xref: /openbmc/linux/drivers/memory/samsung/exynos5422-dmc.c (revision a080a92a6f89e716b8a264f6b93123b41a1c004c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2019 Samsung Electronics Co., Ltd.
4  * Author: Lukasz Luba <l.luba@partner.samsung.com>
5  */
6 
7 #include <linux/clk.h>
8 #include <linux/devfreq.h>
9 #include <linux/devfreq-event.h>
10 #include <linux/device.h>
11 #include <linux/interrupt.h>
12 #include <linux/io.h>
13 #include <linux/mfd/syscon.h>
14 #include <linux/module.h>
15 #include <linux/of_device.h>
16 #include <linux/pm_opp.h>
17 #include <linux/platform_device.h>
18 #include <linux/regmap.h>
19 #include <linux/regulator/consumer.h>
20 #include <linux/slab.h>
21 #include "../jedec_ddr.h"
22 #include "../of_memory.h"
23 
24 #define EXYNOS5_DREXI_TIMINGAREF		(0x0030)
25 #define EXYNOS5_DREXI_TIMINGROW0		(0x0034)
26 #define EXYNOS5_DREXI_TIMINGDATA0		(0x0038)
27 #define EXYNOS5_DREXI_TIMINGPOWER0		(0x003C)
28 #define EXYNOS5_DREXI_TIMINGROW1		(0x00E4)
29 #define EXYNOS5_DREXI_TIMINGDATA1		(0x00E8)
30 #define EXYNOS5_DREXI_TIMINGPOWER1		(0x00EC)
31 #define CDREX_PAUSE				(0x2091c)
32 #define CDREX_LPDDR3PHY_CON3			(0x20a20)
33 #define CDREX_LPDDR3PHY_CLKM_SRC		(0x20700)
34 #define EXYNOS5_TIMING_SET_SWI			BIT(28)
35 #define USE_MX_MSPLL_TIMINGS			(1)
36 #define USE_BPLL_TIMINGS			(0)
37 #define EXYNOS5_AREF_NORMAL			(0x2e)
38 
39 #define DREX_PPCCLKCON		(0x0130)
40 #define DREX_PEREV2CONFIG	(0x013c)
41 #define DREX_PMNC_PPC		(0xE000)
42 #define DREX_CNTENS_PPC		(0xE010)
43 #define DREX_CNTENC_PPC		(0xE020)
44 #define DREX_INTENS_PPC		(0xE030)
45 #define DREX_INTENC_PPC		(0xE040)
46 #define DREX_FLAG_PPC		(0xE050)
47 #define DREX_PMCNT2_PPC		(0xE130)
48 
49 /*
50  * A value for register DREX_PMNC_PPC which should be written to reset
51  * the cycle counter CCNT (a reference wall clock). It sets zero to the
52  * CCNT counter.
53  */
54 #define CC_RESET		BIT(2)
55 
56 /*
57  * A value for register DREX_PMNC_PPC which does the reset of all performance
58  * counters to zero.
59  */
60 #define PPC_COUNTER_RESET	BIT(1)
61 
62 /*
63  * Enables all configured counters (including cycle counter). The value should
64  * be written to the register DREX_PMNC_PPC.
65  */
66 #define PPC_ENABLE		BIT(0)
67 
68 /* A value for register DREX_PPCCLKCON which enables performance events clock.
69  * Must be written before first access to the performance counters register
70  * set, otherwise it could crash.
71  */
72 #define PEREV_CLK_EN		BIT(0)
73 
74 /*
75  * Values which are used to enable counters, interrupts or configure flags of
76  * the performance counters. They configure counter 2 and cycle counter.
77  */
78 #define PERF_CNT2		BIT(2)
79 #define PERF_CCNT		BIT(31)
80 
81 /*
82  * Performance event types which are used for setting the preferred event
83  * to track in the counters.
84  * There is a set of different types, the values are from range 0 to 0x6f.
85  * These settings should be written to the configuration register which manages
86  * the type of the event (register DREX_PEREV2CONFIG).
87  */
88 #define READ_TRANSFER_CH0	(0x6d)
89 #define READ_TRANSFER_CH1	(0x6f)
90 
91 #define PERF_COUNTER_START_VALUE 0xff000000
92 #define PERF_EVENT_UP_DOWN_THRESHOLD 900000000ULL
93 
94 /**
95  * struct dmc_opp_table - Operating level desciption
96  *
97  * Covers frequency and voltage settings of the DMC operating mode.
98  */
99 struct dmc_opp_table {
100 	u32 freq_hz;
101 	u32 volt_uv;
102 };
103 
104 /**
105  * struct exynos5_dmc - main structure describing DMC device
106  *
107  * The main structure for the Dynamic Memory Controller which covers clocks,
108  * memory regions, HW information, parameters and current operating mode.
109  */
110 struct exynos5_dmc {
111 	struct device *dev;
112 	struct devfreq *df;
113 	struct devfreq_simple_ondemand_data gov_data;
114 	void __iomem *base_drexi0;
115 	void __iomem *base_drexi1;
116 	struct regmap *clk_regmap;
117 	struct mutex lock;
118 	unsigned long curr_rate;
119 	unsigned long curr_volt;
120 	unsigned long bypass_rate;
121 	struct dmc_opp_table *opp;
122 	struct dmc_opp_table opp_bypass;
123 	int opp_count;
124 	u32 timings_arr_size;
125 	u32 *timing_row;
126 	u32 *timing_data;
127 	u32 *timing_power;
128 	const struct lpddr3_timings *timings;
129 	const struct lpddr3_min_tck *min_tck;
130 	u32 bypass_timing_row;
131 	u32 bypass_timing_data;
132 	u32 bypass_timing_power;
133 	struct regulator *vdd_mif;
134 	struct clk *fout_spll;
135 	struct clk *fout_bpll;
136 	struct clk *mout_spll;
137 	struct clk *mout_bpll;
138 	struct clk *mout_mclk_cdrex;
139 	struct clk *mout_mx_mspll_ccore;
140 	struct clk *mx_mspll_ccore_phy;
141 	struct clk *mout_mx_mspll_ccore_phy;
142 	struct devfreq_event_dev **counter;
143 	int num_counters;
144 	u64 last_overflow_ts[2];
145 	unsigned long load;
146 	unsigned long total;
147 	bool in_irq_mode;
148 };
149 
150 #define TIMING_FIELD(t_name, t_bit_beg, t_bit_end) \
151 	{ .name = t_name, .bit_beg = t_bit_beg, .bit_end = t_bit_end }
152 
153 #define TIMING_VAL2REG(timing, t_val)			\
154 ({							\
155 		u32 __val;				\
156 		__val = (t_val) << (timing)->bit_beg;	\
157 		__val;					\
158 })
159 
160 struct timing_reg {
161 	char *name;
162 	int bit_beg;
163 	int bit_end;
164 	unsigned int val;
165 };
166 
167 static const struct timing_reg timing_row[] = {
168 	TIMING_FIELD("tRFC", 24, 31),
169 	TIMING_FIELD("tRRD", 20, 23),
170 	TIMING_FIELD("tRP", 16, 19),
171 	TIMING_FIELD("tRCD", 12, 15),
172 	TIMING_FIELD("tRC", 6, 11),
173 	TIMING_FIELD("tRAS", 0, 5),
174 };
175 
176 static const struct timing_reg timing_data[] = {
177 	TIMING_FIELD("tWTR", 28, 31),
178 	TIMING_FIELD("tWR", 24, 27),
179 	TIMING_FIELD("tRTP", 20, 23),
180 	TIMING_FIELD("tW2W-C2C", 14, 14),
181 	TIMING_FIELD("tR2R-C2C", 12, 12),
182 	TIMING_FIELD("WL", 8, 11),
183 	TIMING_FIELD("tDQSCK", 4, 7),
184 	TIMING_FIELD("RL", 0, 3),
185 };
186 
187 static const struct timing_reg timing_power[] = {
188 	TIMING_FIELD("tFAW", 26, 31),
189 	TIMING_FIELD("tXSR", 16, 25),
190 	TIMING_FIELD("tXP", 8, 15),
191 	TIMING_FIELD("tCKE", 4, 7),
192 	TIMING_FIELD("tMRD", 0, 3),
193 };
194 
195 #define TIMING_COUNT (ARRAY_SIZE(timing_row) + ARRAY_SIZE(timing_data) + \
196 		      ARRAY_SIZE(timing_power))
197 
198 static int exynos5_counters_set_event(struct exynos5_dmc *dmc)
199 {
200 	int i, ret;
201 
202 	for (i = 0; i < dmc->num_counters; i++) {
203 		if (!dmc->counter[i])
204 			continue;
205 		ret = devfreq_event_set_event(dmc->counter[i]);
206 		if (ret < 0)
207 			return ret;
208 	}
209 	return 0;
210 }
211 
212 static int exynos5_counters_enable_edev(struct exynos5_dmc *dmc)
213 {
214 	int i, ret;
215 
216 	for (i = 0; i < dmc->num_counters; i++) {
217 		if (!dmc->counter[i])
218 			continue;
219 		ret = devfreq_event_enable_edev(dmc->counter[i]);
220 		if (ret < 0)
221 			return ret;
222 	}
223 	return 0;
224 }
225 
226 static int exynos5_counters_disable_edev(struct exynos5_dmc *dmc)
227 {
228 	int i, ret;
229 
230 	for (i = 0; i < dmc->num_counters; i++) {
231 		if (!dmc->counter[i])
232 			continue;
233 		ret = devfreq_event_disable_edev(dmc->counter[i]);
234 		if (ret < 0)
235 			return ret;
236 	}
237 	return 0;
238 }
239 
240 /**
241  * find_target_freq_id() - Finds requested frequency in local DMC configuration
242  * @dmc:	device for which the information is checked
243  * @target_rate:	requested frequency in KHz
244  *
245  * Seeks in the local DMC driver structure for the requested frequency value
246  * and returns index or error value.
