1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * GPMC support functions
4 *
5 * Copyright (C) 2005-2006 Nokia Corporation
6 *
7 * Author: Juha Yrjola
8 *
9 * Copyright (C) 2009 Texas Instruments
10 * Added OMAP4 support - Santosh Shilimkar <santosh.shilimkar@ti.com>
11 */
12 #include <linux/cpu_pm.h>
13 #include <linux/irq.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/err.h>
18 #include <linux/clk.h>
19 #include <linux/ioport.h>
20 #include <linux/spinlock.h>
21 #include <linux/io.h>
22 #include <linux/gpio/driver.h>
23 #include <linux/gpio/consumer.h> /* GPIO descriptor enum */
24 #include <linux/gpio/machine.h>
25 #include <linux/interrupt.h>
26 #include <linux/irqdomain.h>
27 #include <linux/platform_device.h>
28 #include <linux/of.h>
29 #include <linux/of_address.h>
30 #include <linux/of_device.h>
31 #include <linux/of_platform.h>
32 #include <linux/omap-gpmc.h>
33 #include <linux/pm_runtime.h>
34 #include <linux/sizes.h>
35
36 #include <linux/platform_data/mtd-nand-omap2.h>
37
38 #define DEVICE_NAME "omap-gpmc"
39
40 /* GPMC register offsets */
41 #define GPMC_REVISION 0x00
42 #define GPMC_SYSCONFIG 0x10
43 #define GPMC_SYSSTATUS 0x14
44 #define GPMC_IRQSTATUS 0x18
45 #define GPMC_IRQENABLE 0x1c
46 #define GPMC_TIMEOUT_CONTROL 0x40
47 #define GPMC_ERR_ADDRESS 0x44
48 #define GPMC_ERR_TYPE 0x48
49 #define GPMC_CONFIG 0x50
50 #define GPMC_STATUS 0x54
51 #define GPMC_PREFETCH_CONFIG1 0x1e0
52 #define GPMC_PREFETCH_CONFIG2 0x1e4
53 #define GPMC_PREFETCH_CONTROL 0x1ec
54 #define GPMC_PREFETCH_STATUS 0x1f0
55 #define GPMC_ECC_CONFIG 0x1f4
56 #define GPMC_ECC_CONTROL 0x1f8
57 #define GPMC_ECC_SIZE_CONFIG 0x1fc
58 #define GPMC_ECC1_RESULT 0x200
59 #define GPMC_ECC_BCH_RESULT_0 0x240 /* not available on OMAP2 */
60 #define GPMC_ECC_BCH_RESULT_1 0x244 /* not available on OMAP2 */
61 #define GPMC_ECC_BCH_RESULT_2 0x248 /* not available on OMAP2 */
62 #define GPMC_ECC_BCH_RESULT_3 0x24c /* not available on OMAP2 */
63 #define GPMC_ECC_BCH_RESULT_4 0x300 /* not available on OMAP2 */
64 #define GPMC_ECC_BCH_RESULT_5 0x304 /* not available on OMAP2 */
65 #define GPMC_ECC_BCH_RESULT_6 0x308 /* not available on OMAP2 */
66
67 /* GPMC ECC control settings */
68 #define GPMC_ECC_CTRL_ECCCLEAR 0x100
69 #define GPMC_ECC_CTRL_ECCDISABLE 0x000
70 #define GPMC_ECC_CTRL_ECCREG1 0x001
71 #define GPMC_ECC_CTRL_ECCREG2 0x002
72 #define GPMC_ECC_CTRL_ECCREG3 0x003
73 #define GPMC_ECC_CTRL_ECCREG4 0x004
74 #define GPMC_ECC_CTRL_ECCREG5 0x005
75 #define GPMC_ECC_CTRL_ECCREG6 0x006
76 #define GPMC_ECC_CTRL_ECCREG7 0x007
77 #define GPMC_ECC_CTRL_ECCREG8 0x008
78 #define GPMC_ECC_CTRL_ECCREG9 0x009
79
80 #define GPMC_CONFIG_LIMITEDADDRESS BIT(1)
81
82 #define GPMC_STATUS_EMPTYWRITEBUFFERSTATUS BIT(0)
83
84 #define GPMC_CONFIG2_CSEXTRADELAY BIT(7)
85 #define GPMC_CONFIG3_ADVEXTRADELAY BIT(7)
86 #define GPMC_CONFIG4_OEEXTRADELAY BIT(7)
87 #define GPMC_CONFIG4_WEEXTRADELAY BIT(23)
88 #define GPMC_CONFIG6_CYCLE2CYCLEDIFFCSEN BIT(6)
89 #define GPMC_CONFIG6_CYCLE2CYCLESAMECSEN BIT(7)
90
91 #define GPMC_CS0_OFFSET 0x60
92 #define GPMC_CS_SIZE 0x30
93 #define GPMC_BCH_SIZE 0x10
94
95 /*
96 * The first 1MB of GPMC address space is typically mapped to
97 * the internal ROM. Never allocate the first page, to
98 * facilitate bug detection; even if we didn't boot from ROM.
99 * As GPMC minimum partition size is 16MB we can only start from
100 * there.
101 */
102 #define GPMC_MEM_START 0x1000000
103 #define GPMC_MEM_END 0x3FFFFFFF
104
105 #define GPMC_CHUNK_SHIFT 24 /* 16 MB */
106 #define GPMC_SECTION_SHIFT 28 /* 128 MB */
107
108 #define CS_NUM_SHIFT 24
109 #define ENABLE_PREFETCH (0x1 << 7)
110 #define DMA_MPU_MODE 2
111
112 #define GPMC_REVISION_MAJOR(l) (((l) >> 4) & 0xf)
113 #define GPMC_REVISION_MINOR(l) ((l) & 0xf)
114
115 #define GPMC_HAS_WR_ACCESS 0x1
116 #define GPMC_HAS_WR_DATA_MUX_BUS 0x2
117 #define GPMC_HAS_MUX_AAD 0x4
118
119 #define GPMC_NR_WAITPINS 4
120
121 #define GPMC_CS_CONFIG1 0x00
122 #define GPMC_CS_CONFIG2 0x04
123 #define GPMC_CS_CONFIG3 0x08
124 #define GPMC_CS_CONFIG4 0x0c
125 #define GPMC_CS_CONFIG5 0x10
126 #define GPMC_CS_CONFIG6 0x14
127 #define GPMC_CS_CONFIG7 0x18
128 #define GPMC_CS_NAND_COMMAND 0x1c
129 #define GPMC_CS_NAND_ADDRESS 0x20
130 #define GPMC_CS_NAND_DATA 0x24
131
132 /* Control Commands */
133 #define GPMC_CONFIG_RDY_BSY 0x00000001
134 #define GPMC_CONFIG_DEV_SIZE 0x00000002
135 #define GPMC_CONFIG_DEV_TYPE 0x00000003
136
137 #define GPMC_CONFIG_WAITPINPOLARITY(pin) (BIT(pin) << 8)
138 #define GPMC_CONFIG1_WRAPBURST_SUPP (1 << 31)
139 #define GPMC_CONFIG1_READMULTIPLE_SUPP (1 << 30)
140 #define GPMC_CONFIG1_READTYPE_ASYNC (0 << 29)
141 #define GPMC_CONFIG1_READTYPE_SYNC (1 << 29)
142 #define GPMC_CONFIG1_WRITEMULTIPLE_SUPP (1 << 28)
143 #define GPMC_CONFIG1_WRITETYPE_ASYNC (0 << 27)
144 #define GPMC_CONFIG1_WRITETYPE_SYNC (1 << 27)
145 #define GPMC_CONFIG1_CLKACTIVATIONTIME(val) (((val) & 3) << 25)
146 /** CLKACTIVATIONTIME Max Ticks */
147 #define GPMC_CONFIG1_CLKACTIVATIONTIME_MAX 2
148 #define GPMC_CONFIG1_PAGE_LEN(val) (((val) & 3) << 23)
149 /** ATTACHEDDEVICEPAGELENGTH Max Value */
150 #define GPMC_CONFIG1_ATTACHEDDEVICEPAGELENGTH_MAX 2
151 #define GPMC_CONFIG1_WAIT_READ_MON (1 << 22)
152 #define GPMC_CONFIG1_WAIT_WRITE_MON (1 << 21)
153 #define GPMC_CONFIG1_WAIT_MON_TIME(val) (((val) & 3) << 18)
154 /** WAITMONITORINGTIME Max Ticks */
155 #define GPMC_CONFIG1_WAITMONITORINGTIME_MAX 2
156 #define GPMC_CONFIG1_WAIT_PIN_SEL(val) (((val) & 3) << 16)
157 #define GPMC_CONFIG1_DEVICESIZE(val) (((val) & 3) << 12)
158 #define GPMC_CONFIG1_DEVICESIZE_16 GPMC_CONFIG1_DEVICESIZE(1)
159 /** DEVICESIZE Max Value */
160 #define GPMC_CONFIG1_DEVICESIZE_MAX 1
161 #define GPMC_CONFIG1_DEVICETYPE(val) (((val) & 3) << 10)
162 #define GPMC_CONFIG1_DEVICETYPE_NOR GPMC_CONFIG1_DEVICETYPE(0)
163 #define GPMC_CONFIG1_MUXTYPE(val) (((val) & 3) << 8)
164 #define GPMC_CONFIG1_TIME_PARA_GRAN (1 << 4)
165 #define GPMC_CONFIG1_FCLK_DIV(val) ((val) & 3)
166 #define GPMC_CONFIG1_FCLK_DIV2 (GPMC_CONFIG1_FCLK_DIV(1))
167 #define GPMC_CONFIG1_FCLK_DIV3 (GPMC_CONFIG1_FCLK_DIV(2))
168 #define GPMC_CONFIG1_FCLK_DIV4 (GPMC_CONFIG1_FCLK_DIV(3))
169 #define GPMC_CONFIG7_CSVALID (1 << 6)
170
171 #define GPMC_CONFIG7_BASEADDRESS_MASK 0x3f
172 #define GPMC_CONFIG7_CSVALID_MASK BIT(6)
173 #define GPMC_CONFIG7_MASKADDRESS_OFFSET 8
174 #define GPMC_CONFIG7_MASKADDRESS_MASK (0xf << GPMC_CONFIG7_MASKADDRESS_OFFSET)
175 /* All CONFIG7 bits except reserved bits */
176 #define GPMC_CONFIG7_MASK (GPMC_CONFIG7_BASEADDRESS_MASK | \
177 GPMC_CONFIG7_CSVALID_MASK | \
178 GPMC_CONFIG7_MASKADDRESS_MASK)
179
180 #define GPMC_DEVICETYPE_NOR 0
181 #define GPMC_DEVICETYPE_NAND 2
182 #define GPMC_CONFIG_WRITEPROTECT 0x00000010
183 #define WR_RD_PIN_MONITORING 0x00600000
184
185 /* ECC commands */
186 #define GPMC_ECC_READ 0 /* Reset Hardware ECC for read */
187 #define GPMC_ECC_WRITE 1 /* Reset Hardware ECC for write */
188 #define GPMC_ECC_READSYN 2 /* Reset before syndrom is read back */
189
190 #define GPMC_NR_NAND_IRQS 2 /* number of NAND specific IRQs */
191
192 enum gpmc_clk_domain {
193 GPMC_CD_FCLK,
194 GPMC_CD_CLK
195 };
196
197 struct gpmc_cs_data {
198 const char *name;
199
200 #define GPMC_CS_RESERVED (1 << 0)
201 u32 flags;
202
203 struct resource mem;
204 };
205
206 /* Structure to save gpmc cs context */
207 struct gpmc_cs_config {
208 u32 config1;
209 u32 config2;
210 u32 config3;
211 u32 config4;
212 u32 config5;
213 u32 config6;
214 u32 config7;
215 int is_valid;
216 };
217
218 /*
219 * Structure to save/restore gpmc context
220 * to support core off on OMAP3
221 */
222 struct omap3_gpmc_regs {
223 u32 sysconfig;
224 u32 irqenable;
225 u32 timeout_ctrl;
226 u32 config;
227 u32 prefetch_config1;
228 u32 prefetch_config2;
229 u32 prefetch_control;
230 struct gpmc_cs_config cs_context[GPMC_CS_NUM];
231 };
232
233 struct gpmc_waitpin {
234 u32 pin;
235 u32 polarity;
236 struct gpio_desc *desc;
237 };
238
239 struct gpmc_device {
240 struct device *dev;
241 int irq;
242 struct irq_chip irq_chip;
243 struct gpio_chip gpio_chip;
244 struct notifier_block nb;
245 struct omap3_gpmc_regs context;
246 struct gpmc_waitpin *waitpins;
247 int nirqs;
248 unsigned int is_suspended:1;
249 struct resource *data;
250 };
251
252 static struct irq_domain *gpmc_irq_domain;
253
254 static struct resource gpmc_mem_root;
255 static struct gpmc_cs_data gpmc_cs[GPMC_CS_NUM];
256 static DEFINE_SPINLOCK(gpmc_mem_lock);
257 /* Define chip-selects as reserved by default until probe completes */
258 static unsigned int gpmc_cs_num = GPMC_CS_NUM;
259 static unsigned int gpmc_nr_waitpins;
260 static unsigned int gpmc_capability;
261 static void __iomem *gpmc_base;
262
263 static struct clk *gpmc_l3_clk;
264
265 static irqreturn_t gpmc_handle_irq(int irq, void *dev);
266
gpmc_write_reg(int idx,u32 val)267 static void gpmc_write_reg(int idx, u32 val)
268 {
269 writel_relaxed(val, gpmc_base + idx);
270 }
271
gpmc_read_reg(int idx)272 static u32 gpmc_read_reg(int idx)
273 {
274 return readl_relaxed(gpmc_base + idx);
275 }
276
gpmc_cs_write_reg(int cs,int idx,u32 val)277 void gpmc_cs_write_reg(int cs, int idx, u32 val)
278 {
279 void __iomem *reg_addr;
280
281 reg_addr = gpmc_base + GPMC_CS0_OFFSET + (cs * GPMC_CS_SIZE) + idx;
282 writel_relaxed(val, reg_addr);
283 }
284
gpmc_cs_read_reg(int cs,int idx)285 static u32 gpmc_cs_read_reg(int cs, int idx)
286 {
287 void __iomem *reg_addr;
288
289 reg_addr = gpmc_base + GPMC_CS0_OFFSET + (cs * GPMC_CS_SIZE) + idx;
290 return readl_relaxed(reg_addr);
291 }
292
293 /* TODO: Add support for gpmc_fck to clock framework and use it */
gpmc_get_fclk_period(void)294 static unsigned long gpmc_get_fclk_period(void)
295 {
296 unsigned long rate = clk_get_rate(gpmc_l3_clk);
297
298 rate /= 1000;
299 rate = 1000000000 / rate; /* In picoseconds */
300
301 return rate;
302 }
303
304 /**
305 * gpmc_get_clk_period - get period of selected clock domain in ps
306 * @cs: Chip Select Region.
307 * @cd: Clock Domain.
308 *
309 * GPMC_CS_CONFIG1 GPMCFCLKDIVIDER for cs has to be setup
310 * prior to calling this function with GPMC_CD_CLK.
