xref: /openbmc/linux/drivers/memory/fsl_ifc.c (revision db181ce0)
1 /*
2  * Copyright 2011 Freescale Semiconductor, Inc
3  *
4  * Freescale Integrated Flash Controller
5  *
6  * Author: Dipen Dudhat <Dipen.Dudhat@freescale.com>
7  *
8  * This program is free software; you can redistribute  it and/or modify it
9  * under  the terms of  the GNU General  Public License as published by the
10  * Free Software Foundation;  either version 2 of the  License, or (at your
11  * option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/compiler.h>
25 #include <linux/spinlock.h>
26 #include <linux/types.h>
27 #include <linux/slab.h>
28 #include <linux/io.h>
29 #include <linux/of.h>
30 #include <linux/of_device.h>
31 #include <linux/platform_device.h>
32 #include <linux/fsl_ifc.h>
33 #include <asm/prom.h>
34 
35 struct fsl_ifc_ctrl *fsl_ifc_ctrl_dev;
36 EXPORT_SYMBOL(fsl_ifc_ctrl_dev);
37 
38 /*
39  * convert_ifc_address - convert the base address
40  * @addr_base:	base address of the memory bank
41  */
42 unsigned int convert_ifc_address(phys_addr_t addr_base)
43 {
44 	return addr_base & CSPR_BA;
45 }
46 EXPORT_SYMBOL(convert_ifc_address);
47 
48 /*
49  * fsl_ifc_find - find IFC bank
50  * @addr_base:	base address of the memory bank
51  *
52  * This function walks IFC banks comparing "Base address" field of the CSPR
53  * registers with the supplied addr_base argument. When bases match this
54  * function returns bank number (starting with 0), otherwise it returns
55  * appropriate errno value.
56  */
57 int fsl_ifc_find(phys_addr_t addr_base)
58 {
59 	int i = 0;
60 
61 	if (!fsl_ifc_ctrl_dev || !fsl_ifc_ctrl_dev->regs)
62 		return -ENODEV;
63 
64 	for (i = 0; i < ARRAY_SIZE(fsl_ifc_ctrl_dev->regs->cspr_cs); i++) {
65 		u32 cspr = in_be32(&fsl_ifc_ctrl_dev->regs->cspr_cs[i].cspr);
66 		if (cspr & CSPR_V && (cspr & CSPR_BA) ==
67 				convert_ifc_address(addr_base))
68 			return i;
69 	}
70 
71 	return -ENOENT;
72 }
73 EXPORT_SYMBOL(fsl_ifc_find);
74 
75 static int fsl_ifc_ctrl_init(struct fsl_ifc_ctrl *ctrl)
76 {
77 	struct fsl_ifc_regs __iomem *ifc = ctrl->regs;
78 
79 	/*
80 	 * Clear all the common status and event registers
81 	 */
82 	if (in_be32(&ifc->cm_evter_stat) & IFC_CM_EVTER_STAT_CSER)
83 		out_be32(&ifc->cm_evter_stat, IFC_CM_EVTER_STAT_CSER);
84 
85 	/* enable all error and events */
86 	out_be32(&ifc->cm_evter_en, IFC_CM_EVTER_EN_CSEREN);
87 
88 	/* enable all error and event interrupts */
89 	out_be32(&ifc->cm_evter_intr_en, IFC_CM_EVTER_INTR_EN_CSERIREN);
90 	out_be32(&ifc->cm_erattr0, 0x0);
91 	out_be32(&ifc->cm_erattr1, 0x0);
92 
93 	return 0;
94 }
95 
96 static int fsl_ifc_ctrl_remove(struct platform_device *dev)
97 {
98 	struct fsl_ifc_ctrl *ctrl = dev_get_drvdata(&dev->dev);
99 
100 	free_irq(ctrl->nand_irq, ctrl);
101 	free_irq(ctrl->irq, ctrl);
102 
103 	irq_dispose_mapping(ctrl->nand_irq);
104 	irq_dispose_mapping(ctrl->irq);
105 
106 	iounmap(ctrl->regs);
107 
108 	dev_set_drvdata(&dev->dev, NULL);
109 	kfree(ctrl);
110 
111 	return 0;
112 }
113 
114 /*
115  * NAND events are split between an operational interrupt which only
116  * receives OPC, and an error interrupt that receives everything else,
117  * including non-NAND errors.  Whichever interrupt gets to it first
118  * records the status and wakes the wait queue.
