1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2019 Samsung Electronics Co., Ltd. 4 * Author: Lukasz Luba <l.luba@partner.samsung.com> 5 */ 6 7 #include <linux/clk.h> 8 #include <linux/devfreq.h> 9 #include <linux/devfreq-event.h> 10 #include <linux/device.h> 11 #include <linux/interrupt.h> 12 #include <linux/io.h> 13 #include <linux/mfd/syscon.h> 14 #include <linux/module.h> 15 #include <linux/of_device.h> 16 #include <linux/pm_opp.h> 17 #include <linux/platform_device.h> 18 #include <linux/regmap.h> 19 #include <linux/regulator/consumer.h> 20 #include <linux/slab.h> 21 #include "../jedec_ddr.h" 22 #include "../of_memory.h" 23 24 #define EXYNOS5_DREXI_TIMINGAREF (0x0030) 25 #define EXYNOS5_DREXI_TIMINGROW0 (0x0034) 26 #define EXYNOS5_DREXI_TIMINGDATA0 (0x0038) 27 #define EXYNOS5_DREXI_TIMINGPOWER0 (0x003C) 28 #define EXYNOS5_DREXI_TIMINGROW1 (0x00E4) 29 #define EXYNOS5_DREXI_TIMINGDATA1 (0x00E8) 30 #define EXYNOS5_DREXI_TIMINGPOWER1 (0x00EC) 31 #define CDREX_PAUSE (0x2091c) 32 #define CDREX_LPDDR3PHY_CON3 (0x20a20) 33 #define CDREX_LPDDR3PHY_CLKM_SRC (0x20700) 34 #define EXYNOS5_TIMING_SET_SWI BIT(28) 35 #define USE_MX_MSPLL_TIMINGS (1) 36 #define USE_BPLL_TIMINGS (0) 37 #define EXYNOS5_AREF_NORMAL (0x2e) 38 39 #define DREX_PPCCLKCON (0x0130) 40 #define DREX_PEREV2CONFIG (0x013c) 41 #define DREX_PMNC_PPC (0xE000) 42 #define DREX_CNTENS_PPC (0xE010) 43 #define DREX_CNTENC_PPC (0xE020) 44 #define DREX_INTENS_PPC (0xE030) 45 #define DREX_INTENC_PPC (0xE040) 46 #define DREX_FLAG_PPC (0xE050) 47 #define DREX_PMCNT2_PPC (0xE130) 48 49 /* 50 * A value for register DREX_PMNC_PPC which should be written to reset 51 * the cycle counter CCNT (a reference wall clock). It sets zero to the 52 * CCNT counter. 53 */ 54 #define CC_RESET BIT(2) 55 56 /* 57 * A value for register DREX_PMNC_PPC which does the reset of all performance 58 * counters to zero. 59 */ 60 #define PPC_COUNTER_RESET BIT(1) 61 62 /* 63 * Enables all configured counters (including cycle counter). The value should 64 * be written to the register DREX_PMNC_PPC. 65 */ 66 #define PPC_ENABLE BIT(0) 67 68 /* A value for register DREX_PPCCLKCON which enables performance events clock. 69 * Must be written before first access to the performance counters register 70 * set, otherwise it could crash. 71 */ 72 #define PEREV_CLK_EN BIT(0) 73 74 /* 75 * Values which are used to enable counters, interrupts or configure flags of 76 * the performance counters. They configure counter 2 and cycle counter. 77 */ 78 #define PERF_CNT2 BIT(2) 79 #define PERF_CCNT BIT(31) 80 81 /* 82 * Performance event types which are used for setting the preferred event 83 * to track in the counters. 84 * There is a set of different types, the values are from range 0 to 0x6f. 85 * These settings should be written to the configuration register which manages 86 * the type of the event (register DREX_PEREV2CONFIG). 87 */ 88 #define READ_TRANSFER_CH0 (0x6d) 89 #define READ_TRANSFER_CH1 (0x6f) 90 91 #define PERF_COUNTER_START_VALUE 0xff000000 92 #define PERF_EVENT_UP_DOWN_THRESHOLD 900000000ULL 93 94 /** 95 * struct dmc_opp_table - Operating level desciption 96 * 97 * Covers frequency and voltage settings of the DMC operating mode. 98 */ 99 struct dmc_opp_table { 100 u32 freq_hz; 101 u32 volt_uv; 102 }; 103 104 /** 105 * struct exynos5_dmc - main structure describing DMC device 106 * 107 * The main structure for the Dynamic Memory Controller which covers clocks, 108 * memory regions, HW information, parameters and current operating mode. 109 */ 110 struct exynos5_dmc { 111 struct device *dev; 112 struct devfreq *df; 113 struct devfreq_simple_ondemand_data gov_data; 114 void __iomem *base_drexi0; 115 void __iomem *base_drexi1; 116 struct regmap *clk_regmap; 117 struct mutex lock; 118 unsigned long curr_rate; 119 unsigned long curr_volt; 120 unsigned long bypass_rate; 121 struct dmc_opp_table *opp; 122 struct dmc_opp_table opp_bypass; 123 int opp_count; 124 u32 timings_arr_size; 125 u32 *timing_row; 126 u32 *timing_data; 127 u32 *timing_power; 128 const struct lpddr3_timings *timings; 129 const struct lpddr3_min_tck *min_tck; 130 u32 bypass_timing_row; 131 u32 bypass_timing_data; 132 u32 bypass_timing_power; 133 struct regulator *vdd_mif; 134 struct clk *fout_spll; 135 struct clk *fout_bpll; 136 struct clk *mout_spll; 137 struct clk *mout_bpll; 138 struct clk *mout_mclk_cdrex; 139 struct clk *mout_mx_mspll_ccore; 140 struct clk *mx_mspll_ccore_phy; 141 struct clk *mout_mx_mspll_ccore_phy; 142 struct devfreq_event_dev **counter; 143 int num_counters; 144 u64 last_overflow_ts[2]; 145 unsigned long load; 146 unsigned long total; 147 bool in_irq_mode; 148 }; 149 150 #define TIMING_FIELD(t_name, t_bit_beg, t_bit_end) \ 151 { .name = t_name, .bit_beg = t_bit_beg, .bit_end = t_bit_end } 152 153 #define TIMING_VAL2REG(timing, t_val) \ 154 ({ \ 155 u32 __val; \ 156 __val = (t_val) << (timing)->bit_beg; \ 157 __val; \ 158 }) 159 160 struct timing_reg { 161 char *name; 162 int bit_beg; 163 int bit_end; 164 unsigned int val; 165 }; 166 167 static const struct timing_reg timing_row[] = { 168 TIMING_FIELD("tRFC", 24, 31), 169 TIMING_FIELD("tRRD", 20, 23), 170 TIMING_FIELD("tRP", 16, 19), 171 TIMING_FIELD("tRCD", 12, 15), 172 TIMING_FIELD("tRC", 6, 11), 173 TIMING_FIELD("tRAS", 0, 5), 174 }; 175 176 static const struct timing_reg timing_data[] = { 177 TIMING_FIELD("tWTR", 28, 31), 178 TIMING_FIELD("tWR", 24, 27), 179 TIMING_FIELD("tRTP", 20, 23), 180 TIMING_FIELD("tW2W-C2C", 14, 14), 181 TIMING_FIELD("tR2R-C2C", 12, 12), 182 TIMING_FIELD("WL", 8, 11), 183 TIMING_FIELD("tDQSCK", 4, 7), 184 TIMING_FIELD("RL", 0, 3), 185 }; 186 187 static const struct timing_reg timing_power[] = { 188 TIMING_FIELD("tFAW", 26, 31), 189 TIMING_FIELD("tXSR", 16, 25), 190 TIMING_FIELD("tXP", 8, 15), 191 TIMING_FIELD("tCKE", 4, 7), 192 TIMING_FIELD("tMRD", 0, 3), 193 }; 194 195 #define TIMING_COUNT (ARRAY_SIZE(timing_row) + ARRAY_SIZE(timing_data) + \ 196 ARRAY_SIZE(timing_power)) 197 198 static int exynos5_counters_set_event(struct exynos5_dmc *dmc) 199 { 200 int i, ret; 201 202 for (i = 0; i < dmc->num_counters; i++) { 203 if (!dmc->counter[i]) 204 continue; 205 ret = devfreq_event_set_event(dmc->counter[i]); 206 if (ret < 0) 207 return ret; 208 } 209 return 0; 210 } 211 212 static int exynos5_counters_enable_edev(struct exynos5_dmc *dmc) 213 { 214 int i, ret; 215 216 for (i = 0; i < dmc->num_counters; i++) { 217 if (!dmc->counter[i]) 218 continue; 219 ret = devfreq_event_enable_edev(dmc->counter[i]); 220 if (ret < 0) 221 return ret; 222 } 223 return 0; 224 } 225 226 static int exynos5_counters_disable_edev(struct exynos5_dmc *dmc) 227 { 228 int i, ret; 229 230 for (i = 0; i < dmc->num_counters; i++) { 231 if (!dmc->counter[i]) 232 continue; 233 ret = devfreq_event_disable_edev(dmc->counter[i]); 234 if (ret < 0) 235 return ret; 236 } 237 return 0; 238 } 239 240 /** 241 * find_target_freq_id() - Finds requested frequency in local DMC configuration 242 * @dmc: device for which the information is checked 243 * @target_rate: requested frequency in KHz 244 * 245 * Seeks in the local DMC driver structure for the requested frequency value 246 * and returns index or error value. 