xref: /openbmc/linux/drivers/memory/fsl_ifc.c (revision 3ddc8b84)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright 2011 Freescale Semiconductor, Inc
4  *
5  * Freescale Integrated Flash Controller
6  *
7  * Author: Dipen Dudhat <Dipen.Dudhat@freescale.com>
8  */
9 #include <linux/module.h>
10 #include <linux/kernel.h>
11 #include <linux/compiler.h>
12 #include <linux/sched.h>
13 #include <linux/spinlock.h>
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/io.h>
17 #include <linux/of.h>
18 #include <linux/of_platform.h>
19 #include <linux/platform_device.h>
20 #include <linux/fsl_ifc.h>
21 #include <linux/irqdomain.h>
22 #include <linux/of_address.h>
23 #include <linux/of_irq.h>
24 
25 struct fsl_ifc_ctrl *fsl_ifc_ctrl_dev;
26 EXPORT_SYMBOL(fsl_ifc_ctrl_dev);
27 
28 /*
29  * convert_ifc_address - convert the base address
30  * @addr_base:	base address of the memory bank
31  */
32 unsigned int convert_ifc_address(phys_addr_t addr_base)
33 {
34 	return addr_base & CSPR_BA;
35 }
36 EXPORT_SYMBOL(convert_ifc_address);
37 
38 /*
39  * fsl_ifc_find - find IFC bank
40  * @addr_base:	base address of the memory bank
41  *
42  * This function walks IFC banks comparing "Base address" field of the CSPR
43  * registers with the supplied addr_base argument. When bases match this
44  * function returns bank number (starting with 0), otherwise it returns
45  * appropriate errno value.
46  */
47 int fsl_ifc_find(phys_addr_t addr_base)
48 {
49 	int i = 0;
50 
51 	if (!fsl_ifc_ctrl_dev || !fsl_ifc_ctrl_dev->gregs)
52 		return -ENODEV;
53 
54 	for (i = 0; i < fsl_ifc_ctrl_dev->banks; i++) {
55 		u32 cspr = ifc_in32(&fsl_ifc_ctrl_dev->gregs->cspr_cs[i].cspr);
56 
57 		if (cspr & CSPR_V && (cspr & CSPR_BA) ==
58 				convert_ifc_address(addr_base))
59 			return i;
60 	}
61 
62 	return -ENOENT;
63 }
64 EXPORT_SYMBOL(fsl_ifc_find);
65 
66 static int fsl_ifc_ctrl_init(struct fsl_ifc_ctrl *ctrl)
67 {
68 	struct fsl_ifc_global __iomem *ifc = ctrl->gregs;
69 
70 	/*
71 	 * Clear all the common status and event registers
72 	 */
73 	if (ifc_in32(&ifc->cm_evter_stat) & IFC_CM_EVTER_STAT_CSER)
74 		ifc_out32(IFC_CM_EVTER_STAT_CSER, &ifc->cm_evter_stat);
75 
76 	/* enable all error and events */
77 	ifc_out32(IFC_CM_EVTER_EN_CSEREN, &ifc->cm_evter_en);
78 
79 	/* enable all error and event interrupts */
80 	ifc_out32(IFC_CM_EVTER_INTR_EN_CSERIREN, &ifc->cm_evter_intr_en);
81 	ifc_out32(0x0, &ifc->cm_erattr0);
82 	ifc_out32(0x0, &ifc->cm_erattr1);
83 
84 	return 0;
85 }
86 
87 static int fsl_ifc_ctrl_remove(struct platform_device *dev)
88 {
89 	struct fsl_ifc_ctrl *ctrl = dev_get_drvdata(&dev->dev);
90 
91 	of_platform_depopulate(&dev->dev);
92 	free_irq(ctrl->nand_irq, ctrl);
93 	free_irq(ctrl->irq, ctrl);
94 
95 	irq_dispose_mapping(ctrl->nand_irq);
96 	irq_dispose_mapping(ctrl->irq);
97 
98 	iounmap(ctrl->gregs);
99 
100 	dev_set_drvdata(&dev->dev, NULL);
101 
102 	return 0;
103 }
104 
105 /*
106  * NAND events are split between an operational interrupt which only
107  * receives OPC, and an error interrupt that receives everything else,
108  * including non-NAND errors.  Whichever interrupt gets to it first
109  * records the status and wakes the wait queue.