311 */
gpmc_get_clk_period(int cs,enum gpmc_clk_domain cd)312 static unsigned long gpmc_get_clk_period(int cs, enum gpmc_clk_domain cd)
313 {
314 unsigned long tick_ps = gpmc_get_fclk_period();
315 u32 l;
316 int div;
317
318 switch (cd) {
319 case GPMC_CD_CLK:
320 /* get current clk divider */
321 l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG1);
322 div = (l & 0x03) + 1;
323 /* get GPMC_CLK period */
324 tick_ps *= div;
325 break;
326 case GPMC_CD_FCLK:
327 default:
328 break;
329 }
330
331 return tick_ps;
332 }
333
gpmc_ns_to_clk_ticks(unsigned int time_ns,int cs,enum gpmc_clk_domain cd)334 static unsigned int gpmc_ns_to_clk_ticks(unsigned int time_ns, int cs,
335 enum gpmc_clk_domain cd)
336 {
337 unsigned long tick_ps;
338
339 /* Calculate in picosecs to yield more exact results */
340 tick_ps = gpmc_get_clk_period(cs, cd);
341
342 return (time_ns * 1000 + tick_ps - 1) / tick_ps;
343 }
344
gpmc_ns_to_ticks(unsigned int time_ns)345 static unsigned int gpmc_ns_to_ticks(unsigned int time_ns)
346 {
347 return gpmc_ns_to_clk_ticks(time_ns, /* any CS */ 0, GPMC_CD_FCLK);
348 }
349
gpmc_ps_to_ticks(unsigned int time_ps)350 static unsigned int gpmc_ps_to_ticks(unsigned int time_ps)
351 {
352 unsigned long tick_ps;
353
354 /* Calculate in picosecs to yield more exact results */
355 tick_ps = gpmc_get_fclk_period();
356
357 return (time_ps + tick_ps - 1) / tick_ps;
358 }
359
gpmc_clk_ticks_to_ns(unsigned int ticks,int cs,enum gpmc_clk_domain cd)360 static unsigned int gpmc_clk_ticks_to_ns(unsigned int ticks, int cs,
361 enum gpmc_clk_domain cd)
362 {
363 return ticks * gpmc_get_clk_period(cs, cd) / 1000;
364 }
365
gpmc_ticks_to_ns(unsigned int ticks)366 unsigned int gpmc_ticks_to_ns(unsigned int ticks)
367 {
368 return gpmc_clk_ticks_to_ns(ticks, /* any CS */ 0, GPMC_CD_FCLK);
369 }
370
gpmc_ticks_to_ps(unsigned int ticks)371 static unsigned int gpmc_ticks_to_ps(unsigned int ticks)
372 {
373 return ticks * gpmc_get_fclk_period();
374 }
375
gpmc_round_ps_to_ticks(unsigned int time_ps)376 static unsigned int gpmc_round_ps_to_ticks(unsigned int time_ps)
377 {
378 unsigned long ticks = gpmc_ps_to_ticks(time_ps);
379
380 return ticks * gpmc_get_fclk_period();
381 }
382
gpmc_cs_modify_reg(int cs,int reg,u32 mask,bool value)383 static inline void gpmc_cs_modify_reg(int cs, int reg, u32 mask, bool value)
384 {
385 u32 l;
386
387 l = gpmc_cs_read_reg(cs, reg);
388 if (value)
389 l |= mask;
390 else
391 l &= ~mask;
392 gpmc_cs_write_reg(cs, reg, l);
393 }
394
gpmc_cs_bool_timings(int cs,const struct gpmc_bool_timings * p)395 static void gpmc_cs_bool_timings(int cs, const struct gpmc_bool_timings *p)
396 {
397 gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG1,
398 GPMC_CONFIG1_TIME_PARA_GRAN,
399 p->time_para_granularity);
400 gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG2,
401 GPMC_CONFIG2_CSEXTRADELAY, p->cs_extra_delay);
402 gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG3,
403 GPMC_CONFIG3_ADVEXTRADELAY, p->adv_extra_delay);
404 gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG4,
405 GPMC_CONFIG4_OEEXTRADELAY, p->oe_extra_delay);
406 gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG4,
407 GPMC_CONFIG4_WEEXTRADELAY, p->we_extra_delay);
408 gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG6,
409 GPMC_CONFIG6_CYCLE2CYCLESAMECSEN,
410 p->cycle2cyclesamecsen);
411 gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG6,
412 GPMC_CONFIG6_CYCLE2CYCLEDIFFCSEN,
413 p->cycle2cyclediffcsen);
414 }
415
416 #ifdef CONFIG_OMAP_GPMC_DEBUG
417 /**
418 * get_gpmc_timing_reg - read a timing parameter and print DTS settings for it.
419 * @cs: Chip Select Region
420 * @reg: GPMC_CS_CONFIGn register offset.
421 * @st_bit: Start Bit
422 * @end_bit: End Bit. Must be >= @st_bit.
423 * @max: Maximum parameter value (before optional @shift).
424 * If 0, maximum is as high as @st_bit and @end_bit allow.
425 * @name: DTS node name, w/o "gpmc,"
426 * @cd: Clock Domain of timing parameter.
427 * @shift: Parameter value left shifts @shift, which is then printed instead of value.
428 * @raw: Raw Format Option.
429 * raw format: gpmc,name = <value>
430 * tick format: gpmc,name = <value> /‍* x ns -- y ns; x ticks *‍/
431 * Where x ns -- y ns result in the same tick value.
432 * When @max is exceeded, "invalid" is printed inside comment.
433 * @noval: Parameter values equal to 0 are not printed.
434 * @return: Specified timing parameter (after optional @shift).
435 *
436 */
get_gpmc_timing_reg(int cs,int reg,int st_bit,int end_bit,int max,const char * name,const enum gpmc_clk_domain cd,int shift,bool raw,bool noval)437 static int get_gpmc_timing_reg(
438 /* timing specifiers */
439 int cs, int reg, int st_bit, int end_bit, int max,
440 const char *name, const enum gpmc_clk_domain cd,
441 /* value transform */
442 int shift,
443 /* format specifiers */
444 bool raw, bool noval)
445 {
446 u32 l;
447 int nr_bits;
448 int mask;
449 bool invalid;
450
451 l = gpmc_cs_read_reg(cs, reg);
452 nr_bits = end_bit - st_bit + 1;
453 mask = (1 << nr_bits) - 1;
454 l = (l >> st_bit) & mask;
455 if (!max)
456 max = mask;
457 invalid = l > max;
458 if (shift)
459 l = (shift << l);
460 if (noval && (l == 0))
461 return 0;
462 if (!raw) {
463 /* DTS tick format for timings in ns */
464 unsigned int time_ns;
465 unsigned int time_ns_min = 0;
466
467 if (l)
468 time_ns_min = gpmc_clk_ticks_to_ns(l - 1, cs, cd) + 1;
469 time_ns = gpmc_clk_ticks_to_ns(l, cs, cd);
470 pr_info("gpmc,%s = <%u>; /* %u ns - %u ns; %i ticks%s*/\n",
471 name, time_ns, time_ns_min, time_ns, l,
472 invalid ? "; invalid " : " ");
473 } else {
474 /* raw format */
475 pr_info("gpmc,%s = <%u>;%s\n", name, l,
476 invalid ? " /* invalid */" : "");
477 }
478
479 return l;
480 }
481
482 #define GPMC_PRINT_CONFIG(cs, config) \
483 pr_info("cs%i %s: 0x%08x\n", cs, #config, \
484 gpmc_cs_read_reg(cs, config))
485 #define GPMC_GET_RAW(reg, st, end, field) \
486 get_gpmc_timing_reg(cs, (reg), (st), (end), 0, field, GPMC_CD_FCLK, 0, 1, 0)
487 #define GPMC_GET_RAW_MAX(reg, st, end, max, field) \
488 get_gpmc_timing_reg(cs, (reg), (st), (end), (max), field, GPMC_CD_FCLK, 0, 1, 0)
489 #define GPMC_GET_RAW_BOOL(reg, st, end, field) \
490 get_gpmc_timing_reg(cs, (reg), (st), (end), 0, field, GPMC_CD_FCLK, 0, 1, 1)
491 #define GPMC_GET_RAW_SHIFT_MAX(reg, st, end, shift, max, field) \
492 get_gpmc_timing_reg(cs, (reg), (st), (end), (max), field, GPMC_CD_FCLK, (shift), 1, 1)
493 #define GPMC_GET_TICKS(reg, st, end, field) \
494 get_gpmc_timing_reg(cs, (reg), (st), (end), 0, field, GPMC_CD_FCLK, 0, 0, 0)
495 #define GPMC_GET_TICKS_CD(reg, st, end, field, cd) \
496 get_gpmc_timing_reg(cs, (reg), (st), (end), 0, field, (cd), 0, 0, 0)
497 #define GPMC_GET_TICKS_CD_MAX(reg, st, end, max, field, cd) \
498 get_gpmc_timing_reg(cs, (reg), (st), (end), (max), field, (cd), 0, 0, 0)
499
gpmc_show_regs(int cs,const char * desc)500 static void gpmc_show_regs(int cs, const char *desc)
501 {
502 pr_info("gpmc cs%i %s:\n", cs, desc);
503 GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG1);
504 GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG2);
505 GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG3);
506 GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG4);
507 GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG5);
508 GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG6);
509 }
510
511 /*
512 * Note that gpmc,wait-pin handing wrongly assumes bit 8 is available,
513 * see commit c9fb809.
514 */
gpmc_cs_show_timings(int cs,const char * desc)515 static void gpmc_cs_show_timings(int cs, const char *desc)
516 {
517 gpmc_show_regs(cs, desc);
518
519 pr_info("gpmc cs%i access configuration:\n", cs);
520 GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 4, 4, "time-para-granularity");
521 GPMC_GET_RAW(GPMC_CS_CONFIG1, 8, 9, "mux-add-data");
522 GPMC_GET_RAW_SHIFT_MAX(GPMC_CS_CONFIG1, 12, 13, 1,
523 GPMC_CONFIG1_DEVICESIZE_MAX, "device-width");
524 GPMC_GET_RAW(GPMC_CS_CONFIG1, 16, 17, "wait-pin");
525 GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 21, 21, "wait-on-write");
526 GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 22, 22, "wait-on-read");
527 GPMC_GET_RAW_SHIFT_MAX(GPMC_CS_CONFIG1, 23, 24, 4,
528 GPMC_CONFIG1_ATTACHEDDEVICEPAGELENGTH_MAX,
529 "burst-length");
530 GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 27, 27, "sync-write");
531 GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 28, 28, "burst-write");
532 GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 29, 29, "gpmc,sync-read");
533 GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 30, 30, "burst-read");
534 GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 31, 31, "burst-wrap");
535
536 GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG2, 7, 7, "cs-extra-delay");
537
538 GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG3, 7, 7, "adv-extra-delay");
539
540 GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG4, 23, 23, "we-extra-delay");
541 GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG4, 7, 7, "oe-extra-delay");
542
543 GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG6, 7, 7, "cycle2cycle-samecsen");
544 GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG6, 6, 6, "cycle2cycle-diffcsen");
545
546 pr_info("gpmc cs%i timings configuration:\n", cs);
547 GPMC_GET_TICKS(GPMC_CS_CONFIG2, 0, 3, "cs-on-ns");
548 GPMC_GET_TICKS(GPMC_CS_CONFIG2, 8, 12, "cs-rd-off-ns");
549 GPMC_GET_TICKS(GPMC_CS_CONFIG2, 16, 20, "cs-wr-off-ns");
550
551 GPMC_GET_TICKS(GPMC_CS_CONFIG3, 0, 3, "adv-on-ns");
552 GPMC_GET_TICKS(GPMC_CS_CONFIG3, 8, 12, "adv-rd-off-ns");
553 GPMC_GET_TICKS(GPMC_CS_CONFIG3, 16, 20, "adv-wr-off-ns");
554 if (gpmc_capability & GPMC_HAS_MUX_AAD) {
555 GPMC_GET_TICKS(GPMC_CS_CONFIG3, 4, 6, "adv-aad-mux-on-ns");
556 GPMC_GET_TICKS(GPMC_CS_CONFIG3, 24, 26,
557 "adv-aad-mux-rd-off-ns");
558 GPMC_GET_TICKS(GPMC_CS_CONFIG3, 28, 30,
559 "adv-aad-mux-wr-off-ns");
560 }
561
562 GPMC_GET_TICKS(GPMC_CS_CONFIG4, 0, 3, "oe-on-ns");
563 GPMC_GET_TICKS(GPMC_CS_CONFIG4, 8, 12, "oe-off-ns");
564 if (gpmc_capability & GPMC_HAS_MUX_AAD) {
565 GPMC_GET_TICKS(GPMC_CS_CONFIG4, 4, 6, "oe-aad-mux-on-ns");
566 GPMC_GET_TICKS(GPMC_CS_CONFIG4, 13, 15, "oe-aad-mux-off-ns");
567 }
568 GPMC_GET_TICKS(GPMC_CS_CONFIG4, 16, 19, "we-on-ns");
569 GPMC_GET_TICKS(GPMC_CS_CONFIG4, 24, 28, "we-off-ns");
570
571 GPMC_GET_TICKS(GPMC_CS_CONFIG5, 0, 4, "rd-cycle-ns");
572 GPMC_GET_TICKS(GPMC_CS_CONFIG5, 8, 12, "wr-cycle-ns");
573 GPMC_GET_TICKS(GPMC_CS_CONFIG5, 16, 20, "access-ns");
574
575 GPMC_GET_TICKS(GPMC_CS_CONFIG5, 24, 27, "page-burst-access-ns");
576
577 GPMC_GET_TICKS(GPMC_CS_CONFIG6, 0, 3, "bus-turnaround-ns");
578 GPMC_GET_TICKS(GPMC_CS_CONFIG6, 8, 11, "cycle2cycle-delay-ns");
579
580 GPMC_GET_TICKS_CD_MAX(GPMC_CS_CONFIG1, 18, 19,
581 GPMC_CONFIG1_WAITMONITORINGTIME_MAX,
582 "wait-monitoring-ns", GPMC_CD_CLK);
583 GPMC_GET_TICKS_CD_MAX(GPMC_CS_CONFIG1, 25, 26,
584 GPMC_CONFIG1_CLKACTIVATIONTIME_MAX,
585 "clk-activation-ns", GPMC_CD_FCLK);
586
587 GPMC_GET_TICKS(GPMC_CS_CONFIG6, 16, 19, "wr-data-mux-bus-ns");
588 GPMC_GET_TICKS(GPMC_CS_CONFIG6, 24, 28, "wr-access-ns");
589 }
590 #else
gpmc_cs_show_timings(int cs,const char * desc)591 static inline void gpmc_cs_show_timings(int cs, const char *desc)
592 {
593 }
594 #endif
595
596 /**
597 * set_gpmc_timing_reg - set a single timing parameter for Chip Select Region.
598 * Caller is expected to have initialized CONFIG1 GPMCFCLKDIVIDER
599 * prior to calling this function with @cd equal to GPMC_CD_CLK.
600 *
601 * @cs: Chip Select Region.
602 * @reg: GPMC_CS_CONFIGn register offset.
603 * @st_bit: Start Bit
604 * @end_bit: End Bit. Must be >= @st_bit.
605 * @max: Maximum parameter value.
606 * If 0, maximum is as high as @st_bit and @end_bit allow.
607 * @time: Timing parameter in ns.
608 * @cd: Timing parameter clock domain.
609 * @name: Timing parameter name.
610 * @return: 0 on success, -1 on error.
611 */
set_gpmc_timing_reg(int cs,int reg,int st_bit,int end_bit,int max,int time,enum gpmc_clk_domain cd,const char * name)612 static int set_gpmc_timing_reg(int cs, int reg, int st_bit, int end_bit, int max,
613 int time, enum gpmc_clk_domain cd, const char *name)
614 {
615 u32 l;
616 int ticks, mask, nr_bits;
617
618 if (time == 0)
619 ticks = 0;
620 else
621 ticks = gpmc_ns_to_clk_ticks(time, cs, cd);
622 nr_bits = end_bit - st_bit + 1;
623 mask = (1 << nr_bits) - 1;
624
625 if (!max)
626 max = mask;
627
628 if (ticks > max) {
629 pr_err("%s: GPMC CS%d: %s %d ns, %d ticks > %d ticks\n",
630 __func__, cs, name, time, ticks, max);
631
632 return -1;
633 }
634
635 l = gpmc_cs_read_reg(cs, reg);
636 #ifdef CONFIG_OMAP_GPMC_DEBUG
637 pr_info("GPMC CS%d: %-17s: %3d ticks, %3lu ns (was %3i ticks) %3d ns\n",
638 cs, name, ticks, gpmc_get_clk_period(cs, cd) * ticks / 1000,
639 (l >> st_bit) & mask, time);
640 #endif
641 l &= ~(mask << st_bit);
642 l |= ticks << st_bit;
643 gpmc_cs_write_reg(cs, reg, l);
644
645 return 0;
646 }
647
648 /**
649 * gpmc_calc_waitmonitoring_divider - calculate proper GPMCFCLKDIVIDER based on WAITMONITORINGTIME
650 * WAITMONITORINGTIME will be _at least_ as long as desired, i.e.