119  */
120 static DEFINE_SPINLOCK(nand_irq_lock);
121 
122 static u32 check_nand_stat(struct fsl_ifc_ctrl *ctrl)
123 {
124 	struct fsl_ifc_regs __iomem *ifc = ctrl->regs;
125 	unsigned long flags;
126 	u32 stat;
127 
128 	spin_lock_irqsave(&nand_irq_lock, flags);
129 
130 	stat = in_be32(&ifc->ifc_nand.nand_evter_stat);
131 	if (stat) {
132 		out_be32(&ifc->ifc_nand.nand_evter_stat, stat);
133 		ctrl->nand_stat = stat;
134 		wake_up(&ctrl->nand_wait);
135 	}
136 
137 	spin_unlock_irqrestore(&nand_irq_lock, flags);
138 
139 	return stat;
140 }
141 
142 static irqreturn_t fsl_ifc_nand_irq(int irqno, void *data)
143 {
144 	struct fsl_ifc_ctrl *ctrl = data;
145 
146 	if (check_nand_stat(ctrl))
147 		return IRQ_HANDLED;
148 
149 	return IRQ_NONE;
150 }
151 
152 /*
153  * NOTE: This interrupt is used to report ifc events of various kinds,
154  * such as transaction errors on the chipselects.
155  */
156 static irqreturn_t fsl_ifc_ctrl_irq(int irqno, void *data)
157 {
158 	struct fsl_ifc_ctrl *ctrl = data;
159 	struct fsl_ifc_regs __iomem *ifc = ctrl->regs;
160 	u32 err_axiid, err_srcid, status, cs_err, err_addr;
161 	irqreturn_t ret = IRQ_NONE;
162 
163 	/* read for chip select error */
164 	cs_err = in_be32(&ifc->cm_evter_stat);
165 	if (cs_err) {
166 		dev_err(ctrl->dev, "transaction sent to IFC is not mapped to"
167 				"any memory bank 0x%08X\n", cs_err);
168 		/* clear the chip select error */
169 		out_be32(&ifc->cm_evter_stat, IFC_CM_EVTER_STAT_CSER);
170 
171 		/* read error attribute registers print the error information */
172 		status = in_be32(&ifc->cm_erattr0);
173 		err_addr = in_be32(&ifc->cm_erattr1);
174 
175 		if (status & IFC_CM_ERATTR0_ERTYP_READ)
176 			dev_err(ctrl->dev, "Read transaction error"
177 				"CM_ERATTR0 0x%08X\n", status);
178 		else
179 			dev_err(ctrl->dev, "Write transaction error"
180 				"CM_ERATTR0 0x%08X\n", status);
181 
182 		err_axiid = (status & IFC_CM_ERATTR0_ERAID) >>
183 					IFC_CM_ERATTR0_ERAID_SHIFT;
184 		dev_err(ctrl->dev, "AXI ID of the error"
185 					"transaction 0x%08X\n", err_axiid);
186 
187 		err_srcid = (status & IFC_CM_ERATTR0_ESRCID) >>
188 					IFC_CM_ERATTR0_ESRCID_SHIFT;
189 		dev_err(ctrl->dev, "SRC ID of the error"
190 					"transaction 0x%08X\n", err_srcid);
191 
192 		dev_err(ctrl->dev, "Transaction Address corresponding to error"
193 					"ERADDR 0x%08X\n", err_addr);
194 
195 		ret = IRQ_HANDLED;
196 	}
197 
198 	if (check_nand_stat(ctrl))
199 		ret = IRQ_HANDLED;
200 
201 	return ret;
202 }
203 
204 /*
205  * fsl_ifc_ctrl_probe
206  *
207  * called by device layer when it finds a device matching
208  * one our driver can handled. This code allocates all of
209  * the resources needed for the controller only.  The
210  * resources for the NAND banks themselves are allocated
211  * in the chip probe function.