110  */
111 static DEFINE_SPINLOCK(nand_irq_lock);
112 
113 static u32 check_nand_stat(struct fsl_ifc_ctrl *ctrl)
114 {
115 	struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs;
116 	unsigned long flags;
117 	u32 stat;
118 
119 	spin_lock_irqsave(&nand_irq_lock, flags);
120 
121 	stat = ifc_in32(&ifc->ifc_nand.nand_evter_stat);
122 	if (stat) {
123 		ifc_out32(stat, &ifc->ifc_nand.nand_evter_stat);
124 		ctrl->nand_stat = stat;
125 		wake_up(&ctrl->nand_wait);
126 	}
127 
128 	spin_unlock_irqrestore(&nand_irq_lock, flags);
129 
130 	return stat;
131 }
132 
133 static irqreturn_t fsl_ifc_nand_irq(int irqno, void *data)
134 {
135 	struct fsl_ifc_ctrl *ctrl = data;
136 
137 	if (check_nand_stat(ctrl))
138 		return IRQ_HANDLED;
139 
140 	return IRQ_NONE;
141 }
142 
143 /*
144  * NOTE: This interrupt is used to report ifc events of various kinds,
145  * such as transaction errors on the chipselects.
146  */
147 static irqreturn_t fsl_ifc_ctrl_irq(int irqno, void *data)
148 {
149 	struct fsl_ifc_ctrl *ctrl = data;
150 	struct fsl_ifc_global __iomem *ifc = ctrl->gregs;
151 	u32 err_axiid, err_srcid, status, cs_err, err_addr;
152 	irqreturn_t ret = IRQ_NONE;
153 
154 	/* read for chip select error */
155 	cs_err = ifc_in32(&ifc->cm_evter_stat);
156 	if (cs_err) {
157 		dev_err(ctrl->dev, "transaction sent to IFC is not mapped to any memory bank 0x%08X\n",
158 			cs_err);
159 		/* clear the chip select error */
160 		ifc_out32(IFC_CM_EVTER_STAT_CSER, &ifc->cm_evter_stat);
161 
162 		/* read error attribute registers print the error information */
163 		status = ifc_in32(&ifc->cm_erattr0);
164 		err_addr = ifc_in32(&ifc->cm_erattr1);
165 
166 		if (status & IFC_CM_ERATTR0_ERTYP_READ)
167 			dev_err(ctrl->dev, "Read transaction error CM_ERATTR0 0x%08X\n",
168 				status);
169 		else
170 			dev_err(ctrl->dev, "Write transaction error CM_ERATTR0 0x%08X\n",
171 				status);
172 
173 		err_axiid = (status & IFC_CM_ERATTR0_ERAID) >>
174 					IFC_CM_ERATTR0_ERAID_SHIFT;
175 		dev_err(ctrl->dev, "AXI ID of the error transaction 0x%08X\n",
176 			err_axiid);
177 
178 		err_srcid = (status & IFC_CM_ERATTR0_ESRCID) >>
179 					IFC_CM_ERATTR0_ESRCID_SHIFT;
180 		dev_err(ctrl->dev, "SRC ID of the error transaction 0x%08X\n",
181 			err_srcid);
182 
183 		dev_err(ctrl->dev, "Transaction Address corresponding to error ERADDR 0x%08X\n",
184 			err_addr);
185 
186 		ret = IRQ_HANDLED;
187 	}
188 
189 	if (check_nand_stat(ctrl))
190 		ret = IRQ_HANDLED;
191 
192 	return ret;
193 }
194 
195 /*
196  * fsl_ifc_ctrl_probe
197  *
198  * called by device layer when it finds a device matching
199  * one our driver can handled. This code allocates all of
200  * the resources needed for the controller only.  The
201  * resources for the NAND banks themselves are allocated
202  * in the chip probe function.