651 * read --> don't sample bus too early
652 * write --> data is longer on bus
653 *
654 * Formula:
655 * gpmc_clk_div + 1 = ceil(ceil(waitmonitoringtime_ns / gpmc_fclk_ns)
656 * / waitmonitoring_ticks)
657 * WAITMONITORINGTIME resulting in 0 or 1 tick with div = 1 are caught by
658 * div <= 0 check.
659 *
660 * @wait_monitoring: WAITMONITORINGTIME in ns.
661 * @return: -1 on failure to scale, else proper divider > 0.
662 */
gpmc_calc_waitmonitoring_divider(unsigned int wait_monitoring)663 static int gpmc_calc_waitmonitoring_divider(unsigned int wait_monitoring)
664 {
665 int div = gpmc_ns_to_ticks(wait_monitoring);
666
667 div += GPMC_CONFIG1_WAITMONITORINGTIME_MAX - 1;
668 div /= GPMC_CONFIG1_WAITMONITORINGTIME_MAX;
669
670 if (div > 4)
671 return -1;
672 if (div <= 0)
673 div = 1;
674
675 return div;
676 }
677
678 /**
679 * gpmc_calc_divider - calculate GPMC_FCLK divider for sync_clk GPMC_CLK period.
680 * @sync_clk: GPMC_CLK period in ps.
681 * @return: Returns at least 1 if GPMC_FCLK can be divided to GPMC_CLK.
682 * Else, returns -1.
683 */
gpmc_calc_divider(unsigned int sync_clk)684 int gpmc_calc_divider(unsigned int sync_clk)
685 {
686 int div = gpmc_ps_to_ticks(sync_clk);
687
688 if (div > 4)
689 return -1;
690 if (div <= 0)
691 div = 1;
692
693 return div;
694 }
695
696 /**
697 * gpmc_cs_set_timings - program timing parameters for Chip Select Region.
698 * @cs: Chip Select Region.
699 * @t: GPMC timing parameters.
700 * @s: GPMC timing settings.
701 * @return: 0 on success, -1 on error.
702 */
gpmc_cs_set_timings(int cs,const struct gpmc_timings * t,const struct gpmc_settings * s)703 int gpmc_cs_set_timings(int cs, const struct gpmc_timings *t,
704 const struct gpmc_settings *s)
705 {
706 int div, ret;
707 u32 l;
708
709 div = gpmc_calc_divider(t->sync_clk);
710 if (div < 0)
711 return -EINVAL;
712
713 /*
714 * See if we need to change the divider for waitmonitoringtime.
715 *
716 * Calculate GPMCFCLKDIVIDER independent of gpmc,sync-clk-ps in DT for
717 * pure asynchronous accesses, i.e. both read and write asynchronous.
718 * However, only do so if WAITMONITORINGTIME is actually used, i.e.
719 * either WAITREADMONITORING or WAITWRITEMONITORING is set.
720 *
721 * This statement must not change div to scale async WAITMONITORINGTIME
722 * to protect mixed synchronous and asynchronous accesses.
723 *
724 * We raise an error later if WAITMONITORINGTIME does not fit.
725 */
726 if (!s->sync_read && !s->sync_write &&
727 (s->wait_on_read || s->wait_on_write)
728 ) {
729 div = gpmc_calc_waitmonitoring_divider(t->wait_monitoring);
730 if (div < 0) {
731 pr_err("%s: waitmonitoringtime %3d ns too large for greatest gpmcfclkdivider.\n",
732 __func__,
733 t->wait_monitoring
734 );
735 return -ENXIO;
736 }
737 }
738
739 ret = 0;
740 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG2, 0, 3, 0, t->cs_on,
741 GPMC_CD_FCLK, "cs_on");
742 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG2, 8, 12, 0, t->cs_rd_off,
743 GPMC_CD_FCLK, "cs_rd_off");
744 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG2, 16, 20, 0, t->cs_wr_off,
745 GPMC_CD_FCLK, "cs_wr_off");
746 if (ret)
747 return -ENXIO;
748
749 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG3, 0, 3, 0, t->adv_on,
750 GPMC_CD_FCLK, "adv_on");
751 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG3, 8, 12, 0, t->adv_rd_off,
752 GPMC_CD_FCLK, "adv_rd_off");
753 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG3, 16, 20, 0, t->adv_wr_off,
754 GPMC_CD_FCLK, "adv_wr_off");
755 if (ret)
756 return -ENXIO;
757
758 if (gpmc_capability & GPMC_HAS_MUX_AAD) {
759 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG3, 4, 6, 0,
760 t->adv_aad_mux_on, GPMC_CD_FCLK,
761 "adv_aad_mux_on");
762 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG3, 24, 26, 0,
763 t->adv_aad_mux_rd_off, GPMC_CD_FCLK,
764 "adv_aad_mux_rd_off");
765 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG3, 28, 30, 0,
766 t->adv_aad_mux_wr_off, GPMC_CD_FCLK,
767 "adv_aad_mux_wr_off");
768 if (ret)
769 return -ENXIO;
770 }
771
772 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG4, 0, 3, 0, t->oe_on,
773 GPMC_CD_FCLK, "oe_on");
774 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG4, 8, 12, 0, t->oe_off,
775 GPMC_CD_FCLK, "oe_off");
776 if (gpmc_capability & GPMC_HAS_MUX_AAD) {
777 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG4, 4, 6, 0,
778 t->oe_aad_mux_on, GPMC_CD_FCLK,
779 "oe_aad_mux_on");
780 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG4, 13, 15, 0,
781 t->oe_aad_mux_off, GPMC_CD_FCLK,
782 "oe_aad_mux_off");
783 }
784 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG4, 16, 19, 0, t->we_on,
785 GPMC_CD_FCLK, "we_on");
786 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG4, 24, 28, 0, t->we_off,
787 GPMC_CD_FCLK, "we_off");
788 if (ret)
789 return -ENXIO;
790
791 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG5, 0, 4, 0, t->rd_cycle,
792 GPMC_CD_FCLK, "rd_cycle");
793 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG5, 8, 12, 0, t->wr_cycle,
794 GPMC_CD_FCLK, "wr_cycle");
795 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG5, 16, 20, 0, t->access,
796 GPMC_CD_FCLK, "access");
797 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG5, 24, 27, 0,
798 t->page_burst_access, GPMC_CD_FCLK,
799 "page_burst_access");
800 if (ret)
801 return -ENXIO;
802
803 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG6, 0, 3, 0,
804 t->bus_turnaround, GPMC_CD_FCLK,
805 "bus_turnaround");
806 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG6, 8, 11, 0,
807 t->cycle2cycle_delay, GPMC_CD_FCLK,
808 "cycle2cycle_delay");
809 if (ret)
810 return -ENXIO;
811
812 if (gpmc_capability & GPMC_HAS_WR_DATA_MUX_BUS) {
813 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG6, 16, 19, 0,
814 t->wr_data_mux_bus, GPMC_CD_FCLK,
815 "wr_data_mux_bus");
816 if (ret)
817 return -ENXIO;
818 }
819 if (gpmc_capability & GPMC_HAS_WR_ACCESS) {
820 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG6, 24, 28, 0,
821 t->wr_access, GPMC_CD_FCLK,
822 "wr_access");
823 if (ret)
824 return -ENXIO;
825 }
826
827 l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG1);
828 l &= ~0x03;
829 l |= (div - 1);
830 gpmc_cs_write_reg(cs, GPMC_CS_CONFIG1, l);
831
832 ret = 0;
833 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG1, 18, 19,
834 GPMC_CONFIG1_WAITMONITORINGTIME_MAX,
835 t->wait_monitoring, GPMC_CD_CLK,
836 "wait_monitoring");
837 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG1, 25, 26,
838 GPMC_CONFIG1_CLKACTIVATIONTIME_MAX,
839 t->clk_activation, GPMC_CD_FCLK,
840 "clk_activation");
841 if (ret)
842 return -ENXIO;
843
844 #ifdef CONFIG_OMAP_GPMC_DEBUG
845 pr_info("GPMC CS%d CLK period is %lu ns (div %d)\n",
846 cs, (div * gpmc_get_fclk_period()) / 1000, div);
847 #endif
848
849 gpmc_cs_bool_timings(cs, &t->bool_timings);
850 gpmc_cs_show_timings(cs, "after gpmc_cs_set_timings");
851
852 return 0;
853 }
854
gpmc_cs_set_memconf(int cs,u32 base,u32 size)855 static int gpmc_cs_set_memconf(int cs, u32 base, u32 size)
856 {
857 u32 l;
858 u32 mask;
859
860 /*
861 * Ensure that base address is aligned on a
862 * boundary equal to or greater than size.
863 */
864 if (base & (size - 1))
865 return -EINVAL;
866
867 base >>= GPMC_CHUNK_SHIFT;
868 mask = (1 << GPMC_SECTION_SHIFT) - size;
869 mask >>= GPMC_CHUNK_SHIFT;
870 mask <<= GPMC_CONFIG7_MASKADDRESS_OFFSET;
871
872 l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7);
873 l &= ~GPMC_CONFIG7_MASK;
874 l |= base & GPMC_CONFIG7_BASEADDRESS_MASK;
875 l |= mask & GPMC_CONFIG7_MASKADDRESS_MASK;
876 l |= GPMC_CONFIG7_CSVALID;
877 gpmc_cs_write_reg(cs, GPMC_CS_CONFIG7, l);
878
879 return 0;
880 }
881
gpmc_cs_enable_mem(int cs)882 static void gpmc_cs_enable_mem(int cs)
883 {
884 u32 l;
885
886 l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7);
887 l |= GPMC_CONFIG7_CSVALID;
888 gpmc_cs_write_reg(cs, GPMC_CS_CONFIG7, l);
889 }
890
gpmc_cs_disable_mem(int cs)891 static void gpmc_cs_disable_mem(int cs)
892 {
893 u32 l;
894
895 l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7);
896 l &= ~GPMC_CONFIG7_CSVALID;
897 gpmc_cs_write_reg(cs, GPMC_CS_CONFIG7, l);
898 }
899
gpmc_cs_get_memconf(int cs,u32 * base,u32 * size)900 static void gpmc_cs_get_memconf(int cs, u32 *base, u32 *size)
901 {
902 u32 l;
903 u32 mask;
904
905 l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7);
906 *base = (l & 0x3f) << GPMC_CHUNK_SHIFT;
907 mask = (l >> 8) & 0x0f;
908 *size = (1 << GPMC_SECTION_SHIFT) - (mask << GPMC_CHUNK_SHIFT);
909 }
910
gpmc_cs_mem_enabled(int cs)911 static int gpmc_cs_mem_enabled(int cs)
912 {
913 u32 l;
914
915 l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7);
916 return l & GPMC_CONFIG7_CSVALID;
917 }
918
gpmc_cs_set_reserved(int cs,int reserved)919 static void gpmc_cs_set_reserved(int cs, int reserved)
920 {
921 struct gpmc_cs_data *gpmc = &gpmc_cs[cs];
922
923 gpmc->flags |= GPMC_CS_RESERVED;
924 }
925
gpmc_cs_reserved(int cs)926 static bool gpmc_cs_reserved(int cs)
927 {
928 struct gpmc_cs_data *gpmc = &gpmc_cs[cs];
929
930 return gpmc->flags & GPMC_CS_RESERVED;
931 }
932
gpmc_mem_align(unsigned long size)933 static unsigned long gpmc_mem_align(unsigned long size)
934 {
935 int order;
936
937 size = (size - 1) >> (GPMC_CHUNK_SHIFT - 1);
938 order = GPMC_CHUNK_SHIFT - 1;
939 do {
940 size >>= 1;
941 order++;
942 } while (size);
943 size = 1 << order;
944 return size;
945 }
946
gpmc_cs_insert_mem(int cs,unsigned long base,unsigned long size)947 static int gpmc_cs_insert_mem(int cs, unsigned long base, unsigned long size)
948 {
949 struct gpmc_cs_data *gpmc = &gpmc_cs[cs];
950 struct resource *res = &gpmc->mem;
951 int r;
952
953 size = gpmc_mem_align(size);
954 spin_lock(&gpmc_mem_lock);
955 res->start = base;
956 res->end = base + size - 1;
957 r = request_resource(&gpmc_mem_root, res);
958 spin_unlock(&gpmc_mem_lock);
959
960 return r;
961 }
962
gpmc_cs_delete_mem(int cs)963 static int gpmc_cs_delete_mem(int cs)
964 {
965 struct gpmc_cs_data *gpmc = &gpmc_cs[cs];
966 struct resource *res = &gpmc->mem;
967 int r;
968
969 spin_lock(&gpmc_mem_lock);
970 r = release_resource(res);
971 res->start = 0;
972 res->end = 0;
973 spin_unlock(&gpmc_mem_lock);
974
975 return r;
976 }
977
gpmc_cs_request(int cs,unsigned long size,unsigned long * base)978 int gpmc_cs_request(int cs, unsigned long size, unsigned long *base)
979 {
980 struct gpmc_cs_data *gpmc = &gpmc_cs[cs];
981 struct resource *res = &gpmc->mem;
982 int r = -1;
983
984 if (cs >= gpmc_cs_num) {
985 pr_err("%s: requested chip-select is disabled\n", __func__);
986 return -ENODEV;
987 }
988 size = gpmc_mem_align(size);
989 if (size > (1 << GPMC_SECTION_SHIFT))
990 return -ENOMEM;
991
992 spin_lock(&gpmc_mem_lock);
993 if (gpmc_cs_reserved(cs)) {
994 r = -EBUSY;
995 goto out;
996 }
997 if (gpmc_cs_mem_enabled(cs))
998 r = adjust_resource(res, res->start & ~(size - 1), size);
999 if (r < 0)
1000 r = allocate_resource(&gpmc_mem_root, res, size, 0, ~0,
1001 size, NULL, NULL);
1002 if (r < 0)
1003 goto out;
1004
1005 /* Disable CS while changing base address and size mask */
1006 gpmc_cs_disable_mem(cs);
1007
1008 r = gpmc_cs_set_memconf(cs, res->start, resource_size(res));
1009 if (r < 0) {
1010 release_resource(res);
1011 goto out;
1012 }
1013
1014 /* Enable CS */
1015 gpmc_cs_enable_mem(cs);
1016 *base = res->start;
1017 gpmc_cs_set_reserved(cs, 1);
1018 out:
1019 spin_unlock(&gpmc_mem_lock);
1020 return r;
1021 }
1022 EXPORT_SYMBOL(gpmc_cs_request);
1023
gpmc_cs_free(int cs)1024 void gpmc_cs_free(int cs)
1025 {
1026 struct gpmc_cs_data *gpmc;
1027 struct resource *res;
1028
1029 spin_lock(&gpmc_mem_lock);
1030 if (cs >= gpmc_cs_num || cs < 0 || !gpmc_cs_reserved(cs)) {
1031 WARN(1, "Trying to free non-reserved GPMC CS%d\n", cs);
1032 spin_unlock(&gpmc_mem_lock);
1033 return;
1034 }
1035 gpmc = &gpmc_cs[cs];
1036 res = &gpmc->mem;
1037
1038 gpmc_cs_disable_mem(cs);
1039 if (res->flags)
1040 release_resource(res);
1041 gpmc_cs_set_reserved(cs, 0);
1042 spin_unlock(&gpmc_mem_lock);
1043 }
1044 EXPORT_SYMBOL(gpmc_cs_free);
1045
gpmc_is_valid_waitpin(u32 waitpin)1046 static bool gpmc_is_valid_waitpin(u32 waitpin)
1047 {
1048 return waitpin < gpmc_nr_waitpins;
1049 }
1050
gpmc_alloc_waitpin(struct gpmc_device * gpmc,struct gpmc_settings * p)1051 static int gpmc_alloc_waitpin(struct gpmc_device *gpmc,
1052 struct gpmc_settings *p)
1053 {
1054 int ret;
1055 struct gpmc_waitpin *waitpin;
1056 struct gpio_desc *waitpin_desc;
1057
1058 if (!gpmc_is_valid_waitpin(p->wait_pin))
1059 return -EINVAL;
1060
1061 waitpin = &gpmc->waitpins[p->wait_pin];
1062
1063 if (!waitpin->desc) {
1064 /* Reserve the GPIO for wait pin usage.
