1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2014 NVIDIA CORPORATION. All rights reserved. 4 */ 5 6 #include <linux/clk.h> 7 #include <linux/delay.h> 8 #include <linux/dma-mapping.h> 9 #include <linux/export.h> 10 #include <linux/interrupt.h> 11 #include <linux/kernel.h> 12 #include <linux/module.h> 13 #include <linux/of.h> 14 #include <linux/of_device.h> 15 #include <linux/platform_device.h> 16 #include <linux/slab.h> 17 #include <linux/sort.h> 18 19 #include <soc/tegra/fuse.h> 20 21 #include "mc.h" 22 23 static const struct of_device_id tegra_mc_of_match[] = { 24 #ifdef CONFIG_ARCH_TEGRA_2x_SOC 25 { .compatible = "nvidia,tegra20-mc-gart", .data = &tegra20_mc_soc }, 26 #endif 27 #ifdef CONFIG_ARCH_TEGRA_3x_SOC 28 { .compatible = "nvidia,tegra30-mc", .data = &tegra30_mc_soc }, 29 #endif 30 #ifdef CONFIG_ARCH_TEGRA_114_SOC 31 { .compatible = "nvidia,tegra114-mc", .data = &tegra114_mc_soc }, 32 #endif 33 #ifdef CONFIG_ARCH_TEGRA_124_SOC 34 { .compatible = "nvidia,tegra124-mc", .data = &tegra124_mc_soc }, 35 #endif 36 #ifdef CONFIG_ARCH_TEGRA_132_SOC 37 { .compatible = "nvidia,tegra132-mc", .data = &tegra132_mc_soc }, 38 #endif 39 #ifdef CONFIG_ARCH_TEGRA_210_SOC 40 { .compatible = "nvidia,tegra210-mc", .data = &tegra210_mc_soc }, 41 #endif 42 { } 43 }; 44 MODULE_DEVICE_TABLE(of, tegra_mc_of_match); 45 46 static void tegra_mc_devm_action_put_device(void *data) 47 { 48 struct tegra_mc *mc = data; 49 50 put_device(mc->dev); 51 } 52 53 /** 54 * devm_tegra_memory_controller_get() - get Tegra Memory Controller handle 55 * @dev: device pointer for the consumer device 56 * 57 * This function will search for the Memory Controller node in a device-tree 58 * and retrieve the Memory Controller handle. 59 * 60 * Return: ERR_PTR() on error or a valid pointer to a struct tegra_mc. 61 */ 62 struct tegra_mc *devm_tegra_memory_controller_get(struct device *dev) 63 { 64 struct platform_device *pdev; 65 struct device_node *np; 66 struct tegra_mc *mc; 67 int err; 68 69 np = of_parse_phandle(dev->of_node, "nvidia,memory-controller", 0); 70 if (!np) 71 return ERR_PTR(-ENOENT); 72 73 pdev = of_find_device_by_node(np); 74 of_node_put(np); 75 if (!pdev) 76 return ERR_PTR(-ENODEV); 77 78 mc = platform_get_drvdata(pdev); 79 if (!mc) { 80 put_device(&pdev->dev); 81 return ERR_PTR(-EPROBE_DEFER); 82 } 83 84 err = devm_add_action(dev, tegra_mc_devm_action_put_device, mc); 85 if (err) { 86 put_device(mc->dev); 87 return ERR_PTR(err); 88 } 89 90 return mc; 91 } 92 EXPORT_SYMBOL_GPL(devm_tegra_memory_controller_get); 93 94 static int tegra_mc_block_dma_common(struct tegra_mc *mc, 95 const struct tegra_mc_reset *rst) 96 { 97 unsigned long flags; 98 u32 value; 99 100 spin_lock_irqsave(&mc->lock, flags); 101 102 value = mc_readl(mc, rst->control) | BIT(rst->bit); 103 mc_writel(mc, value, rst->control); 104 105 spin_unlock_irqrestore(&mc->lock, flags); 106 107 return 0; 108 } 109 110 static bool