1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2019 Samsung Electronics Co., Ltd. 4 * Author: Lukasz Luba <l.luba@partner.samsung.com> 5 */ 6 7 #include <linux/clk.h> 8 #include <linux/devfreq.h> 9 #include <linux/devfreq-event.h> 10 #include <linux/device.h> 11 #include <linux/interrupt.h> 12 #include <linux/io.h> 13 #include <linux/mfd/syscon.h> 14 #include <linux/module.h> 15 #include <linux/moduleparam.h> 16 #include <linux/of_device.h> 17 #include <linux/pm_opp.h> 18 #include <linux/platform_device.h> 19 #include <linux/regmap.h> 20 #include <linux/regulator/consumer.h> 21 #include <linux/slab.h> 22 #include "../jedec_ddr.h" 23 #include "../of_memory.h" 24 25 static int irqmode; 26 module_param(irqmode, int, 0644); 27 MODULE_PARM_DESC(irqmode, "Enable IRQ mode (0=off [default], 1=on)"); 28 29 #define EXYNOS5_DREXI_TIMINGAREF (0x0030) 30 #define EXYNOS5_DREXI_TIMINGROW0 (0x0034) 31 #define EXYNOS5_DREXI_TIMINGDATA0 (0x0038) 32 #define EXYNOS5_DREXI_TIMINGPOWER0 (0x003C) 33 #define EXYNOS5_DREXI_TIMINGROW1 (0x00E4) 34 #define EXYNOS5_DREXI_TIMINGDATA1 (0x00E8) 35 #define EXYNOS5_DREXI_TIMINGPOWER1 (0x00EC) 36 #define CDREX_PAUSE (0x2091c) 37 #define CDREX_LPDDR3PHY_CON3 (0x20a20) 38 #define CDREX_LPDDR3PHY_CLKM_SRC (0x20700) 39 #define EXYNOS5_TIMING_SET_SWI BIT(28) 40 #define USE_MX_MSPLL_TIMINGS (1) 41 #define USE_BPLL_TIMINGS (0) 42 #define EXYNOS5_AREF_NORMAL (0x2e) 43 44 #define DREX_PPCCLKCON (0x0130) 45 #define DREX_PEREV2CONFIG (0x013c) 46 #define DREX_PMNC_PPC (0xE000) 47 #define DREX_CNTENS_PPC (0xE010) 48 #define DREX_CNTENC_PPC (0xE020) 49 #define DREX_INTENS_PPC (0xE030) 50 #define DREX_INTENC_PPC (0xE040) 51 #define DREX_FLAG_PPC (0xE050) 52 #define DREX_PMCNT2_PPC (0xE130) 53 54 /* 55 * A value for register DREX_PMNC_PPC which should be written to reset 56 * the cycle counter CCNT (a reference wall clock). It sets zero to the 57 * CCNT counter. 58 */ 59 #define CC_RESET BIT(2) 60 61 /* 62 * A value for register DREX_PMNC_PPC which does the reset of all performance 63 * counters to zero. 64 */ 65 #define PPC_COUNTER_RESET BIT(1) 66 67 /* 68 * Enables all configured counters (including cycle counter). The value should 69 * be written to the register DREX_PMNC_PPC. 70 */ 71 #define PPC_ENABLE BIT(0) 72 73 /* A value for register DREX_PPCCLKCON which enables performance events clock. 74 * Must be written before first access to the performance counters register 75 * set, otherwise it could crash. 76 */ 77 #define PEREV_CLK_EN BIT(0) 78 79 /* 80 * Values which are used to enable counters, interrupts or configure flags of 81 * the performance counters. They configure counter 2 and cycle counter. 82 */ 83 #define PERF_CNT2 BIT(2) 84 #define PERF_CCNT BIT(31) 85 86 /* 87 * Performance event types which are used for setting the preferred event 88 * to track in the counters. 89 * There is a set of different types, the values are from range 0 to 0x6f. 90 * These settings should be written to the configuration register which manages 91 * the type of the event (register DREX_PEREV2CONFIG). 92 */ 93 #define READ_TRANSFER_CH0 (0x6d) 94 #define READ_TRANSFER_CH1 (0x6f) 95 96 #define PERF_COUNTER_START_VALUE 0xff000000 97 #define PERF_EVENT_UP_DOWN_THRESHOLD 900000000ULL 98 99 /** 100 * struct dmc_opp_table - Operating level desciption 101 * @freq_hz: target frequency in Hz 102 * @volt_uv: target voltage in uV 103 * 104 * Covers frequency and voltage settings of the DMC operating mode. 105 */ 106 struct dmc_opp_table { 107 u32 freq_hz; 108 u32 volt_uv; 109 }; 110 111 /** 112 * struct exynos5_dmc - main structure describing DMC device 113 * @dev: DMC device 114 * @df: devfreq device structure returned by devfreq framework 115 * @gov_data: configuration of devfreq governor 116 * @base_drexi0: DREX0 registers mapping 117 * @base_drexi1: DREX1 registers mapping 118 * @clk_regmap: regmap for clock controller registers 119 * @lock: protects curr_rate and frequency/voltage setting section 120 * @curr_rate: current frequency 121 * @curr_volt: current voltage 122 * @opp: OPP table 123 * @opp_count: number of 'opp' elements 124 * @timings_arr_size: number of 'timings' elements 125 * @timing_row: values for timing row register, for each OPP 126 * @timing_data: values for timing data register, for each OPP 127 * @timing_power: balues for timing power register, for each OPP 128 * @timings: DDR memory timings, from device tree 129 * @min_tck: DDR memory minimum timing values, from device tree 130 * @bypass_timing_row: value for timing row register for bypass timings 131 * @bypass_timing_data: value for timing data register for bypass timings 132 * @bypass_timing_power: value for timing power register for bypass 133 * timings 134 * @vdd_mif: Memory interface regulator 135 * @fout_spll: clock: SPLL 136 * @fout_bpll: clock: BPLL 137 * @mout_spll: clock: mux SPLL 138 * @mout_bpll: clock: mux BPLL 139 * @mout_mclk_cdrex: clock: mux mclk_cdrex 140 * @mout_mx_mspll_ccore: clock: mux mx_mspll_ccore 141 * @counter: devfreq events 142 * @num_counters: number of 'counter' elements 143 * @last_overflow_ts: time (in ns) of last overflow of each DREX 144 * @load: utilization in percents 145 * @total: total time between devfreq events 146 * @in_irq_mode: whether running in interrupt mode (true) 147 * or polling (false) 148 * 149 * The main structure for the Dynamic Memory Controller which covers clocks, 150 * memory regions, HW information, parameters and current operating mode. 151 */ 152 struct exynos5_dmc { 153 struct device *dev; 154 struct devfreq *df; 155 struct devfreq_simple_ondemand_data gov_data; 156 void __iomem *base_drexi0; 157 void __iomem *base_drexi1; 158 struct regmap *clk_regmap; 159 /* Protects curr_rate and frequency/voltage setting section */ 160 struct mutex lock; 161 unsigned long curr_rate; 162 unsigned long curr_volt; 163 struct dmc_opp_table *opp; 164 int opp_count; 165 u32 timings_arr_size; 166 u32 *timing_row; 167 u32 *timing_data; 168 u32 *timing_power; 169 const struct lpddr3_timings *timings; 170 const struct lpddr3_min_tck *min_tck; 171 u32 bypass_timing_row; 172 u32 bypass_timing_data; 173 u32 bypass_timing_power; 174 struct regulator *vdd_mif; 175 struct clk *fout_spll; 176 struct clk *fout_bpll; 177 struct clk *mout_spll; 178 struct clk *mout_bpll; 179 struct clk *mout_mclk_cdrex; 180 struct clk *mout_mx_mspll_ccore; 181 struct devfreq_event_dev **counter; 182 int num_counters; 183 u64 last_overflow_ts[2]; 184 unsigned long load; 185 unsigned long total; 186 bool in_irq_mode; 187 }; 188 189 #define TIMING_FIELD(t_name, t_bit_beg, t_bit_end) \ 190 { .name = t_name, .bit_beg = t_bit_beg, .bit_end = t_bit_end } 191 192 #define TIMING_VAL2REG(timing, t_val) \ 193 ({ \ 194 u32 __val; \ 195 __val = (t_val) << (timing)->bit_beg; \ 196 __val; \ 197 }) 198 199 struct timing_reg { 200 char *name; 201 int bit_beg; 202 int bit_end; 203 unsigned int val; 204 }; 205 206 static const struct timing_reg timing_row_reg_fields[] = { 207 TIMING_FIELD("tRFC", 24, 31), 208 TIMING_FIELD("tRRD", 20, 23), 209 TIMING_FIELD("tRP", 16, 19), 210 TIMING_FIELD("tRCD", 12, 15), 211 TIMING_FIELD("tRC", 6, 11), 212 TIMING_FIELD("tRAS", 0, 5), 213 }; 214 215 static const struct timing_reg timing_data_reg_fields[] = { 216 TIMING_FIELD("tWTR", 28, 31), 217 TIMING_FIELD("tWR", 24, 27), 218 TIMING_FIELD("tRTP", 20, 23), 219 TIMING_FIELD("tW2W-C2C", 14, 14), 220 TIMING_FIELD("tR2R-C2C", 12, 12), 221 TIMING_FIELD("WL", 8, 11), 222 TIMING_FIELD("tDQSCK", 4, 7), 223 TIMING_FIELD("RL", 0, 3), 224 }; 225 226 static const struct timing_reg timing_power_reg_fields[] = { 227 TIMING_FIELD("tFAW", 26, 31), 228 TIMING_FIELD("tXSR", 16, 25), 229 TIMING_FIELD("tXP", 8, 15), 230 TIMING_FIELD("tCKE", 4, 7), 231 TIMING_FIELD("tMRD", 0, 3), 232 }; 233 234 #define TIMING_COUNT (ARRAY_SIZE(timing_row_reg_fields) + \ 235 ARRAY_SIZE(timing_data_reg_fields) + \ 236 ARRAY_SIZE(timing_power_reg_fields)) 237 238 static int exynos5_counters_set_event(struct exynos5_dmc *dmc) 239 { 240 int i, ret; 241 242 for (i = 0; i < dmc->num_counters; i++) { 243 if (!dmc->counter[i]) 244 continue; 245 ret = devfreq_event_set_event(dmc->counter[i]); 246 if (ret < 0) 247 return ret; 248 } 249 return 0; 250 } 251 252 static int exynos5_counters_enable_edev(struct exynos5_dmc *dmc) 253 { 254 int i, ret; 255 256 for (i = 0; i < dmc->num_counters; i++) { 257 if (!dmc->counter[i]) 258 continue; 259 ret = devfreq_event_enable_edev(dmc->counter[i]); 260 if (ret < 0) 261 return ret; 262 } 263 return 0; 264 } 265 266 static int exynos5_counters_disable_edev(struct exynos5_dmc *dmc) 267 { 268 int i, ret; 269 270 for (i = 0; i < dmc->num_counters; i++) { 271 if (!dmc->counter[i]) 272 continue; 273 ret = devfreq_event_disable_edev(dmc->counter[i]); 274 if (ret < 0) 275 return ret; 276 } 277 return 0; 278 } 279 280 /** 281 * find_target_freq_idx() - Finds requested frequency in local DMC configuration 282 * @dmc: device for which the information is checked 283 * @target_rate: requested frequency in KHz 284 * 285 * Seeks in the local DMC driver structure for the requested frequency value 286 * and returns index or error value. 287 */ 288 static int find_target_freq_idx(struct exynos5_dmc *dmc, 289 unsigned long target_rate) 290 { 291 int i; 292 293 for (i = dmc->opp_count - 1; i >= 0; i--) 294 if (dmc->opp[i].freq_hz <= target_rate) 295 return i; 296 297 return -EINVAL; 298 } 299 300 /** 301 * exynos5_switch_timing_regs() - Changes bank register set for DRAM timings 302 * @dmc: device for which the new settings is going to be applied 303 * @set: boolean variable passing set value 304 * 305 * Changes the register set, which holds timing parameters. 306 * There is two register sets: 0 and 1. The register set 0 307 * is used in normal operation when the clock is provided from main PLL. 308 * The bank register set 1 is used when the main PLL frequency is going to be 309 * changed and the clock is taken from alternative, stable source. 310 * This function switches between these banks according to the 311 * currently used clock source. 312 */ 313 static int exynos5_switch_timing_regs(struct exynos5_dmc *dmc, bool set) 314 { 315 unsigned int reg; 316 int ret; 317 318 ret = regmap_read(dmc->clk_regmap, CDREX_LPDDR3PHY_CON3, ®); 319 if (ret) 320 return ret; 321 322 if (set) 323 reg |= EXYNOS5_TIMING_SET_SWI; 324 else 325 reg &= ~EXYNOS5_TIMING_SET_SWI; 326 327 regmap_write(dmc->clk_regmap, CDREX_LPDDR3PHY_CON3, reg); 328 329 return 0; 330 } 331 332 /** 333 * exynos5_init_freq_table() - Initialized PM OPP framework 334 * @dmc: DMC device for which the frequencies are used for OPP init 335 * @profile: devfreq device's profile 336 * 337 * Populate the devfreq device's OPP table based on current frequency, voltage. 338 */ 339 static int exynos5_init_freq_table(struct exynos5_dmc *dmc, 340 struct devfreq_dev_profile *profile) 341 { 342 int i, ret; 343 int idx; 344 unsigned long freq; 345 346 ret = dev_pm_opp_of_add_table(dmc->dev); 347 if (ret < 0) { 348 dev_err(dmc->dev, "Failed to get OPP table\n"); 349 return ret; 350 } 351 352 dmc->opp_count = dev_pm_opp_get_opp_count(dmc->dev); 353 354 dmc->opp = devm_kmalloc_array(dmc->dev, dmc->opp_count, 355 sizeof(struct dmc_opp_table), GFP_KERNEL); 356 if (!dmc->opp) 357 goto err_opp; 358 359 idx = dmc->opp_count - 1; 360 for (i = 0, freq = ULONG_MAX; i < dmc->opp_count; i++, freq--) { 361 struct dev_pm_opp *opp; 362 363 opp = dev_pm_opp_find_freq_floor(dmc->dev, &freq); 364 if (IS_ERR(opp)) 365 goto err_opp; 366 367 dmc->opp[idx - i].freq_hz = freq; 368 dmc->opp[idx - i].volt_uv = dev_pm_opp_get_voltage(opp); 369 370 dev_pm_opp_put(opp); 371 } 372 373 return 0; 374 375 err_opp: 376 dev_pm_opp_of_remove_table(dmc->dev); 377 378 return -EINVAL; 379 } 380 381 /** 382 * exynos5_set_bypass_dram_timings() - Low-level changes of the DRAM timings 383 * @dmc: device for which the new settings is going to be applied 384 * 385 * Low-level function for changing timings for DRAM memory clocking from 386 * 'bypass' clock source (fixed frequency @400MHz). 387 * It uses timing bank registers set 1. 388 */ 389 static void exynos5_set_bypass_dram_timings(struct exynos5_dmc *dmc) 390 { 391 writel(EXYNOS5_AREF_NORMAL, 392 dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGAREF); 393 394 writel(dmc->bypass_timing_row, 395 dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGROW1); 396 writel(dmc->bypass_timing_row, 397 dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGROW1); 398 writel(dmc->bypass_timing_data, 399 dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGDATA1); 400 writel(dmc->bypass_timing_data, 401 dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGDATA1); 402 writel(dmc->bypass_timing_power, 403 dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGPOWER1); 404 writel(dmc->bypass_timing_power, 405 dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGPOWER1); 406 } 407 408 /** 409 * exynos5_dram_change_timings() - Low-level changes of the DRAM final timings 410 * @dmc: device for which the new settings is going to be applied 411 * @target_rate: target frequency of the DMC 412 * 413 * Low-level function for changing timings for DRAM memory operating from main 414 * clock source (BPLL), which can have different frequencies. Thus, each 415 * frequency must have corresponding timings register values in order to keep 416 * the needed delays. 