1065 * GPIO polarity doesn't matter here. Wait pin polarity
1066 * is set in GPMC_CONFIG register.
1067 */
1068 waitpin_desc = gpiochip_request_own_desc(&gpmc->gpio_chip,
1069 p->wait_pin, "WAITPIN",
1070 GPIO_ACTIVE_HIGH,
1071 GPIOD_IN);
1072
1073 ret = PTR_ERR(waitpin_desc);
1074 if (IS_ERR(waitpin_desc) && ret != -EBUSY)
1075 return ret;
1076
1077 /* New wait pin */
1078 waitpin->desc = waitpin_desc;
1079 waitpin->pin = p->wait_pin;
1080 waitpin->polarity = p->wait_pin_polarity;
1081 } else {
1082 /* Shared wait pin */
1083 if (p->wait_pin_polarity != waitpin->polarity ||
1084 p->wait_pin != waitpin->pin) {
1085 dev_err(gpmc->dev,
1086 "shared-wait-pin: invalid configuration\n");
1087 return -EINVAL;
1088 }
1089 dev_info(gpmc->dev, "shared wait-pin: %d\n", waitpin->pin);
1090 }
1091
1092 return 0;
1093 }
1094
gpmc_free_waitpin(struct gpmc_device * gpmc,int wait_pin)1095 static void gpmc_free_waitpin(struct gpmc_device *gpmc,
1096 int wait_pin)
1097 {
1098 if (gpmc_is_valid_waitpin(wait_pin))
1099 gpiochip_free_own_desc(gpmc->waitpins[wait_pin].desc);
1100 }
1101
1102 /**
1103 * gpmc_configure - write request to configure gpmc
1104 * @cmd: command type
1105 * @wval: value to write
1106 * @return status of the operation
1107 */
gpmc_configure(int cmd,int wval)1108 int gpmc_configure(int cmd, int wval)
1109 {
1110 u32 regval;
1111
1112 switch (cmd) {
1113 case GPMC_CONFIG_WP:
1114 regval = gpmc_read_reg(GPMC_CONFIG);
1115 if (wval)
1116 regval &= ~GPMC_CONFIG_WRITEPROTECT; /* WP is ON */
1117 else
1118 regval |= GPMC_CONFIG_WRITEPROTECT; /* WP is OFF */
1119 gpmc_write_reg(GPMC_CONFIG, regval);
1120 break;
1121
1122 default:
1123 pr_err("%s: command not supported\n", __func__);
1124 return -EINVAL;
1125 }
1126
1127 return 0;
1128 }
1129 EXPORT_SYMBOL(gpmc_configure);
1130
gpmc_nand_writebuffer_empty(void)1131 static bool gpmc_nand_writebuffer_empty(void)
1132 {
1133 if (gpmc_read_reg(GPMC_STATUS) & GPMC_STATUS_EMPTYWRITEBUFFERSTATUS)
1134 return true;
1135
1136 return false;
1137 }
1138
1139 static struct gpmc_nand_ops nand_ops = {
1140 .nand_writebuffer_empty = gpmc_nand_writebuffer_empty,
1141 };
1142
1143 /**
1144 * gpmc_omap_get_nand_ops - Get the GPMC NAND interface
1145 * @reg: the GPMC NAND register map exclusive for NAND use.
1146 * @cs: GPMC chip select number on which the NAND sits. The
1147 * register map returned will be specific to this chip select.
1148 *
1149 * Returns NULL on error e.g. invalid cs.
1150 */
gpmc_omap_get_nand_ops(struct gpmc_nand_regs * reg,int cs)1151 struct gpmc_nand_ops *gpmc_omap_get_nand_ops(struct gpmc_nand_regs *reg, int cs)
1152 {
1153 int i;
1154
1155 if (cs >= gpmc_cs_num)
1156 return NULL;
1157
1158 reg->gpmc_nand_command = gpmc_base + GPMC_CS0_OFFSET +
1159 GPMC_CS_NAND_COMMAND + GPMC_CS_SIZE * cs;
1160 reg->gpmc_nand_address = gpmc_base + GPMC_CS0_OFFSET +
1161 GPMC_CS_NAND_ADDRESS + GPMC_CS_SIZE * cs;
1162 reg->gpmc_nand_data = gpmc_base + GPMC_CS0_OFFSET +
1163 GPMC_CS_NAND_DATA + GPMC_CS_SIZE * cs;
1164 reg->gpmc_prefetch_config1 = gpmc_base + GPMC_PREFETCH_CONFIG1;
1165 reg->gpmc_prefetch_config2 = gpmc_base + GPMC_PREFETCH_CONFIG2;
1166 reg->gpmc_prefetch_control = gpmc_base + GPMC_PREFETCH_CONTROL;
1167 reg->gpmc_prefetch_status = gpmc_base + GPMC_PREFETCH_STATUS;
1168 reg->gpmc_ecc_config = gpmc_base + GPMC_ECC_CONFIG;
1169 reg->gpmc_ecc_control = gpmc_base + GPMC_ECC_CONTROL;
1170 reg->gpmc_ecc_size_config = gpmc_base + GPMC_ECC_SIZE_CONFIG;
1171 reg->gpmc_ecc1_result = gpmc_base + GPMC_ECC1_RESULT;
1172
1173 for (i = 0; i < GPMC_BCH_NUM_REMAINDER; i++) {
1174 reg->gpmc_bch_result0[i] = gpmc_base + GPMC_ECC_BCH_RESULT_0 +
1175 GPMC_BCH_SIZE * i;
1176 reg->gpmc_bch_result1[i] = gpmc_base + GPMC_ECC_BCH_RESULT_1 +
1177 GPMC_BCH_SIZE * i;
1178 reg->gpmc_bch_result2[i] = gpmc_base + GPMC_ECC_BCH_RESULT_2 +
1179 GPMC_BCH_SIZE * i;
1180 reg->gpmc_bch_result3[i] = gpmc_base + GPMC_ECC_BCH_RESULT_3 +
1181 GPMC_BCH_SIZE * i;
1182 reg->gpmc_bch_result4[i] = gpmc_base + GPMC_ECC_BCH_RESULT_4 +
1183 i * GPMC_BCH_SIZE;
1184 reg->gpmc_bch_result5[i] = gpmc_base + GPMC_ECC_BCH_RESULT_5 +
1185 i * GPMC_BCH_SIZE;
1186 reg->gpmc_bch_result6[i] = gpmc_base + GPMC_ECC_BCH_RESULT_6 +
1187 i * GPMC_BCH_SIZE;
1188 }
1189
1190 return &nand_ops;
1191 }
1192 EXPORT_SYMBOL_GPL(gpmc_omap_get_nand_ops);
1193
gpmc_omap_onenand_calc_sync_timings(struct gpmc_timings * t,struct gpmc_settings * s,int freq,int latency)1194 static void gpmc_omap_onenand_calc_sync_timings(struct gpmc_timings *t,
1195 struct gpmc_settings *s,
1196 int freq, int latency)
1197 {
1198 struct gpmc_device_timings dev_t;
1199 const int t_cer = 15;
1200 const int t_avdp = 12;
1201 const int t_cez = 20; /* max of t_cez, t_oez */
1202 const int t_wpl = 40;
1203 const int t_wph = 30;
1204 int min_gpmc_clk_period, t_ces, t_avds, t_avdh, t_ach, t_aavdh, t_rdyo;
1205
1206 switch (freq) {
1207 case 104:
1208 min_gpmc_clk_period = 9600; /* 104 MHz */
1209 t_ces = 3;
1210 t_avds = 4;
1211 t_avdh = 2;
1212 t_ach = 3;
1213 t_aavdh = 6;
1214 t_rdyo = 6;
1215 break;
1216 case 83:
1217 min_gpmc_clk_period = 12000; /* 83 MHz */
1218 t_ces = 5;
1219 t_avds = 4;
1220 t_avdh = 2;
1221 t_ach = 6;
1222 t_aavdh = 6;
1223 t_rdyo = 9;
1224 break;
1225 case 66:
1226 min_gpmc_clk_period = 15000; /* 66 MHz */
1227 t_ces = 6;
1228 t_avds = 5;
1229 t_avdh = 2;
1230 t_ach = 6;
1231 t_aavdh = 6;
1232 t_rdyo = 11;
1233 break;
1234 default:
1235 min_gpmc_clk_period = 18500; /* 54 MHz */
1236 t_ces = 7;
1237 t_avds = 7;
1238 t_avdh = 7;
1239 t_ach = 9;
1240 t_aavdh = 7;
1241 t_rdyo = 15;
1242 break;
1243 }
1244
1245 /* Set synchronous read timings */
1246 memset(&dev_t, 0, sizeof(dev_t));
1247
1248 if (!s->sync_write) {
1249 dev_t.t_avdp_w = max(t_avdp, t_cer) * 1000;
1250 dev_t.t_wpl = t_wpl * 1000;
1251 dev_t.t_wph = t_wph * 1000;
1252 dev_t.t_aavdh = t_aavdh * 1000;
1253 }
1254 dev_t.ce_xdelay = true;
1255 dev_t.avd_xdelay = true;
1256 dev_t.oe_xdelay = true;
1257 dev_t.we_xdelay = true;
1258 dev_t.clk = min_gpmc_clk_period;
1259 dev_t.t_bacc = dev_t.clk;
1260 dev_t.t_ces = t_ces * 1000;
1261 dev_t.t_avds = t_avds * 1000;
1262 dev_t.t_avdh = t_avdh * 1000;
1263 dev_t.t_ach = t_ach * 1000;
1264 dev_t.cyc_iaa = (latency + 1);
1265 dev_t.t_cez_r = t_cez * 1000;
1266 dev_t.t_cez_w = dev_t.t_cez_r;
1267 dev_t.cyc_aavdh_oe = 1;
1268 dev_t.t_rdyo = t_rdyo * 1000 + min_gpmc_clk_period;
1269
1270 gpmc_calc_timings(t, s, &dev_t);
1271 }
1272
gpmc_omap_onenand_set_timings(struct device * dev,int cs,int freq,int latency,struct gpmc_onenand_info * info)1273 int gpmc_omap_onenand_set_timings(struct device *dev, int cs, int freq,
1274 int latency,
1275 struct gpmc_onenand_info *info)
1276 {
1277 int ret;
1278 struct gpmc_timings gpmc_t;
1279 struct gpmc_settings gpmc_s;
1280
1281 gpmc_read_settings_dt(dev->of_node, &gpmc_s);
1282
1283 info->sync_read = gpmc_s.sync_read;
1284 info->sync_write = gpmc_s.sync_write;
1285 info->burst_len = gpmc_s.burst_len;
1286
1287 if (!gpmc_s.sync_read && !gpmc_s.sync_write)
1288 return 0;
1289
1290 gpmc_omap_onenand_calc_sync_timings(&gpmc_t, &gpmc_s, freq, latency);
1291
1292 ret = gpmc_cs_program_settings(cs, &gpmc_s);
1293 if (ret < 0)
1294 return ret;
1295
1296 return gpmc_cs_set_timings(cs, &gpmc_t, &gpmc_s);
1297 }
1298 EXPORT_SYMBOL_GPL(gpmc_omap_onenand_set_timings);
1299
gpmc_get_client_irq(unsigned int irq_config)1300 int gpmc_get_client_irq(unsigned int irq_config)
1301 {
1302 if (!gpmc_irq_domain) {
1303 pr_warn("%s called before GPMC IRQ domain available\n",
1304 __func__);
1305 return 0;
1306 }
1307
1308 /* we restrict this to NAND IRQs only */
1309 if (irq_config >= GPMC_NR_NAND_IRQS)
1310 return 0;
1311
1312 return irq_create_mapping(gpmc_irq_domain, irq_config);
1313 }
1314
gpmc_irq_endis(unsigned long hwirq,bool endis)1315 static int gpmc_irq_endis(unsigned long hwirq, bool endis)
1316 {
1317 u32 regval;
1318
1319 /* bits GPMC_NR_NAND_IRQS to 8 are reserved */
1320 if (hwirq >= GPMC_NR_NAND_IRQS)
1321 hwirq += 8 - GPMC_NR_NAND_IRQS;
1322
1323 regval = gpmc_read_reg(GPMC_IRQENABLE);
1324 if (endis)
1325 regval |= BIT(hwirq);
1326 else
1327 regval &= ~BIT(hwirq);
1328 gpmc_write_reg(GPMC_IRQENABLE, regval);
1329
1330 return 0;
1331 }
1332
gpmc_irq_disable(struct irq_data * p)1333 static void gpmc_irq_disable(struct irq_data *p)
1334 {
1335 gpmc_irq_endis(p->hwirq, false);
1336 }
1337
gpmc_irq_enable(struct irq_data * p)1338 static void gpmc_irq_enable(struct irq_data *p)
1339 {
1340 gpmc_irq_endis(p->hwirq, true);
1341 }
1342
gpmc_irq_mask(struct irq_data * d)1343 static void gpmc_irq_mask(struct irq_data *d)
1344 {
1345 gpmc_irq_endis(d->hwirq, false);
1346 }
1347
gpmc_irq_unmask(struct irq_data * d)1348 static void gpmc_irq_unmask(struct irq_data *d)
1349 {
1350 gpmc_irq_endis(d->hwirq, true);
1351 }
1352
gpmc_irq_edge_config(unsigned long hwirq,bool rising_edge)1353 static void gpmc_irq_edge_config(unsigned long hwirq, bool rising_edge)
1354 {
1355 u32 regval;
1356
1357 /* NAND IRQs polarity is not configurable */
1358 if (hwirq < GPMC_NR_NAND_IRQS)
1359 return;
1360
1361 /* WAITPIN starts at BIT 8 */
1362 hwirq += 8 - GPMC_NR_NAND_IRQS;
1363
1364 regval = gpmc_read_reg(GPMC_CONFIG);
1365 if (rising_edge)
1366 regval &= ~BIT(hwirq);
1367 else
1368 regval |= BIT(hwirq);
1369
1370 gpmc_write_reg(GPMC_CONFIG, regval);
1371 }
1372
gpmc_irq_ack(struct irq_data * d)1373 static void gpmc_irq_ack(struct irq_data *d)
1374 {
1375 unsigned int hwirq = d->hwirq;
1376
1377 /* skip reserved bits */
1378 if (hwirq >= GPMC_NR_NAND_IRQS)
1379 hwirq += 8 - GPMC_NR_NAND_IRQS;
1380
1381 /* Setting bit to 1 clears (or Acks) the interrupt */
1382 gpmc_write_reg(GPMC_IRQSTATUS, BIT(hwirq));
1383 }
1384
gpmc_irq_set_type(struct irq_data * d,unsigned int trigger)1385 static int gpmc_irq_set_type(struct irq_data *d, unsigned int trigger)
1386 {
1387 /* can't set type for NAND IRQs */
1388 if (d->hwirq < GPMC_NR_NAND_IRQS)
1389 return -EINVAL;
1390
1391 /* We can support either rising or falling edge at a time */
1392 if (trigger == IRQ_TYPE_EDGE_FALLING)
1393 gpmc_irq_edge_config(d->hwirq, false);
1394 else if (trigger == IRQ_TYPE_EDGE_RISING)