tegra_mc_dma_idling_common(struct tegra_mc *mc, 111 const struct tegra_mc_reset *rst) 112 { 113 return (mc_readl(mc, rst->status) & BIT(rst->bit)) != 0; 114 } 115 116 static int tegra_mc_unblock_dma_common(struct tegra_mc *mc, 117 const struct tegra_mc_reset *rst) 118 { 119 unsigned long flags; 120 u32 value; 121 122 spin_lock_irqsave(&mc->lock, flags); 123 124 value = mc_readl(mc, rst->control) & ~BIT(rst->bit); 125 mc_writel(mc, value, rst->control); 126 127 spin_unlock_irqrestore(&mc->lock, flags); 128 129 return 0; 130 } 131 132 static int tegra_mc_reset_status_common(struct tegra_mc *mc, 133 const struct tegra_mc_reset *rst) 134 { 135 return (mc_readl(mc, rst->control) & BIT(rst->bit)) != 0; 136 } 137 138 const struct tegra_mc_reset_ops tegra_mc_reset_ops_common = { 139 .block_dma = tegra_mc_block_dma_common, 140 .dma_idling = tegra_mc_dma_idling_common, 141 .unblock_dma = tegra_mc_unblock_dma_common, 142 .reset_status = tegra_mc_reset_status_common, 143 }; 144 145 static inline struct tegra_mc *reset_to_mc(struct reset_controller_dev *rcdev) 146 { 147 return container_of(rcdev, struct tegra_mc, reset); 148 } 149 150 static const struct tegra_mc_reset *tegra_mc_reset_find(struct tegra_mc *mc, 151 unsigned long id) 152 { 153 unsigned int i; 154 155 for (i = 0; i < mc->soc->num_resets; i++) 156 if (mc->soc->resets[i].id == id) 157 return &mc->soc->resets[i]; 158 159 return NULL; 160 } 161 162 static int tegra_mc_hotreset_assert(struct reset_controller_dev *rcdev, 163 unsigned long id) 164 { 165 struct tegra_mc *mc = reset_to_mc(rcdev); 166 const struct tegra_mc_reset_ops *rst_ops; 167 const struct tegra_mc_reset *rst; 168 int retries = 500; 169 int err; 170 171 rst = tegra_mc_reset_find(mc, id); 172 if (!rst) 173 return -ENODEV; 174 175 rst_ops = mc->soc->reset_ops; 176 if (!rst_ops) 177 return -ENODEV; 178 179 /* DMA flushing will fail if reset is already asserted */ 180 if (rst_ops->reset_status) { 181 /* check whether reset is asserted */ 182 if (rst_ops->reset_status(mc, rst)) 183 return 0; 184 } 185 186 if (rst_ops->block_dma) { 187 /* block clients DMA requests */ 188 err = rst_ops->block_dma(mc, rst); 189 if (err) { 190 dev_err(mc->dev, "failed to block %s DMA: %d\n", 191 rst->name, err); 192 return err; 193 } 194 } 195 196 if (rst_ops->dma_idling) { 197 /* wait for completion of the outstanding DMA requests */ 198 while (!rst_ops->dma_idling(mc, rst)) { 199 if (!retries--) { 200 dev_err(mc->dev, "failed to flush %s DMA\n", 201 rst->name); 202 return -EBUSY; 203 } 204 205 usleep_range(10, 100); 206 } 207 } 208 209 if (rst_ops->hotreset_assert) { 210 /* clear clients DMA requests sitting before arbitration */ 211 err = rst_ops->hotreset_assert(mc, rst); 212 if (err) { 213 dev_err(mc->dev, "failed to hot reset %s: %d\n", 214 rst->name, err); 215 return err; 216 } 217 } 218 219 return 0; 220 } 221 222 static int tegra_mc_hotreset_deassert(struct