417 * It uses timing bank registers set 0. 418 */ 419 static int exynos5_dram_change_timings(struct exynos5_dmc *dmc, 420 unsigned long target_rate) 421 { 422 int idx; 423 424 for (idx = dmc->opp_count - 1; idx >= 0; idx--) 425 if (dmc->opp[idx].freq_hz <= target_rate) 426 break; 427 428 if (idx < 0) 429 return -EINVAL; 430 431 writel(EXYNOS5_AREF_NORMAL, 432 dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGAREF); 433 434 writel(dmc->timing_row[idx], 435 dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGROW0); 436 writel(dmc->timing_row[idx], 437 dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGROW0); 438 writel(dmc->timing_data[idx], 439 dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGDATA0); 440 writel(dmc->timing_data[idx], 441 dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGDATA0); 442 writel(dmc->timing_power[idx], 443 dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGPOWER0); 444 writel(dmc->timing_power[idx], 445 dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGPOWER0); 446 447 return 0; 448 } 449 450 /** 451 * exynos5_dmc_align_target_voltage() - Sets the final voltage for the DMC 452 * @dmc: device for which it is going to be set 453 * @target_volt: new voltage which is chosen to be final 454 * 455 * Function tries to align voltage to the safe level for 'normal' mode. 456 * It checks the need of higher voltage and changes the value. The target 457 * voltage might be lower that currently set and still the system will be 458 * stable. 459 */ 460 static int exynos5_dmc_align_target_voltage(struct exynos5_dmc *dmc, 461 unsigned long target_volt) 462 { 463 int ret = 0; 464 465 if (dmc->curr_volt <= target_volt) 466 return 0; 467 468 ret = regulator_set_voltage(dmc->vdd_mif, target_volt, 469 target_volt); 470 if (!ret) 471 dmc->curr_volt = target_volt; 472 473 return ret; 474 } 475 476 /** 477 * exynos5_dmc_align_bypass_voltage() - Sets the voltage for the DMC 478 * @dmc: device for which it is going to be set 479 * @target_volt: new voltage which is chosen to be final 480 * 481 * Function tries to align voltage to the safe level for the 'bypass' mode. 482 * It checks the need of higher voltage and changes the value. 483 * The target voltage must not be less than currently needed, because 484 * for current frequency the device might become unstable. 485 */ 486 static int exynos5_dmc_align_bypass_voltage(struct exynos5_dmc *dmc, 487 unsigned long target_volt) 488 { 489 int ret = 0; 490 491 if (dmc->curr_volt >= target_volt) 492 return 0; 493 494 ret = regulator_set_voltage(dmc->vdd_mif, target_volt, 495 target_volt); 496 if (!ret) 497 dmc->curr_volt = target_volt; 498 499 return ret; 500 } 501 502 /** 503 * exynos5_dmc_align_bypass_dram_timings() - Chooses and sets DRAM timings 504 * @dmc: device for which it is going to be set 505 * @target_rate: new frequency which is chosen to be final 506 * 507 * Function changes the DRAM timings for the temporary 'bypass' mode. 508 */ 509 static int exynos5_dmc_align_bypass_dram_timings(struct exynos5_dmc *dmc, 510 unsigned long target_rate) 511 { 512 int idx = find_target_freq_idx(dmc, target_rate); 513 514 if (idx < 0) 515 return -EINVAL; 516 517 exynos5_set_bypass_dram_timings(dmc); 518 519 return 0; 520 } 521 522 /** 523 * exynos5_dmc_switch_to_bypass_configuration() - Switching to temporary clock 524 * @dmc: DMC device for which the switching is going to happen 525 * @target_rate: new frequency which is going to be set as a final 526 * @target_volt: new voltage which is going to be set as a final 527 * 528 * Function configures DMC and clocks for operating in temporary 'bypass' mode. 529 * This mode is used only temporary but if required, changes voltage and timings 530 * for DRAM chips. It switches the main clock to stable clock source for the 531 * period of the main PLL reconfiguration. 532 */ 533 static int 534 exynos5_dmc_switch_to_bypass_configuration(struct exynos5_dmc *dmc, 535 unsigned long target_rate, 536 unsigned long target_volt) 537 { 538 int ret; 539 540 /* 541 * Having higher voltage for a particular frequency does not harm 542 * the chip. Use it for the temporary frequency change when one 543 * voltage manipulation might be avoided. 544 */ 545 ret = exynos5_dmc_align_bypass_voltage(dmc, target_volt); 546 if (ret) 547 return ret; 548 549 /* 550 * Longer delays for DRAM does not cause crash, the opposite does. 551 */ 552 ret = exynos5_dmc_align_bypass_dram_timings(dmc, target_rate); 553 if (ret) 554 return ret; 555 556 /* 557 * Delays are long enough, so use them for the new coming clock. 558 */ 559 ret = exynos5_switch_timing_regs(dmc, USE_MX_MSPLL_TIMINGS); 560 561 return ret; 562 } 563 564 /** 565 * exynos5_dmc_change_freq_and_volt() - Changes voltage and frequency of the DMC 566 * using safe procedure 567 * @dmc: device for which the frequency is going to be changed 568 * @target_rate: requested new frequency 569 * @target_volt: requested voltage which corresponds to the new frequency 570 * 571 * The DMC frequency change procedure requires a few steps. 572 * The main requirement is to change the clock source in the clk mux 573 * for the time of main clock PLL locking. The assumption is that the 574 * alternative clock source set as parent is stable. 575 * The second parent's clock frequency is fixed to 400MHz, it is named 'bypass' 576 * clock. This requires alignment in DRAM timing parameters for the new 577 * T-period. There is two bank sets for keeping DRAM 578 * timings: set 0 and set 1. The set 0 is used when main clock source is 579 * chosen. The 2nd set of regs is used for 'bypass' clock. Switching between 580 * the two bank sets is part of the process. 581 * The voltage must also be aligned to the minimum required level. There is 582 * this intermediate step with switching to 'bypass' parent clock source. 583 * if the old voltage is lower, it requires an increase of the voltage level. 584 * The complexity of the voltage manipulation is hidden in low level function. 585 * In this function there is last alignment of the voltage level at the end. 586 */ 587 static int 588 exynos5_dmc_change_freq_and_volt(struct exynos5_dmc *dmc, 589 unsigned long target_rate, 590 unsigned long target_volt) 591 { 592 int ret; 593 594 ret = exynos5_dmc_switch_to_bypass_configuration(dmc, target_rate, 595 target_volt); 596 if (ret) 597 return ret; 598 599 /* 600 * Voltage is set at least to a level needed for this frequency, 601 * so switching clock source is safe now. 602 */ 603 clk_prepare_enable(dmc->fout_spll); 604 clk_prepare_enable(dmc->mout_spll); 605 clk_prepare_enable(dmc->mout_mx_mspll_ccore); 606 607 ret = clk_set_parent(dmc->mout_mclk_cdrex, dmc->mout_mx_mspll_ccore); 608 if (ret) 609 goto disable_clocks; 610 611 /* 612 * We are safe to increase the timings for current bypass frequency. 