xref: /openbmc/linux/drivers/memory/tegra/mc.c (revision 901181b7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2014 NVIDIA CORPORATION.  All rights reserved.
4  */
5 
6 #include <linux/clk.h>
7 #include <linux/delay.h>
8 #include <linux/dma-mapping.h>
9 #include <linux/export.h>
10 #include <linux/interrupt.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/of.h>
14 #include <linux/of_device.h>
15 #include <linux/platform_device.h>
16 #include <linux/slab.h>
17 #include <linux/sort.h>
18 
19 #include <soc/tegra/fuse.h>
20 
21 #include "mc.h"
22 
23 static const struct of_device_id tegra_mc_of_match[] = {
24 #ifdef CONFIG_ARCH_TEGRA_2x_SOC
25 	{ .compatible = "nvidia,tegra20-mc-gart", .data = &tegra20_mc_soc },
26 #endif
27 #ifdef CONFIG_ARCH_TEGRA_3x_SOC
28 	{ .compatible = "nvidia,tegra30-mc", .data = &tegra30_mc_soc },
29 #endif
30 #ifdef CONFIG_ARCH_TEGRA_114_SOC
31 	{ .compatible = "nvidia,tegra114-mc", .data = &tegra114_mc_soc },
32 #endif
33 #ifdef CONFIG_ARCH_TEGRA_124_SOC
34 	{ .compatible = "nvidia,tegra124-mc", .data = &tegra124_mc_soc },
35 #endif
36 #ifdef CONFIG_ARCH_TEGRA_132_SOC
37 	{ .compatible = "nvidia,tegra132-mc", .data = &tegra132_mc_soc },
38 #endif
39 #ifdef CONFIG_ARCH_TEGRA_210_SOC
40 	{ .compatible = "nvidia,tegra210-mc", .data = &tegra210_mc_soc },
41 #endif
42 #ifdef CONFIG_ARCH_TEGRA_186_SOC
43 	{ .compatible = "nvidia,tegra186-mc", .data = &tegra186_mc_soc },
44 #endif
45 #ifdef CONFIG_ARCH_TEGRA_194_SOC
46 	{ .compatible = "nvidia,tegra194-mc", .data = &tegra194_mc_soc },
47 #endif
48 	{ /* sentinel */ }
49 };
50 MODULE_DEVICE_TABLE(of, tegra_mc_of_match);
51 
52 static void tegra_mc_devm_action_put_device(void *data)
53 {
54 	struct tegra_mc *mc = data;
55 
56 	put_device(mc->dev);
57 }
58 
59 /**
60  * devm_tegra_memory_controller_get() - get Tegra Memory Controller handle
61  * @dev: device pointer for the consumer device
62  *
63  * This function will search for the Memory Controller node in a device-tree
64  * and retrieve the Memory Controller handle.
65  *
66  * Return: ERR_PTR() on error or a valid pointer to a struct tegra_mc.