reset_controller_dev *rcdev, 223 unsigned long id) 224 { 225 struct tegra_mc *mc = reset_to_mc(rcdev); 226 const struct tegra_mc_reset_ops *rst_ops; 227 const struct tegra_mc_reset *rst; 228 int err; 229 230 rst = tegra_mc_reset_find(mc, id); 231 if (!rst) 232 return -ENODEV; 233 234 rst_ops = mc->soc->reset_ops; 235 if (!rst_ops) 236 return -ENODEV; 237 238 if (rst_ops->hotreset_deassert) { 239 /* take out client from hot reset */ 240 err = rst_ops->hotreset_deassert(mc, rst); 241 if (err) { 242 dev_err(mc->dev, "failed to deassert hot reset %s: %d\n", 243 rst->name, err); 244 return err; 245 } 246 } 247 248 if (rst_ops->unblock_dma) { 249 /* allow new DMA requests to proceed to arbitration */ 250 err = rst_ops->unblock_dma(mc, rst); 251 if (err) { 252 dev_err(mc->dev, "failed to unblock %s DMA : %d\n", 253 rst->name, err); 254 return err; 255 } 256 } 257 258 return 0; 259 } 260 261 static int tegra_mc_hotreset_status(struct reset_controller_dev *rcdev, 262 unsigned long id) 263 { 264 struct tegra_mc *mc = reset_to_mc(rcdev); 265 const struct tegra_mc_reset_ops *rst_ops; 266 const struct tegra_mc_reset *rst; 267 268 rst = tegra_mc_reset_find(mc, id); 269 if (!rst) 270 return -ENODEV; 271 272 rst_ops = mc->soc->reset_ops; 273 if (!rst_ops) 274 return -ENODEV; 275 276 return rst_ops->reset_status(mc, rst); 277 } 278 279 static const struct reset_control_ops tegra_mc_reset_ops = { 280 .assert = tegra_mc_hotreset_assert, 281 .deassert = tegra_mc_hotreset_deassert, 282 .status = tegra_mc_hotreset_status, 283 }; 284 285 static int tegra_mc_reset_setup(struct tegra_mc *mc) 286 { 287 int err; 288 289 mc->reset.ops = &tegra_mc_reset_ops; 290 mc->reset.owner = THIS_MODULE; 291 mc->reset.of_node = mc->dev->of_node; 292 mc->reset.of_reset_n_cells = 1; 293 mc->reset.nr_resets = mc->soc->num_resets; 294 295 err = reset_controller_register(&mc->reset); 296 if (err < 0) 297 return err; 298 299 return 0; 300 } 301 302 static int tegra_mc_setup_latency_allowance(struct tegra_mc *mc) 303 { 304 unsigned long long tick; 305 unsigned int i; 306 u32 value; 307 308 /* compute the number of MC clock cycles per tick */ 309 tick = (unsigned long long)mc->tick * clk_get_rate(mc->clk); 310 do_div(tick, NSEC_PER_SEC); 311 312 value = mc_readl(mc, MC_EMEM_ARB_CFG); 313 value &= ~MC_EMEM_ARB_CFG_CYCLES_PER_UPDATE_MASK; 314 value |= MC_EMEM_ARB_CFG_CYCLES_PER_UPDATE(tick); 315 mc_writel(mc, value, MC_EMEM_ARB_CFG); 316 317 /* write latency allowance defaults */ 318 for (i = 0; i < mc->soc->num_clients; i++) { 319 const struct tegra_mc_la *la = &mc->soc->clients[i].la; 320 u32 value; 321 322 value = mc_readl(mc, la->reg); 323 value &= ~(la->mask << la->shift); 324 value |= (la->def & la->mask) << la->shift; 325 mc_writel(mc, value, la->reg); 326 } 327 328 /* latch new values */ 329 mc_writel(mc, MC_TIMING_UPDATE, MC_TIMING_CONTROL); 330 331 return 0; 332 } 333 334 int tegra_mc_write_emem_configuration(struct