1395 gpmc_irq_edge_config(d->hwirq, true);
1396 else
1397 return -EINVAL;
1398
1399 return 0;
1400 }
1401
gpmc_irq_map(struct irq_domain * d,unsigned int virq,irq_hw_number_t hw)1402 static int gpmc_irq_map(struct irq_domain *d, unsigned int virq,
1403 irq_hw_number_t hw)
1404 {
1405 struct gpmc_device *gpmc = d->host_data;
1406
1407 irq_set_chip_data(virq, gpmc);
1408 if (hw < GPMC_NR_NAND_IRQS) {
1409 irq_modify_status(virq, IRQ_NOREQUEST, IRQ_NOAUTOEN);
1410 irq_set_chip_and_handler(virq, &gpmc->irq_chip,
1411 handle_simple_irq);
1412 } else {
1413 irq_set_chip_and_handler(virq, &gpmc->irq_chip,
1414 handle_edge_irq);
1415 }
1416
1417 return 0;
1418 }
1419
1420 static const struct irq_domain_ops gpmc_irq_domain_ops = {
1421 .map = gpmc_irq_map,
1422 .xlate = irq_domain_xlate_twocell,
1423 };
1424
gpmc_handle_irq(int irq,void * data)1425 static irqreturn_t gpmc_handle_irq(int irq, void *data)
1426 {
1427 int hwirq, virq;
1428 u32 regval, regvalx;
1429 struct gpmc_device *gpmc = data;
1430
1431 regval = gpmc_read_reg(GPMC_IRQSTATUS);
1432 regvalx = regval;
1433
1434 if (!regval)
1435 return IRQ_NONE;
1436
1437 for (hwirq = 0; hwirq < gpmc->nirqs; hwirq++) {
1438 /* skip reserved status bits */
1439 if (hwirq == GPMC_NR_NAND_IRQS)
1440 regvalx >>= 8 - GPMC_NR_NAND_IRQS;
1441
1442 if (regvalx & BIT(hwirq)) {
1443 virq = irq_find_mapping(gpmc_irq_domain, hwirq);
1444 if (!virq) {
1445 dev_warn(gpmc->dev,
1446 "spurious irq detected hwirq %d, virq %d\n",
1447 hwirq, virq);
1448 }
1449
1450 generic_handle_irq(virq);
1451 }
1452 }
1453
1454 gpmc_write_reg(GPMC_IRQSTATUS, regval);
1455
1456 return IRQ_HANDLED;
1457 }
1458
gpmc_setup_irq(struct gpmc_device * gpmc)1459 static int gpmc_setup_irq(struct gpmc_device *gpmc)
1460 {
1461 u32 regval;
1462 int rc;
1463
1464 /* Disable interrupts */
1465 gpmc_write_reg(GPMC_IRQENABLE, 0);
1466
1467 /* clear interrupts */
1468 regval = gpmc_read_reg(GPMC_IRQSTATUS);
1469 gpmc_write_reg(GPMC_IRQSTATUS, regval);
1470
1471 gpmc->irq_chip.name = "gpmc";
1472 gpmc->irq_chip.irq_enable = gpmc_irq_enable;
1473 gpmc->irq_chip.irq_disable = gpmc_irq_disable;
1474 gpmc->irq_chip.irq_ack = gpmc_irq_ack;
1475 gpmc->irq_chip.irq_mask = gpmc_irq_mask;
1476 gpmc->irq_chip.irq_unmask = gpmc_irq_unmask;
1477 gpmc->irq_chip.irq_set_type = gpmc_irq_set_type;
1478
1479 gpmc_irq_domain = irq_domain_add_linear(gpmc->dev->of_node,
1480 gpmc->nirqs,
1481 &gpmc_irq_domain_ops,
1482 gpmc);
1483 if (!gpmc_irq_domain) {
1484 dev_err(gpmc->dev, "IRQ domain add failed\n");
1485 return -ENODEV;
1486 }
1487
1488 rc = request_irq(gpmc->irq, gpmc_handle_irq, 0, "gpmc", gpmc);
1489 if (rc) {
1490 dev_err(gpmc->dev, "failed to request irq %d: %d\n",
1491 gpmc->irq, rc);
1492 irq_domain_remove(gpmc_irq_domain);
1493 gpmc_irq_domain = NULL;
1494 }
1495
1496 return rc;
1497 }
1498
gpmc_free_irq(struct gpmc_device * gpmc)1499 static int gpmc_free_irq(struct gpmc_device *gpmc)
1500 {
1501 int hwirq;
1502
1503 free_irq(gpmc->irq, gpmc);
1504
1505 for (hwirq = 0; hwirq < gpmc->nirqs; hwirq++)
1506 irq_dispose_mapping(irq_find_mapping(gpmc_irq_domain, hwirq));
1507
1508 irq_domain_remove(gpmc_irq_domain);
1509 gpmc_irq_domain = NULL;
1510
1511 return 0;
1512 }
1513
gpmc_mem_exit(void)1514 static void gpmc_mem_exit(void)
1515 {
1516 int cs;
1517
1518 for (cs = 0; cs < gpmc_cs_num; cs++) {
1519 if (!gpmc_cs_mem_enabled(cs))
1520 continue;
1521 gpmc_cs_delete_mem(cs);
1522 }
1523 }
1524
gpmc_mem_init(struct gpmc_device * gpmc)1525 static void gpmc_mem_init(struct gpmc_device *gpmc)
1526 {
1527 int cs;
1528
1529 if (!gpmc->data) {
1530 /* All legacy devices have same data IO window */
1531 gpmc_mem_root.start = GPMC_MEM_START;
1532 gpmc_mem_root.end = GPMC_MEM_END;
1533 } else {
1534 gpmc_mem_root.start = gpmc->data->start;
1535 gpmc_mem_root.end = gpmc->data->end;
1536 }
1537
1538 /* Reserve all regions that has been set up by bootloader */
1539 for (cs = 0; cs < gpmc_cs_num; cs++) {
1540 u32 base, size;
1541
1542 if (!gpmc_cs_mem_enabled(cs))
1543 continue;
1544 gpmc_cs_get_memconf(cs, &base, &size);
1545 if (gpmc_cs_insert_mem(cs, base, size)) {
1546 pr_warn("%s: disabling cs %d mapped at 0x%x-0x%x\n",
1547 __func__, cs, base, base + size);
1548 gpmc_cs_disable_mem(cs);
1549 }
1550 }
1551 }
1552
gpmc_round_ps_to_sync_clk(u32 time_ps,u32 sync_clk)1553 static u32 gpmc_round_ps_to_sync_clk(u32 time_ps, u32 sync_clk)
1554 {
1555 u32 temp;
1556 int div;
1557
1558 div = gpmc_calc_divider(sync_clk);
1559 temp = gpmc_ps_to_ticks(time_ps);
1560 temp = (temp + div - 1) / div;
1561 return gpmc_ticks_to_ps(temp * div);
1562 }
1563
1564 /* XXX: can the cycles be avoided ? */
gpmc_calc_sync_read_timings(struct gpmc_timings * gpmc_t,struct gpmc_device_timings * dev_t,bool mux)1565 static int gpmc_calc_sync_read_timings(struct gpmc_timings *gpmc_t,
1566 struct gpmc_device_timings *dev_t,
1567 bool mux)
1568 {
1569 u32 temp;
1570
1571 /* adv_rd_off */
1572 temp = dev_t->t_avdp_r;
1573 /* XXX: mux check required ? */
1574 if (mux) {
1575 /* XXX: t_avdp not to be required for sync, only added for tusb
1576 * this indirectly necessitates requirement of t_avdp_r and
1577 * t_avdp_w instead of having a single t_avdp
1578 */
1579 temp = max_t(u32, temp, gpmc_t->clk_activation + dev_t->t_avdh);
1580 temp = max_t(u32, gpmc_t->adv_on + gpmc_ticks_to_ps(1), temp);
1581 }
1582 gpmc_t->adv_rd_off = gpmc_round_ps_to_ticks(temp);
1583
1584 /* oe_on */
1585 temp = dev_t->t_oeasu; /* XXX: remove this ? */
1586 if (mux) {
1587 temp = max_t(u32, temp, gpmc_t->clk_activation + dev_t->t_ach);
1588 temp = max_t(u32, temp, gpmc_t->adv_rd_off +
1589 gpmc_ticks_to_ps(dev_t->cyc_aavdh_oe));
1590 }
1591 gpmc_t->oe_on = gpmc_round_ps_to_ticks(temp);
1592
1593 /* access */
1594 /* XXX: any scope for improvement ?, by combining oe_on
1595 * and clk_activation, need to check whether
1596 * access = clk_activation + round to sync clk ?
1597 */
1598 temp = max_t(u32, dev_t->t_iaa, dev_t->cyc_iaa * gpmc_t->sync_clk);
1599 temp += gpmc_t->clk_activation;
1600 if (dev_t->cyc_oe)
1601 temp = max_t(u32, temp, gpmc_t->oe_on +
1602 gpmc_ticks_to_ps(dev_t->cyc_oe));
1603 gpmc_t->access = gpmc_round_ps_to_ticks(temp);
1604
1605 gpmc_t->oe_off = gpmc_t->access + gpmc_ticks_to_ps(1);
1606 gpmc_t->cs_rd_off = gpmc_t->oe_off;
1607
1608 /* rd_cycle */
1609 temp = max_t(u32, dev_t->t_cez_r, dev_t->t_oez);
1610 temp = gpmc_round_ps_to_sync_clk(temp, gpmc_t->sync_clk) +
1611 gpmc_t->access;
1612 /* XXX: barter t_ce_rdyz with t_cez_r ? */
1613 if (dev_t->t_ce_rdyz)
1614 temp = max_t(u32, temp, gpmc_t->cs_rd_off + dev_t->t_ce_rdyz);
1615 gpmc_t->rd_cycle = gpmc_round_ps_to_ticks(temp);
1616
1617 return 0;
1618 }
1619
gpmc_calc_sync_write_timings(struct gpmc_timings * gpmc_t,struct gpmc_device_timings * dev_t,bool mux)1620 static int gpmc_calc_sync_write_timings(struct gpmc_timings *gpmc_t,
1621 struct gpmc_device_timings *dev_t,
1622 bool mux)
1623 {
1624 u32 temp;
1625
1626 /* adv_wr_off */
1627 temp = dev_t->t_avdp_w;
1628 if (mux) {
1629 temp = max_t(u32, temp,
1630 gpmc_t->clk_activation + dev_t->t_avdh);
1631 temp = max_t(u32, gpmc_t->adv_on + gpmc_ticks_to_ps(1), temp);
1632 }
1633 gpmc_t->adv_wr_off = gpmc_round_ps_to_ticks(temp);
1634
1635 /* wr_data_mux_bus */
1636 temp = max_t(u32, dev_t->t_weasu,
1637 gpmc_t->clk_activation + dev_t->t_rdyo);
1638 /* XXX: shouldn't mux be kept as a whole for wr_data_mux_bus ?,
1639 * and in that case remember to handle we_on properly
1640 */
1641 if (mux) {
1642 temp = max_t(u32, temp,
1643 gpmc_t->adv_wr_off + dev_t->t_aavdh);
1644 temp = max_t(u32, temp, gpmc_t->adv_wr_off +
1645 gpmc_ticks_to_ps(dev_t->cyc_aavdh_we));
1646 }
1647 gpmc_t->wr_data_mux_bus = gpmc_round_ps_to_ticks(temp);
1648
1649 /* we_on */
1650 if (gpmc_capability & GPMC_HAS_WR_DATA_MUX_BUS)
1651 gpmc_t->we_on = gpmc_round_ps_to_ticks(dev_t->t_weasu);
1652 else
1653 gpmc_t->we_on = gpmc_t->wr_data_mux_bus;
1654
1655 /* wr_access */
1656 /* XXX: gpmc_capability check reqd ? , even if not, will not harm */
1657 gpmc_t->wr_access = gpmc_t->access;
1658
1659 /* we_off */
1660 temp = gpmc_t->we_on + dev_t->t_wpl;
1661 temp = max_t(u32, temp,
1662 gpmc_t->wr_access + gpmc_ticks_to_ps(1));
1663 temp = max_t(u32, temp,
1664 gpmc_t->we_on + gpmc_ticks_to_ps(dev_t->cyc_wpl));
1665 gpmc_t->we_off = gpmc_round_ps_to_ticks(temp);
1666
1667 gpmc_t->cs_wr_off = gpmc_round_ps_to_ticks(gpmc_t->we_off +
1668 dev_t->t_wph);
1669
1670 /* wr_cycle */
1671 temp = gpmc_round_ps_to_sync_clk(dev_t->t_cez_w, gpmc_t->sync_clk);
1672 temp += gpmc_t->wr_access;
1673 /* XXX: barter t_ce_rdyz with t_cez_w ? */
1674 if (dev_t->t_ce_rdyz)
1675 temp = max_t(u32, temp,
1676 gpmc_t->cs_wr_off + dev_t->t_ce_rdyz);
1677 gpmc_t->wr_cycle = gpmc_round_ps_to_ticks(temp);
1678
1679 return 0;
1680 }
1681
gpmc_calc_async_read_timings(struct gpmc_timings * gpmc_t,struct gpmc_device_timings * dev_t,bool mux)1682 static int gpmc_calc_async_read_timings(struct gpmc_timings *gpmc_t,
1683 struct gpmc_device_timings *dev_t,
1684 bool mux)
1685 {
1686 u32 temp;
1687
1688 /* adv_rd_off */
1689 temp = dev_t->t_avdp_r;
1690 if (mux)
1691 temp = max_t(u32, gpmc_t->adv_on + gpmc_ticks_to_ps(1), temp);
1692 gpmc_t->adv_rd_off = gpmc_round_ps_to_ticks(temp);
1693
1694 /* oe_on */
1695 temp = dev_t->t_oeasu;
1696 if (mux)
1697 temp = max_t(u32, temp, gpmc_t->adv_rd_off + dev_t->t_aavdh);
1698 gpmc_t->oe_on = gpmc_round_ps_to_ticks(temp);
1699
1700 /* access */
1701 temp = max_t(u32, dev_t->t_iaa, /* XXX: remove t_iaa in async ? */
1702 gpmc_t->oe_on + dev_t->t_oe);
1703 temp = max_t(u32, temp, gpmc_t->cs_on + dev_t->t_ce);
1704 temp = max_t(u32, temp, gpmc_t->adv_on + dev_t->t_aa);
1705 gpmc_t->access = gpmc_round_ps_to_ticks(temp);
1706
1707 gpmc_t->oe_off = gpmc_t->access + gpmc_ticks_to_ps(1);
1708 gpmc_t->cs_rd_off = gpmc_t->oe_off;
1709
1710 /* rd_cycle */
1711 temp = max_t(u32, dev_t->t_rd_cycle,
1712 gpmc_t->cs_rd_off + dev_t->t_cez_r);
1713 temp = max_t(u32, temp, gpmc_t->oe_off + dev_t->t_oez);
1714 gpmc_t->rd_cycle = gpmc_round_ps_to_ticks(temp);
1715
1716 return 0;
1717 }
1718
gpmc_calc_async_write_timings(struct gpmc_timings * gpmc_t,struct gpmc_device_timings * dev_t,bool mux)1719 static int gpmc_calc_async_write_timings(struct gpmc_timings *gpmc_t,