247  */
248 static int find_target_freq_idx(struct exynos5_dmc *dmc,
249 				unsigned long target_rate)
250 {
251 	int i;
252 
253 	for (i = dmc->opp_count - 1; i >= 0; i--)
254 		if (dmc->opp[i].freq_hz <= target_rate)
255 			return i;
256 
257 	return -EINVAL;
258 }
259 
260 /**
261  * exynos5_switch_timing_regs() - Changes bank register set for DRAM timings
262  * @dmc:	device for which the new settings is going to be applied
263  * @set:	boolean variable passing set value
264  *
265  * Changes the register set, which holds timing parameters.
266  * There is two register sets: 0 and 1. The register set 0
267  * is used in normal operation when the clock is provided from main PLL.
268  * The bank register set 1 is used when the main PLL frequency is going to be
269  * changed and the clock is taken from alternative, stable source.
270  * This function switches between these banks according to the
271  * currently used clock source.
272  */
273 static void exynos5_switch_timing_regs(struct exynos5_dmc *dmc, bool set)
274 {
275 	unsigned int reg;
276 	int ret;
277 
278 	ret = regmap_read(dmc->clk_regmap, CDREX_LPDDR3PHY_CON3, &reg);
279 
280 	if (set)
281 		reg |= EXYNOS5_TIMING_SET_SWI;
282 	else
283 		reg &= ~EXYNOS5_TIMING_SET_SWI;
284 
285 	regmap_write(dmc->clk_regmap, CDREX_LPDDR3PHY_CON3, reg);
286 }
287 
288 /**
289  * exynos5_init_freq_table() - Initialized PM OPP framework
290  * @dmc:	DMC device for which the frequencies are used for OPP init
291  * @profile:	devfreq device's profile
292  *
293  * Populate the devfreq device's OPP table based on current frequency, voltage.
294  */
295 static int exynos5_init_freq_table(struct exynos5_dmc *dmc,
296 				   struct devfreq_dev_profile *profile)
297 {
298 	int i, ret;
299 	int idx;
300 	unsigned long freq;
301 
302 	ret = dev_pm_opp_of_add_table(dmc->dev);
303 	if (ret < 0) {
304 		dev_err(dmc->dev, "Failed to get OPP table\n");
305 		return ret;
306 	}
307 
308 	dmc->opp_count = dev_pm_opp_get_opp_count(dmc->dev);
309 
310 	dmc->opp = devm_kmalloc_array(dmc->dev, dmc->opp_count,
311 				      sizeof(struct dmc_opp_table), GFP_KERNEL);
312 	if (!dmc->opp)
313 		goto err_opp;
314 
315 	idx = dmc->opp_count - 1;
316 	for (i = 0, freq = ULONG_MAX; i < dmc->opp_count; i++, freq--) {
317 		struct dev_pm_opp *opp;
318 
319 		opp = dev_pm_opp_find_freq_floor(dmc->dev, &freq);
320 		if (IS_ERR(opp))
321 			goto err_opp;
322 
323 		dmc->opp[idx - i].freq_hz = freq;
324 		dmc->opp[idx - i].volt_uv = dev_pm_opp_get_voltage(opp);
325 
326 		dev_pm_opp_put(opp);
327 	}
328 
329 	return 0;
330 
331 err_opp:
332 	dev_pm_opp_of_remove_table(dmc->dev);
333 
334 	return -EINVAL;
335 }
336 
337 /**
338  * exynos5_set_bypass_dram_timings() - Low-level changes of the DRAM timings
339  * @dmc:	device for which the new settings is going to be applied
340  * @param:	DRAM parameters which passes timing data
341  *
342  * Low-level function for changing timings for DRAM memory clocking from
343  * 'bypass' clock source (fixed frequency @400MHz).
344  * It uses timing bank registers set 1.
345  */
346 static void exynos5_set_bypass_dram_timings(struct exynos5_dmc *dmc)
347 {
348 	writel(EXYNOS5_AREF_NORMAL,
349 	       dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGAREF);
350 
351 	writel(dmc->bypass_timing_row,
352 	       dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGROW1);
353 	writel(dmc->bypass_timing_row,
354 	       dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGROW1);
355 	writel(dmc->bypass_timing_data,
356 	       dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGDATA1);
357 	writel(dmc->bypass_timing_data,
358 	       dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGDATA1);
359 	writel(dmc->bypass_timing_power,
360 	       dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGPOWER1);
361 	writel(dmc->bypass_timing_power,
362 	       dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGPOWER1);
363 }
364 
365 /**
366  * exynos5_dram_change_timings() - Low-level changes of the DRAM final timings
367  * @dmc:	device for which the new settings is going to be applied
368  * @target_rate:	target frequency of the DMC
369  *
370  * Low-level function for changing timings for DRAM memory operating from main
371  * clock source (BPLL), which can have different frequencies. Thus, each
372  * frequency must have corresponding timings register values in order to keep
373  * the needed delays.
374  * It uses timing bank registers set 0.
375  */
376 static int exynos5_dram_change_timings(struct exynos5_dmc *dmc,
377 				       unsigned long target_rate)
378 {
379 	int idx;
380 
381 	for (idx = dmc->opp_count - 1; idx >= 0; idx--)
382 		if (dmc->opp[idx].freq_hz <= target_rate)
383 			break;
384 
385 	if (idx < 0)
386 		return -EINVAL;
387 
388 	writel(EXYNOS5_AREF_NORMAL,
389 	       dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGAREF);
390 
391 	writel(dmc->timing_row[idx],
392 	       dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGROW0);
393 	writel(dmc->timing_row[idx],
394 	       dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGROW0);
395 	writel(dmc->timing_data[idx],
396 	       dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGDATA0);
397 	writel(dmc->timing_data[idx],
398 	       dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGDATA0);
399 	writel(dmc->timing_power[idx],
400 	       dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGPOWER0);
401 	writel(dmc->timing_power[idx],
402 	       dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGPOWER0);
403 
404 	return 0;
405 }
406 
407 /**
408  * exynos5_dmc_align_target_voltage() - Sets the final voltage for the DMC
409  * @dmc:	device for which it is going to be set
410  * @target_volt:	new voltage which is chosen to be final
411  *
412  * Function tries to align voltage to the safe level for 'normal' mode.