tegra_mc *mc, unsigned long rate) 335 { 336 unsigned int i; 337 struct tegra_mc_timing *timing = NULL; 338 339 for (i = 0; i < mc->num_timings; i++) { 340 if (mc->timings[i].rate == rate) { 341 timing = &mc->timings[i]; 342 break; 343 } 344 } 345 346 if (!timing) { 347 dev_err(mc->dev, "no memory timing registered for rate %lu\n", 348 rate); 349 return -EINVAL; 350 } 351 352 for (i = 0; i < mc->soc->num_emem_regs; ++i) 353 mc_writel(mc, timing->emem_data[i], mc->soc->emem_regs[i]); 354 355 return 0; 356 } 357 EXPORT_SYMBOL_GPL(tegra_mc_write_emem_configuration); 358 359 unsigned int tegra_mc_get_emem_device_count(struct tegra_mc *mc) 360 { 361 u8 dram_count; 362 363 dram_count = mc_readl(mc, MC_EMEM_ADR_CFG); 364 dram_count &= MC_EMEM_ADR_CFG_EMEM_NUMDEV; 365 dram_count++; 366 367 return dram_count; 368 } 369 EXPORT_SYMBOL_GPL(tegra_mc_get_emem_device_count); 370 371 static int load_one_timing(struct tegra_mc *mc, 372 struct tegra_mc_timing *timing, 373 struct device_node *node) 374 { 375 int err; 376 u32 tmp; 377 378 err = of_property_read_u32(node, "clock-frequency", &tmp); 379 if (err) { 380 dev_err(mc->dev, 381 "timing %pOFn: failed to read rate\n", node); 382 return err; 383 } 384 385 timing->rate = tmp; 386 timing->emem_data = devm_kcalloc(mc->dev, mc->soc->num_emem_regs, 387 sizeof(u32), GFP_KERNEL); 388 if (!timing->emem_data) 389 return -ENOMEM; 390 391 err = of_property_read_u32_array(node, "nvidia,emem-configuration", 392 timing->emem_data, 393 mc->soc->num_emem_regs); 394 if (err) { 395 dev_err(mc->dev, 396 "timing %pOFn: failed to read EMEM configuration\n", 397 node); 398 return err; 399 } 400 401 return 0; 402 } 403 404 static int load_timings(struct tegra_mc *mc, struct device_node *node) 405 { 406 struct device_node *child; 407 struct tegra_mc_timing *timing; 408 int child_count = of_get_child_count(node); 409 int i = 0, err; 410 411 mc->timings = devm_kcalloc(mc->dev, child_count, sizeof(*timing), 412 GFP_KERNEL); 413 if (!mc->timings) 414 return -ENOMEM; 415 416 mc->num_timings = child_count; 417 418 for_each_child_of_node(node, child) { 419 timing = &mc->timings[i++]; 420 421 err = load_one_timing(mc, timing, child); 422 if (err) { 423 of_node_put(child); 424 return err; 425 } 426 } 427 428 return 0; 429 } 430 431 static int tegra_mc_setup_timings(struct tegra_mc *mc) 432 { 433 struct device_node *node; 434 u32 ram_code, node_ram_code; 435 int err; 436 437 ram_code = tegra_read_ram_code(); 438 439 mc->num_timings = 0; 440 441 for_each_child_of_node(mc->dev->of_node, node) { 442 err = of_property_read_u32(node, "nvidia,ram-code", 443 &node_ram_code); 444 if (err || (node_ram_code != ram_code)) 445 continue; 446 447 err = load_timings(mc, node); 448 of_node_put(node); 449 if (err) 450 return err; 451 break; 452 } 453 454 if (mc->num_timings == 0) 455 dev_warn(mc->dev, 456 "no memory timings for RAM code %u registered\n", 457 ram_code); 458 