613 * Thanks to this the settings will be ready for the upcoming clock 614 * source change. 615 */ 616 exynos5_dram_change_timings(dmc, target_rate); 617 618 clk_set_rate(dmc->fout_bpll, target_rate); 619 620 ret = exynos5_switch_timing_regs(dmc, USE_BPLL_TIMINGS); 621 if (ret) 622 goto disable_clocks; 623 624 ret = clk_set_parent(dmc->mout_mclk_cdrex, dmc->mout_bpll); 625 if (ret) 626 goto disable_clocks; 627 628 /* 629 * Make sure if the voltage is not from 'bypass' settings and align to 630 * the right level for power efficiency. 631 */ 632 ret = exynos5_dmc_align_target_voltage(dmc, target_volt); 633 634 disable_clocks: 635 clk_disable_unprepare(dmc->mout_mx_mspll_ccore); 636 clk_disable_unprepare(dmc->mout_spll); 637 clk_disable_unprepare(dmc->fout_spll); 638 639 return ret; 640 } 641 642 /** 643 * exynos5_dmc_get_volt_freq() - Gets the frequency and voltage from the OPP 644 * table. 645 * @dmc: device for which the frequency is going to be changed 646 * @freq: requested frequency in KHz 647 * @target_rate: returned frequency which is the same or lower than 648 * requested 649 * @target_volt: returned voltage which corresponds to the returned 650 * frequency 651 * @flags: devfreq flags provided for this frequency change request 652 * 653 * Function gets requested frequency and checks OPP framework for needed 654 * frequency and voltage. It populates the values 'target_rate' and 655 * 'target_volt' or returns error value when OPP framework fails. 656 */ 657 static int exynos5_dmc_get_volt_freq(struct exynos5_dmc *dmc, 658 unsigned long *freq, 659 unsigned long *target_rate, 660 unsigned long *target_volt, u32 flags) 661 { 662 struct dev_pm_opp *opp; 663 664 opp = devfreq_recommended_opp(dmc->dev, freq, flags); 665 if (IS_ERR(opp)) 666 return PTR_ERR(opp); 667 668 *target_rate = dev_pm_opp_get_freq(opp); 669 *target_volt = dev_pm_opp_get_voltage(opp); 670 dev_pm_opp_put(opp); 671 672 return 0; 673 } 674 675 /** 676 * exynos5_dmc_target() - Function responsible for changing frequency of DMC 677 * @dev: device for which the frequency is going to be changed 678 * @freq: requested frequency in KHz 679 * @flags: flags provided for this frequency change request 680 * 681 * An entry function provided to the devfreq framework which provides frequency 682 * change of the DMC. The function gets the possible rate from OPP table based 683 * on requested frequency. It calls the next function responsible for the 684 * frequency and voltage change. In case of failure, does not set 'curr_rate' 685 * and returns error value to the framework. 686 */ 687 static int exynos5_dmc_target(struct device *dev, unsigned long *freq, 688 u32 flags) 689 { 690 struct exynos5_dmc *dmc = dev_get_drvdata(dev); 691 unsigned long target_rate = 0; 692 unsigned long target_volt = 0; 693 int ret; 694 695 ret = exynos5_dmc_get_volt_freq(dmc, freq, &target_rate, &target_volt, 696 flags); 697 698 if (ret) 699 return ret; 700 701 if (target_rate == dmc->curr_rate) 702 return 0; 703 704 mutex_lock(&dmc->lock); 705 706 ret = exynos5_dmc_change_freq_and_volt(dmc, target_rate, target_volt); 707 708 if (ret) { 709 mutex_unlock(&dmc->lock); 710 return ret; 711 } 712 713 dmc->curr_rate = target_rate; 714 715 mutex_unlock(&dmc->lock); 716 return 0; 717 } 718 719 /** 720 * exynos5_counters_get() - Gets the performance counters values. 721 * @dmc: device for which the counters are going to be checked 722 * @load_count: variable which is populated with counter value 723 * @total_count: variable which is used as 'wall clock' reference 724 * 725 * Function which provides performance counters values. It sums up counters for 726 * two DMC channels. The 'total_count' is used as a reference and max value. 727 * The ratio 'load_count/total_count' shows the busy percentage [0%, 100%]. 728 */ 729 static int exynos5_counters_get(struct exynos5_dmc *dmc, 730 unsigned long *load_count, 731 unsigned long *total_count) 732 { 733 unsigned long total = 0; 734 struct devfreq_event_data event; 735 int ret, i; 736 737 *load_count = 0; 738 739 /* Take into account only read+write counters, but stop all */ 740 for (i = 0; i < dmc->num_counters; i++) { 741 if (!dmc->counter[i]) 742 continue; 743 744 ret = devfreq_event_get_event(dmc->counter[i], &event); 745 if (ret < 0) 746 return ret; 747 748 *load_count += event.load_count; 749 750 if (total < event.total_count) 751 total = event.total_count; 752 } 753 754 *total_count = total; 755 756 return 0; 757 } 758 759 /** 760 * exynos5_dmc_start_perf_events() - Setup and start performance event counters 761 * @dmc: device for which the counters are going to be checked 762 * @beg_value: initial value for the counter 763 * 764 * Function which enables needed counters, interrupts and sets initial values 765 * then starts the counters. 766 */ 767 static void exynos5_dmc_start_perf_events(struct exynos5_dmc *dmc, 768 u32 beg_value) 769 { 770 /* Enable interrupts for counter 2 */ 771 writel(PERF_CNT2, dmc->base_drexi0 + DREX_INTENS_PPC); 772 writel(PERF_CNT2, dmc->base_drexi1 + DREX_INTENS_PPC); 773 774 /* Enable counter 2 and CCNT */ 775 writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi0 + DREX_CNTENS_PPC); 776 writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi1 + DREX_CNTENS_PPC); 777 778 /* Clear overflow flag for all counters */ 779 writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi0 + DREX_FLAG_PPC); 780 writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi1 + DREX_FLAG_PPC); 781 782 /* Reset all counters */ 783 writel(CC_RESET | PPC_COUNTER_RESET, dmc->base_drexi0 + DREX_PMNC_PPC); 784 writel(CC_RESET | PPC_COUNTER_RESET, dmc->base_drexi1 + DREX_PMNC_PPC); 785 786 /* 787 * Set start value for the counters, the number of samples that 788 * will be gathered is calculated as: 0xffffffff - beg_value 789 */ 790 writel(beg_value, dmc->base_drexi0 + DREX_PMCNT2_PPC); 791 writel(beg_value, dmc->base_drexi1 + DREX_PMCNT2_PPC); 792 793 /* Start all counters */ 794 writel(PPC_ENABLE, dmc->base_drexi0 + DREX_PMNC_PPC); 795 writel(PPC_ENABLE, dmc->base_drexi1 + DREX_PMNC_PPC); 796 } 797 798 /** 799 * exynos5_dmc_perf_events_calc() - Calculate utilization 800 * @dmc: device for which the counters are going to be checked 801 * @diff_ts: time between last interrupt and current one 802 * 803 * Function which calculates needed utilization for the devfreq governor. 