67  */
68 struct tegra_mc *devm_tegra_memory_controller_get(struct device *dev)
69 {
70 	struct platform_device *pdev;
71 	struct device_node *np;
72 	struct tegra_mc *mc;
73 	int err;
74 
75 	np = of_parse_phandle(dev->of_node, "nvidia,memory-controller", 0);
76 	if (!np)
77 		return ERR_PTR(-ENOENT);
78 
79 	pdev = of_find_device_by_node(np);
80 	of_node_put(np);
81 	if (!pdev)
82 		return ERR_PTR(-ENODEV);
83 
84 	mc = platform_get_drvdata(pdev);
85 	if (!mc) {
86 		put_device(&pdev->dev);
87 		return ERR_PTR(-EPROBE_DEFER);
88 	}
89 
90 	err = devm_add_action_or_reset(dev, tegra_mc_devm_action_put_device, mc);
91 	if (err)
92 		return ERR_PTR(err);
93 
94 	return mc;
95 }
96 EXPORT_SYMBOL_GPL(devm_tegra_memory_controller_get);
97 
98 int tegra_mc_probe_device(struct tegra_mc *mc, struct device *dev)
99 {
100 	if (mc->soc->ops && mc->soc->ops->probe_device)
101 		return mc->soc->ops->probe_device(mc, dev);
102 
103 	return 0;
104 }
105 EXPORT_SYMBOL_GPL(tegra_mc_probe_device);
106 
107 static int tegra_mc_block_dma_common(struct tegra_mc *mc,
108 				     const struct tegra_mc_reset *rst)
109 {
110 	unsigned long flags;
111 	u32 value;
112 
113 	spin_lock_irqsave(&mc->lock, flags);
114 
115 	value = mc_readl(mc, rst->control) | BIT(rst->bit);
116 	mc_writel(mc, value, rst->control);
117 
118 	spin_unlock_irqrestore(&mc->lock, flags);
119 
120 	return 0;
121 }
122 
123 static bool tegra_mc_dma_idling_common(struct tegra_mc *mc,
124 				       const struct tegra_mc_reset *rst)
125 {
126 	return (mc_readl(mc, rst->status) & BIT(rst->bit)) != 0;
127 }
128 
129 static int tegra_mc_unblock_dma_common(struct tegra_mc *mc,
130 				       const struct tegra_mc_reset *rst)
131 {
132 	unsigned long flags;
133 	u32 value;
134 
135 	spin_lock_irqsave(&mc->lock, flags);
136 
137 	value = mc_readl(mc, rst->control) & ~BIT(rst->bit);
138 	mc_writel(mc, value, rst->control);
139 
140 	spin_unlock_irqrestore(&mc->lock, flags);
141 
142 	return 0;
143 }
144 
145 static int tegra_mc_reset_status_common(struct tegra_mc *mc,
146 					const struct tegra_mc_reset *rst)
147 {
148 	return (mc_readl(mc, rst->control) & BIT(rst->bit)) != 0;
149 }
150 
151 const struct tegra_mc_reset_ops tegra_mc_reset_ops_common = {
152 	.block_dma = tegra_mc_block_dma_common,
153 	.dma_idling = tegra_mc_dma_idling_common,
154 	.unblock_dma = tegra_mc_unblock_dma_common,
155 	.reset_status = tegra_mc_reset_status_common,
156 };
157 
158 static inline struct tegra_mc *reset_to_mc(struct reset_controller_dev *rcdev)
159 {
160 	return container_of(rcdev, struct tegra_mc, reset);
161 }
162 
163 static const struct tegra_mc_reset *tegra_mc_reset_find(struct tegra_mc *mc,
164 							unsigned long id)
165 {
166 	unsigned int i;
167 
168 	for (i = 0; i < mc->soc->num_resets; i++)
169 		if (mc->soc->resets[i].id == id)
170 			return &mc->soc->resets[i];
171 
172 	return NULL;
173 }
174 
175 static int tegra_mc_hotreset_assert(struct reset_controller_dev *rcdev,
176 				    unsigned long id)
177 {
178 	struct tegra_mc *mc = reset_to_mc(rcdev);
179 	const struct tegra_mc_reset_ops *rst_ops;