247 */ 248 static int find_target_freq_idx(struct exynos5_dmc *dmc, 249 unsigned long target_rate) 250 { 251 int i; 252 253 for (i = dmc->opp_count - 1; i >= 0; i--) 254 if (dmc->opp[i].freq_hz <= target_rate) 255 return i; 256 257 return -EINVAL; 258 } 259 260 /** 261 * exynos5_switch_timing_regs() - Changes bank register set for DRAM timings 262 * @dmc: device for which the new settings is going to be applied 263 * @set: boolean variable passing set value 264 * 265 * Changes the register set, which holds timing parameters. 266 * There is two register sets: 0 and 1. The register set 0 267 * is used in normal operation when the clock is provided from main PLL. 268 * The bank register set 1 is used when the main PLL frequency is going to be 269 * changed and the clock is taken from alternative, stable source. 270 * This function switches between these banks according to the 271 * currently used clock source. 272 */ 273 static void exynos5_switch_timing_regs(struct exynos5_dmc *dmc, bool set) 274 { 275 unsigned int reg; 276 int ret; 277 278 ret = regmap_read(dmc->clk_regmap, CDREX_LPDDR3PHY_CON3, ®); 279 280 if (set) 281 reg |= EXYNOS5_TIMING_SET_SWI; 282 else 283 reg &= ~EXYNOS5_TIMING_SET_SWI; 284 285 regmap_write(dmc->clk_regmap, CDREX_LPDDR3PHY_CON3, reg); 286 } 287 288 /** 289 * exynos5_init_freq_table() - Initialized PM OPP framework 290 * @dmc: DMC device for which the frequencies are used for OPP init 291 * @profile: devfreq device's profile 292 * 293 * Populate the devfreq device's OPP table based on current frequency, voltage. 294 */ 295 static int exynos5_init_freq_table(struct exynos5_dmc *dmc, 296 struct devfreq_dev_profile *profile) 297 { 298 int i, ret; 299 int idx; 300 unsigned long freq; 301 302 ret = dev_pm_opp_of_add_table(dmc->dev); 303 if (ret < 0) { 304 dev_err(dmc->dev, "Failed to get OPP table\n"); 305 return ret; 306 } 307 308 dmc->opp_count = dev_pm_opp_get_opp_count(dmc->dev); 309 310 dmc->opp = devm_kmalloc_array(dmc->dev, dmc->opp_count, 311 sizeof(struct dmc_opp_table), GFP_KERNEL); 312 if (!dmc->opp) 313 goto err_opp; 314 315 idx = dmc->opp_count - 1; 316 for (i = 0, freq = ULONG_MAX; i < dmc->opp_count; i++, freq--) { 317 struct dev_pm_opp *opp; 318 319 opp = dev_pm_opp_find_freq_floor(dmc->dev, &freq); 320 if (IS_ERR(opp)) 321 goto err_opp; 322 323 dmc->opp[idx - i].freq_hz = freq; 324 dmc->opp[idx - i].volt_uv = dev_pm_opp_get_voltage(opp); 325 326 dev_pm_opp_put(opp); 327 } 328 329 return 0; 330 331 err_opp: 332 dev_pm_opp_of_remove_table(dmc->dev); 333 334 return -EINVAL; 335 } 336 337 /** 338 * exynos5_set_bypass_dram_timings() - Low-level changes of the DRAM timings 339 * @dmc: device for which the new settings is going to be applied 340 * @param: DRAM parameters which passes timing data 341 * 342 * Low-level function for changing timings for DRAM memory clocking from 343 * 'bypass' clock source (fixed frequency @400MHz). 344 * It uses timing bank registers set 1. 345 */ 346 static void exynos5_set_bypass_dram_timings(struct exynos5_dmc *dmc) 347 { 348 writel(EXYNOS5_AREF_NORMAL, 349 dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGAREF); 350 351 writel(dmc->bypass_timing_row, 352 dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGROW1); 353 writel(dmc->bypass_timing_row, 354 dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGROW1); 355 writel(dmc->bypass_timing_data, 356 dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGDATA1); 357 writel(dmc->bypass_timing_data, 358 dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGDATA1); 359 writel(dmc->bypass_timing_power, 360 dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGPOWER1); 361 writel(dmc->bypass_timing_power, 362 dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGPOWER1); 363 } 364 365 /** 366 * exynos5_dram_change_timings() - Low-level changes of the DRAM final timings 367 * @dmc: device for which the new settings is going to be applied 368 * @target_rate: target frequency of the DMC 369 * 370 * Low-level function for changing timings for DRAM memory operating from main 371 * clock source (BPLL), which can have different frequencies. Thus, each 372 * frequency must have corresponding timings register values in order to keep 373 * the needed delays. 374 * It uses timing bank registers set 0. 375 */ 376 static int exynos5_dram_change_timings(struct exynos5_dmc *dmc, 377 unsigned long target_rate) 378 { 379 int idx; 380 381 for (idx = dmc->opp_count - 1; idx >= 0; idx--) 382 if (dmc->opp[idx].freq_hz <= target_rate) 383 break; 384 385 if (idx < 0) 386 return -EINVAL; 387 388 writel(EXYNOS5_AREF_NORMAL, 389 dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGAREF); 390 391 writel(dmc->timing_row[idx], 392 dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGROW0); 393 writel(dmc->timing_row[idx], 394 dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGROW0); 395 writel(dmc->timing_data[idx], 396 dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGDATA0); 397 writel(dmc->timing_data[idx], 398 dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGDATA0); 399 writel(dmc->timing_power[idx], 400 dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGPOWER0); 401 writel(dmc->timing_power[idx], 402 dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGPOWER0); 403 404 return 0; 405 } 406 407 /** 408 * exynos5_dmc_align_target_voltage() - Sets the final voltage for the DMC 409 * @dmc: device for which it is going to be set 410 * @target_volt: new voltage which is chosen to be final 411 * 412 * Function tries to align voltage to the safe level for 'normal' mode. 413 * It checks the need of higher voltage and changes the value. The target 414 * voltage might be lower that currently set and still the system will be 415 * stable. 