459 return 0; 460 } 461 462 static const char *const status_names[32] = { 463 [ 1] = "External interrupt", 464 [ 6] = "EMEM address decode error", 465 [ 7] = "GART page fault", 466 [ 8] = "Security violation", 467 [ 9] = "EMEM arbitration error", 468 [10] = "Page fault", 469 [11] = "Invalid APB ASID update", 470 [12] = "VPR violation", 471 [13] = "Secure carveout violation", 472 [16] = "MTS carveout violation", 473 }; 474 475 static const char *const error_names[8] = { 476 [2] = "EMEM decode error", 477 [3] = "TrustZone violation", 478 [4] = "Carveout violation", 479 [6] = "SMMU translation error", 480 }; 481 482 static irqreturn_t tegra_mc_irq(int irq, void *data) 483 { 484 struct tegra_mc *mc = data; 485 unsigned long status; 486 unsigned int bit; 487 488 /* mask all interrupts to avoid flooding */ 489 status = mc_readl(mc, MC_INTSTATUS) & mc->soc->intmask; 490 if (!status) 491 return IRQ_NONE; 492 493 for_each_set_bit(bit, &status, 32) { 494 const char *error = status_names[bit] ?: "unknown"; 495 const char *client = "unknown", *desc; 496 const char *direction, *secure; 497 phys_addr_t addr = 0; 498 unsigned int i; 499 char perm[7]; 500 u8 id, type; 501 u32 value; 502 503 value = mc_readl(mc, MC_ERR_STATUS); 504 505 #ifdef CONFIG_PHYS_ADDR_T_64BIT 506 if (mc->soc->num_address_bits > 32) { 507 addr = ((value >> MC_ERR_STATUS_ADR_HI_SHIFT) & 508 MC_ERR_STATUS_ADR_HI_MASK); 509 addr <<= 32; 510 } 511 #endif 512 513 if (value & MC_ERR_STATUS_RW) 514 direction = "write"; 515 else 516 direction = "read"; 517 518 if (value & MC_ERR_STATUS_SECURITY) 519 secure = "secure "; 520 else 521 secure = ""; 522 523 id = value & mc->soc->client_id_mask; 524 525 for (i = 0; i < mc->soc->num_clients; i++) { 526 if (mc->soc->clients[i].id == id) { 527 client = mc->soc->clients[i].name; 528 break; 529 } 530 } 531 532 type = (value & MC_ERR_STATUS_TYPE_MASK) >> 533 MC_ERR_STATUS_TYPE_SHIFT; 534 desc = error_names[type]; 535 536 switch (value & MC_ERR_STATUS_TYPE_MASK) { 537 case MC_ERR_STATUS_TYPE_INVALID_SMMU_PAGE: 538 perm[0] = ' '; 539 perm[1] = '['; 540 541 if (value & MC_ERR_STATUS_READABLE) 542 perm[2] = 'R'; 543 else 544 perm[2] = '-'; 545 546 if (value & MC_ERR_STATUS_WRITABLE) 547 perm[3] = 'W'; 548 else 549 perm[3] = '-'; 550 551 if (value & MC_ERR_STATUS_NONSECURE) 552 perm[4] = '-'; 553 else 554 perm[4] = 'S'; 555 556 perm[5] = ']'; 557 perm[6] = '\0'; 558 break; 559 560 default: 561 perm[0] = '\0'; 562 break; 563 } 564 565 value = mc_readl(mc, MC_ERR_ADR); 566 addr |= value; 567 568 dev_err_ratelimited(mc->dev, "%s: %s%s @%pa: %s (%s%s)\n", 569 client, secure, direction, &addr, error, 570 desc, perm); 571 } 572 573 /* clear interrupts */ 574 mc_writel(mc, status, MC_INTSTATUS); 575 576 return IRQ_HANDLED; 577 } 578 579 static __maybe_unused irqreturn_t tegra20_mc_irq(int irq, void *data) 580 { 581 struct tegra_mc *mc = data; 582 unsigned long status; 583 unsigned int bit; 