180 	const struct tegra_mc_reset *rst;
181 	int retries = 500;
182 	int err;
183 
184 	rst = tegra_mc_reset_find(mc, id);
185 	if (!rst)
186 		return -ENODEV;
187 
188 	rst_ops = mc->soc->reset_ops;
189 	if (!rst_ops)
190 		return -ENODEV;
191 
192 	/* DMA flushing will fail if reset is already asserted */
193 	if (rst_ops->reset_status) {
194 		/* check whether reset is asserted */
195 		if (rst_ops->reset_status(mc, rst))
196 			return 0;
197 	}
198 
199 	if (rst_ops->block_dma) {
200 		/* block clients DMA requests */
201 		err = rst_ops->block_dma(mc, rst);
202 		if (err) {
203 			dev_err(mc->dev, "failed to block %s DMA: %d\n",
204 				rst->name, err);
205 			return err;
206 		}
207 	}
208 
209 	if (rst_ops->dma_idling) {
210 		/* wait for completion of the outstanding DMA requests */
211 		while (!rst_ops->dma_idling(mc, rst)) {
212 			if (!retries--) {
213 				dev_err(mc->dev, "failed to flush %s DMA\n",
214 					rst->name);
215 				return -EBUSY;
216 			}
217 
218 			usleep_range(10, 100);
219 		}
220 	}
221 
222 	if (rst_ops->hotreset_assert) {
223 		/* clear clients DMA requests sitting before arbitration */
224 		err = rst_ops->hotreset_assert(mc, rst);
225 		if (err) {
226 			dev_err(mc->dev, "failed to hot reset %s: %d\n",
227 				rst->name, err);
228 			return err;
229 		}
230 	}
231 
232 	return 0;
233 }
234 
235 static int tegra_mc_hotreset_deassert(struct reset_controller_dev *rcdev,
236 				      unsigned long id)
237 {
238 	struct tegra_mc *mc = reset_to_mc(rcdev);
239 	const struct tegra_mc_reset_ops *rst_ops;
240 	const struct tegra_mc_reset *rst;
241 	int err;
242 
243 	rst = tegra_mc_reset_find(mc, id);
244 	if (!rst)
245 		return -ENODEV;
246 
247 	rst_ops = mc->soc->reset_ops;
248 	if (!rst_ops)
249 		return -ENODEV;
250 
251 	if (rst_ops->hotreset_deassert) {
252 		/* take out client from hot reset */
253 		err = rst_ops->hotreset_deassert(mc, rst);
254 		if (err) {
255 			dev_err(mc->dev, "failed to deassert hot reset %s: %d\n",
256 				rst->name, err);
257 			return err;
258 		}
259 	}
260 
261 	if (rst_ops->unblock_dma) {
262 		/* allow new DMA requests to proceed to arbitration */
263 		err = rst_ops->unblock_dma(mc, rst);
264 		if (err) {
265 			dev_err(mc->dev, "failed to unblock %s DMA : %d\n",
266 				rst->name, err);
267 			return err;
268 		}
269 	}
270 
271 	return 0;
272 }
273 
274 static int tegra_mc_hotreset_status(struct reset_controller_dev *rcdev,
275 				    unsigned long id)
276 {
277 	struct tegra_mc *mc = reset_to_mc(rcdev);
278 	const struct tegra_mc_reset_ops *rst_ops;
279 	const struct tegra_mc_reset *rst;
280 
281 	rst = tegra_mc_reset_find(mc, id);
282 	if (!rst)
283 		return -ENODEV;
284 
285 	rst_ops = mc->soc->reset_ops;
286 	if (!rst_ops)
287 		return -ENODEV;
288 
289 	return rst_ops->reset_status(mc, rst);
290 }
291 
292 static const struct reset_control_ops tegra_mc_reset_ops = {
293 	.assert = tegra_mc_hotreset_assert,
294 	.deassert = tegra_mc_hotreset_deassert,
295 	.status = tegra_mc_hotreset_status,
296 };
297 
298 static int tegra_mc_reset_setup(struct tegra_mc *mc)