413  * It checks the need of higher voltage and changes the value. The target
414  * voltage might be lower that currently set and still the system will be
415  * stable.
416  */
417 static int exynos5_dmc_align_target_voltage(struct exynos5_dmc *dmc,
418 					    unsigned long target_volt)
419 {
420 	int ret = 0;
421 
422 	if (dmc->curr_volt <= target_volt)
423 		return 0;
424 
425 	ret = regulator_set_voltage(dmc->vdd_mif, target_volt,
426 				    target_volt);
427 	if (!ret)
428 		dmc->curr_volt = target_volt;
429 
430 	return ret;
431 }
432 
433 /**
434  * exynos5_dmc_align_bypass_voltage() - Sets the voltage for the DMC
435  * @dmc:	device for which it is going to be set
436  * @target_volt:	new voltage which is chosen to be final
437  *
438  * Function tries to align voltage to the safe level for the 'bypass' mode.
439  * It checks the need of higher voltage and changes the value.
440  * The target voltage must not be less than currently needed, because
441  * for current frequency the device might become unstable.
442  */
443 static int exynos5_dmc_align_bypass_voltage(struct exynos5_dmc *dmc,
444 					    unsigned long target_volt)
445 {
446 	int ret = 0;
447 	unsigned long bypass_volt = dmc->opp_bypass.volt_uv;
448 
449 	target_volt = max(bypass_volt, target_volt);
450 
451 	if (dmc->curr_volt >= target_volt)
452 		return 0;
453 
454 	ret = regulator_set_voltage(dmc->vdd_mif, target_volt,
455 				    target_volt);
456 	if (!ret)
457 		dmc->curr_volt = target_volt;
458 
459 	return ret;
460 }
461 
462 /**
463  * exynos5_dmc_align_bypass_dram_timings() - Chooses and sets DRAM timings
464  * @dmc:	device for which it is going to be set
465  * @target_rate:	new frequency which is chosen to be final
466  *
467  * Function changes the DRAM timings for the temporary 'bypass' mode.
468  */
469 static int exynos5_dmc_align_bypass_dram_timings(struct exynos5_dmc *dmc,
470 						 unsigned long target_rate)
471 {
472 	int idx = find_target_freq_idx(dmc, target_rate);
473 
474 	if (idx < 0)
475 		return -EINVAL;
476 
477 	exynos5_set_bypass_dram_timings(dmc);
478 
479 	return 0;
480 }
481 
482 /**
483  * exynos5_dmc_switch_to_bypass_configuration() - Switching to temporary clock
484  * @dmc:	DMC device for which the switching is going to happen
485  * @target_rate:	new frequency which is going to be set as a final
486  * @target_volt:	new voltage which is going to be set as a final
487  *
488  * Function configures DMC and clocks for operating in temporary 'bypass' mode.
489  * This mode is used only temporary but if required, changes voltage and timings
490  * for DRAM chips. It switches the main clock to stable clock source for the
491  * period of the main PLL reconfiguration.
492  */
493 static int
494 exynos5_dmc_switch_to_bypass_configuration(struct exynos5_dmc *dmc,
495 					   unsigned long target_rate,
496 					   unsigned long target_volt)
497 {
498 	int ret;
499 
500 	/*
501 	 * Having higher voltage for a particular frequency does not harm
502 	 * the chip. Use it for the temporary frequency change when one
503 	 * voltage manipulation might be avoided.
504 	 */
505 	ret = exynos5_dmc_align_bypass_voltage(dmc, target_volt);
506 	if (ret)
507 		return ret;
508 
509 	/*
510 	 * Longer delays for DRAM does not cause crash, the opposite does.
511 	 */
512 	ret = exynos5_dmc_align_bypass_dram_timings(dmc, target_rate);
513 	if (ret)
514 		return ret;
515 
516 	/*
517 	 * Delays are long enough, so use them for the new coming clock.
518 	 */
519 	exynos5_switch_timing_regs(dmc, USE_MX_MSPLL_TIMINGS);
520 
521 	return ret;
522 }
523 
524 /**
525  * exynos5_dmc_change_freq_and_volt() - Changes voltage and frequency of the DMC
526  * using safe procedure
527  * @dmc:	device for which the frequency is going to be changed
528  * @target_rate:	requested new frequency
529  * @target_volt:	requested voltage which corresponds to the new frequency
530  *
531  * The DMC frequency change procedure requires a few steps.
532  * The main requirement is to change the clock source in the clk mux
533  * for the time of main clock PLL locking. The assumption is that the
534  * alternative clock source set as parent is stable.
535  * The second parent's clock frequency is fixed to 400MHz, it is named 'bypass'
536  * clock. This requires alignment in DRAM timing parameters for the new
537  * T-period. There is two bank sets for keeping DRAM
538  * timings: set 0 and set 1. The set 0 is used when main clock source is
539  * chosen. The 2nd set of regs is used for 'bypass' clock. Switching between
540  * the two bank sets is part of the process.
541  * The voltage must also be aligned to the minimum required level. There is
542  * this intermediate step with switching to 'bypass' parent clock source.
543  * if the old voltage is lower, it requires an increase of the voltage level.
544  * The complexity of the voltage manipulation is hidden in low level function.
545  * In this function there is last alignment of the voltage level at the end.
546  */
547 static int
548 exynos5_dmc_change_freq_and_volt(struct exynos5_dmc *dmc,
549 				 unsigned long target_rate,
550 				 unsigned long target_volt)
551 {
552 	int ret;
553 
554 	ret = exynos5_dmc_switch_to_bypass_configuration(dmc, target_rate,
555 							 target_volt);
556 	if (ret)
557 		return ret;
558 
559 	/*
560 	 * Voltage is set at least to a level needed for this frequency,
561 	 * so switching clock source is safe now.
562 	 */
563 	clk_prepare_enable(dmc->fout_spll);
564 	clk_prepare_enable(dmc->mout_spll);
565 	clk_prepare_enable(dmc->mout_mx_mspll_ccore);
566 
567 	ret = clk_set_parent(dmc->mout_mclk_cdrex, dmc->mout_mx_mspll_ccore);
568 	if (ret)
569 		goto disable_clocks;
570 
571 	/*
572 	 * We are safe to increase the timings for current bypass frequency.
573 	 * Thanks to this the settings will be ready for the upcoming clock
574 	 * source change.
575 	 */
576 	exynos5_dram_change_timings(dmc, target_rate);
577 
578 	clk_set_rate(dmc->fout_bpll, target_rate);
579 
580 	exynos5_switch_timing_regs(dmc, USE_BPLL_TIMINGS);
581 
582 	ret = clk_set_parent(dmc->mout_mclk_cdrex, dmc->mout_bpll);
583 	if (ret)
584 		goto disable_clocks;
585 
586 	/*
587 	 * Make sure if the voltage is not from 'bypass' settings and align to
588 	 * the right level for power efficiency.
589 	 */
590 	ret = exynos5_dmc_align_target_voltage(dmc, target_volt);
591 
592 disable_clocks:
593 	clk_disable_unprepare(dmc->mout_mx_mspll_ccore);
594 	clk_disable_unprepare(dmc->mout_spll);
595 	clk_disable_unprepare(dmc->fout_spll);
596 
597 	return ret;
598 }
599 
600 /**
601  * exynos5_dmc_get_volt_freq() - Gets the frequency and voltage from the OPP
602  * table.
603  * @dmc:	device for which the frequency is going to be changed
604  * @freq:       requested frequency in KHz
605  * @target_rate:	returned frequency which is the same or lower than
606  *			requested
607  * @target_volt:	returned voltage which corresponds to the returned
608  *			frequency
609  *
610  * Function gets requested frequency and checks OPP framework for needed
611  * frequency and voltage. It populates the values 'target_rate' and
612  * 'target_volt' or returns error value when OPP framework fails.