584 585 /* mask all interrupts to avoid flooding */ 586 status = mc_readl(mc, MC_INTSTATUS) & mc->soc->intmask; 587 if (!status) 588 return IRQ_NONE; 589 590 for_each_set_bit(bit, &status, 32) { 591 const char *direction = "read", *secure = ""; 592 const char *error = status_names[bit]; 593 const char *client, *desc; 594 phys_addr_t addr; 595 u32 value, reg; 596 u8 id, type; 597 598 switch (BIT(bit)) { 599 case MC_INT_DECERR_EMEM: 600 reg = MC_DECERR_EMEM_OTHERS_STATUS; 601 value = mc_readl(mc, reg); 602 603 id = value & mc->soc->client_id_mask; 604 desc = error_names[2]; 605 606 if (value & BIT(31)) 607 direction = "write"; 608 break; 609 610 case MC_INT_INVALID_GART_PAGE: 611 reg = MC_GART_ERROR_REQ; 612 value = mc_readl(mc, reg); 613 614 id = (value >> 1) & mc->soc->client_id_mask; 615 desc = error_names[2]; 616 617 if (value & BIT(0)) 618 direction = "write"; 619 break; 620 621 case MC_INT_SECURITY_VIOLATION: 622 reg = MC_SECURITY_VIOLATION_STATUS; 623 value = mc_readl(mc, reg); 624 625 id = value & mc->soc->client_id_mask; 626 type = (value & BIT(30)) ? 4 : 3; 627 desc = error_names[type]; 628 secure = "secure "; 629 630 if (value & BIT(31)) 631 direction = "write"; 632 break; 633 634 default: 635 continue; 636 } 637 638 client = mc->soc->clients[id].name; 639 addr = mc_readl(mc, reg + sizeof(u32)); 640 641 dev_err_ratelimited(mc->dev, "%s: %s%s @%pa: %s (%s)\n", 642 client, secure, direction, &addr, error, 643 desc); 644 } 645 646 /* clear interrupts */ 647 mc_writel(mc, status, MC_INTSTATUS); 648 649 return IRQ_HANDLED; 650 } 651 652 /* 653 * Memory Controller (MC) has few Memory Clients that are issuing memory 654 * bandwidth allocation requests to the MC interconnect provider. The MC 655 * provider aggregates the requests and then sends the aggregated request 656 * up to the External Memory Controller (EMC) interconnect provider which 657 * re-configures hardware interface to External Memory (EMEM) in accordance 658 * to the required bandwidth. Each MC interconnect node represents an 659 * individual Memory Client. 660 * 661 * Memory interconnect topology: 662 * 663 * +----+ 664 * +--------+ | | 665 * | TEXSRD +--->+ | 666 * +--------+ | | 667 * | | +-----+ +------+ 668 * ... | MC +--->+ EMC +--->+ EMEM | 669 * | | +-----+ +------+ 670 * +--------+ | | 671 * | DISP.. +--->+ | 672 * +--------+ | | 673 * +----+ 674 */ 675 static int tegra_mc_interconnect_setup(struct tegra_mc *mc) 676 { 677 struct icc_node *node; 678 unsigned int i; 679 int err; 680 681 /* older device-trees don't have interconnect properties */ 682 if (!device_property_present(mc->dev, "#interconnect-cells") || 683 !mc->soc->icc_ops) 684 return 0; 685 686 mc->provider.dev = mc->dev; 687 mc->provider.data = &mc->provider; 688 mc->provider.set = mc->soc->icc_ops->set; 689 mc->provider.aggregate = mc->soc->icc_ops->aggregate; 690 mc->provider.xlate_extended = mc->soc->icc_ops->xlate_extended; 