1720 struct gpmc_device_timings *dev_t,
1721 bool mux)
1722 {
1723 u32 temp;
1724
1725 /* adv_wr_off */
1726 temp = dev_t->t_avdp_w;
1727 if (mux)
1728 temp = max_t(u32, gpmc_t->adv_on + gpmc_ticks_to_ps(1), temp);
1729 gpmc_t->adv_wr_off = gpmc_round_ps_to_ticks(temp);
1730
1731 /* wr_data_mux_bus */
1732 temp = dev_t->t_weasu;
1733 if (mux) {
1734 temp = max_t(u32, temp, gpmc_t->adv_wr_off + dev_t->t_aavdh);
1735 temp = max_t(u32, temp, gpmc_t->adv_wr_off +
1736 gpmc_ticks_to_ps(dev_t->cyc_aavdh_we));
1737 }
1738 gpmc_t->wr_data_mux_bus = gpmc_round_ps_to_ticks(temp);
1739
1740 /* we_on */
1741 if (gpmc_capability & GPMC_HAS_WR_DATA_MUX_BUS)
1742 gpmc_t->we_on = gpmc_round_ps_to_ticks(dev_t->t_weasu);
1743 else
1744 gpmc_t->we_on = gpmc_t->wr_data_mux_bus;
1745
1746 /* we_off */
1747 temp = gpmc_t->we_on + dev_t->t_wpl;
1748 gpmc_t->we_off = gpmc_round_ps_to_ticks(temp);
1749
1750 gpmc_t->cs_wr_off = gpmc_round_ps_to_ticks(gpmc_t->we_off +
1751 dev_t->t_wph);
1752
1753 /* wr_cycle */
1754 temp = max_t(u32, dev_t->t_wr_cycle,
1755 gpmc_t->cs_wr_off + dev_t->t_cez_w);
1756 gpmc_t->wr_cycle = gpmc_round_ps_to_ticks(temp);
1757
1758 return 0;
1759 }
1760
gpmc_calc_sync_common_timings(struct gpmc_timings * gpmc_t,struct gpmc_device_timings * dev_t)1761 static int gpmc_calc_sync_common_timings(struct gpmc_timings *gpmc_t,
1762 struct gpmc_device_timings *dev_t)
1763 {
1764 u32 temp;
1765
1766 gpmc_t->sync_clk = gpmc_calc_divider(dev_t->clk) *
1767 gpmc_get_fclk_period();
1768
1769 gpmc_t->page_burst_access = gpmc_round_ps_to_sync_clk(
1770 dev_t->t_bacc,
1771 gpmc_t->sync_clk);
1772
1773 temp = max_t(u32, dev_t->t_ces, dev_t->t_avds);
1774 gpmc_t->clk_activation = gpmc_round_ps_to_ticks(temp);
1775
1776 if (gpmc_calc_divider(gpmc_t->sync_clk) != 1)
1777 return 0;
1778
1779 if (dev_t->ce_xdelay)
1780 gpmc_t->bool_timings.cs_extra_delay = true;
1781 if (dev_t->avd_xdelay)
1782 gpmc_t->bool_timings.adv_extra_delay = true;
1783 if (dev_t->oe_xdelay)
1784 gpmc_t->bool_timings.oe_extra_delay = true;
1785 if (dev_t->we_xdelay)
1786 gpmc_t->bool_timings.we_extra_delay = true;
1787
1788 return 0;
1789 }
1790
gpmc_calc_common_timings(struct gpmc_timings * gpmc_t,struct gpmc_device_timings * dev_t,bool sync)1791 static int gpmc_calc_common_timings(struct gpmc_timings *gpmc_t,
1792 struct gpmc_device_timings *dev_t,
1793 bool sync)
1794 {
1795 u32 temp;
1796
1797 /* cs_on */
1798 gpmc_t->cs_on = gpmc_round_ps_to_ticks(dev_t->t_ceasu);
1799
1800 /* adv_on */
1801 temp = dev_t->t_avdasu;
1802 if (dev_t->t_ce_avd)
1803 temp = max_t(u32, temp,
1804 gpmc_t->cs_on + dev_t->t_ce_avd);
1805 gpmc_t->adv_on = gpmc_round_ps_to_ticks(temp);
1806
1807 if (sync)
1808 gpmc_calc_sync_common_timings(gpmc_t, dev_t);
1809
1810 return 0;
1811 }
1812
1813 /*
1814 * TODO: remove this function once all peripherals are confirmed to
1815 * work with generic timing. Simultaneously gpmc_cs_set_timings()
1816 * has to be modified to handle timings in ps instead of ns
1817 */
gpmc_convert_ps_to_ns(struct gpmc_timings * t)1818 static void gpmc_convert_ps_to_ns(struct gpmc_timings *t)
1819 {
1820 t->cs_on /= 1000;
1821 t->cs_rd_off /= 1000;
1822 t->cs_wr_off /= 1000;
1823 t->adv_on /= 1000;
1824 t->adv_rd_off /= 1000;
1825 t->adv_wr_off /= 1000;
1826 t->we_on /= 1000;
1827 t->we_off /= 1000;
1828 t->oe_on /= 1000;
1829 t->oe_off /= 1000;
1830 t->page_burst_access /= 1000;
1831 t->access /= 1000;
1832 t->rd_cycle /= 1000;
1833 t->wr_cycle /= 1000;
1834 t->bus_turnaround /= 1000;
1835 t->cycle2cycle_delay /= 1000;
1836 t->wait_monitoring /= 1000;
1837 t->clk_activation /= 1000;
1838 t->wr_access /= 1000;
1839 t->wr_data_mux_bus /= 1000;
1840 }
1841
gpmc_calc_timings(struct gpmc_timings * gpmc_t,struct gpmc_settings * gpmc_s,struct gpmc_device_timings * dev_t)1842 int gpmc_calc_timings(struct gpmc_timings *gpmc_t,
1843 struct gpmc_settings *gpmc_s,
1844 struct gpmc_device_timings *dev_t)
1845 {
1846 bool mux = false, sync = false;
1847
1848 if (gpmc_s) {
1849 mux = gpmc_s->mux_add_data ? true : false;
1850 sync = (gpmc_s->sync_read || gpmc_s->sync_write);
1851 }
1852
1853 memset(gpmc_t, 0, sizeof(*gpmc_t));
1854
1855 gpmc_calc_common_timings(gpmc_t, dev_t, sync);
1856
1857 if (gpmc_s && gpmc_s->sync_read)
1858 gpmc_calc_sync_read_timings(gpmc_t, dev_t, mux);
1859 else
1860 gpmc_calc_async_read_timings(gpmc_t, dev_t, mux);
1861
1862 if (gpmc_s && gpmc_s->sync_write)
1863 gpmc_calc_sync_write_timings(gpmc_t, dev_t, mux);
1864 else
1865 gpmc_calc_async_write_timings(gpmc_t, dev_t, mux);
1866
1867 /* TODO: remove, see function definition */
1868 gpmc_convert_ps_to_ns(gpmc_t);
1869
1870 return 0;
1871 }
1872
1873 /**
1874 * gpmc_cs_program_settings - programs non-timing related settings
1875 * @cs: GPMC chip-select to program
1876 * @p: pointer to GPMC settings structure
1877 *
1878 * Programs non-timing related settings for a GPMC chip-select, such as
1879 * bus-width, burst configuration, etc. Function should be called once
1880 * for each chip-select that is being used and must be called before
1881 * calling gpmc_cs_set_timings() as timing parameters in the CONFIG1
1882 * register will be initialised to zero by this function. Returns 0 on
1883 * success and appropriate negative error code on failure.
1884 */
gpmc_cs_program_settings(int cs,struct gpmc_settings * p)1885 int gpmc_cs_program_settings(int cs, struct gpmc_settings *p)
1886 {
1887 u32 config1;
1888
1889 if ((!p->device_width) || (p->device_width > GPMC_DEVWIDTH_16BIT)) {
1890 pr_err("%s: invalid width %d!", __func__, p->device_width);
1891 return -EINVAL;
1892 }
1893
1894 /* Address-data multiplexing not supported for NAND devices */
1895 if (p->device_nand && p->mux_add_data) {
1896 pr_err("%s: invalid configuration!\n", __func__);
1897 return -EINVAL;
1898 }
1899
1900 if ((p->mux_add_data > GPMC_MUX_AD) ||
1901 ((p->mux_add_data == GPMC_MUX_AAD) &&
1902 !(gpmc_capability & GPMC_HAS_MUX_AAD))) {
1903 pr_err("%s: invalid multiplex configuration!\n", __func__);
1904 return -EINVAL;
1905 }
1906
1907 /* Page/burst mode supports lengths of 4, 8 and 16 bytes */
1908 if (p->burst_read || p->burst_write) {
1909 switch (p->burst_len) {
1910 case GPMC_BURST_4:
1911 case GPMC_BURST_8:
1912 case GPMC_BURST_16:
1913 break;
1914 default:
1915 pr_err("%s: invalid page/burst-length (%d)\n",
1916 __func__, p->burst_len);
1917 return -EINVAL;
1918 }
1919 }
1920
1921 if (p->wait_pin != GPMC_WAITPIN_INVALID &&
1922 p->wait_pin > gpmc_nr_waitpins) {
1923 pr_err("%s: invalid wait-pin (%d)\n", __func__, p->wait_pin);
1924 return -EINVAL;
1925 }
1926
1927 config1 = GPMC_CONFIG1_DEVICESIZE((p->device_width - 1));
1928
1929 if (p->sync_read)
1930 config1 |= GPMC_CONFIG1_READTYPE_SYNC;
1931 if (p->sync_write)
1932 config1 |= GPMC_CONFIG1_WRITETYPE_SYNC;
1933 if (p->wait_on_read)
1934 config1 |= GPMC_CONFIG1_WAIT_READ_MON;
1935 if (p->wait_on_write)
1936 config1 |= GPMC_CONFIG1_WAIT_WRITE_MON;
1937 if (p->wait_on_read || p->wait_on_write)
1938 config1 |= GPMC_CONFIG1_WAIT_PIN_SEL(p->wait_pin);
1939 if (p->device_nand)
1940 config1 |= GPMC_CONFIG1_DEVICETYPE(GPMC_DEVICETYPE_NAND);
1941 if (p->mux_add_data)
1942 config1 |= GPMC_CONFIG1_MUXTYPE(p->mux_add_data);
1943 if (p->burst_read)
1944 config1 |= GPMC_CONFIG1_READMULTIPLE_SUPP;
1945 if (p->burst_write)
1946 config1 |= GPMC_CONFIG1_WRITEMULTIPLE_SUPP;
1947 if (p->burst_read || p->burst_write) {
1948 config1 |= GPMC_CONFIG1_PAGE_LEN(p->burst_len >> 3);
1949 config1 |= p->burst_wrap ? GPMC_CONFIG1_WRAPBURST_SUPP : 0;
1950 }
1951
1952 gpmc_cs_write_reg(cs, GPMC_CS_CONFIG1, config1);
1953
1954 if (p->wait_pin_polarity != GPMC_WAITPINPOLARITY_INVALID) {
1955 config1 = gpmc_read_reg(GPMC_CONFIG);
1956
1957 if (p->wait_pin_polarity == GPMC_WAITPINPOLARITY_ACTIVE_LOW)
1958 config1 &= ~GPMC_CONFIG_WAITPINPOLARITY(p->wait_pin);
1959 else if (p->wait_pin_polarity == GPMC_WAITPINPOLARITY_ACTIVE_HIGH)
1960 config1 |= GPMC_CONFIG_WAITPINPOLARITY(p->wait_pin);
1961
1962 gpmc_write_reg(GPMC_CONFIG, config1);
1963 }
1964
1965 return 0;
1966 }
1967
1968 #ifdef CONFIG_OF
gpmc_cs_set_name(int cs,const char * name)1969 static void gpmc_cs_set_name(int cs, const char *name)
1970 {
1971 struct gpmc_cs_data *gpmc = &gpmc_cs[cs];
1972
1973 gpmc->name = name;
1974 }
1975
gpmc_cs_get_name(int cs)1976 static const char *gpmc_cs_get_name(int cs)
1977 {
1978 struct gpmc_cs_data *gpmc = &gpmc_cs[cs];
1979
1980 return gpmc->name;
1981 }
1982
1983 /**
1984 * gpmc_cs_remap - remaps a chip-select physical base address
1985 * @cs: chip-select to remap
1986 * @base: physical base address to re-map chip-select to
1987 *
1988 * Re-maps a chip-select to a new physical base address specified by
1989 * "base". Returns 0 on success and appropriate negative error code
1990 * on failure.
1991 */
gpmc_cs_remap(int cs,u32 base)1992 static int gpmc_cs_remap(int cs, u32 base)
1993 {
1994 int ret;
1995 u32 old_base, size;
1996
1997 if (cs >= gpmc_cs_num) {
1998 pr_err("%s: requested chip-select is disabled\n", __func__);
1999 return -ENODEV;
2000 }
2001
2002 /*
2003 * Make sure we ignore any device offsets from the GPMC partition
2004 * allocated for the chip select and that the new base confirms
2005 * to the GPMC 16MB minimum granularity.
2006 */
2007 base &= ~(SZ_16M - 1);
2008
2009 gpmc_cs_get_memconf(cs, &old_base, &size);
2010 if (base == old_base)
2011 return 0;
2012
2013 ret = gpmc_cs_delete_mem(cs);
2014 if (ret < 0)
2015 return ret;
2016
2017 ret = gpmc_cs_insert_mem(cs, base, size);
2018 if (ret < 0)
2019 return ret;
2020
2021 ret = gpmc_cs_set_memconf(cs, base, size);
2022
2023 return ret;
2024 }
2025
2026 /**
2027 * gpmc_read_settings_dt - read gpmc settings from device-tree
2028 * @np: pointer to device-tree node for a gpmc child device
2029 * @p: pointer to gpmc settings structure
2030 *
2031 * Reads the GPMC settings for a GPMC child device from device-tree and
2032 * stores them in the GPMC settings structure passed. The GPMC settings
2033 * structure is initialised to zero by this function and so any
2034 * previously stored settings will be cleared.