299 {
300 	int err;
301 
302 	mc->reset.ops = &tegra_mc_reset_ops;
303 	mc->reset.owner = THIS_MODULE;
304 	mc->reset.of_node = mc->dev->of_node;
305 	mc->reset.of_reset_n_cells = 1;
306 	mc->reset.nr_resets = mc->soc->num_resets;
307 
308 	err = reset_controller_register(&mc->reset);
309 	if (err < 0)
310 		return err;
311 
312 	return 0;
313 }
314 
315 int tegra_mc_write_emem_configuration(struct tegra_mc *mc, unsigned long rate)
316 {
317 	unsigned int i;
318 	struct tegra_mc_timing *timing = NULL;
319 
320 	for (i = 0; i < mc->num_timings; i++) {
321 		if (mc->timings[i].rate == rate) {
322 			timing = &mc->timings[i];
323 			break;
324 		}
325 	}
326 
327 	if (!timing) {
328 		dev_err(mc->dev, "no memory timing registered for rate %lu\n",
329 			rate);
330 		return -EINVAL;
331 	}
332 
333 	for (i = 0; i < mc->soc->num_emem_regs; ++i)
334 		mc_writel(mc, timing->emem_data[i], mc->soc->emem_regs[i]);
335 
336 	return 0;
337 }
338 EXPORT_SYMBOL_GPL(tegra_mc_write_emem_configuration);
339 
340 unsigned int tegra_mc_get_emem_device_count(struct tegra_mc *mc)
341 {
342 	u8 dram_count;
343 
344 	dram_count = mc_readl(mc, MC_EMEM_ADR_CFG);
345 	dram_count &= MC_EMEM_ADR_CFG_EMEM_NUMDEV;
346 	dram_count++;
347 
348 	return dram_count;
349 }
350 EXPORT_SYMBOL_GPL(tegra_mc_get_emem_device_count);
351 
352 #if defined(CONFIG_ARCH_TEGRA_3x_SOC) || \
353     defined(CONFIG_ARCH_TEGRA_114_SOC) || \
354     defined(CONFIG_ARCH_TEGRA_124_SOC) || \
355     defined(CONFIG_ARCH_TEGRA_132_SOC) || \
356     defined(CONFIG_ARCH_TEGRA_210_SOC)
357 static int tegra_mc_setup_latency_allowance(struct tegra_mc *mc)
358 {
359 	unsigned long long tick;
360 	unsigned int i;
361 	u32 value;
362 
363 	/* compute the number of MC clock cycles per tick */
364 	tick = (unsigned long long)mc->tick * clk_get_rate(mc->clk);
365 	do_div(tick, NSEC_PER_SEC);
366 
367 	value = mc_readl(mc, MC_EMEM_ARB_CFG);
368 	value &= ~MC_EMEM_ARB_CFG_CYCLES_PER_UPDATE_MASK;
369 	value |= MC_EMEM_ARB_CFG_CYCLES_PER_UPDATE(tick);
370 	mc_writel(mc, value, MC_EMEM_ARB_CFG);
371 
372 	/* write latency allowance defaults */
373 	for (i = 0; i < mc->soc->num_clients; i++) {
374 		const struct tegra_mc_client *client = &mc->soc->clients[i];
375 		u32 value;
376 
377 		value = mc_readl(mc, client->regs.la.reg);
378 		value &= ~(client->regs.la.mask << client->regs.la.shift);
379 		value |= (client->regs.la.def & client->regs.la.mask) << client->regs.la.shift;
380 		mc_writel(mc, value, client->regs.la.reg);
381 	}
382 
383 	/* latch new values */
384 	mc_writel(mc, MC_TIMING_UPDATE, MC_TIMING_CONTROL);
385 
386 	return 0;
387 }
388 
389 static int load_one_timing(struct tegra_mc *mc,
390 			   struct tegra_mc_timing *timing,
391 			   struct device_node *node)
392 {
393 	int err;
394 	u32 tmp;
395 
396 	err = of_property_read_u32(node, "clock-frequency", &tmp);
397 	if (err) {
398 		dev_err(mc->dev,
399 			"timing %pOFn: failed to read rate\n", node);
400 		return err;
401 	}
402 
403 	timing->rate = tmp;
404 	timing->emem_data = devm_kcalloc(mc->dev, mc->soc->num_emem_regs,