212 */
213 static int fsl_ifc_ctrl_probe(struct platform_device *dev)
214 {
215 	int ret = 0;
216 
217 
218 	dev_info(&dev->dev, "Freescale Integrated Flash Controller\n");
219 
220 	fsl_ifc_ctrl_dev = kzalloc(sizeof(*fsl_ifc_ctrl_dev), GFP_KERNEL);
221 	if (!fsl_ifc_ctrl_dev)
222 		return -ENOMEM;
223 
224 	dev_set_drvdata(&dev->dev, fsl_ifc_ctrl_dev);
225 
226 	/* IOMAP the entire IFC region */
227 	fsl_ifc_ctrl_dev->regs = of_iomap(dev->dev.of_node, 0);
228 	if (!fsl_ifc_ctrl_dev->regs) {
229 		dev_err(&dev->dev, "failed to get memory region\n");
230 		ret = -ENODEV;
231 		goto err;
232 	}
233 
234 	/* get the Controller level irq */
235 	fsl_ifc_ctrl_dev->irq = irq_of_parse_and_map(dev->dev.of_node, 0);
236 	if (fsl_ifc_ctrl_dev->irq == NO_IRQ) {
237 		dev_err(&dev->dev, "failed to get irq resource "
238 							"for IFC\n");
239 		ret = -ENODEV;
240 		goto err;
241 	}
242 
243 	/* get the nand machine irq */
244 	fsl_ifc_ctrl_dev->nand_irq =
245 			irq_of_parse_and_map(dev->dev.of_node, 1);
246 
247 	fsl_ifc_ctrl_dev->dev = &dev->dev;
248 
249 	ret = fsl_ifc_ctrl_init(fsl_ifc_ctrl_dev);
250 	if (ret < 0)
251 		goto err;
252 
253 	init_waitqueue_head(&fsl_ifc_ctrl_dev->nand_wait);
254 
255 	ret = request_irq(fsl_ifc_ctrl_dev->irq, fsl_ifc_ctrl_irq, IRQF_SHARED,
256 			  "fsl-ifc", fsl_ifc_ctrl_dev);
257 	if (ret != 0) {
258 		dev_err(&dev->dev, "failed to install irq (%d)\n",
259 			fsl_ifc_ctrl_dev->irq);
260 		goto err_irq;
261 	}
262 
263 	if (fsl_ifc_ctrl_dev->nand_irq) {
264 		ret = request_irq(fsl_ifc_ctrl_dev->nand_irq, fsl_ifc_nand_irq,
265 				0, "fsl-ifc-nand", fsl_ifc_ctrl_dev);
266 		if (ret != 0) {
267 			dev_err(&dev->dev, "failed to install irq (%d)\n",
268 				fsl_ifc_ctrl_dev->nand_irq);
269 			goto err_nandirq;
270 		}
271 	}
272 
273 	return 0;
274 
275 err_nandirq:
276 	free_irq(fsl_ifc_ctrl_dev->nand_irq, fsl_ifc_ctrl_dev);
277 	irq_dispose_mapping(fsl_ifc_ctrl_dev->nand_irq);
278 err_irq:
279 	free_irq(fsl_ifc_ctrl_dev->irq, fsl_ifc_ctrl_dev);
280 	irq_dispose_mapping(fsl_ifc_ctrl_dev->irq);
281 err:
282 	return ret;
283 }
284 
285 static const struct of_device_id fsl_ifc_match[] = {
286 	{
287 		.compatible = "fsl,ifc",
288 	},
289 	{},
290 };
291 
292 static struct platform_driver fsl_ifc_ctrl_driver = {
293 	.driver = {
294 		.name	= "fsl-ifc",
295 		.of_match_table = fsl_ifc_match,
296 	},
297 	.probe       = fsl_ifc_ctrl_probe,
298 	.remove      = fsl_ifc_ctrl_remove,
299 };
300 
301 static int __init fsl_ifc_init(void)
302 {
303 	return platform_driver_register(&fsl_ifc_ctrl_driver);
304 }
305 subsys_initcall(fsl_ifc_init);
306 
307 MODULE_LICENSE("GPL");
308 MODULE_AUTHOR("Freescale Semiconductor");
309 MODULE_DESCRIPTION("Freescale Integrated Flash Controller driver");
310