613  */
614 static int exynos5_dmc_get_volt_freq(struct exynos5_dmc *dmc,
615 				     unsigned long *freq,
616 				     unsigned long *target_rate,
617 				     unsigned long *target_volt, u32 flags)
618 {
619 	struct dev_pm_opp *opp;
620 
621 	opp = devfreq_recommended_opp(dmc->dev, freq, flags);
622 	if (IS_ERR(opp))
623 		return PTR_ERR(opp);
624 
625 	*target_rate = dev_pm_opp_get_freq(opp);
626 	*target_volt = dev_pm_opp_get_voltage(opp);
627 	dev_pm_opp_put(opp);
628 
629 	return 0;
630 }
631 
632 /**
633  * exynos5_dmc_target() - Function responsible for changing frequency of DMC
634  * @dev:	device for which the frequency is going to be changed
635  * @freq:	requested frequency in KHz
636  * @flags:	flags provided for this frequency change request
637  *
638  * An entry function provided to the devfreq framework which provides frequency
639  * change of the DMC. The function gets the possible rate from OPP table based
640  * on requested frequency. It calls the next function responsible for the
641  * frequency and voltage change. In case of failure, does not set 'curr_rate'
642  * and returns error value to the framework.
643  */
644 static int exynos5_dmc_target(struct device *dev, unsigned long *freq,
645 			      u32 flags)
646 {
647 	struct exynos5_dmc *dmc = dev_get_drvdata(dev);
648 	unsigned long target_rate = 0;
649 	unsigned long target_volt = 0;
650 	int ret;
651 
652 	ret = exynos5_dmc_get_volt_freq(dmc, freq, &target_rate, &target_volt,
653 					flags);
654 
655 	if (ret)
656 		return ret;
657 
658 	if (target_rate == dmc->curr_rate)
659 		return 0;
660 
661 	mutex_lock(&dmc->lock);
662 
663 	ret = exynos5_dmc_change_freq_and_volt(dmc, target_rate, target_volt);
664 
665 	if (ret) {
666 		mutex_unlock(&dmc->lock);
667 		return ret;
668 	}
669 
670 	dmc->curr_rate = target_rate;
671 
672 	mutex_unlock(&dmc->lock);
673 	return 0;
674 }
675 
676 /**
677  * exynos5_counters_get() - Gets the performance counters values.
678  * @dmc:	device for which the counters are going to be checked
679  * @load_count:	variable which is populated with counter value
680  * @total_count:	variable which is used as 'wall clock' reference
681  *
682  * Function which provides performance counters values. It sums up counters for
683  * two DMC channels. The 'total_count' is used as a reference and max value.
684  * The ratio 'load_count/total_count' shows the busy percentage [0%, 100%].
685  */
686 static int exynos5_counters_get(struct exynos5_dmc *dmc,
687 				unsigned long *load_count,
688 				unsigned long *total_count)
689 {
690 	unsigned long total = 0;
691 	struct devfreq_event_data event;
692 	int ret, i;
693 
694 	*load_count = 0;
695 
696 	/* Take into account only read+write counters, but stop all */
697 	for (i = 0; i < dmc->num_counters; i++) {
698 		if (!dmc->counter[i])
699 			continue;
700 
701 		ret = devfreq_event_get_event(dmc->counter[i], &event);
702 		if (ret < 0)
703 			return ret;
704 
705 		*load_count += event.load_count;
706 
707 		if (total < event.total_count)
708 			total = event.total_count;
709 	}
710 
711 	*total_count = total;
712 
713 	return 0;
714 }
715 
716 /**
717  * exynos5_dmc_start_perf_events() - Setup and start performance event counters
718  * @dmc:	device for which the counters are going to be checked
719  * @beg_value:	initial value for the counter
720  *
721  * Function which enables needed counters, interrupts and sets initial values
722  * then starts the counters.
723  */
724 static void exynos5_dmc_start_perf_events(struct exynos5_dmc *dmc,
725 					  u32 beg_value)
726 {
727 	/* Enable interrupts for counter 2 */
728 	writel(PERF_CNT2, dmc->base_drexi0 + DREX_INTENS_PPC);
729 	writel(PERF_CNT2, dmc->base_drexi1 + DREX_INTENS_PPC);
730 
731 	/* Enable counter 2 and CCNT  */
732 	writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi0 + DREX_CNTENS_PPC);
733 	writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi1 + DREX_CNTENS_PPC);
734 
735 	/* Clear overflow flag for all counters */
736 	writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi0 + DREX_FLAG_PPC);
737 	writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi1 + DREX_FLAG_PPC);
738 
739 	/* Reset all counters */
740 	writel(CC_RESET | PPC_COUNTER_RESET, dmc->base_drexi0 + DREX_PMNC_PPC);
741 	writel(CC_RESET | PPC_COUNTER_RESET, dmc->base_drexi1 + DREX_PMNC_PPC);
742 
743 	/*
744 	 * Set start value for the counters, the number of samples that
745 	 * will be gathered is calculated as: 0xffffffff - beg_value
746 	 */
747 	writel(beg_value, dmc->base_drexi0 + DREX_PMCNT2_PPC);
748 	writel(beg_value, dmc->base_drexi1 + DREX_PMCNT2_PPC);
749 
750 	/* Start all counters */
751 	writel(PPC_ENABLE, dmc->base_drexi0 + DREX_PMNC_PPC);
752 	writel(PPC_ENABLE, dmc->base_drexi1 + DREX_PMNC_PPC);
753 }
754 
755 /**
756  * exynos5_dmc_perf_events_calc() - Calculate utilization
757  * @dmc:	device for which the counters are going to be checked
758  * @diff_ts:	time between last interrupt and current one
759  *
760  * Function which calculates needed utilization for the devfreq governor.
761  * It prepares values for 'busy_time' and 'total_time' based on elapsed time
762  * between interrupts, which approximates utilization.
763  */
764 static void exynos5_dmc_perf_events_calc(struct exynos5_dmc *dmc, u64 diff_ts)
765 {
766 	/*
767 	 * This is a simple algorithm for managing traffic on DMC.
768 	 * When there is almost no load the counters overflow every 4s,
769 	 * no mater the DMC frequency.
770 	 * The high load might be approximated using linear function.
771 	 * Knowing that, simple calculation can provide 'busy_time' and
772 	 * 'total_time' to the devfreq governor which picks up target
773 	 * frequency.
774 	 * We want a fast ramp up and slow decay in frequency change function.
775 	 */
776 	if (diff_ts < PERF_EVENT_UP_DOWN_THRESHOLD) {
777 		/*
778 		 * Set higher utilization for the simple_ondemand governor.
779 		 * The governor should increase the frequency of the DMC.
780 		 */
781 		dmc->load = 70;
782 		dmc->total = 100;
783 	} else {
784 		/*
785 		 * Set low utilization for the simple_ondemand governor.
786 		 * The governor should decrease the frequency of the DMC.
787 		 */
788 		dmc->load = 35;
789 		dmc->total = 100;
790 	}
791 
792 	dev_dbg(dmc->dev, "diff_ts=%llu\n", diff_ts);
793 }
794 
795 /**
796  * exynos5_dmc_perf_events_check() - Checks the status of the counters
797  * @dmc:	device for which the counters are going to be checked
798  *
799  * Function which is called from threaded IRQ to check the counters state
800  * and to call approximation for the needed utilization.
801  */
802 static void exynos5_dmc_perf_events_check(struct exynos5_dmc *dmc)
803 {
804 	u32 val;
805 	u64 diff_ts, ts;
806 
807 	ts = ktime_get_ns();
808 
809 	/* Stop all counters */
810 	writel(0, dmc->base_drexi0 + DREX_PMNC_PPC);
811 	writel(0, dmc->base_drexi1 + DREX_PMNC_PPC);
812 
813 	/* Check the source in interrupt flag registers (which channel) */
814 	val = readl(dmc->base_drexi0 + DREX_FLAG_PPC);
815 	if (val) {
816 		diff_ts = ts - dmc->last_overflow_ts[0];
817 		dmc->last_overflow_ts[0] = ts;
818 		dev_dbg(dmc->dev, "drex0 0xE050 val= 0x%08x\n",  val);
819 	} else {
820 		val = readl(dmc->base_drexi1 + DREX_FLAG_PPC);
821 		diff_ts = ts - dmc->last_overflow_ts[1];
822 		dmc->last_overflow_ts[1] = ts;
823 		dev_dbg(dmc->dev, "drex1 0xE050 val= 0x%08x\n",  val);
824 	}
825 
826 	exynos5_dmc_perf_events_calc(dmc, diff_ts);
827 
828 	exynos5_dmc_start_perf_events(dmc, PERF_COUNTER_START_VALUE);
829 }
830 
831 /**
832  * exynos5_dmc_enable_perf_events() - Enable performance events
833  * @dmc:	device for which the counters are going to be checked
834  *
835  * Function which is setup needed environment and enables counters.