416 */ 417 static int exynos5_dmc_align_target_voltage(struct exynos5_dmc *dmc, 418 unsigned long target_volt) 419 { 420 int ret = 0; 421 422 if (dmc->curr_volt <= target_volt) 423 return 0; 424 425 ret = regulator_set_voltage(dmc->vdd_mif, target_volt, 426 target_volt); 427 if (!ret) 428 dmc->curr_volt = target_volt; 429 430 return ret; 431 } 432 433 /** 434 * exynos5_dmc_align_bypass_voltage() - Sets the voltage for the DMC 435 * @dmc: device for which it is going to be set 436 * @target_volt: new voltage which is chosen to be final 437 * 438 * Function tries to align voltage to the safe level for the 'bypass' mode. 439 * It checks the need of higher voltage and changes the value. 440 * The target voltage must not be less than currently needed, because 441 * for current frequency the device might become unstable. 442 */ 443 static int exynos5_dmc_align_bypass_voltage(struct exynos5_dmc *dmc, 444 unsigned long target_volt) 445 { 446 int ret = 0; 447 unsigned long bypass_volt = dmc->opp_bypass.volt_uv; 448 449 target_volt = max(bypass_volt, target_volt); 450 451 if (dmc->curr_volt >= target_volt) 452 return 0; 453 454 ret = regulator_set_voltage(dmc->vdd_mif, target_volt, 455 target_volt); 456 if (!ret) 457 dmc->curr_volt = target_volt; 458 459 return ret; 460 } 461 462 /** 463 * exynos5_dmc_align_bypass_dram_timings() - Chooses and sets DRAM timings 464 * @dmc: device for which it is going to be set 465 * @target_rate: new frequency which is chosen to be final 466 * 467 * Function changes the DRAM timings for the temporary 'bypass' mode. 468 */ 469 static int exynos5_dmc_align_bypass_dram_timings(struct exynos5_dmc *dmc, 470 unsigned long target_rate) 471 { 472 int idx = find_target_freq_idx(dmc, target_rate); 473 474 if (idx < 0) 475 return -EINVAL; 476 477 exynos5_set_bypass_dram_timings(dmc); 478 479 return 0; 480 } 481 482 /** 483 * exynos5_dmc_switch_to_bypass_configuration() - Switching to temporary clock 484 * @dmc: DMC device for which the switching is going to happen 485 * @target_rate: new frequency which is going to be set as a final 486 * @target_volt: new voltage which is going to be set as a final 487 * 488 * Function configures DMC and clocks for operating in temporary 'bypass' mode. 489 * This mode is used only temporary but if required, changes voltage and timings 490 * for DRAM chips. It switches the main clock to stable clock source for the 491 * period of the main PLL reconfiguration. 492 */ 493 static int 494 exynos5_dmc_switch_to_bypass_configuration(struct exynos5_dmc *dmc, 495 unsigned long target_rate, 496 unsigned long target_volt) 497 { 498 int ret; 499 500 /* 501 * Having higher voltage for a particular frequency does not harm 502 * the chip. Use it for the temporary frequency change when one 503 * voltage manipulation might be avoided. 504 */ 505 ret = exynos5_dmc_align_bypass_voltage(dmc, target_volt); 506 if (ret) 507 return ret; 508 509 /* 510 * Longer delays for DRAM does not cause crash, the opposite does. 511 */ 512 ret = exynos5_dmc_align_bypass_dram_timings(dmc, target_rate); 513 if (ret) 514 return ret; 515 516 /* 517 * Delays are long enough, so use them for the new coming clock. 518 */ 519 exynos5_switch_timing_regs(dmc, USE_MX_MSPLL_TIMINGS); 520 521 return ret; 522 } 523 524 /** 525 * exynos5_dmc_change_freq_and_volt() - Changes voltage and frequency of the DMC 526 * using safe procedure 527 * @dmc: device for which the frequency is going to be changed 528 * @target_rate: requested new frequency 529 * @target_volt: requested voltage which corresponds to the new frequency 530 * 531 * The DMC frequency change procedure requires a few steps. 532 * The main requirement is to change the clock source in the clk mux 533 * for the time of main clock PLL locking. The assumption is that the 534 * alternative clock source set as parent is stable. 535 * The second parent's clock frequency is fixed to 400MHz, it is named 'bypass' 536 * clock. This requires alignment in DRAM timing parameters for the new 537 * T-period. There is two bank sets for keeping DRAM 538 * timings: set 0 and set 1. The set 0 is used when main clock source is 539 * chosen. The 2nd set of regs is used for 'bypass' clock. Switching between 540 * the two bank sets is part of the process. 541 * The voltage must also be aligned to the minimum required level. There is 542 * this intermediate step with switching to 'bypass' parent clock source. 543 * if the old voltage is lower, it requires an increase of the voltage level. 544 * The complexity of the voltage manipulation is hidden in low level function. 545 * In this function there is last alignment of the voltage level at the end. 546 */ 547 static int 548 exynos5_dmc_change_freq_and_volt(struct exynos5_dmc *dmc, 549 unsigned long target_rate, 550 unsigned long target_volt) 551 { 552 int ret; 553 554 ret = exynos5_dmc_switch_to_bypass_configuration(dmc, target_rate, 555 target_volt); 556 if (ret) 557 return ret; 558 559 /* 560 * Voltage is set at least to a level needed for this frequency, 561 * so switching clock source is safe now. 562 */ 563 clk_prepare_enable(dmc->fout_spll); 564 clk_prepare_enable(dmc->mout_spll); 565 clk_prepare_enable(dmc->mout_mx_mspll_ccore); 566 567 ret = clk_set_parent(dmc->mout_mclk_cdrex, dmc->mout_mx_mspll_ccore); 568 if (ret) 569 goto disable_clocks; 570 571 /* 572 * We are safe to increase the timings for current bypass frequency. 573 * Thanks to this the settings will be ready for the upcoming clock 574 * source change. 575 */ 576 exynos5_dram_change_timings(dmc, target_rate); 577 578 clk_set_rate(dmc->fout_bpll, target_rate); 579 580 exynos5_switch_timing_regs(dmc, USE_BPLL_TIMINGS); 581 582 ret = clk_set_parent(dmc->mout_mclk_cdrex, dmc->mout_bpll); 583 if (ret) 584 goto disable_clocks; 585 586 /* 587 * Make sure if the voltage is not from 'bypass' settings and align to 588 * the right level for power efficiency. 