804 * It prepares values for 'busy_time' and 'total_time' based on elapsed time 805 * between interrupts, which approximates utilization. 806 */ 807 static void exynos5_dmc_perf_events_calc(struct exynos5_dmc *dmc, u64 diff_ts) 808 { 809 /* 810 * This is a simple algorithm for managing traffic on DMC. 811 * When there is almost no load the counters overflow every 4s, 812 * no mater the DMC frequency. 813 * The high load might be approximated using linear function. 814 * Knowing that, simple calculation can provide 'busy_time' and 815 * 'total_time' to the devfreq governor which picks up target 816 * frequency. 817 * We want a fast ramp up and slow decay in frequency change function. 818 */ 819 if (diff_ts < PERF_EVENT_UP_DOWN_THRESHOLD) { 820 /* 821 * Set higher utilization for the simple_ondemand governor. 822 * The governor should increase the frequency of the DMC. 823 */ 824 dmc->load = 70; 825 dmc->total = 100; 826 } else { 827 /* 828 * Set low utilization for the simple_ondemand governor. 829 * The governor should decrease the frequency of the DMC. 830 */ 831 dmc->load = 35; 832 dmc->total = 100; 833 } 834 835 dev_dbg(dmc->dev, "diff_ts=%llu\n", diff_ts); 836 } 837 838 /** 839 * exynos5_dmc_perf_events_check() - Checks the status of the counters 840 * @dmc: device for which the counters are going to be checked 841 * 842 * Function which is called from threaded IRQ to check the counters state 843 * and to call approximation for the needed utilization. 844 */ 845 static void exynos5_dmc_perf_events_check(struct exynos5_dmc *dmc) 846 { 847 u32 val; 848 u64 diff_ts, ts; 849 850 ts = ktime_get_ns(); 851 852 /* Stop all counters */ 853 writel(0, dmc->base_drexi0 + DREX_PMNC_PPC); 854 writel(0, dmc->base_drexi1 + DREX_PMNC_PPC); 855 856 /* Check the source in interrupt flag registers (which channel) */ 857 val = readl(dmc->base_drexi0 + DREX_FLAG_PPC); 858 if (val) { 859 diff_ts = ts - dmc->last_overflow_ts[0]; 860 dmc->last_overflow_ts[0] = ts; 861 dev_dbg(dmc->dev, "drex0 0xE050 val= 0x%08x\n", val); 862 } else { 863 val = readl(dmc->base_drexi1 + DREX_FLAG_PPC); 864 diff_ts = ts - dmc->last_overflow_ts[1]; 865 dmc->last_overflow_ts[1] = ts; 866 dev_dbg(dmc->dev, "drex1 0xE050 val= 0x%08x\n", val); 867 } 868 869 exynos5_dmc_perf_events_calc(dmc, diff_ts); 870 871 exynos5_dmc_start_perf_events(dmc, PERF_COUNTER_START_VALUE); 872 } 873 874 /** 875 * exynos5_dmc_enable_perf_events() - Enable performance events 876 * @dmc: device for which the counters are going to be checked 877 * 878 * Function which is setup needed environment and enables counters. 879 */ 880 static void exynos5_dmc_enable_perf_events(struct exynos5_dmc *dmc) 881 { 882 u64 ts; 883 884 /* Enable Performance Event Clock */ 885 writel(PEREV_CLK_EN, dmc->base_drexi0 + DREX_PPCCLKCON); 886 writel(PEREV_CLK_EN, dmc->base_drexi1 + DREX_PPCCLKCON); 887 888 /* Select read transfers as performance event2 */ 889 writel(READ_TRANSFER_CH0, dmc->base_drexi0 + DREX_PEREV2CONFIG); 890 writel(READ_TRANSFER_CH1, dmc->base_drexi1 + DREX_PEREV2CONFIG); 891 892 ts = ktime_get_ns(); 893 dmc->last_overflow_ts[0] = ts; 894 dmc->last_overflow_ts[1] = ts; 895 896 /* Devfreq shouldn't be faster than initialization, play safe though. */ 897 dmc->load = 99; 898 dmc->total = 100; 899 } 900 901 /** 902 * exynos5_dmc_disable_perf_events() - Disable performance events 903 * @dmc: device for which the counters are going to be checked 904 * 905 * Function which stops, disables performance event counters and interrupts. 906 */ 907 static void exynos5_dmc_disable_perf_events(struct exynos5_dmc *dmc) 908 { 909 /* Stop all counters */ 910 writel(0, dmc->base_drexi0 + DREX_PMNC_PPC); 911 writel(0, dmc->base_drexi1 + DREX_PMNC_PPC); 912 913 /* Disable interrupts for counter 2 */ 914 writel(PERF_CNT2, dmc->base_drexi0 + DREX_INTENC_PPC); 915 writel(PERF_CNT2, dmc->base_drexi1 + DREX_INTENC_PPC); 916 917 /* Disable counter 2 and CCNT */ 918 writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi0 + DREX_CNTENC_PPC); 919 writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi1 + DREX_CNTENC_PPC); 920 921 /* Clear overflow flag for all counters */ 922 writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi0 + DREX_FLAG_PPC); 923 writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi1 + DREX_FLAG_PPC); 924 } 925 926 /** 927 * exynos5_dmc_get_status() - Read current DMC performance statistics. 928 * @dev: device for which the statistics are requested 929 * @stat: structure which has statistic fields 930 * 931 * Function reads the DMC performance counters and calculates 'busy_time' 932 * and 'total_time'. To protect from overflow, the values are shifted right 933 * by 10. After read out the counters are setup to count again. 934 */ 935 static int exynos5_dmc_get_status(struct device *dev, 936 struct devfreq_dev_status *stat) 937 { 938 struct exynos5_dmc *dmc = dev_get_drvdata(dev); 939 unsigned long load, total; 940 int ret; 941 942 if (dmc->in_irq_mode) { 943 mutex_lock(&dmc->lock); 944 stat->current_frequency = dmc->curr_rate; 945 mutex_unlock(&dmc->lock); 946 947 stat->busy_time = dmc->load; 948 stat->total_time = dmc->total; 949 } else { 950 ret = exynos5_counters_get(dmc, &load, &total); 951 if (ret < 0) 952 return -EINVAL; 953 954 /* To protect from overflow, divide by 1024 */ 955 stat->busy_time = load >> 10; 956 stat->total_time = total >> 10; 957 958 ret = exynos5_counters_set_event(dmc); 959 if (ret < 0) { 960 dev_err(dev, "could not set event counter\n"); 961 return ret; 962 } 963 } 964 965 return 0; 966 } 967 968 /** 969 * exynos5_dmc_get_cur_freq() - Function returns current DMC frequency 970 * @dev: device for which the framework checks operating frequency 971 * @freq: returned frequency value 972 * 973 * It returns the currently used frequency of the DMC. The real operating 974 * frequency might be lower when the clock source value could not be divided 975 * to the requested value. 976 */ 977 static int exynos5_dmc_get_cur_freq(struct device *dev, unsigned long *freq) 978 { 979 struct exynos5_dmc *dmc = dev_get_drvdata(dev); 980 981 mutex_lock(&dmc->lock); 982 *freq = dmc->curr_rate; 983 mutex_unlock(&dmc->lock); 984 985 return 0; 986 } 987 988 /* 989 * exynos5_dmc_df_profile - Devfreq governor's profile structure 990 * 991 * It provides to the devfreq framework needed functions and polling period. 