836  */
837 static void exynos5_dmc_enable_perf_events(struct exynos5_dmc *dmc)
838 {
839 	u64 ts;
840 
841 	/* Enable Performance Event Clock */
842 	writel(PEREV_CLK_EN, dmc->base_drexi0 + DREX_PPCCLKCON);
843 	writel(PEREV_CLK_EN, dmc->base_drexi1 + DREX_PPCCLKCON);
844 
845 	/* Select read transfers as performance event2 */
846 	writel(READ_TRANSFER_CH0, dmc->base_drexi0 + DREX_PEREV2CONFIG);
847 	writel(READ_TRANSFER_CH1, dmc->base_drexi1 + DREX_PEREV2CONFIG);
848 
849 	ts = ktime_get_ns();
850 	dmc->last_overflow_ts[0] = ts;
851 	dmc->last_overflow_ts[1] = ts;
852 
853 	/* Devfreq shouldn't be faster than initialization, play safe though. */
854 	dmc->load = 99;
855 	dmc->total = 100;
856 }
857 
858 /**
859  * exynos5_dmc_disable_perf_events() - Disable performance events
860  * @dmc:	device for which the counters are going to be checked
861  *
862  * Function which stops, disables performance event counters and interrupts.
863  */
864 static void exynos5_dmc_disable_perf_events(struct exynos5_dmc *dmc)
865 {
866 	/* Stop all counters */
867 	writel(0, dmc->base_drexi0 + DREX_PMNC_PPC);
868 	writel(0, dmc->base_drexi1 + DREX_PMNC_PPC);
869 
870 	/* Disable interrupts for counter 2 */
871 	writel(PERF_CNT2, dmc->base_drexi0 + DREX_INTENC_PPC);
872 	writel(PERF_CNT2, dmc->base_drexi1 + DREX_INTENC_PPC);
873 
874 	/* Disable counter 2 and CCNT  */
875 	writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi0 + DREX_CNTENC_PPC);
876 	writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi1 + DREX_CNTENC_PPC);
877 
878 	/* Clear overflow flag for all counters */
879 	writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi0 + DREX_FLAG_PPC);
880 	writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi1 + DREX_FLAG_PPC);
881 }
882 
883 /**
884  * exynos5_dmc_get_status() - Read current DMC performance statistics.
885  * @dev:	device for which the statistics are requested
886  * @stat:	structure which has statistic fields
887  *
888  * Function reads the DMC performance counters and calculates 'busy_time'
889  * and 'total_time'. To protect from overflow, the values are shifted right
890  * by 10. After read out the counters are setup to count again.
891  */
892 static int exynos5_dmc_get_status(struct device *dev,
893 				  struct devfreq_dev_status *stat)
894 {
895 	struct exynos5_dmc *dmc = dev_get_drvdata(dev);
896 	unsigned long load, total;
897 	int ret;
898 
899 	if (dmc->in_irq_mode) {
900 		stat->current_frequency = dmc->curr_rate;
901 		stat->busy_time = dmc->load;
902 		stat->total_time = dmc->total;
903 	} else {
904 		ret = exynos5_counters_get(dmc, &load, &total);
905 		if (ret < 0)
906 			return -EINVAL;
907 
908 		/* To protect from overflow, divide by 1024 */
909 		stat->busy_time = load >> 10;
910 		stat->total_time = total >> 10;
911 
912 		ret = exynos5_counters_set_event(dmc);
913 		if (ret < 0) {
914 			dev_err(dev, "could not set event counter\n");
915 			return ret;
916 		}
917 	}
918 
919 	return 0;
920 }
921 
922 /**
923  * exynos5_dmc_get_cur_freq() - Function returns current DMC frequency
924  * @dev:	device for which the framework checks operating frequency
925  * @freq:	returned frequency value
926  *
927  * It returns the currently used frequency of the DMC. The real operating
928  * frequency might be lower when the clock source value could not be divided
929  * to the requested value.
930  */
931 static int exynos5_dmc_get_cur_freq(struct device *dev, unsigned long *freq)
932 {
933 	struct exynos5_dmc *dmc = dev_get_drvdata(dev);
934 
935 	mutex_lock(&dmc->lock);
936 	*freq = dmc->curr_rate;
937 	mutex_unlock(&dmc->lock);
938 
939 	return 0;
940 }
941 
942 /**
943  * exynos5_dmc_df_profile - Devfreq governor's profile structure
944  *
945  * It provides to the devfreq framework needed functions and polling period.
946  */
947 static struct devfreq_dev_profile exynos5_dmc_df_profile = {
948 	.target = exynos5_dmc_target,
949 	.get_dev_status = exynos5_dmc_get_status,
950 	.get_cur_freq = exynos5_dmc_get_cur_freq,
951 };
952 
953 /**
954  * exynos5_dmc_align_initial_frequency() - Align initial frequency value
955  * @dmc:	device for which the frequency is going to be set
956  * @bootloader_init_freq:	initial frequency set by the bootloader in KHz
957  *
958  * The initial bootloader frequency, which is present during boot, might be
959  * different that supported frequency values in the driver. It is possible
960  * due to different PLL settings or used PLL as a source.
961  * This function provides the 'initial_freq' for the devfreq framework
962  * statistics engine which supports only registered values. Thus, some alignment
963  * must be made.
964  */
965 static unsigned long
966 exynos5_dmc_align_init_freq(struct exynos5_dmc *dmc,
967 			    unsigned long bootloader_init_freq)
968 {
969 	unsigned long aligned_freq;
970 	int idx;
971 
972 	idx = find_target_freq_idx(dmc, bootloader_init_freq);
973 	if (idx >= 0)
974 		aligned_freq = dmc->opp[idx].freq_hz;
975 	else
976 		aligned_freq = dmc->opp[dmc->opp_count - 1].freq_hz;
977 
978 	return aligned_freq;
979 }
980 
981 /**
982  * create_timings_aligned() - Create register values and align with standard
983  * @dmc:	device for which the frequency is going to be set
984  * @idx:	speed bin in the OPP table
985  * @clk_period_ps:	the period of the clock, known as tCK
986  *
987  * The function calculates timings and creates a register value ready for
988  * a frequency transition. The register contains a few timings. They are
989  * shifted by a known offset. The timing value is calculated based on memory
990  * specyfication: minimal time required and minimal cycles required.