405 					 sizeof(u32), GFP_KERNEL);
406 	if (!timing->emem_data)
407 		return -ENOMEM;
408 
409 	err = of_property_read_u32_array(node, "nvidia,emem-configuration",
410 					 timing->emem_data,
411 					 mc->soc->num_emem_regs);
412 	if (err) {
413 		dev_err(mc->dev,
414 			"timing %pOFn: failed to read EMEM configuration\n",
415 			node);
416 		return err;
417 	}
418 
419 	return 0;
420 }
421 
422 static int load_timings(struct tegra_mc *mc, struct device_node *node)
423 {
424 	struct device_node *child;
425 	struct tegra_mc_timing *timing;
426 	int child_count = of_get_child_count(node);
427 	int i = 0, err;
428 
429 	mc->timings = devm_kcalloc(mc->dev, child_count, sizeof(*timing),
430 				   GFP_KERNEL);
431 	if (!mc->timings)
432 		return -ENOMEM;
433 
434 	mc->num_timings = child_count;
435 
436 	for_each_child_of_node(node, child) {
437 		timing = &mc->timings[i++];
438 
439 		err = load_one_timing(mc, timing, child);
440 		if (err) {
441 			of_node_put(child);
442 			return err;
443 		}
444 	}
445 
446 	return 0;
447 }
448 
449 static int tegra_mc_setup_timings(struct tegra_mc *mc)
450 {
451 	struct device_node *node;
452 	u32 ram_code, node_ram_code;
453 	int err;
454 
455 	ram_code = tegra_read_ram_code();
456 
457 	mc->num_timings = 0;
458 
459 	for_each_child_of_node(mc->dev->of_node, node) {
460 		err = of_property_read_u32(node, "nvidia,ram-code",
461 					   &node_ram_code);
462 		if (err || (node_ram_code != ram_code))
463 			continue;
464 
465 		err = load_timings(mc, node);
466 		of_node_put(node);
467 		if (err)
468 			return err;
469 		break;
470 	}
471 
472 	if (mc->num_timings == 0)
473 		dev_warn(mc->dev,
474 			 "no memory timings for RAM code %u registered\n",
475 			 ram_code);
476 
477 	return 0;
478 }
479 
480 int tegra30_mc_probe(struct tegra_mc *mc)
481 {
482 	int err;
483 
484 	mc->clk = devm_clk_get_optional(mc->dev, "mc");
485 	if (IS_ERR(mc->clk)) {
486 		dev_err(mc->dev, "failed to get MC clock: %ld\n", PTR_ERR(mc->clk));
487 		return PTR_ERR(mc->clk);
488 	}
489 
490 	/* ensure that debug features are disabled */
491 	mc_writel(mc, 0x00000000, MC_TIMING_CONTROL_DBG);
492 
493 	err = tegra_mc_setup_latency_allowance(mc);
494 	if (err < 0) {
495 		dev_err(mc->dev, "failed to setup latency allowance: %d\n", err);
496 		return err;
497 	}
498 
499 	err = tegra_mc_setup_timings(mc);
500 	if (err < 0) {
501 		dev_err(mc->dev, "failed to setup timings: %d\n", err);
502 		return err;
503 	}
504 
505 	return 0;
506 }
507 
508 static irqreturn_t tegra30_mc_handle_irq(int irq, void *data)
509 {
510 	struct tegra_mc *mc = data;
511 	unsigned long status;
512 	unsigned int bit;
513 
514 	/* mask all interrupts to avoid flooding */
515 	status = mc_readl(mc, MC_INTSTATUS) & mc->soc->intmask;
516 	if (!status)
517 		return IRQ_NONE;
518 
519 	for_each_set_bit(bit, &status, 32) {
520 		const char *error = tegra_mc_status_names[bit] ?: "unknown";
521 		const char *client = "unknown", *desc;
522 		const char *direction, *secure;
523 		phys_addr_t addr = 0;
524 		unsigned int i;