589 */ 590 ret = exynos5_dmc_align_target_voltage(dmc, target_volt); 591 592 disable_clocks: 593 clk_disable_unprepare(dmc->mout_mx_mspll_ccore); 594 clk_disable_unprepare(dmc->mout_spll); 595 clk_disable_unprepare(dmc->fout_spll); 596 597 return ret; 598 } 599 600 /** 601 * exynos5_dmc_get_volt_freq() - Gets the frequency and voltage from the OPP 602 * table. 603 * @dmc: device for which the frequency is going to be changed 604 * @freq: requested frequency in KHz 605 * @target_rate: returned frequency which is the same or lower than 606 * requested 607 * @target_volt: returned voltage which corresponds to the returned 608 * frequency 609 * 610 * Function gets requested frequency and checks OPP framework for needed 611 * frequency and voltage. It populates the values 'target_rate' and 612 * 'target_volt' or returns error value when OPP framework fails. 613 */ 614 static int exynos5_dmc_get_volt_freq(struct exynos5_dmc *dmc, 615 unsigned long *freq, 616 unsigned long *target_rate, 617 unsigned long *target_volt, u32 flags) 618 { 619 struct dev_pm_opp *opp; 620 621 opp = devfreq_recommended_opp(dmc->dev, freq, flags); 622 if (IS_ERR(opp)) 623 return PTR_ERR(opp); 624 625 *target_rate = dev_pm_opp_get_freq(opp); 626 *target_volt = dev_pm_opp_get_voltage(opp); 627 dev_pm_opp_put(opp); 628 629 return 0; 630 } 631 632 /** 633 * exynos5_dmc_target() - Function responsible for changing frequency of DMC 634 * @dev: device for which the frequency is going to be changed 635 * @freq: requested frequency in KHz 636 * @flags: flags provided for this frequency change request 637 * 638 * An entry function provided to the devfreq framework which provides frequency 639 * change of the DMC. The function gets the possible rate from OPP table based 640 * on requested frequency. It calls the next function responsible for the 641 * frequency and voltage change. In case of failure, does not set 'curr_rate' 642 * and returns error value to the framework. 643 */ 644 static int exynos5_dmc_target(struct device *dev, unsigned long *freq, 645 u32 flags) 646 { 647 struct exynos5_dmc *dmc = dev_get_drvdata(dev); 648 unsigned long target_rate = 0; 649 unsigned long target_volt = 0; 650 int ret; 651 652 ret = exynos5_dmc_get_volt_freq(dmc, freq, &target_rate, &target_volt, 653 flags); 654 655 if (ret) 656 return ret; 657 658 if (target_rate == dmc->curr_rate) 659 return 0; 660 661 mutex_lock(&dmc->lock); 662 663 ret = exynos5_dmc_change_freq_and_volt(dmc, target_rate, target_volt); 664 665 if (ret) { 666 mutex_unlock(&dmc->lock); 667 return ret; 668 } 669 670 dmc->curr_rate = target_rate; 671 672 mutex_unlock(&dmc->lock); 673 return 0; 674 } 675 676 /** 677 * exynos5_counters_get() - Gets the performance counters values. 678 * @dmc: device for which the counters are going to be checked 679 * @load_count: variable which is populated with counter value 680 * @total_count: variable which is used as 'wall clock' reference 681 * 682 * Function which provides performance counters values. It sums up counters for 683 * two DMC channels. The 'total_count' is used as a reference and max value. 684 * The ratio 'load_count/total_count' shows the busy percentage [0%, 100%]. 685 */ 686 static int exynos5_counters_get(struct exynos5_dmc *dmc, 687 unsigned long *load_count, 688 unsigned long *total_count) 689 { 690 unsigned long total = 0; 691 struct devfreq_event_data event; 692 int ret, i; 693 694 *load_count = 0; 695 696 /* Take into account only read+write counters, but stop all */ 697 for (i = 0; i < dmc->num_counters; i++) { 698 if (!dmc->counter[i]) 699 continue; 700 701 ret = devfreq_event_get_event(dmc->counter[i], &event); 702 if (ret < 0) 703 return ret; 704 705 *load_count += event.load_count; 706 707 if (total < event.total_count) 708 total = event.total_count; 709 } 710 711 *total_count = total; 712 713 return 0; 714 } 715 716 /** 717 * exynos5_dmc_start_perf_events() - Setup and start performance event counters 718 * @dmc: device for which the counters are going to be checked 719 * @beg_value: initial value for the counter 720 * 721 * Function which enables needed counters, interrupts and sets initial values 722 * then starts the counters. 723 */ 724 static void exynos5_dmc_start_perf_events(struct exynos5_dmc *dmc, 725 u32 beg_value) 726 { 727 /* Enable interrupts for counter 2 */ 728 writel(PERF_CNT2, dmc->base_drexi0 + DREX_INTENS_PPC); 729 writel(PERF_CNT2, dmc->base_drexi1 + DREX_INTENS_PPC); 730 731 /* Enable counter 2 and CCNT */ 732 writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi0 + DREX_CNTENS_PPC); 733 writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi1 + DREX_CNTENS_PPC); 734 735 /* Clear overflow flag for all counters */ 736 writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi0 + DREX_FLAG_PPC); 737 writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi1 + DREX_FLAG_PPC); 738 739 /* Reset all counters */ 740 writel(CC_RESET | PPC_COUNTER_RESET, dmc->base_drexi0 + DREX_PMNC_PPC); 741 writel(CC_RESET | PPC_COUNTER_RESET, dmc->base_drexi1 + DREX_PMNC_PPC); 742 743 /* 744 * Set start value for the counters, the number of samples that 745 * will be gathered is calculated as: 0xffffffff - beg_value 746 */ 747 writel(beg_value, dmc->base_drexi0 + DREX_PMCNT2_PPC); 748 writel(beg_value, dmc->base_drexi1 + DREX_PMCNT2_PPC); 749 750 /* Start all counters */ 751 writel(PPC_ENABLE, dmc->base_drexi0 + DREX_PMNC_PPC); 752 writel(PPC_ENABLE, dmc->base_drexi1 + DREX_PMNC_PPC); 753 } 754 755 /** 756 * exynos5_dmc_perf_events_calc() - Calculate utilization 757 * @dmc: device for which the counters are going to be checked 758 * @diff_ts: time between last interrupt and current one 759 * 760 * Function which calculates needed utilization for the devfreq governor. 761 * It prepares values for 'busy_time' and 'total_time' based on elapsed time 762 * between interrupts, which approximates utilization. 763 */ 764 static void exynos5_dmc_perf_events_calc(struct exynos5_dmc *dmc, u64 diff_ts) 765 { 766 /* 767 * This is a simple algorithm for managing traffic on DMC. 768 * When there is almost no load the counters overflow every 4s, 769 * no mater the DMC frequency. 770 * The high load might be approximated using linear function. 771 * Knowing that, simple calculation can provide 'busy_time' and 772 * 'total_time' to the devfreq governor which picks up target 773 * frequency. 