691 692 err = icc_provider_add(&mc->provider); 693 if (err) 694 return err; 695 696 /* create Memory Controller node */ 697 node = icc_node_create(TEGRA_ICC_MC); 698 if (IS_ERR(node)) { 699 err = PTR_ERR(node); 700 goto del_provider; 701 } 702 703 node->name = "Memory Controller"; 704 icc_node_add(node, &mc->provider); 705 706 /* link Memory Controller to External Memory Controller */ 707 err = icc_link_create(node, TEGRA_ICC_EMC); 708 if (err) 709 goto remove_nodes; 710 711 for (i = 0; i < mc->soc->num_clients; i++) { 712 /* create MC client node */ 713 node = icc_node_create(mc->soc->clients[i].id); 714 if (IS_ERR(node)) { 715 err = PTR_ERR(node); 716 goto remove_nodes; 717 } 718 719 node->name = mc->soc->clients[i].name; 720 icc_node_add(node, &mc->provider); 721 722 /* link Memory Client to Memory Controller */ 723 err = icc_link_create(node, TEGRA_ICC_MC); 724 if (err) 725 goto remove_nodes; 726 } 727 728 /* 729 * MC driver is registered too early, so early that generic driver 730 * syncing doesn't work for the MC. But it doesn't really matter 731 * since syncing works for the EMC drivers, hence we can sync the 732 * MC driver by ourselves and then EMC will complete syncing of 733 * the whole ICC state. 734 */ 735 icc_sync_state(mc->dev); 736 737 return 0; 738 739 remove_nodes: 740 icc_nodes_remove(&mc->provider); 741 del_provider: 742 icc_provider_del(&mc->provider); 743 744 return err; 745 } 746 747 static int tegra_mc_probe(struct platform_device *pdev) 748 { 749 struct resource *res; 750 struct tegra_mc *mc; 751 void *isr; 752 u64 mask; 753 int err; 754 755 mc = devm_kzalloc(&pdev->dev, sizeof(*mc), GFP_KERNEL); 756 if (!mc) 757 return -ENOMEM; 758 759 platform_set_drvdata(pdev, mc); 760 spin_lock_init(&mc->lock); 761 mc->soc = of_device_get_match_data(&pdev->dev); 762 mc->dev = &pdev->dev; 763 764 mask = DMA_BIT_MASK(mc->soc->num_address_bits); 765 766 err = dma_coerce_mask_and_coherent(&pdev->dev, mask); 767 if (err < 0) { 768 dev_err(&pdev->dev, "failed to set DMA mask: %d\n", err); 769 return err; 770 } 771 772 /* length of MC tick in nanoseconds */ 773 mc->tick = 30; 774 775 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 776 mc->regs = devm_ioremap_resource(&pdev->dev, res); 777 if (IS_ERR(mc->regs)) 778 return PTR_ERR(mc->regs); 779 780 mc->clk = devm_clk_get(&pdev->dev, "mc"); 781 if (IS_ERR(mc->clk)) { 782 dev_err(&pdev->dev, "failed to get MC clock: %ld\n", 783 PTR_ERR(mc->clk)); 784 return PTR_ERR(mc->clk); 785 } 786 787 #ifdef CONFIG_ARCH_TEGRA_2x_SOC 788 if (mc->soc == &tegra20_mc_soc) { 789 isr = tegra20_mc_irq; 790 } else 791 #endif 792 { 793 /* ensure that debug features are disabled */ 794 mc_writel(mc, 0x00000000, MC_TIMING_CONTROL_DBG); 795 796 err = tegra_mc_setup_latency_allowance(mc); 797 if (err < 0) { 798 dev_err(&pdev->dev, 799 "failed to setup latency allowance: %d\n", 800 err); 801 return err; 802 } 803 804 isr = tegra_mc_irq; 