991  */
992 static int create_timings_aligned(struct exynos5_dmc *dmc, u32 *reg_timing_row,
993 				  u32 *reg_timing_data, u32 *reg_timing_power,
994 				  u32 clk_period_ps)
995 {
996 	u32 val;
997 	const struct timing_reg *reg;
998 
999 	if (clk_period_ps == 0)
1000 		return -EINVAL;
1001 
1002 	*reg_timing_row = 0;
1003 	*reg_timing_data = 0;
1004 	*reg_timing_power = 0;
1005 
1006 	val = dmc->timings->tRFC / clk_period_ps;
1007 	val += dmc->timings->tRFC % clk_period_ps ? 1 : 0;
1008 	val = max(val, dmc->min_tck->tRFC);
1009 	reg = &timing_row[0];
1010 	*reg_timing_row |= TIMING_VAL2REG(reg, val);
1011 
1012 	val = dmc->timings->tRRD / clk_period_ps;
1013 	val += dmc->timings->tRRD % clk_period_ps ? 1 : 0;
1014 	val = max(val, dmc->min_tck->tRRD);
1015 	reg = &timing_row[1];
1016 	*reg_timing_row |= TIMING_VAL2REG(reg, val);
1017 
1018 	val = dmc->timings->tRPab / clk_period_ps;
1019 	val += dmc->timings->tRPab % clk_period_ps ? 1 : 0;
1020 	val = max(val, dmc->min_tck->tRPab);
1021 	reg = &timing_row[2];
1022 	*reg_timing_row |= TIMING_VAL2REG(reg, val);
1023 
1024 	val = dmc->timings->tRCD / clk_period_ps;
1025 	val += dmc->timings->tRCD % clk_period_ps ? 1 : 0;
1026 	val = max(val, dmc->min_tck->tRCD);
1027 	reg = &timing_row[3];
1028 	*reg_timing_row |= TIMING_VAL2REG(reg, val);
1029 
1030 	val = dmc->timings->tRC / clk_period_ps;
1031 	val += dmc->timings->tRC % clk_period_ps ? 1 : 0;
1032 	val = max(val, dmc->min_tck->tRC);
1033 	reg = &timing_row[4];
1034 	*reg_timing_row |= TIMING_VAL2REG(reg, val);
1035 
1036 	val = dmc->timings->tRAS / clk_period_ps;
1037 	val += dmc->timings->tRAS % clk_period_ps ? 1 : 0;
1038 	val = max(val, dmc->min_tck->tRAS);
1039 	reg = &timing_row[5];
1040 	*reg_timing_row |= TIMING_VAL2REG(reg, val);
1041 
1042 	/* data related timings */
1043 	val = dmc->timings->tWTR / clk_period_ps;
1044 	val += dmc->timings->tWTR % clk_period_ps ? 1 : 0;
1045 	val = max(val, dmc->min_tck->tWTR);
1046 	reg = &timing_data[0];
1047 	*reg_timing_data |= TIMING_VAL2REG(reg, val);
1048 
1049 	val = dmc->timings->tWR / clk_period_ps;
1050 	val += dmc->timings->tWR % clk_period_ps ? 1 : 0;
1051 	val = max(val, dmc->min_tck->tWR);
1052 	reg = &timing_data[1];
1053 	*reg_timing_data |= TIMING_VAL2REG(reg, val);
1054 
1055 	val = dmc->timings->tRTP / clk_period_ps;
1056 	val += dmc->timings->tRTP % clk_period_ps ? 1 : 0;
1057 	val = max(val, dmc->min_tck->tRTP);
1058 	reg = &timing_data[2];
1059 	*reg_timing_data |= TIMING_VAL2REG(reg, val);
1060 
1061 	val = dmc->timings->tW2W_C2C / clk_period_ps;
1062 	val += dmc->timings->tW2W_C2C % clk_period_ps ? 1 : 0;
1063 	val = max(val, dmc->min_tck->tW2W_C2C);
1064 	reg = &timing_data[3];
1065 	*reg_timing_data |= TIMING_VAL2REG(reg, val);
1066 
1067 	val = dmc->timings->tR2R_C2C / clk_period_ps;
1068 	val += dmc->timings->tR2R_C2C % clk_period_ps ? 1 : 0;
1069 	val = max(val, dmc->min_tck->tR2R_C2C);
1070 	reg = &timing_data[4];
1071 	*reg_timing_data |= TIMING_VAL2REG(reg, val);
1072 
1073 	val = dmc->timings->tWL / clk_period_ps;
1074 	val += dmc->timings->tWL % clk_period_ps ? 1 : 0;
1075 	val = max(val, dmc->min_tck->tWL);
1076 	reg = &timing_data[5];
1077 	*reg_timing_data |= TIMING_VAL2REG(reg, val);
1078 
1079 	val = dmc->timings->tDQSCK / clk_period_ps;
1080 	val += dmc->timings->tDQSCK % clk_period_ps ? 1 : 0;
1081 	val = max(val, dmc->min_tck->tDQSCK);
1082 	reg = &timing_data[6];
1083 	*reg_timing_data |= TIMING_VAL2REG(reg, val);
1084 
1085 	val = dmc->timings->tRL / clk_period_ps;
1086 	val += dmc->timings->tRL % clk_period_ps ? 1 : 0;
1087 	val = max(val, dmc->min_tck->tRL);
1088 	reg = &timing_data[7];
1089 	*reg_timing_data |= TIMING_VAL2REG(reg, val);
1090 
1091 	/* power related timings */
1092 	val = dmc->timings->tFAW / clk_period_ps;
1093 	val += dmc->timings->tFAW % clk_period_ps ? 1 : 0;
1094 	val = max(val, dmc->min_tck->tXP);
1095 	reg = &timing_power[0];
1096 	*reg_timing_power |= TIMING_VAL2REG(reg, val);
1097 
1098 	val = dmc->timings->tXSR / clk_period_ps;
1099 	val += dmc->timings->tXSR % clk_period_ps ? 1 : 0;
1100 	val = max(val, dmc->min_tck->tXSR);
1101 	reg = &timing_power[1];
1102 	*reg_timing_power |= TIMING_VAL2REG(reg, val);
1103 
1104 	val = dmc->timings->tXP / clk_period_ps;
1105 	val += dmc->timings->tXP % clk_period_ps ? 1 : 0;
1106 	val = max(val, dmc->min_tck->tXP);
1107 	reg = &timing_power[2];
1108 	*reg_timing_power |= TIMING_VAL2REG(reg, val);
1109 
1110 	val = dmc->timings->tCKE / clk_period_ps;
1111 	val += dmc->timings->tCKE % clk_period_ps ? 1 : 0;
1112 	val = max(val, dmc->min_tck->tCKE);
1113 	reg = &timing_power[3];
1114 	*reg_timing_power |= TIMING_VAL2REG(reg, val);
1115 
1116 	val = dmc->timings->tMRD / clk_period_ps;
1117 	val += dmc->timings->tMRD % clk_period_ps ? 1 : 0;
1118 	val = max(val, dmc->min_tck->tMRD);
1119 	reg = &timing_power[4];
1120 	*reg_timing_power |= TIMING_VAL2REG(reg, val);
1121 
1122 	return 0;
1123 }
1124 
1125 /**
1126  * of_get_dram_timings() - helper function for parsing DT settings for DRAM
1127  * @dmc:        device for which the frequency is going to be set
1128  *
1129  * The function parses DT entries with DRAM information.
1130  */
1131 static int of_get_dram_timings(struct exynos5_dmc *dmc)
1132 {
1133 	int ret = 0;
1134 	int idx;
1135 	struct device_node *np_ddr;
1136 	u32 freq_mhz, clk_period_ps;
1137 
1138 	np_ddr = of_parse_phandle(dmc->dev->of_node, "device-handle", 0);
1139 	if (!np_ddr) {
1140 		dev_warn(dmc->dev, "could not find 'device-handle' in DT\n");
1141 		return -EINVAL;
1142 	}
1143 
1144 	dmc->timing_row = devm_kmalloc_array(dmc->dev, TIMING_COUNT,
1145 					     sizeof(u32), GFP_KERNEL);
1146 	if (!dmc->timing_row)
1147 		return -ENOMEM;
1148 
1149 	dmc->timing_data = devm_kmalloc_array(dmc->dev, TIMING_COUNT,
1150 					      sizeof(u32), GFP_KERNEL);
1151 	if (!dmc->timing_data)
1152 		return -ENOMEM;
1153 
1154 	dmc->timing_power = devm_kmalloc_array(dmc->dev, TIMING_COUNT,
1155 					       sizeof(u32), GFP_KERNEL);
1156 	if (!dmc->timing_power)
1157 		return -ENOMEM;
1158 
1159 	dmc->timings = of_lpddr3_get_ddr_timings(np_ddr, dmc->dev,
1160 						 DDR_TYPE_LPDDR3,
1161 						 &dmc->timings_arr_size);
1162 	if (!dmc->timings) {
1163 		of_node_put(np_ddr);
1164 		dev_warn(dmc->dev, "could not get timings from DT\n");
1165 		return -EINVAL;
1166 	}
1167 
1168 	dmc->min_tck = of_lpddr3_get_min_tck(np_ddr, dmc->dev);
1169 	if (!dmc->min_tck) {
1170 		of_node_put(np_ddr);
1171 		dev_warn(dmc->dev, "could not get tck from DT\n");
1172 		return -EINVAL;
1173 	}
1174 
1175 	/* Sorted array of OPPs with frequency ascending */
1176 	for (idx = 0; idx < dmc->opp_count; idx++) {
1177 		freq_mhz = dmc->opp[idx].freq_hz / 1000000;
1178 		clk_period_ps = 1000000 / freq_mhz;
1179 
1180 		ret = create_timings_aligned(dmc, &dmc->timing_row[idx],
1181 					     &dmc->timing_data[idx],
1182 					     &dmc->timing_power[idx],
1183 					     clk_period_ps);
1184 	}
1185 
1186 	of_node_put(np_ddr);
1187 
1188 	/* Take the highest frequency's timings as 'bypass' */
1189 	dmc->bypass_timing_row = dmc->timing_row[idx - 1];
1190 	dmc->bypass_timing_data = dmc->timing_data[idx - 1];
1191 	dmc->bypass_timing_power = dmc->timing_power[idx - 1];
1192 
1193 	return ret;
1194 }
1195 
1196 /**
1197  * exynos5_dmc_init_clks() - Initialize clocks needed for DMC operation.