774 * We want a fast ramp up and slow decay in frequency change function. 775 */ 776 if (diff_ts < PERF_EVENT_UP_DOWN_THRESHOLD) { 777 /* 778 * Set higher utilization for the simple_ondemand governor. 779 * The governor should increase the frequency of the DMC. 780 */ 781 dmc->load = 70; 782 dmc->total = 100; 783 } else { 784 /* 785 * Set low utilization for the simple_ondemand governor. 786 * The governor should decrease the frequency of the DMC. 787 */ 788 dmc->load = 35; 789 dmc->total = 100; 790 } 791 792 dev_dbg(dmc->dev, "diff_ts=%llu\n", diff_ts); 793 } 794 795 /** 796 * exynos5_dmc_perf_events_check() - Checks the status of the counters 797 * @dmc: device for which the counters are going to be checked 798 * 799 * Function which is called from threaded IRQ to check the counters state 800 * and to call approximation for the needed utilization. 801 */ 802 static void exynos5_dmc_perf_events_check(struct exynos5_dmc *dmc) 803 { 804 u32 val; 805 u64 diff_ts, ts; 806 807 ts = ktime_get_ns(); 808 809 /* Stop all counters */ 810 writel(0, dmc->base_drexi0 + DREX_PMNC_PPC); 811 writel(0, dmc->base_drexi1 + DREX_PMNC_PPC); 812 813 /* Check the source in interrupt flag registers (which channel) */ 814 val = readl(dmc->base_drexi0 + DREX_FLAG_PPC); 815 if (val) { 816 diff_ts = ts - dmc->last_overflow_ts[0]; 817 dmc->last_overflow_ts[0] = ts; 818 dev_dbg(dmc->dev, "drex0 0xE050 val= 0x%08x\n", val); 819 } else { 820 val = readl(dmc->base_drexi1 + DREX_FLAG_PPC); 821 diff_ts = ts - dmc->last_overflow_ts[1]; 822 dmc->last_overflow_ts[1] = ts; 823 dev_dbg(dmc->dev, "drex1 0xE050 val= 0x%08x\n", val); 824 } 825 826 exynos5_dmc_perf_events_calc(dmc, diff_ts); 827 828 exynos5_dmc_start_perf_events(dmc, PERF_COUNTER_START_VALUE); 829 } 830 831 /** 832 * exynos5_dmc_enable_perf_events() - Enable performance events 833 * @dmc: device for which the counters are going to be checked 834 * 835 * Function which is setup needed environment and enables counters. 836 */ 837 static void exynos5_dmc_enable_perf_events(struct exynos5_dmc *dmc) 838 { 839 u64 ts; 840 841 /* Enable Performance Event Clock */ 842 writel(PEREV_CLK_EN, dmc->base_drexi0 + DREX_PPCCLKCON); 843 writel(PEREV_CLK_EN, dmc->base_drexi1 + DREX_PPCCLKCON); 844 845 /* Select read transfers as performance event2 */ 846 writel(READ_TRANSFER_CH0, dmc->base_drexi0 + DREX_PEREV2CONFIG); 847 writel(READ_TRANSFER_CH1, dmc->base_drexi1 + DREX_PEREV2CONFIG); 848 849 ts = ktime_get_ns(); 850 dmc->last_overflow_ts[0] = ts; 851 dmc->last_overflow_ts[1] = ts; 852 853 /* Devfreq shouldn't be faster than initialization, play safe though. */ 854 dmc->load = 99; 855 dmc->total = 100; 856 } 857 858 /** 859 * exynos5_dmc_disable_perf_events() - Disable performance events 860 * @dmc: device for which the counters are going to be checked 861 * 862 * Function which stops, disables performance event counters and interrupts. 863 */ 864 static void exynos5_dmc_disable_perf_events(struct exynos5_dmc *dmc) 865 { 866 /* Stop all counters */ 867 writel(0, dmc->base_drexi0 + DREX_PMNC_PPC); 868 writel(0, dmc->base_drexi1 + DREX_PMNC_PPC); 869 870 /* Disable interrupts for counter 2 */ 871 writel(PERF_CNT2, dmc->base_drexi0 + DREX_INTENC_PPC); 872 writel(PERF_CNT2, dmc->base_drexi1 + DREX_INTENC_PPC); 873 874 /* Disable counter 2 and CCNT */ 875 writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi0 + DREX_CNTENC_PPC); 876 writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi1 + DREX_CNTENC_PPC); 877 878 /* Clear overflow flag for all counters */ 879 writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi0 + DREX_FLAG_PPC); 880 writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi1 + DREX_FLAG_PPC); 881 } 882 883 /** 884 * exynos5_dmc_get_status() - Read current DMC performance statistics. 885 * @dev: device for which the statistics are requested 886 * @stat: structure which has statistic fields 887 * 888 * Function reads the DMC performance counters and calculates 'busy_time' 889 * and 'total_time'. To protect from overflow, the values are shifted right 890 * by 10. After read out the counters are setup to count again. 891 */ 892 static int exynos5_dmc_get_status(struct device *dev, 893 struct devfreq_dev_status *stat) 894 { 895 struct exynos5_dmc *dmc = dev_get_drvdata(dev); 896 unsigned long load, total; 897 int ret; 898 899 if (dmc->in_irq_mode) { 900 stat->current_frequency = dmc->curr_rate; 901 stat->busy_time = dmc->load; 902 stat->total_time = dmc->total; 903 } else { 904 ret = exynos5_counters_get(dmc, &load, &total); 905 if (ret < 0) 906 return -EINVAL; 907 908 /* To protect from overflow, divide by 1024 */ 909 stat->busy_time = load >> 10; 910 stat->total_time = total >> 10; 911 912 ret = exynos5_counters_set_event(dmc); 913 if (ret < 0) { 914 dev_err(dev, "could not set event counter\n"); 915 return ret; 916 } 917 } 918 919 return 0; 920 } 921 922 /** 923 * exynos5_dmc_get_cur_freq() - Function returns current DMC frequency 924 * @dev: device for which the framework checks operating frequency 925 * @freq: returned frequency value 926 * 927 * It returns the currently used frequency of the DMC. The real operating 928 * frequency might be lower when the clock source value could not be divided 929 * to the requested value. 930 */ 931 static int exynos5_dmc_get_cur_freq(struct device *dev, unsigned long *freq) 932 { 933 struct exynos5_dmc *dmc = dev_get_drvdata(dev); 934 935 mutex_lock(&dmc->lock); 936 *freq = dmc->curr_rate; 937 mutex_unlock(&dmc->lock); 938 939 return 0; 940 } 941 942 /** 943 * exynos5_dmc_df_profile - Devfreq governor's profile structure 944 * 945 * It provides to the devfreq framework needed functions and polling period. 946 */ 947 static struct devfreq_dev_profile exynos5_dmc_df_profile = { 948 .target = exynos5_dmc_target, 949 .get_dev_status = exynos5_dmc_get_status, 950 .get_cur_freq = exynos5_dmc_get_cur_freq, 951 }; 952 953 /** 954 * exynos5_dmc_align_initial_frequency() - Align initial frequency value 955 * @dmc: device for which the frequency is going to be set 956 * @bootloader_init_freq: initial frequency set by the bootloader in KHz 957 * 958 * The initial bootloader frequency, which is present during boot, might be 959 * different that supported frequency values in the driver. It is possible 960 * due to different PLL settings or used PLL as a source. 