992 */ 993 static struct devfreq_dev_profile exynos5_dmc_df_profile = { 994 .timer = DEVFREQ_TIMER_DELAYED, 995 .target = exynos5_dmc_target, 996 .get_dev_status = exynos5_dmc_get_status, 997 .get_cur_freq = exynos5_dmc_get_cur_freq, 998 }; 999 1000 /** 1001 * exynos5_dmc_align_init_freq() - Align initial frequency value 1002 * @dmc: device for which the frequency is going to be set 1003 * @bootloader_init_freq: initial frequency set by the bootloader in KHz 1004 * 1005 * The initial bootloader frequency, which is present during boot, might be 1006 * different that supported frequency values in the driver. It is possible 1007 * due to different PLL settings or used PLL as a source. 1008 * This function provides the 'initial_freq' for the devfreq framework 1009 * statistics engine which supports only registered values. Thus, some alignment 1010 * must be made. 1011 */ 1012 static unsigned long 1013 exynos5_dmc_align_init_freq(struct exynos5_dmc *dmc, 1014 unsigned long bootloader_init_freq) 1015 { 1016 unsigned long aligned_freq; 1017 int idx; 1018 1019 idx = find_target_freq_idx(dmc, bootloader_init_freq); 1020 if (idx >= 0) 1021 aligned_freq = dmc->opp[idx].freq_hz; 1022 else 1023 aligned_freq = dmc->opp[dmc->opp_count - 1].freq_hz; 1024 1025 return aligned_freq; 1026 } 1027 1028 /** 1029 * create_timings_aligned() - Create register values and align with standard 1030 * @dmc: device for which the frequency is going to be set 1031 * @reg_timing_row: array to fill with values for timing row register 1032 * @reg_timing_data: array to fill with values for timing data register 1033 * @reg_timing_power: array to fill with values for timing power register 1034 * @clk_period_ps: the period of the clock, known as tCK 1035 * 1036 * The function calculates timings and creates a register value ready for 1037 * a frequency transition. The register contains a few timings. They are 1038 * shifted by a known offset. The timing value is calculated based on memory 1039 * specyfication: minimal time required and minimal cycles required. 1040 */ 1041 static int create_timings_aligned(struct exynos5_dmc *dmc, u32 *reg_timing_row, 1042 u32 *reg_timing_data, u32 *reg_timing_power, 1043 u32 clk_period_ps) 1044 { 1045 u32 val; 1046 const struct timing_reg *reg; 1047 1048 if (clk_period_ps == 0) 1049 return -EINVAL; 1050 1051 *reg_timing_row = 0; 1052 *reg_timing_data = 0; 1053 *reg_timing_power = 0; 1054 1055 val = dmc->timings->tRFC / clk_period_ps; 1056 val += dmc->timings->tRFC % clk_period_ps ? 1 : 0; 1057 val = max(val, dmc->min_tck->tRFC); 1058 reg = &timing_row_reg_fields[0]; 1059 *reg_timing_row |= TIMING_VAL2REG(reg, val); 1060 1061 val = dmc->timings->tRRD / clk_period_ps; 1062 val += dmc->timings->tRRD % clk_period_ps ? 1 : 0; 1063 val = max(val, dmc->min_tck->tRRD); 1064 reg = &timing_row_reg_fields[1]; 1065 *reg_timing_row |= TIMING_VAL2REG(reg, val); 1066 1067 val = dmc->timings->tRPab / clk_period_ps; 1068 val += dmc->timings->tRPab % clk_period_ps ? 1 : 0; 1069 val = max(val, dmc->min_tck->tRPab); 1070 reg = &timing_row_reg_fields[2]; 1071 *reg_timing_row |= TIMING_VAL2REG(reg, val); 1072 1073 val = dmc->timings->tRCD / clk_period_ps; 1074 val += dmc->timings->tRCD % clk_period_ps ? 1 : 0; 1075 val = max(val, dmc->min_tck->tRCD); 1076 reg = &timing_row_reg_fields[3]; 1077 *reg_timing_row |= TIMING_VAL2REG(reg, val); 1078 1079 val = dmc->timings->tRC / clk_period_ps; 1080 val += dmc->timings->tRC % clk_period_ps ? 1 : 0; 1081 val = max(val, dmc->min_tck->tRC); 1082 reg = &timing_row_reg_fields[4]; 1083 *reg_timing_row |= TIMING_VAL2REG(reg, val); 1084 1085 val = dmc->timings->tRAS / clk_period_ps; 1086 val += dmc->timings->tRAS % clk_period_ps ? 1 : 0; 1087 val = max(val, dmc->min_tck->tRAS); 1088 reg = &timing_row_reg_fields[5]; 1089 *reg_timing_row |= TIMING_VAL2REG(reg, val); 1090 1091 /* data related timings */ 1092 val = dmc->timings->tWTR / clk_period_ps; 1093 val += dmc->timings->tWTR % clk_period_ps ? 1 : 0; 1094 val = max(val, dmc->min_tck->tWTR); 1095 reg = &timing_data_reg_fields[0]; 1096 *reg_timing_data |= TIMING_VAL2REG(reg, val); 1097 1098 val = dmc->timings->tWR / clk_period_ps; 1099 val += dmc->timings->tWR % clk_period_ps ? 1 : 0; 1100 val = max(val, dmc->min_tck->tWR); 1101 reg = &timing_data_reg_fields[1]; 1102 *reg_timing_data |= TIMING_VAL2REG(reg, val); 1103 1104 val = dmc->timings->tRTP / clk_period_ps; 1105 val += dmc->timings->tRTP % clk_period_ps ? 1 : 0; 1106 val = max(val, dmc->min_tck->tRTP); 1107 reg = &timing_data_reg_fields[2]; 1108 *reg_timing_data |= TIMING_VAL2REG(reg, val); 1109 1110 val = dmc->timings->tW2W_C2C / clk_period_ps; 1111 val += dmc->timings->tW2W_C2C % clk_period_ps ? 1 : 0; 1112 val = max(val, dmc->min_tck->tW2W_C2C); 1113 reg = &timing_data_reg_fields[3]; 1114 *reg_timing_data |= TIMING_VAL2REG(reg, val); 1115 1116 val = dmc->timings->tR2R_C2C / clk_period_ps; 1117 val += dmc->timings->tR2R_C2C % clk_period_ps ? 1 : 0; 1118 val = max(val, dmc->min_tck->tR2R_C2C); 1119 reg = &timing_data_reg_fields[4]; 1120 *reg_timing_data |= TIMING_VAL2REG(reg, val); 1121 1122 val = dmc->timings->tWL / clk_period_ps; 1123 val += dmc->timings->tWL % clk_period_ps ? 1 : 0; 1124 val = max(val, dmc->min_tck->tWL); 1125 reg = &timing_data_reg_fields[5]; 1126 *reg_timing_data |= TIMING_VAL2REG(reg, val); 1127 1128 val = dmc->timings->tDQSCK / clk_period_ps; 1129 val += dmc->timings->tDQSCK % clk_period_ps ? 1 : 0; 1130 val = max(val, dmc->min_tck->tDQSCK); 1131 reg = &timing_data_reg_fields[6]; 1132 *reg_timing_data |= TIMING_VAL2REG(reg, val); 1133 1134 val = dmc->timings->tRL / clk_period_ps; 1135 val += dmc->timings->tRL % clk_period_ps ? 1 : 0; 1136 val = max(val, dmc->min_tck->tRL); 1137 reg = &timing_data_reg_fields[7]; 1138 *reg_timing_data |= TIMING_VAL2REG(reg, val); 1139 1140 /* power related timings */ 1141 val = dmc->timings->tFAW / clk_period_ps; 1142 val += dmc->timings->tFAW % clk_period_ps ? 1 : 0; 1143 val = max(val, dmc->min_tck->tFAW); 1144 reg = &timing_power_reg_fields[0]; 1145 *reg_timing_power |= TIMING_VAL2REG(reg, val); 1146 1147 val = dmc->timings->tXSR / clk_period_ps; 1148 val += dmc->timings->tXSR % clk_period_ps ? 1 : 0; 1149 val = max(val, dmc->min_tck->tXSR); 1150 reg = &timing_power_reg_fields[1]; 1151 *reg_timing_power |= TIMING_VAL2REG(reg, val); 1152 1153 val = dmc->timings->tXP / clk_period_ps; 1154 val += dmc->timings->tXP % clk_period_ps ? 1 : 0; 1155 val = max(val, dmc->min_tck->tXP); 1156 reg = &timing_power_reg_fields[2]; 1157 *reg_timing_power |= TIMING_VAL2REG(reg, val); 1158 1159 val = dmc->timings->tCKE / clk_period_ps; 1160 val += dmc->timings->tCKE % clk_period_ps ? 1 : 0; 1161 val = max(val, dmc->min_tck->tCKE); 1162 reg = &timing_power_reg_fields[3]; 1163 *reg_timing_power |= TIMING_VAL2REG(reg, val); 1164 1165 val = dmc->timings->tMRD / clk_period_ps; 1166 val += dmc->timings->tMRD % clk_period_ps ? 