2035 */
gpmc_read_settings_dt(struct device_node * np,struct gpmc_settings * p)2036 void gpmc_read_settings_dt(struct device_node *np, struct gpmc_settings *p)
2037 {
2038 memset(p, 0, sizeof(struct gpmc_settings));
2039
2040 p->sync_read = of_property_read_bool(np, "gpmc,sync-read");
2041 p->sync_write = of_property_read_bool(np, "gpmc,sync-write");
2042 of_property_read_u32(np, "gpmc,device-width", &p->device_width);
2043 of_property_read_u32(np, "gpmc,mux-add-data", &p->mux_add_data);
2044
2045 if (!of_property_read_u32(np, "gpmc,burst-length", &p->burst_len)) {
2046 p->burst_wrap = of_property_read_bool(np, "gpmc,burst-wrap");
2047 p->burst_read = of_property_read_bool(np, "gpmc,burst-read");
2048 p->burst_write = of_property_read_bool(np, "gpmc,burst-write");
2049 if (!p->burst_read && !p->burst_write)
2050 pr_warn("%s: page/burst-length set but not used!\n",
2051 __func__);
2052 }
2053
2054 p->wait_pin = GPMC_WAITPIN_INVALID;
2055 p->wait_pin_polarity = GPMC_WAITPINPOLARITY_INVALID;
2056
2057 if (!of_property_read_u32(np, "gpmc,wait-pin", &p->wait_pin)) {
2058 if (!gpmc_is_valid_waitpin(p->wait_pin)) {
2059 pr_err("%s: Invalid wait-pin (%d)\n", __func__, p->wait_pin);
2060 p->wait_pin = GPMC_WAITPIN_INVALID;
2061 }
2062
2063 if (!of_property_read_u32(np, "ti,wait-pin-polarity",
2064 &p->wait_pin_polarity)) {
2065 if (p->wait_pin_polarity != GPMC_WAITPINPOLARITY_ACTIVE_HIGH &&
2066 p->wait_pin_polarity != GPMC_WAITPINPOLARITY_ACTIVE_LOW) {
2067 pr_err("%s: Invalid wait-pin-polarity (%d)\n",
2068 __func__, p->wait_pin_polarity);
2069 p->wait_pin_polarity = GPMC_WAITPINPOLARITY_INVALID;
2070 }
2071 }
2072
2073 p->wait_on_read = of_property_read_bool(np,
2074 "gpmc,wait-on-read");
2075 p->wait_on_write = of_property_read_bool(np,
2076 "gpmc,wait-on-write");
2077 if (!p->wait_on_read && !p->wait_on_write)
2078 pr_debug("%s: rd/wr wait monitoring not enabled!\n",
2079 __func__);
2080 }
2081 }
2082
gpmc_read_timings_dt(struct device_node * np,struct gpmc_timings * gpmc_t)2083 static void __maybe_unused gpmc_read_timings_dt(struct device_node *np,
2084 struct gpmc_timings *gpmc_t)
2085 {
2086 struct gpmc_bool_timings *p;
2087
2088 if (!np || !gpmc_t)
2089 return;
2090
2091 memset(gpmc_t, 0, sizeof(*gpmc_t));
2092
2093 /* minimum clock period for syncronous mode */
2094 of_property_read_u32(np, "gpmc,sync-clk-ps", &gpmc_t->sync_clk);
2095
2096 /* chip select timtings */
2097 of_property_read_u32(np, "gpmc,cs-on-ns", &gpmc_t->cs_on);
2098 of_property_read_u32(np, "gpmc,cs-rd-off-ns", &gpmc_t->cs_rd_off);
2099 of_property_read_u32(np, "gpmc,cs-wr-off-ns", &gpmc_t->cs_wr_off);
2100
2101 /* ADV signal timings */
2102 of_property_read_u32(np, "gpmc,adv-on-ns", &gpmc_t->adv_on);
2103 of_property_read_u32(np, "gpmc,adv-rd-off-ns", &gpmc_t->adv_rd_off);
2104 of_property_read_u32(np, "gpmc,adv-wr-off-ns", &gpmc_t->adv_wr_off);
2105 of_property_read_u32(np, "gpmc,adv-aad-mux-on-ns",
2106 &gpmc_t->adv_aad_mux_on);
2107 of_property_read_u32(np, "gpmc,adv-aad-mux-rd-off-ns",
2108 &gpmc_t->adv_aad_mux_rd_off);
2109 of_property_read_u32(np, "gpmc,adv-aad-mux-wr-off-ns",
2110 &gpmc_t->adv_aad_mux_wr_off);
2111
2112 /* WE signal timings */
2113 of_property_read_u32(np, "gpmc,we-on-ns", &gpmc_t->we_on);
2114 of_property_read_u32(np, "gpmc,we-off-ns", &gpmc_t->we_off);
2115
2116 /* OE signal timings */
2117 of_property_read_u32(np, "gpmc,oe-on-ns", &gpmc_t->oe_on);
2118 of_property_read_u32(np, "gpmc,oe-off-ns", &gpmc_t->oe_off);
2119 of_property_read_u32(np, "gpmc,oe-aad-mux-on-ns",
2120 &gpmc_t->oe_aad_mux_on);
2121 of_property_read_u32(np, "gpmc,oe-aad-mux-off-ns",
2122 &gpmc_t->oe_aad_mux_off);
2123
2124 /* access and cycle timings */
2125 of_property_read_u32(np, "gpmc,page-burst-access-ns",
2126 &gpmc_t->page_burst_access);
2127 of_property_read_u32(np, "gpmc,access-ns", &gpmc_t->access);
2128 of_property_read_u32(np, "gpmc,rd-cycle-ns", &gpmc_t->rd_cycle);
2129 of_property_read_u32(np, "gpmc,wr-cycle-ns", &gpmc_t->wr_cycle);
2130 of_property_read_u32(np, "gpmc,bus-turnaround-ns",
2131 &gpmc_t->bus_turnaround);
2132 of_property_read_u32(np, "gpmc,cycle2cycle-delay-ns",
2133 &gpmc_t->cycle2cycle_delay);
2134 of_property_read_u32(np, "gpmc,wait-monitoring-ns",
2135 &gpmc_t->wait_monitoring);
2136 of_property_read_u32(np, "gpmc,clk-activation-ns",
2137 &gpmc_t->clk_activation);
2138
2139 /* only applicable to OMAP3+ */
2140 of_property_read_u32(np, "gpmc,wr-access-ns", &gpmc_t->wr_access);
2141 of_property_read_u32(np, "gpmc,wr-data-mux-bus-ns",
2142 &gpmc_t->wr_data_mux_bus);
2143
2144 /* bool timing parameters */
2145 p = &gpmc_t->bool_timings;
2146
2147 p->cycle2cyclediffcsen =
2148 of_property_read_bool(np, "gpmc,cycle2cycle-diffcsen");
2149 p->cycle2cyclesamecsen =
2150 of_property_read_bool(np, "gpmc,cycle2cycle-samecsen");
2151 p->we_extra_delay = of_property_read_bool(np, "gpmc,we-extra-delay");
2152 p->oe_extra_delay = of_property_read_bool(np, "gpmc,oe-extra-delay");
2153 p->adv_extra_delay = of_property_read_bool(np, "gpmc,adv-extra-delay");
2154 p->cs_extra_delay = of_property_read_bool(np, "gpmc,cs-extra-delay");
2155 p->time_para_granularity =
2156 of_property_read_bool(np, "gpmc,time-para-granularity");
2157 }
2158
2159 /**
2160 * gpmc_probe_generic_child - configures the gpmc for a child device
2161 * @pdev: pointer to gpmc platform device
2162 * @child: pointer to device-tree node for child device
2163 *
2164 * Allocates and configures a GPMC chip-select for a child device.
2165 * Returns 0 on success and appropriate negative error code on failure.
2166 */
gpmc_probe_generic_child(struct platform_device * pdev,struct device_node * child)2167 static int gpmc_probe_generic_child(struct platform_device *pdev,
2168 struct device_node *child)
2169 {
2170 struct gpmc_settings gpmc_s;
2171 struct gpmc_timings gpmc_t;
2172 struct resource res;
2173 unsigned long base;
2174 const char *name;
2175 int ret, cs;
2176 u32 val;
2177 struct gpmc_device *gpmc = platform_get_drvdata(pdev);
2178
2179 if (of_property_read_u32(child, "reg", &cs) < 0) {
2180 dev_err(&pdev->dev, "%pOF has no 'reg' property\n",
2181 child);
2182 return -ENODEV;
2183 }
2184
2185 if (of_address_to_resource(child, 0, &res) < 0) {
2186 dev_err(&pdev->dev, "%pOF has malformed 'reg' property\n",
2187 child);
2188 return -ENODEV;
2189 }
2190
2191 /*
2192 * Check if we have multiple instances of the same device
2193 * on a single chip select. If so, use the already initialized
2194 * timings.
2195 */
2196 name = gpmc_cs_get_name(cs);
2197 if (name && of_node_name_eq(child, name))
2198 goto no_timings;
2199
2200 ret = gpmc_cs_request(cs, resource_size(&res), &base);
2201 if (ret < 0) {
2202 dev_err(&pdev->dev, "cannot request GPMC CS %d\n", cs);
2203 return ret;
2204 }
2205 gpmc_cs_set_name(cs, child->full_name);
2206
2207 gpmc_read_settings_dt(child, &gpmc_s);
2208 gpmc_read_timings_dt(child, &gpmc_t);
2209
2210 /*
2211 * For some GPMC devices we still need to rely on the bootloader
2212 * timings because the devices can be connected via FPGA.
2213 * REVISIT: Add timing support from slls644g.pdf.
2214 */
2215 if (!gpmc_t.cs_rd_off) {
2216 WARN(1, "enable GPMC debug to configure .dts timings for CS%i\n",
2217 cs);
2218 gpmc_cs_show_timings(cs,
2219 "please add GPMC bootloader timings to .dts");
2220 goto no_timings;
2221 }
2222
2223 /* CS must be disabled while making changes to gpmc configuration */
2224 gpmc_cs_disable_mem(cs);
2225
2226 /*
2227 * FIXME: gpmc_cs_request() will map the CS to an arbitrary
2228 * location in the gpmc address space. When booting with
2229 * device-tree we want the NOR flash to be mapped to the
2230 * location specified in the device-tree blob. So remap the
2231 * CS to this location. Once DT migration is complete should
2232 * just make gpmc_cs_request() map a specific address.
2233 */
2234 ret = gpmc_cs_remap(cs, res.start);
2235 if (ret < 0) {
2236 dev_err(&pdev->dev, "cannot remap GPMC CS %d to %pa\n",
2237 cs, &res.start);
2238 if (res.start < GPMC_MEM_START) {
2239 dev_info(&pdev->dev,
2240 "GPMC CS %d start cannot be lesser than 0x%x\n",
2241 cs, GPMC_MEM_START);
2242 } else if (res.end > GPMC_MEM_END) {
2243 dev_info(&pdev->dev,
2244 "GPMC CS %d end cannot be greater than 0x%x\n",
2245 cs, GPMC_MEM_END);
2246 }
2247 goto err;
2248 }
2249
2250 if (of_node_name_eq(child, "nand")) {
2251 /* Warn about older DT blobs with no compatible property */
2252 if (!of_property_read_bool(child, "compatible")) {
2253 dev_warn(&pdev->dev,
2254 "Incompatible NAND node: missing compatible");
2255 ret = -EINVAL;
2256 goto err;
2257 }
2258 }
2259
2260 if (of_node_name_eq(child, "onenand")) {
2261 /* Warn about older DT blobs with no compatible property */
2262 if (!of_property_read_bool(child, "compatible")) {
2263 dev_warn(&pdev->dev,
2264 "Incompatible OneNAND node: missing compatible");
2265 ret = -EINVAL;
2266 goto err;
2267 }
2268 }
2269
2270 if (of_match_node(omap_nand_ids, child)) {
2271 /* NAND specific setup */
2272 val = 8;
2273 of_property_read_u32(child, "nand-bus-width", &val);
2274 switch (val) {
2275 case 8:
2276 gpmc_s.device_width = GPMC_DEVWIDTH_8BIT;
2277 break;
2278 case 16:
2279 gpmc_s.device_width = GPMC_DEVWIDTH_16BIT;
2280 break;
2281 default:
2282 dev_err(&pdev->dev, "%pOFn: invalid 'nand-bus-width'\n",
2283 child);
2284 ret = -EINVAL;
2285 goto err;
2286 }
2287
2288 /* disable write protect */
2289 gpmc_configure(GPMC_CONFIG_WP, 0);
2290 gpmc_s.device_nand = true;
2291 } else {
2292 ret = of_property_read_u32(child, "bank-width",
2293 &gpmc_s.device_width);
2294 if (ret < 0 && !gpmc_s.device_width) {
2295 dev_err(&pdev->dev,
2296 "%pOF has no 'gpmc,device-width' property\n",
2297 child);
2298 goto err;
2299 }
2300 }
2301
2302 /* Reserve wait pin if it is required and valid */
2303 if (gpmc_s.wait_on_read || gpmc_s.wait_on_write) {
2304 ret = gpmc_alloc_waitpin(gpmc, &gpmc_s);
2305 if (ret < 0)
2306 goto err;
2307 }
2308
2309 gpmc_cs_show_timings(cs, "before gpmc_cs_program_settings");
2310
2311 ret = gpmc_cs_program_settings(cs, &gpmc_s);
2312 if (ret < 0)
2313 goto err_cs;
2314
2315 ret = gpmc_cs_set_timings(cs, &gpmc_t, &gpmc_s);
2316 if (ret) {
2317 dev_err(&pdev->dev, "failed to set gpmc timings for: %pOFn\n",
2318 child);
2319 goto err_cs;
2320 }
2321
2322 /* Clear limited address i.e. enable A26-A11 */
2323 val = gpmc_read_reg(GPMC_CONFIG);
2324 val &= ~GPMC_CONFIG_LIMITEDADDRESS;
2325 gpmc_write_reg(GPMC_CONFIG, val);
2326
2327 /* Enable CS region */
2328 gpmc_cs_enable_mem(cs);
2329
2330 no_timings:
2331
2332 /* create platform device, NULL on error or when disabled */
2333 if (!of_platform_device_create(child, NULL, &pdev->dev))
2334 goto err_child_fail;
2335
2336 /* create children and other common bus children */
2337 if (of_platform_default_populate(child, NULL, &pdev->dev))
2338 goto err_child_fail;
2339
2340 return 0;
2341
2342 err_child_fail:
2343
2344 dev_err(&pdev->dev, "failed to create gpmc child %pOFn\n", child);
2345 ret = -ENODEV;
2346
2347 err_cs:
2348 gpmc_free_waitpin(gpmc, gpmc_s.wait_pin);
2349 err:
2350 gpmc_cs_free(cs);
2351
2352 return ret;
2353 }
2354
2355 static const struct of_device_id gpmc_dt_ids[];
2356
gpmc_probe_dt(struct platform_device * pdev)2357 static int gpmc_probe_dt(struct platform_device *pdev)
2358 {
2359 int ret;
2360 const struct of_device_id *of_id =
2361 of_match_device(gpmc_dt_ids, &pdev->dev);
2362
2363 if (!of_id)
2364 return 0;
2365
2366 ret = of_property_read_u32(pdev->dev.of_node, "gpmc,num-cs",
2367 &gpmc_cs_num);
2368 if (ret < 0) {
2369 pr_err("%s: number of chip-selects not defined\n", __func__);
2370 return ret;
2371 } else if (gpmc_cs_num < 1) {
2372 pr_err("%s: all chip-selects are disabled\n", __func__);
2373 return -EINVAL;
2374 } else if (gpmc_cs_num > GPMC_CS_NUM) {
2375 pr_err("%s: number of supported chip-selects cannot be > %d\n",
2376 __func__, GPMC_CS_NUM);
2377 return -EINVAL;
2378 }
2379
2380 ret = of_property_read_u32(pdev->dev.of_node, "gpmc,num-waitpins",
2381 &gpmc_nr_waitpins);
2382 if (ret < 0) {
2383 pr_err("%s: number of wait pins not found!\n", __func__);