961 * This function provides the 'initial_freq' for the devfreq framework 962 * statistics engine which supports only registered values. Thus, some alignment 963 * must be made. 964 */ 965 static unsigned long 966 exynos5_dmc_align_init_freq(struct exynos5_dmc *dmc, 967 unsigned long bootloader_init_freq) 968 { 969 unsigned long aligned_freq; 970 int idx; 971 972 idx = find_target_freq_idx(dmc, bootloader_init_freq); 973 if (idx >= 0) 974 aligned_freq = dmc->opp[idx].freq_hz; 975 else 976 aligned_freq = dmc->opp[dmc->opp_count - 1].freq_hz; 977 978 return aligned_freq; 979 } 980 981 /** 982 * create_timings_aligned() - Create register values and align with standard 983 * @dmc: device for which the frequency is going to be set 984 * @idx: speed bin in the OPP table 985 * @clk_period_ps: the period of the clock, known as tCK 986 * 987 * The function calculates timings and creates a register value ready for 988 * a frequency transition. The register contains a few timings. They are 989 * shifted by a known offset. The timing value is calculated based on memory 990 * specyfication: minimal time required and minimal cycles required. 991 */ 992 static int create_timings_aligned(struct exynos5_dmc *dmc, u32 *reg_timing_row, 993 u32 *reg_timing_data, u32 *reg_timing_power, 994 u32 clk_period_ps) 995 { 996 u32 val; 997 const struct timing_reg *reg; 998 999 if (clk_period_ps == 0) 1000 return -EINVAL; 1001 1002 *reg_timing_row = 0; 1003 *reg_timing_data = 0; 1004 *reg_timing_power = 0; 1005 1006 val = dmc->timings->tRFC / clk_period_ps; 1007 val += dmc->timings->tRFC % clk_period_ps ? 1 : 0; 1008 val = max(val, dmc->min_tck->tRFC); 1009 reg = &timing_row[0]; 1010 *reg_timing_row |= TIMING_VAL2REG(reg, val); 1011 1012 val = dmc->timings->tRRD / clk_period_ps; 1013 val += dmc->timings->tRRD % clk_period_ps ? 1 : 0; 1014 val = max(val, dmc->min_tck->tRRD); 1015 reg = &timing_row[1]; 1016 *reg_timing_row |= TIMING_VAL2REG(reg, val); 1017 1018 val = dmc->timings->tRPab / clk_period_ps; 1019 val += dmc->timings->tRPab % clk_period_ps ? 1 : 0; 1020 val = max(val, dmc->min_tck->tRPab); 1021 reg = &timing_row[2]; 1022 *reg_timing_row |= TIMING_VAL2REG(reg, val); 1023 1024 val = dmc->timings->tRCD / clk_period_ps; 1025 val += dmc->timings->tRCD % clk_period_ps ? 1 : 0; 1026 val = max(val, dmc->min_tck->tRCD); 1027 reg = &timing_row[3]; 1028 *reg_timing_row |= TIMING_VAL2REG(reg, val); 1029 1030 val = dmc->timings->tRC / clk_period_ps; 1031 val += dmc->timings->tRC % clk_period_ps ? 1 : 0; 1032 val = max(val, dmc->min_tck->tRC); 1033 reg = &timing_row[4]; 1034 *reg_timing_row |= TIMING_VAL2REG(reg, val); 1035 1036 val = dmc->timings->tRAS / clk_period_ps; 1037 val += dmc->timings->tRAS % clk_period_ps ? 1 : 0; 1038 val = max(val, dmc->min_tck->tRAS); 1039 reg = &timing_row[5]; 1040 *reg_timing_row |= TIMING_VAL2REG(reg, val); 1041 1042 /* data related timings */ 1043 val = dmc->timings->tWTR / clk_period_ps; 1044 val += dmc->timings->tWTR % clk_period_ps ? 1 : 0; 1045 val = max(val, dmc->min_tck->tWTR); 1046 reg = &timing_data[0]; 1047 *reg_timing_data |= TIMING_VAL2REG(reg, val); 1048 1049 val = dmc->timings->tWR / clk_period_ps; 1050 val += dmc->timings->tWR % clk_period_ps ? 1 : 0; 1051 val = max(val, dmc->min_tck->tWR); 1052 reg = &timing_data[1]; 1053 *reg_timing_data |= TIMING_VAL2REG(reg, val); 1054 1055 val = dmc->timings->tRTP / clk_period_ps; 1056 val += dmc->timings->tRTP % clk_period_ps ? 1 : 0; 1057 val = max(val, dmc->min_tck->tRTP); 1058 reg = &timing_data[2]; 1059 *reg_timing_data |= TIMING_VAL2REG(reg, val); 1060 1061 val = dmc->timings->tW2W_C2C / clk_period_ps; 1062 val += dmc->timings->tW2W_C2C % clk_period_ps ? 1 : 0; 1063 val = max(val, dmc->min_tck->tW2W_C2C); 1064 reg = &timing_data[3]; 1065 *reg_timing_data |= TIMING_VAL2REG(reg, val); 1066 1067 val = dmc->timings->tR2R_C2C / clk_period_ps; 1068 val += dmc->timings->tR2R_C2C % clk_period_ps ? 1 : 0; 1069 val = max(val, dmc->min_tck->tR2R_C2C); 1070 reg = &timing_data[4]; 1071 *reg_timing_data |= TIMING_VAL2REG(reg, val); 1072 1073 val = dmc->timings->tWL / clk_period_ps; 1074 val += dmc->timings->tWL % clk_period_ps ? 1 : 0; 1075 val = max(val, dmc->min_tck->tWL); 1076 reg = &timing_data[5]; 1077 *reg_timing_data |= TIMING_VAL2REG(reg, val); 1078 1079 val = dmc->timings->tDQSCK / clk_period_ps; 1080 val += dmc->timings->tDQSCK % clk_period_ps ? 1 : 0; 1081 val = max(val, dmc->min_tck->tDQSCK); 1082 reg = &timing_data[6]; 1083 *reg_timing_data |= TIMING_VAL2REG(reg, val); 1084 1085 val = dmc->timings->tRL / clk_period_ps; 1086 val += dmc->timings->tRL % clk_period_ps ? 1 : 0; 1087 val = max(val, dmc->min_tck->tRL); 1088 reg = &timing_data[7]; 1089 *reg_timing_data |= TIMING_VAL2REG(reg, val); 1090 1091 /* power related timings */ 1092 val = dmc->timings->tFAW / clk_period_ps; 1093 val += dmc->timings->tFAW % clk_period_ps ? 1 : 0; 1094 val = max(val, dmc->min_tck->tFAW); 1095 reg = &timing_power[0]; 1096 *reg_timing_power |= TIMING_VAL2REG(reg, val); 1097 1098 val = dmc->timings->tXSR / clk_period_ps; 1099 val += dmc->timings->tXSR % clk_period_ps ? 1 : 0; 1100 val = max(val, dmc->min_tck->tXSR); 1101 reg = &timing_power[1]; 1102 *reg_timing_power |= TIMING_VAL2REG(reg, val); 1103 1104 val = dmc->timings->tXP / clk_period_ps; 1105 val += dmc->timings->tXP % clk_period_ps ? 1 : 0; 1106 val = max(val, dmc->min_tck->tXP); 1107 reg = &timing_power[2]; 1108 *reg_timing_power |= TIMING_VAL2REG(reg, val); 1109 1110 val = dmc->timings->tCKE / clk_period_ps; 1111 val += dmc->timings->tCKE % clk_period_ps ? 1 : 0; 1112 val = max(val, dmc->min_tck->tCKE); 1113 reg = &timing_power[3]; 1114 *reg_timing_power |= TIMING_VAL2REG(reg, val); 1115 1116 val = dmc->timings->tMRD / clk_period_ps; 1117 val += dmc->timings->tMRD % clk_period_ps ? 1 : 0; 1118 val = max(val, dmc->min_tck->tMRD); 1119 reg = &timing_power[4]; 1120 *reg_timing_power |= TIMING_VAL2REG(reg, val); 1121 1122 return 0; 1123 } 1124 1125 /** 1126 * of_get_dram_timings() - helper function for parsing DT settings for DRAM 1127 * @dmc: device for which the frequency is going to be set 1128 * 1129 * The function parses DT entries with DRAM information. 