1 : 0; 1167 val = max(val, dmc->min_tck->tMRD); 1168 reg = &timing_power_reg_fields[4]; 1169 *reg_timing_power |= TIMING_VAL2REG(reg, val); 1170 1171 return 0; 1172 } 1173 1174 /** 1175 * of_get_dram_timings() - helper function for parsing DT settings for DRAM 1176 * @dmc: device for which the frequency is going to be set 1177 * 1178 * The function parses DT entries with DRAM information. 1179 */ 1180 static int of_get_dram_timings(struct exynos5_dmc *dmc) 1181 { 1182 int ret = 0; 1183 int idx; 1184 struct device_node *np_ddr; 1185 u32 freq_mhz, clk_period_ps; 1186 1187 np_ddr = of_parse_phandle(dmc->dev->of_node, "device-handle", 0); 1188 if (!np_ddr) { 1189 dev_warn(dmc->dev, "could not find 'device-handle' in DT\n"); 1190 return -EINVAL; 1191 } 1192 1193 dmc->timing_row = devm_kmalloc_array(dmc->dev, TIMING_COUNT, 1194 sizeof(u32), GFP_KERNEL); 1195 if (!dmc->timing_row) 1196 return -ENOMEM; 1197 1198 dmc->timing_data = devm_kmalloc_array(dmc->dev, TIMING_COUNT, 1199 sizeof(u32), GFP_KERNEL); 1200 if (!dmc->timing_data) 1201 return -ENOMEM; 1202 1203 dmc->timing_power = devm_kmalloc_array(dmc->dev, TIMING_COUNT, 1204 sizeof(u32), GFP_KERNEL); 1205 if (!dmc->timing_power) 1206 return -ENOMEM; 1207 1208 dmc->timings = of_lpddr3_get_ddr_timings(np_ddr, dmc->dev, 1209 DDR_TYPE_LPDDR3, 1210 &dmc->timings_arr_size); 1211 if (!dmc->timings) { 1212 of_node_put(np_ddr); 1213 dev_warn(dmc->dev, "could not get timings from DT\n"); 1214 return -EINVAL; 1215 } 1216 1217 dmc->min_tck = of_lpddr3_get_min_tck(np_ddr, dmc->dev); 1218 if (!dmc->min_tck) { 1219 of_node_put(np_ddr); 1220 dev_warn(dmc->dev, "could not get tck from DT\n"); 1221 return -EINVAL; 1222 } 1223 1224 /* Sorted array of OPPs with frequency ascending */ 1225 for (idx = 0; idx < dmc->opp_count; idx++) { 1226 freq_mhz = dmc->opp[idx].freq_hz / 1000000; 1227 clk_period_ps = 1000000 / freq_mhz; 1228 1229 ret = create_timings_aligned(dmc, &dmc->timing_row[idx], 1230 &dmc->timing_data[idx], 1231 &dmc->timing_power[idx], 1232 clk_period_ps); 1233 } 1234 1235 of_node_put(np_ddr); 1236 1237 /* Take the highest frequency's timings as 'bypass' */ 1238 dmc->bypass_timing_row = dmc->timing_row[idx - 1]; 1239 dmc->bypass_timing_data = dmc->timing_data[idx - 1]; 1240 dmc->bypass_timing_power = dmc->timing_power[idx - 1]; 1241 1242 return ret; 1243 } 1244 1245 /** 1246 * exynos5_dmc_init_clks() - Initialize clocks needed for DMC operation. 1247 * @dmc: DMC structure containing needed fields 1248 * 1249 * Get the needed clocks defined in DT device, enable and set the right parents. 1250 * Read current frequency and initialize the initial rate for governor. 1251 */ 1252 static int exynos5_dmc_init_clks(struct exynos5_dmc *dmc) 1253 { 1254 int ret; 1255 unsigned long target_volt = 0; 1256 unsigned long target_rate = 0; 1257 unsigned int tmp; 1258 1259 dmc->fout_spll = devm_clk_get(dmc->dev, "fout_spll"); 1260 if (IS_ERR(dmc->fout_spll)) 1261 return PTR_ERR(dmc->fout_spll); 1262 1263 dmc->fout_bpll = devm_clk_get(dmc->dev, "fout_bpll"); 1264 if (IS_ERR(dmc->fout_bpll)) 1265 return PTR_ERR(dmc->fout_bpll); 1266 1267 dmc->mout_mclk_cdrex = devm_clk_get(dmc->dev, "mout_mclk_cdrex"); 1268 if (IS_ERR(dmc->mout_mclk_cdrex)) 1269 return PTR_ERR(dmc->mout_mclk_cdrex); 1270 1271 dmc->mout_bpll = devm_clk_get(dmc->dev, "mout_bpll"); 1272 if (IS_ERR(dmc->mout_bpll)) 1273 return PTR_ERR(dmc->mout_bpll); 1274 1275 dmc->mout_mx_mspll_ccore = devm_clk_get(dmc->dev, 1276 "mout_mx_mspll_ccore"); 1277 if (IS_ERR(dmc->mout_mx_mspll_ccore)) 1278 return PTR_ERR(dmc->mout_mx_mspll_ccore); 1279 1280 dmc->mout_spll = devm_clk_get(dmc->dev, "ff_dout_spll2"); 1281 if (IS_ERR(dmc->mout_spll)) { 1282 dmc->mout_spll = devm_clk_get(dmc->dev, "mout_sclk_spll"); 1283 if (IS_ERR(dmc->mout_spll)) 1284 return PTR_ERR(dmc->mout_spll); 1285 } 1286 1287 /* 1288 * Convert frequency to KHz values and set it for the governor. 1289 */ 1290 dmc->curr_rate = clk_get_rate(dmc->mout_mclk_cdrex); 1291 dmc->curr_rate = exynos5_dmc_align_init_freq(dmc, dmc->curr_rate); 1292 exynos5_dmc_df_profile.initial_freq = dmc->curr_rate; 1293 1294 ret = exynos5_dmc_get_volt_freq(dmc, &dmc->curr_rate, &target_rate, 1295 &target_volt, 0); 1296 if (ret) 1297 return ret; 1298 1299 dmc->curr_volt = target_volt; 1300 1301 clk_set_parent(dmc->mout_mx_mspll_ccore, dmc->mout_spll); 1302 1303 clk_prepare_enable(dmc->fout_bpll); 1304 clk_prepare_enable(dmc->mout_bpll); 1305 1306 /* 1307 * Some bootloaders do not set clock routes correctly. 1308 * Stop one path in clocks to PHY. 1309 */ 1310 regmap_read(dmc->clk_regmap, CDREX_LPDDR3PHY_CLKM_SRC, &tmp); 1311 tmp &= ~(BIT(1) | BIT(0)); 1312 regmap_write(dmc->clk_regmap, CDREX_LPDDR3PHY_CLKM_SRC, tmp); 1313 1314 return 0; 1315 } 1316 1317 /** 1318 * exynos5_performance_counters_init() - Initializes performance DMC's counters 1319 * @dmc: DMC for which it does the setup 1320 * 1321 * Initialization of performance counters in DMC for estimating usage. 1322 * The counter's values are used for calculation of a memory bandwidth and based 1323 * on that the governor changes the frequency. 1324 * The counters are not used when the governor is GOVERNOR_USERSPACE. 1325 */ 1326 static int exynos5_performance_counters_init(struct exynos5_dmc *dmc) 1327 { 1328 int counters_size; 1329 int ret, i; 1330 1331 dmc->num_counters = devfreq_event_get_edev_count(dmc->dev, 1332 "devfreq-events"); 1333 if (dmc->num_counters < 0) { 1334 dev_err(dmc->dev, "could not get devfreq-event counters\n"); 1335 return dmc->num_counters; 1336 } 1337 1338 counters_size = sizeof(struct devfreq_event_dev) * dmc->num_counters; 1339 dmc->counter = devm_kzalloc(dmc->dev, counters_size, GFP_KERNEL); 1340 if (!dmc->counter) 1341 return -ENOMEM; 1342 1343 for (i = 0; i < dmc->num_counters; i++) { 1344 dmc->counter[i] = 1345 devfreq_event_get_edev_by_phandle(dmc->dev, 1346 "devfreq-events", i); 1347 if (IS_ERR_OR_NULL(dmc->counter[i])) 1348 return -EPROBE_DEFER; 1349 } 1350 1351 ret = exynos5_counters_enable_edev(dmc); 1352 if (ret < 0) { 1353 dev_err(dmc->dev, "could not enable event counter\n"); 1354 return ret; 1355 } 1356 1357 ret = exynos5_counters_set_event(dmc); 1358 if (ret < 0) { 1359 exynos5_counters_disable_edev(dmc); 1360 dev_err(dmc->dev, "could not set event counter\n"); 1361 return ret; 1362 } 1363 1364 return 0; 1365 } 1366 1367 /** 1368 * exynos5_dmc_set_pause_on_switching() - Controls a pause feature in DMC 1369 * @dmc: device which is used for changing this feature 1370 * 1371 * There is a need of pausing