1198  * @dmc:	DMC structure containing needed fields
1199  *
1200  * Get the needed clocks defined in DT device, enable and set the right parents.
1201  * Read current frequency and initialize the initial rate for governor.
1202  */
1203 static int exynos5_dmc_init_clks(struct exynos5_dmc *dmc)
1204 {
1205 	int ret;
1206 	unsigned long target_volt = 0;
1207 	unsigned long target_rate = 0;
1208 	unsigned int tmp;
1209 
1210 	dmc->fout_spll = devm_clk_get(dmc->dev, "fout_spll");
1211 	if (IS_ERR(dmc->fout_spll))
1212 		return PTR_ERR(dmc->fout_spll);
1213 
1214 	dmc->fout_bpll = devm_clk_get(dmc->dev, "fout_bpll");
1215 	if (IS_ERR(dmc->fout_bpll))
1216 		return PTR_ERR(dmc->fout_bpll);
1217 
1218 	dmc->mout_mclk_cdrex = devm_clk_get(dmc->dev, "mout_mclk_cdrex");
1219 	if (IS_ERR(dmc->mout_mclk_cdrex))
1220 		return PTR_ERR(dmc->mout_mclk_cdrex);
1221 
1222 	dmc->mout_bpll = devm_clk_get(dmc->dev, "mout_bpll");
1223 	if (IS_ERR(dmc->mout_bpll))
1224 		return PTR_ERR(dmc->mout_bpll);
1225 
1226 	dmc->mout_mx_mspll_ccore = devm_clk_get(dmc->dev,
1227 						"mout_mx_mspll_ccore");
1228 	if (IS_ERR(dmc->mout_mx_mspll_ccore))
1229 		return PTR_ERR(dmc->mout_mx_mspll_ccore);
1230 
1231 	dmc->mout_spll = devm_clk_get(dmc->dev, "ff_dout_spll2");
1232 	if (IS_ERR(dmc->mout_spll)) {
1233 		dmc->mout_spll = devm_clk_get(dmc->dev, "mout_sclk_spll");
1234 		if (IS_ERR(dmc->mout_spll))
1235 			return PTR_ERR(dmc->mout_spll);
1236 	}
1237 
1238 	/*
1239 	 * Convert frequency to KHz values and set it for the governor.
1240 	 */
1241 	dmc->curr_rate = clk_get_rate(dmc->mout_mclk_cdrex);
1242 	dmc->curr_rate = exynos5_dmc_align_init_freq(dmc, dmc->curr_rate);
1243 	exynos5_dmc_df_profile.initial_freq = dmc->curr_rate;
1244 
1245 	ret = exynos5_dmc_get_volt_freq(dmc, &dmc->curr_rate, &target_rate,
1246 					&target_volt, 0);
1247 	if (ret)
1248 		return ret;
1249 
1250 	dmc->curr_volt = target_volt;
1251 
1252 	clk_set_parent(dmc->mout_mx_mspll_ccore, dmc->mout_spll);
1253 
1254 	dmc->bypass_rate = clk_get_rate(dmc->mout_mx_mspll_ccore);
1255 
1256 	clk_prepare_enable(dmc->fout_bpll);
1257 	clk_prepare_enable(dmc->mout_bpll);
1258 
1259 	/*
1260 	 * Some bootloaders do not set clock routes correctly.
1261 	 * Stop one path in clocks to PHY.
1262 	 */
1263 	regmap_read(dmc->clk_regmap, CDREX_LPDDR3PHY_CLKM_SRC, &tmp);
1264 	tmp &= ~(BIT(1) | BIT(0));
1265 	regmap_write(dmc->clk_regmap, CDREX_LPDDR3PHY_CLKM_SRC, tmp);
1266 
1267 	return 0;
1268 }
1269 
1270 /**
1271  * exynos5_performance_counters_init() - Initializes performance DMC's counters
1272  * @dmc:	DMC for which it does the setup
1273  *
1274  * Initialization of performance counters in DMC for estimating usage.
1275  * The counter's values are used for calculation of a memory bandwidth and based
1276  * on that the governor changes the frequency.
1277  * The counters are not used when the governor is GOVERNOR_USERSPACE.
1278  */
1279 static int exynos5_performance_counters_init(struct exynos5_dmc *dmc)
1280 {
1281 	int counters_size;
1282 	int ret, i;
1283 
1284 	dmc->num_counters = devfreq_event_get_edev_count(dmc->dev);
1285 	if (dmc->num_counters < 0) {
1286 		dev_err(dmc->dev, "could not get devfreq-event counters\n");
1287 		return dmc->num_counters;
1288 	}
1289 
1290 	counters_size = sizeof(struct devfreq_event_dev) * dmc->num_counters;
1291 	dmc->counter = devm_kzalloc(dmc->dev, counters_size, GFP_KERNEL);
1292 	if (!dmc->counter)
1293 		return -ENOMEM;
1294 
1295 	for (i = 0; i < dmc->num_counters; i++) {
1296 		dmc->counter[i] =
1297 			devfreq_event_get_edev_by_phandle(dmc->dev, i);
1298 		if (IS_ERR_OR_NULL(dmc->counter[i]))
1299 			return -EPROBE_DEFER;
1300 	}
1301 
1302 	ret = exynos5_counters_enable_edev(dmc);
1303 	if (ret < 0) {
1304 		dev_err(dmc->dev, "could not enable event counter\n");
1305 		return ret;
1306 	}
1307 
1308 	ret = exynos5_counters_set_event(dmc);
1309 	if (ret < 0) {
1310 		exynos5_counters_disable_edev(dmc);
1311 		dev_err(dmc->dev, "could not set event counter\n");
1312 		return ret;
1313 	}
1314 
1315 	return 0;
1316 }
1317 
1318 /**
1319  * exynos5_dmc_set_pause_on_switching() - Controls a pause feature in DMC
1320  * @dmc:	device which is used for changing this feature
1321  * @set:	a boolean state passing enable/disable request
1322  *
1323  * There is a need of pausing DREX DMC when divider or MUX in clock tree
1324  * changes its configuration. In such situation access to the memory is blocked
1325  * in DMC automatically. This feature is used when clock frequency change
1326  * request appears and touches clock tree.
1327  */
1328 static inline int exynos5_dmc_set_pause_on_switching(struct exynos5_dmc *dmc)
1329 {
1330 	unsigned int val;
1331 	int ret;
1332 
1333 	ret = regmap_read(dmc->clk_regmap, CDREX_PAUSE, &val);
1334 	if (ret)
1335 		return ret;
1336 
1337 	val |= 1UL;
1338 	regmap_write(dmc->clk_regmap, CDREX_PAUSE, val);
1339 
1340 	return 0;
1341 }
1342 
1343 static irqreturn_t dmc_irq_thread(int irq, void *priv)
1344 {
1345 	int res;
1346 	struct exynos5_dmc *dmc = priv;
1347 
1348 	mutex_lock(&dmc->df->lock);
1349 
1350 	exynos5_dmc_perf_events_check(dmc);
1351 
1352 	res = update_devfreq(dmc->df);
1353 	if (res)
1354 		dev_warn(dmc->dev, "devfreq failed with %d\n", res);
1355 
1356 	mutex_unlock(&dmc->df->lock);
1357 
1358 	return IRQ_HANDLED;
1359 }
1360 
1361 /**
1362  * exynos5_dmc_probe() - Probe function for the DMC driver
1363  * @pdev:	platform device for which the driver is going to be initialized
1364  *
1365  * Initialize basic components: clocks, regulators, performance counters, etc.