805 806 err = tegra_mc_setup_timings(mc); 807 if (err < 0) { 808 dev_err(&pdev->dev, "failed to setup timings: %d\n", 809 err); 810 return err; 811 } 812 } 813 814 mc->irq = platform_get_irq(pdev, 0); 815 if (mc->irq < 0) 816 return mc->irq; 817 818 WARN(!mc->soc->client_id_mask, "missing client ID mask for this SoC\n"); 819 820 mc_writel(mc, mc->soc->intmask, MC_INTMASK); 821 822 err = devm_request_irq(&pdev->dev, mc->irq, isr, 0, 823 dev_name(&pdev->dev), mc); 824 if (err < 0) { 825 dev_err(&pdev->dev, "failed to request IRQ#%u: %d\n", mc->irq, 826 err); 827 return err; 828 } 829 830 mc->debugfs.root = debugfs_create_dir("mc", NULL); 831 832 if (mc->soc->init) { 833 err = mc->soc->init(mc); 834 if (err < 0) 835 dev_err(&pdev->dev, "failed to initialize SoC driver: %d\n", 836 err); 837 } 838 839 err = tegra_mc_reset_setup(mc); 840 if (err < 0) 841 dev_err(&pdev->dev, "failed to register reset controller: %d\n", 842 err); 843 844 err = tegra_mc_interconnect_setup(mc); 845 if (err < 0) 846 dev_err(&pdev->dev, "failed to initialize interconnect: %d\n", 847 err); 848 849 if (IS_ENABLED(CONFIG_TEGRA_IOMMU_SMMU) && mc->soc->smmu) { 850 mc->smmu = tegra_smmu_probe(&pdev->dev, mc->soc->smmu, mc); 851 if (IS_ERR(mc->smmu)) { 852 dev_err(&pdev->dev, "failed to probe SMMU: %ld\n", 853 PTR_ERR(mc->smmu)); 854 mc->smmu = NULL; 855 } 856 } 857 858 if (IS_ENABLED(CONFIG_TEGRA_IOMMU_GART) && !mc->soc->smmu) { 859 mc->gart = tegra_gart_probe(&pdev->dev, mc); 860 if (IS_ERR(mc->gart)) { 861 dev_err(&pdev->dev, "failed to probe GART: %ld\n", 862 PTR_ERR(mc->gart)); 863 mc->gart = NULL; 864 } 865 } 866 867 return 0; 868 } 869 870 static int tegra_mc_suspend(struct device *dev) 871 { 872 struct tegra_mc *mc = dev_get_drvdata(dev); 873 int err; 874 875 if (IS_ENABLED(CONFIG_TEGRA_IOMMU_GART) && mc->gart) { 876 err = tegra_gart_suspend(mc->gart); 877 if (err) 878 return err; 879 } 880 881 return 0; 882 } 883 884 static int tegra_mc_resume(struct device *dev) 885 { 886 struct tegra_mc *mc = dev_get_drvdata(dev); 887 int err; 888 889 if (IS_ENABLED(CONFIG_TEGRA_IOMMU_GART) && mc->gart) { 890 err = tegra_gart_resume(mc->gart); 891 if (err) 892 return err; 893 } 894 895 return 0; 896 } 897 898 static const struct dev_pm_ops tegra_mc_pm_ops = { 899 .suspend = tegra_mc_suspend, 900 .resume = tegra_mc_resume, 901 }; 902 903 static struct platform_driver tegra_mc_driver = { 904 .driver = { 905 .name = "tegra-mc", 906 .of_match_table = tegra_mc_of_match, 907 .pm = &tegra_mc_pm_ops, 908 .suppress_bind_attrs = true, 909 }, 910 .prevent_deferred_probe = true, 911 .probe = tegra_mc_probe, 912 }; 913 914 static int tegra_mc_init(void) 915 { 916 return platform_driver_register(&tegra_mc_driver); 917 } 918 arch_initcall(tegra_mc_init); 919 920 MODULE_AUTHOR("Thierry Reding <treding@nvidia.com>"); 921 MODULE_DESCRIPTION("NVIDIA Tegra Memory Controller driver"); 922 MODULE_LICENSE("GPL v2"); 923