525 		char perm[7];
526 		u8 id, type;
527 		u32 value;
528 
529 		value = mc_readl(mc, MC_ERR_STATUS);
530 
531 #ifdef CONFIG_PHYS_ADDR_T_64BIT
532 		if (mc->soc->num_address_bits > 32) {
533 			addr = ((value >> MC_ERR_STATUS_ADR_HI_SHIFT) &
534 				MC_ERR_STATUS_ADR_HI_MASK);
535 			addr <<= 32;
536 		}
537 #endif
538 
539 		if (value & MC_ERR_STATUS_RW)
540 			direction = "write";
541 		else
542 			direction = "read";
543 
544 		if (value & MC_ERR_STATUS_SECURITY)
545 			secure = "secure ";
546 		else
547 			secure = "";
548 
549 		id = value & mc->soc->client_id_mask;
550 
551 		for (i = 0; i < mc->soc->num_clients; i++) {
552 			if (mc->soc->clients[i].id == id) {
553 				client = mc->soc->clients[i].name;
554 				break;
555 			}
556 		}
557 
558 		type = (value & MC_ERR_STATUS_TYPE_MASK) >>
559 		       MC_ERR_STATUS_TYPE_SHIFT;
560 		desc = tegra_mc_error_names[type];
561 
562 		switch (value & MC_ERR_STATUS_TYPE_MASK) {
563 		case MC_ERR_STATUS_TYPE_INVALID_SMMU_PAGE:
564 			perm[0] = ' ';
565 			perm[1] = '[';
566 
567 			if (value & MC_ERR_STATUS_READABLE)
568 				perm[2] = 'R';
569 			else
570 				perm[2] = '-';
571 
572 			if (value & MC_ERR_STATUS_WRITABLE)
573 				perm[3] = 'W';
574 			else
575 				perm[3] = '-';
576 
577 			if (value & MC_ERR_STATUS_NONSECURE)
578 				perm[4] = '-';
579 			else
580 				perm[4] = 'S';
581 
582 			perm[5] = ']';
583 			perm[6] = '\0';
584 			break;
585 
586 		default:
587 			perm[0] = '\0';
588 			break;
589 		}
590 
591 		value = mc_readl(mc, MC_ERR_ADR);
592 		addr |= value;
593 
594 		dev_err_ratelimited(mc->dev, "%s: %s%s @%pa: %s (%s%s)\n",
595 				    client, secure, direction, &addr, error,
596 				    desc, perm);
597 	}
598 
599 	/* clear interrupts */
600 	mc_writel(mc, status, MC_INTSTATUS);
601 
602 	return IRQ_HANDLED;
603 }
604 
605 const struct tegra_mc_ops tegra30_mc_ops = {
606 	.probe = tegra30_mc_probe,
607 	.handle_irq = tegra30_mc_handle_irq,
608 };
609 #endif
610 
611 const char *const tegra_mc_status_names[32] = {
612 	[ 1] = "External interrupt",
613 	[ 6] = "EMEM address decode error",
614 	[ 7] = "GART page fault",
615 	[ 8] = "Security violation",
616 	[ 9] = "EMEM arbitration error",
617 	[10] = "Page fault",
618 	[11] = "Invalid APB ASID update",
619 	[12] = "VPR violation",
620 	[13] = "Secure carveout violation",
621 	[16] = "MTS carveout violation",
622 };
623 
624 const char *const tegra_mc_error_names[8] = {
625 	[2] = "EMEM decode error",
626 	[3] = "TrustZone violation",
627 	[4] = "Carveout violation",
628 	[6] = "SMMU translation error",
629 };
630 
631 /*
632  * Memory Controller (MC) has few Memory Clients that are issuing memory
633  * bandwidth allocation requests to the MC interconnect provider. The MC
634  * provider aggregates the requests and then sends the aggregated request
635  * up to the External Memory Controller (EMC) interconnect provider which
636  * re-configures hardware interface to External Memory (EMEM) in accordance
637  * to the required bandwidth. Each MC interconnect node represents an
638  * individual Memory Client.