2384 return ret;
2385 }
2386
2387 return 0;
2388 }
2389
gpmc_probe_dt_children(struct platform_device * pdev)2390 static void gpmc_probe_dt_children(struct platform_device *pdev)
2391 {
2392 int ret;
2393 struct device_node *child;
2394
2395 for_each_available_child_of_node(pdev->dev.of_node, child) {
2396 ret = gpmc_probe_generic_child(pdev, child);
2397 if (ret) {
2398 dev_err(&pdev->dev, "failed to probe DT child '%pOFn': %d\n",
2399 child, ret);
2400 }
2401 }
2402 }
2403 #else
gpmc_read_settings_dt(struct device_node * np,struct gpmc_settings * p)2404 void gpmc_read_settings_dt(struct device_node *np, struct gpmc_settings *p)
2405 {
2406 memset(p, 0, sizeof(*p));
2407 }
gpmc_probe_dt(struct platform_device * pdev)2408 static int gpmc_probe_dt(struct platform_device *pdev)
2409 {
2410 return 0;
2411 }
2412
gpmc_probe_dt_children(struct platform_device * pdev)2413 static void gpmc_probe_dt_children(struct platform_device *pdev)
2414 {
2415 }
2416 #endif /* CONFIG_OF */
2417
gpmc_gpio_get_direction(struct gpio_chip * chip,unsigned int offset)2418 static int gpmc_gpio_get_direction(struct gpio_chip *chip, unsigned int offset)
2419 {
2420 return 1; /* we're input only */
2421 }
2422
gpmc_gpio_direction_input(struct gpio_chip * chip,unsigned int offset)2423 static int gpmc_gpio_direction_input(struct gpio_chip *chip,
2424 unsigned int offset)
2425 {
2426 return 0; /* we're input only */
2427 }
2428
gpmc_gpio_direction_output(struct gpio_chip * chip,unsigned int offset,int value)2429 static int gpmc_gpio_direction_output(struct gpio_chip *chip,
2430 unsigned int offset, int value)
2431 {
2432 return -EINVAL; /* we're input only */
2433 }
2434
gpmc_gpio_set(struct gpio_chip * chip,unsigned int offset,int value)2435 static void gpmc_gpio_set(struct gpio_chip *chip, unsigned int offset,
2436 int value)
2437 {
2438 }
2439
gpmc_gpio_get(struct gpio_chip * chip,unsigned int offset)2440 static int gpmc_gpio_get(struct gpio_chip *chip, unsigned int offset)
2441 {
2442 u32 reg;
2443
2444 offset += 8;
2445
2446 reg = gpmc_read_reg(GPMC_STATUS) & BIT(offset);
2447
2448 return !!reg;
2449 }
2450
gpmc_gpio_init(struct gpmc_device * gpmc)2451 static int gpmc_gpio_init(struct gpmc_device *gpmc)
2452 {
2453 int ret;
2454
2455 gpmc->gpio_chip.parent = gpmc->dev;
2456 gpmc->gpio_chip.owner = THIS_MODULE;
2457 gpmc->gpio_chip.label = DEVICE_NAME;
2458 gpmc->gpio_chip.ngpio = gpmc_nr_waitpins;
2459 gpmc->gpio_chip.get_direction = gpmc_gpio_get_direction;
2460 gpmc->gpio_chip.direction_input = gpmc_gpio_direction_input;
2461 gpmc->gpio_chip.direction_output = gpmc_gpio_direction_output;
2462 gpmc->gpio_chip.set = gpmc_gpio_set;
2463 gpmc->gpio_chip.get = gpmc_gpio_get;
2464 gpmc->gpio_chip.base = -1;
2465
2466 ret = devm_gpiochip_add_data(gpmc->dev, &gpmc->gpio_chip, NULL);
2467 if (ret < 0) {
2468 dev_err(gpmc->dev, "could not register gpio chip: %d\n", ret);
2469 return ret;
2470 }
2471
2472 return 0;
2473 }
2474
omap3_gpmc_save_context(struct gpmc_device * gpmc)2475 static void omap3_gpmc_save_context(struct gpmc_device *gpmc)
2476 {
2477 struct omap3_gpmc_regs *gpmc_context;
2478 int i;
2479
2480 if (!gpmc || !gpmc_base)
2481 return;
2482
2483 gpmc_context = &gpmc->context;
2484
2485 gpmc_context->sysconfig = gpmc_read_reg(GPMC_SYSCONFIG);
2486 gpmc_context->irqenable = gpmc_read_reg(GPMC_IRQENABLE);
2487 gpmc_context->timeout_ctrl = gpmc_read_reg(GPMC_TIMEOUT_CONTROL);
2488 gpmc_context->config = gpmc_read_reg(GPMC_CONFIG);
2489 gpmc_context->prefetch_config1 = gpmc_read_reg(GPMC_PREFETCH_CONFIG1);
2490 gpmc_context->prefetch_config2 = gpmc_read_reg(GPMC_PREFETCH_CONFIG2);
2491 gpmc_context->prefetch_control = gpmc_read_reg(GPMC_PREFETCH_CONTROL);
2492 for (i = 0; i < gpmc_cs_num; i++) {
2493 gpmc_context->cs_context[i].is_valid = gpmc_cs_mem_enabled(i);
2494 if (gpmc_context->cs_context[i].is_valid) {
2495 gpmc_context->cs_context[i].config1 =
2496 gpmc_cs_read_reg(i, GPMC_CS_CONFIG1);
2497 gpmc_context->cs_context[i].config2 =
2498 gpmc_cs_read_reg(i, GPMC_CS_CONFIG2);
2499 gpmc_context->cs_context[i].config3 =
2500 gpmc_cs_read_reg(i, GPMC_CS_CONFIG3);
2501 gpmc_context->cs_context[i].config4 =
2502 gpmc_cs_read_reg(i, GPMC_CS_CONFIG4);
2503 gpmc_context->cs_context[i].config5 =
2504 gpmc_cs_read_reg(i, GPMC_CS_CONFIG5);
2505 gpmc_context->cs_context[i].config6 =
2506 gpmc_cs_read_reg(i, GPMC_CS_CONFIG6);
2507 gpmc_context->cs_context[i].config7 =
2508 gpmc_cs_read_reg(i, GPMC_CS_CONFIG7);
2509 }
2510 }
2511 }
2512
omap3_gpmc_restore_context(struct gpmc_device * gpmc)2513 static void omap3_gpmc_restore_context(struct gpmc_device *gpmc)
2514 {
2515 struct omap3_gpmc_regs *gpmc_context;
2516 int i;
2517
2518 if (!gpmc || !gpmc_base)
2519 return;
2520
2521 gpmc_context = &gpmc->context;
2522
2523 gpmc_write_reg(GPMC_SYSCONFIG, gpmc_context->sysconfig);
2524 gpmc_write_reg(GPMC_IRQENABLE, gpmc_context->irqenable);
2525 gpmc_write_reg(GPMC_TIMEOUT_CONTROL, gpmc_context->timeout_ctrl);
2526 gpmc_write_reg(GPMC_CONFIG, gpmc_context->config);
2527 gpmc_write_reg(GPMC_PREFETCH_CONFIG1, gpmc_context->prefetch_config1);
2528 gpmc_write_reg(GPMC_PREFETCH_CONFIG2, gpmc_context->prefetch_config2);
2529 gpmc_write_reg(GPMC_PREFETCH_CONTROL, gpmc_context->prefetch_control);
2530 for (i = 0; i < gpmc_cs_num; i++) {
2531 if (gpmc_context->cs_context[i].is_valid) {
2532 gpmc_cs_write_reg(i, GPMC_CS_CONFIG1,
2533 gpmc_context->cs_context[i].config1);
2534 gpmc_cs_write_reg(i, GPMC_CS_CONFIG2,
2535 gpmc_context->cs_context[i].config2);
2536 gpmc_cs_write_reg(i, GPMC_CS_CONFIG3,
2537 gpmc_context->cs_context[i].config3);
2538 gpmc_cs_write_reg(i, GPMC_CS_CONFIG4,
2539 gpmc_context->cs_context[i].config4);
2540 gpmc_cs_write_reg(i, GPMC_CS_CONFIG5,
2541 gpmc_context->cs_context[i].config5);
2542 gpmc_cs_write_reg(i, GPMC_CS_CONFIG6,
2543 gpmc_context->cs_context[i].config6);
2544 gpmc_cs_write_reg(i, GPMC_CS_CONFIG7,
2545 gpmc_context->cs_context[i].config7);
2546 } else {
2547 gpmc_cs_write_reg(i, GPMC_CS_CONFIG7, 0);
2548 }
2549 }
2550 }
2551
omap_gpmc_context_notifier(struct notifier_block * nb,unsigned long cmd,void * v)2552 static int omap_gpmc_context_notifier(struct notifier_block *nb,
2553 unsigned long cmd, void *v)
2554 {
2555 struct gpmc_device *gpmc;
2556
2557 gpmc = container_of(nb, struct gpmc_device, nb);
2558 if (gpmc->is_suspended || pm_runtime_suspended(gpmc->dev))
2559 return NOTIFY_OK;
2560
2561 switch (cmd) {
2562 case CPU_CLUSTER_PM_ENTER:
2563 omap3_gpmc_save_context(gpmc);
2564 break;
2565 case CPU_CLUSTER_PM_ENTER_FAILED: /* No need to restore context */
2566 break;
2567 case CPU_CLUSTER_PM_EXIT:
2568 omap3_gpmc_restore_context(gpmc);
2569 break;
2570 }
2571
2572 return NOTIFY_OK;
2573 }
2574
gpmc_probe(struct platform_device * pdev)2575 static int gpmc_probe(struct platform_device *pdev)
2576 {
2577 int rc, i;
2578 u32 l;
2579 struct resource *res;
2580 struct gpmc_device *gpmc;
2581
2582 gpmc = devm_kzalloc(&pdev->dev, sizeof(*gpmc), GFP_KERNEL);
2583 if (!gpmc)
2584 return -ENOMEM;
2585
2586 gpmc->dev = &pdev->dev;
2587 platform_set_drvdata(pdev, gpmc);
2588
2589 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "cfg");
2590 if (!res) {
2591 /* legacy DT */
2592 gpmc_base = devm_platform_ioremap_resource(pdev, 0);
2593 if (IS_ERR(gpmc_base))
2594 return PTR_ERR(gpmc_base);
2595 } else {
2596 gpmc_base = devm_ioremap_resource(&pdev->dev, res);
2597 if (IS_ERR(gpmc_base))
2598 return PTR_ERR(gpmc_base);
2599
2600 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "data");
2601 if (!res) {
2602 dev_err(&pdev->dev, "couldn't get data reg resource\n");
2603 return -ENOENT;
2604 }
2605
2606 gpmc->data = res;
2607 }
2608
2609 gpmc->irq = platform_get_irq(pdev, 0);
2610 if (gpmc->irq < 0)
2611 return gpmc->irq;
2612
2613 gpmc_l3_clk = devm_clk_get(&pdev->dev, "fck");
2614 if (IS_ERR(gpmc_l3_clk)) {
2615 dev_err(&pdev->dev, "Failed to get GPMC fck\n");
2616 return PTR_ERR(gpmc_l3_clk);
2617 }
2618
2619 if (!clk_get_rate(gpmc_l3_clk)) {
2620 dev_err(&pdev->dev, "Invalid GPMC fck clock rate\n");
2621 return -EINVAL;
2622 }
2623
2624 if (pdev->dev.of_node) {
2625 rc = gpmc_probe_dt(pdev);
2626 if (rc)
2627 return rc;
2628 } else {
2629 gpmc_cs_num = GPMC_CS_NUM;
2630 gpmc_nr_waitpins = GPMC_NR_WAITPINS;
2631 }
2632
2633 gpmc->waitpins = devm_kzalloc(&pdev->dev,
2634 gpmc_nr_waitpins * sizeof(struct gpmc_waitpin),
2635 GFP_KERNEL);
2636 if (!gpmc->waitpins)
2637 return -ENOMEM;
2638
2639 for (i = 0; i < gpmc_nr_waitpins; i++)
2640 gpmc->waitpins[i].pin = GPMC_WAITPIN_INVALID;
2641
2642 pm_runtime_enable(&pdev->dev);
2643 pm_runtime_get_sync(&pdev->dev);
2644
2645 l = gpmc_read_reg(GPMC_REVISION);
2646
2647 /*
2648 * FIXME: Once device-tree migration is complete the below flags
2649 * should be populated based upon the device-tree compatible
2650 * string. For now just use the IP revision. OMAP3+ devices have
2651 * the wr_access and wr_data_mux_bus register fields. OMAP4+
2652 * devices support the addr-addr-data multiplex protocol.
2653 *
2654 * GPMC IP revisions:
2655 * - OMAP24xx = 2.0
2656 * - OMAP3xxx = 5.0
2657 * - OMAP44xx/54xx/AM335x = 6.0
2658 */
2659 if (GPMC_REVISION_MAJOR(l) > 0x4)
2660 gpmc_capability = GPMC_HAS_WR_ACCESS | GPMC_HAS_WR_DATA_MUX_BUS;
2661 if (GPMC_REVISION_MAJOR(l) > 0x5)
2662 gpmc_capability |= GPMC_HAS_MUX_AAD;
2663 dev_info(gpmc->dev, "GPMC revision %d.%d\n", GPMC_REVISION_MAJOR(l),
2664 GPMC_REVISION_MINOR(l));
2665
2666 gpmc_mem_init(gpmc);
2667 rc = gpmc_gpio_init(gpmc);
2668 if (rc)
2669 goto gpio_init_failed;
2670
2671 gpmc->nirqs = GPMC_NR_NAND_IRQS + gpmc_nr_waitpins;
2672 rc = gpmc_setup_irq(gpmc);
2673 if (rc) {
2674 dev_err(gpmc->dev, "gpmc_setup_irq failed\n");
2675 goto gpio_init_failed;
2676 }
2677
2678 gpmc_probe_dt_children(pdev);
2679
2680 gpmc->nb.notifier_call = omap_gpmc_context_notifier;
2681 cpu_pm_register_notifier(&gpmc->nb);
2682
2683 return 0;
2684
2685 gpio_init_failed:
2686 gpmc_mem_exit();
2687 pm_runtime_put_sync(&pdev->dev);
2688 pm_runtime_disable(&pdev->dev);
2689
2690 return rc;
2691 }
2692
gpmc_remove(struct platform_device * pdev)2693 static int gpmc_remove(struct platform_device *pdev)
2694 {
2695 int i;
2696 struct gpmc_device *gpmc = platform_get_drvdata(pdev);
2697
2698 cpu_pm_unregister_notifier(&gpmc->nb);
2699 for (i = 0; i < gpmc_nr_waitpins; i++)
2700 gpmc_free_waitpin(gpmc, i);
2701 gpmc_free_irq(gpmc);
2702 gpmc_mem_exit();
2703 pm_runtime_put_sync(&pdev->dev);
2704 pm_runtime_disable(&pdev->dev);
2705
2706 return 0;
2707 }
2708
2709 #ifdef CONFIG_PM_SLEEP
gpmc_suspend(struct device * dev)2710 static int gpmc_suspend(struct device *dev)
2711 {
2712 struct gpmc_device *gpmc = dev_get_drvdata(dev);
2713
2714 omap3_gpmc_save_context(gpmc);
2715 pm_runtime_put_sync(dev);
2716 gpmc->is_suspended = 1;
2717
2718 return 0;
2719 }
2720
gpmc_resume(struct device * dev)2721 static int gpmc_resume(struct device *dev)
2722 {
2723 struct gpmc_device *gpmc = dev_get_drvdata(dev);
2724
2725 pm_runtime_get_sync(dev);
2726 omap3_gpmc_restore_context(gpmc);
2727 gpmc->is_suspended = 0;
2728
2729 return 0;
2730 }
2731 #endif
2732
2733 static SIMPLE_DEV_PM_OPS(gpmc_pm_ops, gpmc_suspend, gpmc_resume);
2734
2735 #ifdef CONFIG_OF
2736 static const struct of_device_id gpmc_dt_ids[] = {
2737 { .compatible = "ti,omap2420-gpmc" },
2738 { .compatible = "ti,omap2430-gpmc" },
2739 { .compatible = "ti,omap3430-gpmc" }, /* omap3430 & omap3630 */
2740 { .compatible = "ti,omap4430-gpmc" }, /* omap4430 & omap4460 & omap543x */
2741 { .compatible = "ti,am3352-gpmc" }, /* am335x devices */
2742 { .compatible = "ti,am64-gpmc" },
2743 { }
2744 };
2745 MODULE_DEVICE_TABLE(of, gpmc_dt_ids);
2746 #endif
2747
2748 static struct platform_driver gpmc_driver = {
2749 .probe = gpmc_probe,
2750 .remove = gpmc_remove,
2751 .driver = {
2752 .name = DEVICE_NAME,
2753 .of_match_table = of_match_ptr(gpmc_dt_ids),
2754 .pm = &gpmc_pm_ops,
2755 },
2756 };
2757
2758 module_platform_driver(gpmc_driver);
2759
2760 MODULE_DESCRIPTION("Texas Instruments GPMC driver");
2761 MODULE_LICENSE("GPL");
2762