freeze counters */ 975 writel_relaxed(EMC_PWR_GATHER_DISABLE, emc->regs + EMC_STAT_CONTROL); 976 977 /* 978 * busy_time: number of clocks EMC request was accepted 979 * total_time: number of clocks PWR_GATHER control was set to ENABLE 980 */ 981 stat->busy_time = readl_relaxed(emc->regs + EMC_STAT_PWR_COUNT); 982 stat->total_time = readl_relaxed(emc->regs + EMC_STAT_PWR_CLOCKS); 983 stat->current_frequency = clk_get_rate(emc->clk); 984 985 /* clear counters and restart */ 986 writel_relaxed(EMC_PWR_GATHER_CLEAR, emc->regs + EMC_STAT_CONTROL); 987 writel_relaxed(EMC_PWR_GATHER_ENABLE, emc->regs + EMC_STAT_CONTROL); 988 989 return 0; 990 } 991 992 static struct devfreq_dev_profile tegra_emc_devfreq_profile = { 993 .polling_ms = 30, 994 .target = tegra_emc_devfreq_target, 995 .get_dev_status = tegra_emc_devfreq_get_dev_status, 996 }; 997 998 static int tegra_emc_devfreq_init(struct tegra_emc *emc) 999 { 1000 struct devfreq *devfreq; 1001 1002 /* 1003 * PWR_COUNT is 1/2 of PWR_CLOCKS at max, and thus, the up-threshold 1004 * should be less than 50. Secondly, multiple active memory clients 1005 * may cause over 20% of lost clock cycles due to stalls caused by 1006 * competing memory accesses. This means that threshold should be 1007 * set to a less than 30 in order to have a properly working governor. 1008 */ 1009 emc->ondemand_data.upthreshold = 20; 1010 1011 /* 1012 * Reset statistic gathers state, select global bandwidth for the 1013 * statistics collection mode and set clocks counter saturation 1014 * limit to maximum. 1015 */ 1016 writel_relaxed(0x00000000, emc->regs + EMC_STAT_CONTROL); 1017 writel_relaxed(0x00000000, emc->regs + EMC_STAT_LLMC_CONTROL); 1018 writel_relaxed(0xffffffff, emc->regs + EMC_STAT_PWR_CLOCK_LIMIT); 1019 1020 devfreq = devm_devfreq_add_device(emc->dev, &tegra_emc_devfreq_profile, 1021 DEVFREQ_GOV_SIMPLE_ONDEMAND, 1022 &emc->ondemand_data); 1023 if (IS_ERR(devfreq)) { 1024 dev_err(emc->dev, "failed to initialize devfreq: %pe", devfreq); 1025 return PTR_ERR(devfreq); 1026 } 1027 1028 return 0; 1029 } 1030 1031 static int tegra_emc_probe(struct platform_device *pdev) 1032 { 1033 struct tegra_core_opp_params opp_params = {}; 1034 struct device_node *np; 1035 struct tegra_emc *emc; 1036 int irq, err; 1037 1038 irq = platform_get_irq(pdev, 0); 1039 if (irq < 0) { 1040 dev_err(&pdev->dev, "please update your device tree\n"); 1041 return irq; 1042 } 1043 1044 emc = devm_kzalloc(&pdev->dev, sizeof(*emc), GFP_KERNEL); 1045 if (!emc) 1046 return -ENOMEM; 1047 1048 mutex_init(&emc->rate_lock); 1049 emc->clk_nb.notifier_call = tegra_emc_clk_change_notify; 1050 emc->dev = &pdev->dev; 1051 1052 np = tegra_emc_find_node_by_ram_code(&pdev->dev); 1053 if (np) { 1054 err = tegra_emc_load_timings_from_dt(emc, np); 1055 of_node_put(np); 1056 if (err) 1057 return err; 1058 } 1059 1060 emc->regs = devm_platform_ioremap_resource(pdev, 0); 1061 if (IS_ERR(emc->regs)) 1062 return PTR_ERR(emc->regs); 1063 1064 err = emc_setup_hw(emc); 1065 if (err) 1066 return err; 1067 1068 err = devm_request_irq(&pdev->dev, irq, tegra_emc_isr, 0, 1069 dev_name(&pdev->dev), emc); 1070 if (err) { 1071 dev_err(&pdev->dev, "failed to request IRQ: %d\n", err); 1072 return err; 1073 } 1074 1075 err = tegra_emc_init_clk(emc); 1076 if (err) 1077 return err; 1078 1079 opp_params.init_state = true; 1080 1081 err = devm_tegra_core_dev_init_opp_table(&pdev->dev, &opp_params); 1082 if (err) 1083 return err; 1084 1085 platform_set_drvdata(pdev, emc); 1086 tegra_emc_rate_requests_init(emc); 1087 tegra_emc_debugfs_init(emc); 1088 tegra_emc_interconnect_init(emc); 1089 tegra_emc_devfreq_init(emc); 1090 1091 /* 1092 * Don't allow the kernel module to be unloaded. Unloading adds some 1093 * extra complexity which doesn't really worth the effort in a case of 1094 * this driver. 1095 */ 1096 try_module_get(THIS_MODULE); 1097 1098 return 0; 1099 } 1100 1101 static const struct of_device_id tegra_emc_of_match[] = { 1102 { .compatible = "nvidia,tegra20-emc", }, 1103 {}, 1104 }; 1105 MODULE_DEVICE_TABLE(of, tegra_emc_of_match); 1106 1107 static struct platform_driver tegra_emc_driver = { 1108 .probe = tegra_emc_probe, 1109 .driver = { 1110 .name = "tegra20-emc", 1111 .of_match_table = tegra_emc_of_match, 1112 .suppress_bind_attrs = true, 1113 .sync_state = icc_sync_state, 1114 }, 1115 }; 1116 module_platform_driver(tegra_emc_driver); 1117 1118 MODULE_AUTHOR("Dmitry Osipenko <digetx@gmail.com>"); 1119 MODULE_DESCRIPTION("NVIDIA Tegra20 EMC driver"); 1120 MODULE_LICENSE("GPL v2"); 1121