1366  * Read out product version and based on the information setup
1367  * internal structures for the controller (frequency and voltage) and for DRAM
1368  * memory parameters: timings for each operating frequency.
1369  * Register new devfreq device for controlling DVFS of the DMC.
1370  */
1371 static int exynos5_dmc_probe(struct platform_device *pdev)
1372 {
1373 	int ret = 0;
1374 	struct device *dev = &pdev->dev;
1375 	struct device_node *np = dev->of_node;
1376 	struct exynos5_dmc *dmc;
1377 	int irq[2];
1378 
1379 	dmc = devm_kzalloc(dev, sizeof(*dmc), GFP_KERNEL);
1380 	if (!dmc)
1381 		return -ENOMEM;
1382 
1383 	mutex_init(&dmc->lock);
1384 
1385 	dmc->dev = dev;
1386 	platform_set_drvdata(pdev, dmc);
1387 
1388 	dmc->base_drexi0 = devm_platform_ioremap_resource(pdev, 0);
1389 	if (IS_ERR(dmc->base_drexi0))
1390 		return PTR_ERR(dmc->base_drexi0);
1391 
1392 	dmc->base_drexi1 = devm_platform_ioremap_resource(pdev, 1);
1393 	if (IS_ERR(dmc->base_drexi1))
1394 		return PTR_ERR(dmc->base_drexi1);
1395 
1396 	dmc->clk_regmap = syscon_regmap_lookup_by_phandle(np,
1397 				"samsung,syscon-clk");
1398 	if (IS_ERR(dmc->clk_regmap))
1399 		return PTR_ERR(dmc->clk_regmap);
1400 
1401 	ret = exynos5_init_freq_table(dmc, &exynos5_dmc_df_profile);
1402 	if (ret) {
1403 		dev_warn(dev, "couldn't initialize frequency settings\n");
1404 		return ret;
1405 	}
1406 
1407 	dmc->vdd_mif = devm_regulator_get(dev, "vdd");
1408 	if (IS_ERR(dmc->vdd_mif)) {
1409 		ret = PTR_ERR(dmc->vdd_mif);
1410 		return ret;
1411 	}
1412 
1413 	ret = exynos5_dmc_init_clks(dmc);
1414 	if (ret)
1415 		return ret;
1416 
1417 	ret = of_get_dram_timings(dmc);
1418 	if (ret) {
1419 		dev_warn(dev, "couldn't initialize timings settings\n");
1420 		goto remove_clocks;
1421 	}
1422 
1423 	ret = exynos5_dmc_set_pause_on_switching(dmc);
1424 	if (ret) {
1425 		dev_warn(dev, "couldn't get access to PAUSE register\n");
1426 		goto remove_clocks;
1427 	}
1428 
1429 	/* There is two modes in which the driver works: polling or IRQ */
1430 	irq[0] = platform_get_irq_byname(pdev, "drex_0");
1431 	irq[1] = platform_get_irq_byname(pdev, "drex_1");
1432 	if (irq[0] > 0 && irq[1] > 0) {
1433 		ret = devm_request_threaded_irq(dev, irq[0], NULL,
1434 						dmc_irq_thread, IRQF_ONESHOT,
1435 						dev_name(dev), dmc);
1436 		if (ret) {
1437 			dev_err(dev, "couldn't grab IRQ\n");
1438 			goto remove_clocks;
1439 		}
1440 
1441 		ret = devm_request_threaded_irq(dev, irq[1], NULL,
1442 						dmc_irq_thread, IRQF_ONESHOT,
1443 						dev_name(dev), dmc);
1444 		if (ret) {
1445 			dev_err(dev, "couldn't grab IRQ\n");
1446 			goto remove_clocks;
1447 		}
1448 
1449 		/*
1450 		 * Setup default thresholds for the devfreq governor.
1451 		 * The values are chosen based on experiments.
1452 		 */
1453 		dmc->gov_data.upthreshold = 55;
1454 		dmc->gov_data.downdifferential = 5;
1455 
1456 		exynos5_dmc_enable_perf_events(dmc);
1457 
1458 		dmc->in_irq_mode = 1;
1459 	} else {
1460 		ret = exynos5_performance_counters_init(dmc);
1461 		if (ret) {
1462 			dev_warn(dev, "couldn't probe performance counters\n");
1463 			goto remove_clocks;
1464 		}
1465 
1466 		/*
1467 		 * Setup default thresholds for the devfreq governor.
1468 		 * The values are chosen based on experiments.
1469 		 */
1470 		dmc->gov_data.upthreshold = 30;
1471 		dmc->gov_data.downdifferential = 5;
1472 
1473 		exynos5_dmc_df_profile.polling_ms = 500;
1474 	}
1475 
1476 
1477 	dmc->df = devm_devfreq_add_device(dev, &exynos5_dmc_df_profile,
1478 					  DEVFREQ_GOV_SIMPLE_ONDEMAND,
1479 					  &dmc->gov_data);
1480 
1481 	if (IS_ERR(dmc->df)) {
1482 		ret = PTR_ERR(dmc->df);
1483 		goto err_devfreq_add;
1484 	}
1485 
1486 	if (dmc->in_irq_mode)
1487 		exynos5_dmc_start_perf_events(dmc, PERF_COUNTER_START_VALUE);
1488 
1489 	dev_info(dev, "DMC initialized\n");
1490 
1491 	return 0;
1492 
1493 err_devfreq_add:
1494 	if (dmc->in_irq_mode)
1495 		exynos5_dmc_disable_perf_events(dmc);
1496 	else
1497 		exynos5_counters_disable_edev(dmc);
1498 remove_clocks:
1499 	clk_disable_unprepare(dmc->mout_bpll);
1500 	clk_disable_unprepare(dmc->fout_bpll);
1501 
1502 	return ret;
1503 }
1504 
1505 /**
1506  * exynos5_dmc_remove() - Remove function for the platform device
1507  * @pdev:	platform device which is going to be removed
1508  *
1509  * The function relies on 'devm' framework function which automatically
1510  * clean the device's resources. It just calls explicitly disable function for
1511  * the performance counters.
1512  */
1513 static int exynos5_dmc_remove(struct platform_device *pdev)
1514 {
1515 	struct exynos5_dmc *dmc = dev_get_drvdata(&pdev->dev);
1516 
1517 	if (dmc->in_irq_mode)
1518 		exynos5_dmc_disable_perf_events(dmc);
1519 	else
1520 		exynos5_counters_disable_edev(dmc);
1521 
1522 	clk_disable_unprepare(dmc->mout_bpll);
1523 	clk_disable_unprepare(dmc->fout_bpll);
1524 
1525 	dev_pm_opp_remove_table(dmc->dev);
1526 
1527 	return 0;
1528 }
1529 
1530 static const struct of_device_id exynos5_dmc_of_match[] = {
1531 	{ .compatible = "samsung,exynos5422-dmc", },
1532 	{ },
1533 };
1534 MODULE_DEVICE_TABLE(of, exynos5_dmc_of_match);
1535 
1536 static struct platform_driver exynos5_dmc_platdrv = {
1537 	.probe	= exynos5_dmc_probe,
1538 	.remove = exynos5_dmc_remove,
1539 	.driver = {
1540 		.name	= "exynos5-dmc",
1541 		.of_match_table = exynos5_dmc_of_match,
1542 	},
1543 };
1544 module_platform_driver(exynos5_dmc_platdrv);
1545 MODULE_DESCRIPTION("Driver for Exynos5422 Dynamic Memory Controller dynamic frequency and voltage change");
1546 MODULE_LICENSE("GPL v2");
1547 MODULE_AUTHOR("Lukasz Luba");
1548