DREX DMC when divider or MUX in clock tree 1372 * changes its configuration. In such situation access to the memory is blocked 1373 * in DMC automatically. This feature is used when clock frequency change 1374 * request appears and touches clock tree. 1375 */ 1376 static inline int exynos5_dmc_set_pause_on_switching(struct exynos5_dmc *dmc) 1377 { 1378 unsigned int val; 1379 int ret; 1380 1381 ret = regmap_read(dmc->clk_regmap, CDREX_PAUSE, &val); 1382 if (ret) 1383 return ret; 1384 1385 val |= 1UL; 1386 regmap_write(dmc->clk_regmap, CDREX_PAUSE, val); 1387 1388 return 0; 1389 } 1390 1391 static irqreturn_t dmc_irq_thread(int irq, void *priv) 1392 { 1393 int res; 1394 struct exynos5_dmc *dmc = priv; 1395 1396 mutex_lock(&dmc->df->lock); 1397 exynos5_dmc_perf_events_check(dmc); 1398 res = update_devfreq(dmc->df); 1399 mutex_unlock(&dmc->df->lock); 1400 1401 if (res) 1402 dev_warn(dmc->dev, "devfreq failed with %d\n", res); 1403 1404 return IRQ_HANDLED; 1405 } 1406 1407 /** 1408 * exynos5_dmc_probe() - Probe function for the DMC driver 1409 * @pdev: platform device for which the driver is going to be initialized 1410 * 1411 * Initialize basic components: clocks, regulators, performance counters, etc. 1412 * Read out product version and based on the information setup 1413 * internal structures for the controller (frequency and voltage) and for DRAM 1414 * memory parameters: timings for each operating frequency. 1415 * Register new devfreq device for controlling DVFS of the DMC. 1416 */ 1417 static int exynos5_dmc_probe(struct platform_device *pdev) 1418 { 1419 int ret = 0; 1420 struct device *dev = &pdev->dev; 1421 struct device_node *np = dev->of_node; 1422 struct exynos5_dmc *dmc; 1423 int irq[2]; 1424 1425 dmc = devm_kzalloc(dev, sizeof(*dmc), GFP_KERNEL); 1426 if (!dmc) 1427 return -ENOMEM; 1428 1429 mutex_init(&dmc->lock); 1430 1431 dmc->dev = dev; 1432 platform_set_drvdata(pdev, dmc); 1433 1434 dmc->base_drexi0 = devm_platform_ioremap_resource(pdev, 0); 1435 if (IS_ERR(dmc->base_drexi0)) 1436 return PTR_ERR(dmc->base_drexi0); 1437 1438 dmc->base_drexi1 = devm_platform_ioremap_resource(pdev, 1); 1439 if (IS_ERR(dmc->base_drexi1)) 1440 return PTR_ERR(dmc->base_drexi1); 1441 1442 dmc->clk_regmap = syscon_regmap_lookup_by_phandle(np, 1443 "samsung,syscon-clk"); 1444 if (IS_ERR(dmc->clk_regmap)) 1445 return PTR_ERR(dmc->clk_regmap); 1446 1447 ret = exynos5_init_freq_table(dmc, &exynos5_dmc_df_profile); 1448 if (ret) { 1449 dev_warn(dev, "couldn't initialize frequency settings\n"); 1450 return ret; 1451 } 1452 1453 dmc->vdd_mif = devm_regulator_get(dev, "vdd"); 1454 if (IS_ERR(dmc->vdd_mif)) { 1455 ret = PTR_ERR(dmc->vdd_mif); 1456 return ret; 1457 } 1458 1459 ret = exynos5_dmc_init_clks(dmc); 1460 if (ret) 1461 return ret; 1462 1463 ret = of_get_dram_timings(dmc); 1464 if (ret) { 1465 dev_warn(dev, "couldn't initialize timings settings\n"); 1466 goto remove_clocks; 1467 } 1468 1469 ret = exynos5_dmc_set_pause_on_switching(dmc); 1470 if (ret) { 1471 dev_warn(dev, "couldn't get access to PAUSE register\n"); 1472 goto remove_clocks; 1473 } 1474 1475 /* There is two modes in which the driver works: polling or IRQ */ 1476 irq[0] = platform_get_irq_byname(pdev, "drex_0"); 1477 irq[1] = platform_get_irq_byname(pdev, "drex_1"); 1478 if (irq[0] > 0 && irq[1] > 0 && irqmode) { 1479 ret = devm_request_threaded_irq(dev, irq[0], NULL, 1480 dmc_irq_thread, IRQF_ONESHOT, 1481 dev_name(dev), dmc); 1482 if (ret) { 1483 dev_err(dev, "couldn't grab IRQ\n"); 1484 goto remove_clocks; 1485 } 1486 1487 ret = devm_request_threaded_irq(dev, irq[1], NULL, 1488 dmc_irq_thread, IRQF_ONESHOT, 1489 dev_name(dev), dmc); 1490 if (ret) { 1491 dev_err(dev, "couldn't grab IRQ\n"); 1492 goto remove_clocks; 1493 } 1494 1495 /* 1496 * Setup default thresholds for the devfreq governor. 1497 * The values are chosen based on experiments. 1498 */ 1499 dmc->gov_data.upthreshold = 55; 1500 dmc->gov_data.downdifferential = 5; 1501 1502 exynos5_dmc_enable_perf_events(dmc); 1503 1504 dmc->in_irq_mode = 1; 1505 } else { 1506 ret = exynos5_performance_counters_init(dmc); 1507 if (ret) { 1508 dev_warn(dev, "couldn't probe performance counters\n"); 1509 goto remove_clocks; 1510 } 1511 1512 /* 1513 * Setup default thresholds for the devfreq governor. 1514 * The values are chosen based on experiments. 1515 */ 1516 dmc->gov_data.upthreshold = 10; 1517 dmc->gov_data.downdifferential = 5; 1518 1519 exynos5_dmc_df_profile.polling_ms = 100; 1520 } 1521 1522 dmc->df = devm_devfreq_add_device(dev, &exynos5_dmc_df_profile, 1523 DEVFREQ_GOV_SIMPLE_ONDEMAND, 1524 &dmc->gov_data); 1525 1526 if (IS_ERR(dmc->df)) { 1527 ret = PTR_ERR(dmc->df); 1528 goto err_devfreq_add; 1529 } 1530 1531 if (dmc->in_irq_mode) 1532 exynos5_dmc_start_perf_events(dmc, PERF_COUNTER_START_VALUE); 1533 1534 dev_info(dev, "DMC initialized, in irq mode: %d\n", dmc->in_irq_mode); 1535 1536 return 0; 1537 1538 err_devfreq_add: 1539 if (dmc->in_irq_mode) 1540 exynos5_dmc_disable_perf_events(dmc); 1541 else 1542 exynos5_counters_disable_edev(dmc); 1543 remove_clocks: 1544 clk_disable_unprepare(dmc->mout_bpll); 1545 clk_disable_unprepare(dmc->fout_bpll); 1546 1547 return ret; 1548 } 1549 1550 /** 1551 * exynos5_dmc_remove() - Remove function for the platform device 1552 * @pdev: platform device which is going to be removed 1553 * 1554 * The function relies on 'devm' framework function which automatically 1555 * clean the device's resources. It just calls explicitly disable function for 1556 * the performance counters. 1557 */ 1558 static int exynos5_dmc_remove(struct platform_device *pdev) 1559 { 1560 struct exynos5_dmc *dmc = dev_get_drvdata(&pdev->dev); 1561 1562 if (dmc->in_irq_mode) 1563 exynos5_dmc_disable_perf_events(dmc); 1564 else 1565 exynos5_counters_disable_edev(dmc); 1566 1567 clk_disable_unprepare(dmc->mout_bpll); 1568 clk_disable_unprepare(dmc->fout_bpll); 1569 1570 dev_pm_opp_remove_table(dmc->dev); 1571 1572 return 0; 1573 } 1574 1575 static const struct of_device_id exynos5_dmc_of_match[] = { 1576 { .compatible = "samsung,exynos5422-dmc", }, 1577 { }, 1578 }; 1579 MODULE_DEVICE_TABLE(of, exynos5_dmc_of_match); 1580 1581 static struct platform_driver exynos5_dmc_platdrv = { 1582 .probe = exynos5_dmc_probe, 1583 .remove = exynos5_dmc_remove, 1584 .driver = { 1585 .name = "exynos5-dmc", 1586 .of_match_table = exynos5_dmc_of_match, 1587 }, 1588 }; 1589 module_platform_driver(exynos5_dmc_platdrv); 1590 MODULE_DESCRIPTION("Driver for Exynos5422 Dynamic Memory Controller dynamic frequency and voltage change"); 1591 MODULE_LICENSE("GPL v2"); 1592 MODULE_AUTHOR("Lukasz Luba"); 1593