1130 */ 1131 static int of_get_dram_timings(struct exynos5_dmc *dmc) 1132 { 1133 int ret = 0; 1134 int idx; 1135 struct device_node *np_ddr; 1136 u32 freq_mhz, clk_period_ps; 1137 1138 np_ddr = of_parse_phandle(dmc->dev->of_node, "device-handle", 0); 1139 if (!np_ddr) { 1140 dev_warn(dmc->dev, "could not find 'device-handle' in DT\n"); 1141 return -EINVAL; 1142 } 1143 1144 dmc->timing_row = devm_kmalloc_array(dmc->dev, TIMING_COUNT, 1145 sizeof(u32), GFP_KERNEL); 1146 if (!dmc->timing_row) 1147 return -ENOMEM; 1148 1149 dmc->timing_data = devm_kmalloc_array(dmc->dev, TIMING_COUNT, 1150 sizeof(u32), GFP_KERNEL); 1151 if (!dmc->timing_data) 1152 return -ENOMEM; 1153 1154 dmc->timing_power = devm_kmalloc_array(dmc->dev, TIMING_COUNT, 1155 sizeof(u32), GFP_KERNEL); 1156 if (!dmc->timing_power) 1157 return -ENOMEM; 1158 1159 dmc->timings = of_lpddr3_get_ddr_timings(np_ddr, dmc->dev, 1160 DDR_TYPE_LPDDR3, 1161 &dmc->timings_arr_size); 1162 if (!dmc->timings) { 1163 of_node_put(np_ddr); 1164 dev_warn(dmc->dev, "could not get timings from DT\n"); 1165 return -EINVAL; 1166 } 1167 1168 dmc->min_tck = of_lpddr3_get_min_tck(np_ddr, dmc->dev); 1169 if (!dmc->min_tck) { 1170 of_node_put(np_ddr); 1171 dev_warn(dmc->dev, "could not get tck from DT\n"); 1172 return -EINVAL; 1173 } 1174 1175 /* Sorted array of OPPs with frequency ascending */ 1176 for (idx = 0; idx < dmc->opp_count; idx++) { 1177 freq_mhz = dmc->opp[idx].freq_hz / 1000000; 1178 clk_period_ps = 1000000 / freq_mhz; 1179 1180 ret = create_timings_aligned(dmc, &dmc->timing_row[idx], 1181 &dmc->timing_data[idx], 1182 &dmc->timing_power[idx], 1183 clk_period_ps); 1184 } 1185 1186 of_node_put(np_ddr); 1187 1188 /* Take the highest frequency's timings as 'bypass' */ 1189 dmc->bypass_timing_row = dmc->timing_row[idx - 1]; 1190 dmc->bypass_timing_data = dmc->timing_data[idx - 1]; 1191 dmc->bypass_timing_power = dmc->timing_power[idx - 1]; 1192 1193 return ret; 1194 } 1195 1196 /** 1197 * exynos5_dmc_init_clks() - Initialize clocks needed for DMC operation. 1198 * @dmc: DMC structure containing needed fields 1199 * 1200 * Get the needed clocks defined in DT device, enable and set the right parents. 1201 * Read current frequency and initialize the initial rate for governor. 1202 */ 1203 static int exynos5_dmc_init_clks(struct exynos5_dmc *dmc) 1204 { 1205 int ret; 1206 unsigned long target_volt = 0; 1207 unsigned long target_rate = 0; 1208 unsigned int tmp; 1209 1210 dmc->fout_spll = devm_clk_get(dmc->dev, "fout_spll"); 1211 if (IS_ERR(dmc->fout_spll)) 1212 return PTR_ERR(dmc->fout_spll); 1213 1214 dmc->fout_bpll = devm_clk_get(dmc->dev, "fout_bpll"); 1215 if (IS_ERR(dmc->fout_bpll)) 1216 return PTR_ERR(dmc->fout_bpll); 1217 1218 dmc->mout_mclk_cdrex = devm_clk_get(dmc->dev, "mout_mclk_cdrex"); 1219 if (IS_ERR(dmc->mout_mclk_cdrex)) 1220 return PTR_ERR(dmc->mout_mclk_cdrex); 1221 1222 dmc->mout_bpll = devm_clk_get(dmc->dev, "mout_bpll"); 1223 if (IS_ERR(dmc->mout_bpll)) 1224 return PTR_ERR(dmc->mout_bpll); 1225 1226 dmc->mout_mx_mspll_ccore = devm_clk_get(dmc->dev, 1227 "mout_mx_mspll_ccore"); 1228 if (IS_ERR(dmc->mout_mx_mspll_ccore)) 1229 return PTR_ERR(dmc->mout_mx_mspll_ccore); 1230 1231 dmc->mout_spll = devm_clk_get(dmc->dev, "ff_dout_spll2"); 1232 if (IS_ERR(dmc->mout_spll)) { 1233 dmc->mout_spll = devm_clk_get(dmc->dev, "mout_sclk_spll"); 1234 if (IS_ERR(dmc->mout_spll)) 1235 return PTR_ERR(dmc->mout_spll); 1236 } 1237 1238 /* 1239 * Convert frequency to KHz values and set it for the governor. 1240 */ 1241 dmc->curr_rate = clk_get_rate(dmc->mout_mclk_cdrex); 1242 dmc->curr_rate = exynos5_dmc_align_init_freq(dmc, dmc->curr_rate); 1243 exynos5_dmc_df_profile.initial_freq = dmc->curr_rate; 1244 1245 ret = exynos5_dmc_get_volt_freq(dmc, &dmc->curr_rate, &target_rate, 1246 &target_volt, 0); 1247 if (ret) 1248 return ret; 1249 1250 dmc->curr_volt = target_volt; 1251 1252 clk_set_parent(dmc->mout_mx_mspll_ccore, dmc->mout_spll); 1253 1254 dmc->bypass_rate = clk_get_rate(dmc->mout_mx_mspll_ccore); 1255 1256 clk_prepare_enable(dmc->fout_bpll); 1257 clk_prepare_enable(dmc->mout_bpll); 1258 1259 /* 1260 * Some bootloaders do not set clock routes correctly. 1261 * Stop one path in clocks to PHY. 1262 */ 1263 regmap_read(dmc->clk_regmap, CDREX_LPDDR3PHY_CLKM_SRC, &tmp); 1264 tmp &= ~(BIT(1) | BIT(0)); 1265 regmap_write(dmc->clk_regmap, CDREX_LPDDR3PHY_CLKM_SRC, tmp); 1266 1267 return 0; 1268 } 1269 1270 /** 1271 * exynos5_performance_counters_init() - Initializes performance DMC's counters 1272 * @dmc: DMC for which it does the setup 1273 * 1274 * Initialization of performance counters in DMC for estimating usage. 1275 * The counter's values are used for calculation of a memory bandwidth and based 1276 * on that the governor changes the frequency. 1277 * The counters are not used when the governor is GOVERNOR_USERSPACE. 1278 */ 1279 static int exynos5_performance_counters_init(struct exynos5_dmc *dmc) 1280 { 1281 int counters_size; 1282 int ret, i; 1283 1284 dmc->num_counters = devfreq_event_get_edev_count(dmc->dev); 1285 if (dmc->num_counters < 0) { 1286 dev_err(dmc->dev, "could not get devfreq-event counters\n"); 1287 return dmc->num_counters; 1288 } 1289 1290 counters_size = sizeof(struct devfreq_event_dev) * dmc->num_counters; 1291 dmc->counter = devm_kzalloc(dmc->dev, counters_size, GFP_KERNEL); 1292 if (!dmc->counter) 1293 return -ENOMEM; 1294 1295 for (i = 0; i < dmc->num_counters; i++) { 1296 dmc->counter[i] = 1297 devfreq_event_get_edev_by_phandle(dmc->dev, i); 1298 if (IS_ERR_OR_NULL(dmc->counter[i])) 1299 return -EPROBE_DEFER; 1300 } 1301 1302 ret = exynos5_counters_enable_edev(dmc); 1303 if (ret < 0) { 1304 dev_err(dmc->dev, "could not enable event counter\n"); 1305 return ret; 1306 } 1307 1308 ret = exynos5_counters_set_event(dmc); 1309 if (ret < 0) { 1310 exynos5_counters_disable_edev(dmc); 1311 dev_err(dmc->dev, "could not set event counter\n"); 1312 return ret; 1313 } 1314 1315 return 0; 1316 } 1317 1318 /** 1319 * exynos5_dmc_set_pause_on_switching() - Controls a pause feature in DMC 1320 * @dmc: device which is used for changing this feature 1321 * @set: a boolean state passing enable/disable request 1322 * 1323 * There is a need of pausing DREX DMC when divider or MUX in clock tree 1324 * changes its configuration. In such situation access to the memory is blocked 1325 * in DMC automatically. This feature is used when clock frequency change 1326 * request appears and touches clock tree. 1327 */ 