639  *
640  * Memory interconnect topology:
641  *
642  *               +----+
643  * +--------+    |    |
644  * | TEXSRD +--->+    |
645  * +--------+    |    |
646  *               |    |    +-----+    +------+
647  *    ...        | MC +--->+ EMC +--->+ EMEM |
648  *               |    |    +-----+    +------+
649  * +--------+    |    |
650  * | DISP.. +--->+    |
651  * +--------+    |    |
652  *               +----+
653  */
654 static int tegra_mc_interconnect_setup(struct tegra_mc *mc)
655 {
656 	struct icc_node *node;
657 	unsigned int i;
658 	int err;
659 
660 	/* older device-trees don't have interconnect properties */
661 	if (!device_property_present(mc->dev, "#interconnect-cells") ||
662 	    !mc->soc->icc_ops)
663 		return 0;
664 
665 	mc->provider.dev = mc->dev;
666 	mc->provider.data = &mc->provider;
667 	mc->provider.set = mc->soc->icc_ops->set;
668 	mc->provider.aggregate = mc->soc->icc_ops->aggregate;
669 	mc->provider.xlate_extended = mc->soc->icc_ops->xlate_extended;
670 
671 	err = icc_provider_add(&mc->provider);
672 	if (err)
673 		return err;
674 
675 	/* create Memory Controller node */
676 	node = icc_node_create(TEGRA_ICC_MC);
677 	if (IS_ERR(node)) {
678 		err = PTR_ERR(node);
679 		goto del_provider;
680 	}
681 
682 	node->name = "Memory Controller";
683 	icc_node_add(node, &mc->provider);
684 
685 	/* link Memory Controller to External Memory Controller */
686 	err = icc_link_create(node, TEGRA_ICC_EMC);
687 	if (err)
688 		goto remove_nodes;
689 
690 	for (i = 0; i < mc->soc->num_clients; i++) {
691 		/* create MC client node */
692 		node = icc_node_create(mc->soc->clients[i].id);
693 		if (IS_ERR(node)) {
694 			err = PTR_ERR(node);
695 			goto remove_nodes;
696 		}
697 
698 		node->name = mc->soc->clients[i].name;
699 		icc_node_add(node, &mc->provider);
700 
701 		/* link Memory Client to Memory Controller */
702 		err = icc_link_create(node, TEGRA_ICC_MC);
703 		if (err)
704 			goto remove_nodes;
705 	}
706 
707 	return 0;
708 
709 remove_nodes:
710 	icc_nodes_remove(&mc->provider);
711 del_provider:
712 	icc_provider_del(&mc->provider);
713 
714 	return err;
715 }
716 
717 static int tegra_mc_probe(struct platform_device *pdev)
718 {
719 	struct resource *res;
720 	struct tegra_mc *mc;
721 	u64 mask;
722 	int err;
723 
724 	mc = devm_kzalloc(&pdev->dev, sizeof(*mc), GFP_KERNEL);
725 	if (!mc)
726 		return -ENOMEM;
727 
728 	platform_set_drvdata(pdev, mc);
729 	spin_lock_init(&mc->lock);
730 	mc->soc = of_device_get_match_data(&pdev->dev);
731 	mc->dev = &pdev->dev;
732 
733 	mask = DMA_BIT_MASK(mc->soc->num_address_bits);
734 
735 	err = dma_coerce_mask_and_coherent(&pdev->dev, mask);
736 	if (err < 0) {
737 		dev_err(&pdev->dev, "failed to set DMA mask: %d\n", err);
738 		return err;
739 	}
740 
741 	/* length of MC tick in nanoseconds */
742 	mc->tick = 30;
743 
744 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
745 	mc->regs = devm_ioremap_resource(&pdev->dev, res);
746 	if (IS_ERR(mc->regs))
747 		return PTR_ERR(mc->regs);
748 
749 	mc->debugfs.root = debugfs_create_dir("mc", NULL);
750 