1328 static inline int exynos5_dmc_set_pause_on_switching(struct exynos5_dmc *dmc) 1329 { 1330 unsigned int val; 1331 int ret; 1332 1333 ret = regmap_read(dmc->clk_regmap, CDREX_PAUSE, &val); 1334 if (ret) 1335 return ret; 1336 1337 val |= 1UL; 1338 regmap_write(dmc->clk_regmap, CDREX_PAUSE, val); 1339 1340 return 0; 1341 } 1342 1343 static irqreturn_t dmc_irq_thread(int irq, void *priv) 1344 { 1345 int res; 1346 struct exynos5_dmc *dmc = priv; 1347 1348 mutex_lock(&dmc->df->lock); 1349 exynos5_dmc_perf_events_check(dmc); 1350 res = update_devfreq(dmc->df); 1351 mutex_unlock(&dmc->df->lock); 1352 1353 if (res) 1354 dev_warn(dmc->dev, "devfreq failed with %d\n", res); 1355 1356 return IRQ_HANDLED; 1357 } 1358 1359 /** 1360 * exynos5_dmc_probe() - Probe function for the DMC driver 1361 * @pdev: platform device for which the driver is going to be initialized 1362 * 1363 * Initialize basic components: clocks, regulators, performance counters, etc. 1364 * Read out product version and based on the information setup 1365 * internal structures for the controller (frequency and voltage) and for DRAM 1366 * memory parameters: timings for each operating frequency. 1367 * Register new devfreq device for controlling DVFS of the DMC. 1368 */ 1369 static int exynos5_dmc_probe(struct platform_device *pdev) 1370 { 1371 int ret = 0; 1372 struct device *dev = &pdev->dev; 1373 struct device_node *np = dev->of_node; 1374 struct exynos5_dmc *dmc; 1375 int irq[2]; 1376 1377 dmc = devm_kzalloc(dev, sizeof(*dmc), GFP_KERNEL); 1378 if (!dmc) 1379 return -ENOMEM; 1380 1381 mutex_init(&dmc->lock); 1382 1383 dmc->dev = dev; 1384 platform_set_drvdata(pdev, dmc); 1385 1386 dmc->base_drexi0 = devm_platform_ioremap_resource(pdev, 0); 1387 if (IS_ERR(dmc->base_drexi0)) 1388 return PTR_ERR(dmc->base_drexi0); 1389 1390 dmc->base_drexi1 = devm_platform_ioremap_resource(pdev, 1); 1391 if (IS_ERR(dmc->base_drexi1)) 1392 return PTR_ERR(dmc->base_drexi1); 1393 1394 dmc->clk_regmap = syscon_regmap_lookup_by_phandle(np, 1395 "samsung,syscon-clk"); 1396 if (IS_ERR(dmc->clk_regmap)) 1397 return PTR_ERR(dmc->clk_regmap); 1398 1399 ret = exynos5_init_freq_table(dmc, &exynos5_dmc_df_profile); 1400 if (ret) { 1401 dev_warn(dev, "couldn't initialize frequency settings\n"); 1402 return ret; 1403 } 1404 1405 dmc->vdd_mif = devm_regulator_get(dev, "vdd"); 1406 if (IS_ERR(dmc->vdd_mif)) { 1407 ret = PTR_ERR(dmc->vdd_mif); 1408 return ret; 1409 } 1410 1411 ret = exynos5_dmc_init_clks(dmc); 1412 if (ret) 1413 return ret; 1414 1415 ret = of_get_dram_timings(dmc); 1416 if (ret) { 1417 dev_warn(dev, "couldn't initialize timings settings\n"); 1418 goto remove_clocks; 1419 } 1420 1421 ret = exynos5_dmc_set_pause_on_switching(dmc); 1422 if (ret) { 1423 dev_warn(dev, "couldn't get access to PAUSE register\n"); 1424 goto remove_clocks; 1425 } 1426 1427 /* There is two modes in which the driver works: polling or IRQ */ 1428 irq[0] = platform_get_irq_byname(pdev, "drex_0"); 1429 irq[1] = platform_get_irq_byname(pdev, "drex_1"); 1430 if (irq[0] > 0 && irq[1] > 0) { 1431 ret = devm_request_threaded_irq(dev, irq[0], NULL, 1432 dmc_irq_thread, IRQF_ONESHOT, 1433 dev_name(dev), dmc); 1434 if (ret) { 1435 dev_err(dev, "couldn't grab IRQ\n"); 1436 goto remove_clocks; 1437 } 1438 1439 ret = devm_request_threaded_irq(dev, irq[1], NULL, 1440 dmc_irq_thread, IRQF_ONESHOT, 1441 dev_name(dev), dmc); 1442 if (ret) { 1443 dev_err(dev, "couldn't grab IRQ\n"); 1444 goto remove_clocks; 1445 } 1446 1447 /* 1448 * Setup default thresholds for the devfreq governor. 1449 * The values are chosen based on experiments. 1450 */ 1451 dmc->gov_data.upthreshold = 55; 1452 dmc->gov_data.downdifferential = 5; 1453 1454 exynos5_dmc_enable_perf_events(dmc); 1455 1456 dmc->in_irq_mode = 1; 1457 } else { 1458 ret = exynos5_performance_counters_init(dmc); 1459 if (ret) { 1460 dev_warn(dev, "couldn't probe performance counters\n"); 1461 goto remove_clocks; 1462 } 1463 1464 /* 1465 * Setup default thresholds for the devfreq governor. 1466 * The values are chosen based on experiments. 1467 */ 1468 dmc->gov_data.upthreshold = 30; 1469 dmc->gov_data.downdifferential = 5; 1470 1471 exynos5_dmc_df_profile.polling_ms = 500; 1472 } 1473 1474 1475 dmc->df = devm_devfreq_add_device(dev, &exynos5_dmc_df_profile, 1476 DEVFREQ_GOV_SIMPLE_ONDEMAND, 1477 &dmc->gov_data); 1478 1479 if (IS_ERR(dmc->df)) { 1480 ret = PTR_ERR(dmc->df); 1481 goto err_devfreq_add; 1482 } 1483 1484 if (dmc->in_irq_mode) 1485 exynos5_dmc_start_perf_events(dmc, PERF_COUNTER_START_VALUE); 1486 1487 dev_info(dev, "DMC initialized\n"); 1488 1489 return 0; 1490 1491 err_devfreq_add: 1492 if (dmc->in_irq_mode) 1493 exynos5_dmc_disable_perf_events(dmc); 1494 else 1495 exynos5_counters_disable_edev(dmc); 1496 remove_clocks: 1497 clk_disable_unprepare(dmc->mout_bpll); 1498 clk_disable_unprepare(dmc->fout_bpll); 1499 1500 return ret; 1501 } 1502 1503 /** 1504 * exynos5_dmc_remove() - Remove function for the platform device 1505 * @pdev: platform device which is going to be removed 1506 * 1507 * The function relies on 'devm' framework function which automatically 1508 * clean the device's resources. It just calls explicitly disable function for 1509 * the performance counters. 1510 */ 1511 static int exynos5_dmc_remove(struct platform_device *pdev) 1512 { 1513 struct exynos5_dmc *dmc = dev_get_drvdata(&pdev->dev); 1514 1515 if (dmc->in_irq_mode) 1516 exynos5_dmc_disable_perf_events(dmc); 1517 else 1518 exynos5_counters_disable_edev(dmc); 1519 1520 clk_disable_unprepare(dmc->mout_bpll); 1521 clk_disable_unprepare(dmc->fout_bpll); 1522 1523 dev_pm_opp_remove_table(dmc->dev); 1524 1525 return 0; 1526 } 1527 1528 static const struct of_device_id exynos5_dmc_of_match[] = { 1529 { .compatible = "samsung,exynos5422-dmc", }, 1530 { }, 1531 }; 1532 MODULE_DEVICE_TABLE(of, exynos5_dmc_of_match); 1533 1534 static struct platform_driver exynos5_dmc_platdrv = { 1535 .probe = exynos5_dmc_probe, 1536 .remove = exynos5_dmc_remove, 1537 .driver = { 1538 .name = "exynos5-dmc", 1539 .of_match_table = exynos5_dmc_of_match, 1540 }, 1541 }; 1542 module_platform_driver(exynos5_dmc_platdrv); 1543 MODULE_DESCRIPTION("Driver for Exynos5422 Dynamic Memory Controller dynamic frequency and voltage change"); 1544 MODULE_LICENSE("GPL v2"); 1545 MODULE_AUTHOR("Lukasz Luba"); 1546