751 	if (mc->soc->ops && mc->soc->ops->probe) {
752 		err = mc->soc->ops->probe(mc);
753 		if (err < 0)
754 			return err;
755 	}
756 
757 	if (mc->soc->ops && mc->soc->ops->handle_irq) {
758 		mc->irq = platform_get_irq(pdev, 0);
759 		if (mc->irq < 0)
760 			return mc->irq;
761 
762 		WARN(!mc->soc->client_id_mask, "missing client ID mask for this SoC\n");
763 
764 		mc_writel(mc, mc->soc->intmask, MC_INTMASK);
765 
766 		err = devm_request_irq(&pdev->dev, mc->irq, mc->soc->ops->handle_irq, 0,
767 				       dev_name(&pdev->dev), mc);
768 		if (err < 0) {
769 			dev_err(&pdev->dev, "failed to request IRQ#%u: %d\n", mc->irq,
770 				err);
771 			return err;
772 		}
773 	}
774 
775 	if (mc->soc->reset_ops) {
776 		err = tegra_mc_reset_setup(mc);
777 		if (err < 0)
778 			dev_err(&pdev->dev, "failed to register reset controller: %d\n", err);
779 	}
780 
781 	err = tegra_mc_interconnect_setup(mc);
782 	if (err < 0)
783 		dev_err(&pdev->dev, "failed to initialize interconnect: %d\n",
784 			err);
785 
786 	if (IS_ENABLED(CONFIG_TEGRA_IOMMU_SMMU) && mc->soc->smmu) {
787 		mc->smmu = tegra_smmu_probe(&pdev->dev, mc->soc->smmu, mc);
788 		if (IS_ERR(mc->smmu)) {
789 			dev_err(&pdev->dev, "failed to probe SMMU: %ld\n",
790 				PTR_ERR(mc->smmu));
791 			mc->smmu = NULL;
792 		}
793 	}
794 
795 	if (IS_ENABLED(CONFIG_TEGRA_IOMMU_GART) && !mc->soc->smmu) {
796 		mc->gart = tegra_gart_probe(&pdev->dev, mc);
797 		if (IS_ERR(mc->gart)) {
798 			dev_err(&pdev->dev, "failed to probe GART: %ld\n",
799 				PTR_ERR(mc->gart));
800 			mc->gart = NULL;
801 		}
802 	}
803 
804 	return 0;
805 }
806 
807 static int __maybe_unused tegra_mc_suspend(struct device *dev)
808 {
809 	struct tegra_mc *mc = dev_get_drvdata(dev);
810 
811 	if (mc->soc->ops && mc->soc->ops->suspend)
812 		return mc->soc->ops->suspend(mc);
813 
814 	return 0;
815 }
816 
817 static int __maybe_unused tegra_mc_resume(struct device *dev)
818 {
819 	struct tegra_mc *mc = dev_get_drvdata(dev);
820 
821 	if (mc->soc->ops && mc->soc->ops->resume)
822 		return mc->soc->ops->resume(mc);
823 
824 	return 0;
825 }
826 
827 static void tegra_mc_sync_state(struct device *dev)
828 {
829 	struct tegra_mc *mc = dev_get_drvdata(dev);
830 
831 	/* check whether ICC provider is registered */
832 	if (mc->provider.dev == dev)
833 		icc_sync_state(dev);
834 }
835 
836 static const struct dev_pm_ops tegra_mc_pm_ops = {
837 	SET_SYSTEM_SLEEP_PM_OPS(tegra_mc_suspend, tegra_mc_resume)
838 };
839 
840 static struct platform_driver tegra_mc_driver = {
841 	.driver = {
842 		.name = "tegra-mc",
843 		.of_match_table = tegra_mc_of_match,
844 		.pm = &tegra_mc_pm_ops,
845 		.suppress_bind_attrs = true,
846 		.sync_state = tegra_mc_sync_state,
847 	},
848 	.prevent_deferred_probe = true,
849 	.probe = tegra_mc_probe,
850 };
851 
852 static int tegra_mc_init(void)
853 {
854 	return platform_driver_register(&tegra_mc_driver);
855 }
856 arch_initcall(tegra_mc_init);
857 
858 MODULE_AUTHOR("Thierry Reding <treding@nvidia.com>");
859 MODULE_DESCRIPTION("NVIDIA Tegra Memory Controller driver");
860 MODULE_LICENSE("GPL v2");
861