203  */
204 static int fsl_ifc_ctrl_probe(struct platform_device *dev)
205 {
206 	int ret = 0;
207 	int version, banks;
208 	void __iomem *addr;
209 
210 	dev_info(&dev->dev, "Freescale Integrated Flash Controller\n");
211 
212 	fsl_ifc_ctrl_dev = devm_kzalloc(&dev->dev, sizeof(*fsl_ifc_ctrl_dev),
213 					GFP_KERNEL);
214 	if (!fsl_ifc_ctrl_dev)
215 		return -ENOMEM;
216 
217 	dev_set_drvdata(&dev->dev, fsl_ifc_ctrl_dev);
218 
219 	/* IOMAP the entire IFC region */
220 	fsl_ifc_ctrl_dev->gregs = of_iomap(dev->dev.of_node, 0);
221 	if (!fsl_ifc_ctrl_dev->gregs) {
222 		dev_err(&dev->dev, "failed to get memory region\n");
223 		return -ENODEV;
224 	}
225 
226 	if (of_property_read_bool(dev->dev.of_node, "little-endian")) {
227 		fsl_ifc_ctrl_dev->little_endian = true;
228 		dev_dbg(&dev->dev, "IFC REGISTERS are LITTLE endian\n");
229 	} else {
230 		fsl_ifc_ctrl_dev->little_endian = false;
231 		dev_dbg(&dev->dev, "IFC REGISTERS are BIG endian\n");
232 	}
233 
234 	version = ifc_in32(&fsl_ifc_ctrl_dev->gregs->ifc_rev) &
235 			FSL_IFC_VERSION_MASK;
236 
237 	banks = (version == FSL_IFC_VERSION_1_0_0) ? 4 : 8;
238 	dev_info(&dev->dev, "IFC version %d.%d, %d banks\n",
239 		version >> 24, (version >> 16) & 0xf, banks);
240 
241 	fsl_ifc_ctrl_dev->version = version;
242 	fsl_ifc_ctrl_dev->banks = banks;
243 
244 	addr = fsl_ifc_ctrl_dev->gregs;
245 	if (version >= FSL_IFC_VERSION_2_0_0)
246 		addr += PGOFFSET_64K;
247 	else
248 		addr += PGOFFSET_4K;
249 	fsl_ifc_ctrl_dev->rregs = addr;
250 
251 	/* get the Controller level irq */
252 	fsl_ifc_ctrl_dev->irq = irq_of_parse_and_map(dev->dev.of_node, 0);
253 	if (fsl_ifc_ctrl_dev->irq == 0) {
254 		dev_err(&dev->dev, "failed to get irq resource for IFC\n");
255 		ret = -ENODEV;
256 		goto err;
257 	}
258 
259 	/* get the nand machine irq */
260 	fsl_ifc_ctrl_dev->nand_irq =
261 			irq_of_parse_and_map(dev->dev.of_node, 1);
262 
263 	fsl_ifc_ctrl_dev->dev = &dev->dev;
264 
265 	ret = fsl_ifc_ctrl_init(fsl_ifc_ctrl_dev);
266 	if (ret < 0)
267 		goto err_unmap_nandirq;
268 
269 	init_waitqueue_head(&fsl_ifc_ctrl_dev->nand_wait);
270 
271 	ret = request_irq(fsl_ifc_ctrl_dev->irq, fsl_ifc_ctrl_irq, IRQF_SHARED,
272 			  "fsl-ifc", fsl_ifc_ctrl_dev);
273 	if (ret != 0) {
274 		dev_err(&dev->dev, "failed to install irq (%d)\n",
275 			fsl_ifc_ctrl_dev->irq);
276 		goto err_unmap_nandirq;
277 	}
278 
279 	if (fsl_ifc_ctrl_dev->nand_irq) {
280 		ret = request_irq(fsl_ifc_ctrl_dev->nand_irq, fsl_ifc_nand_irq,
281 				0, "fsl-ifc-nand", fsl_ifc_ctrl_dev);
282 		if (ret != 0) {
283 			dev_err(&dev->dev, "failed to install irq (%d)\n",
284 				fsl_ifc_ctrl_dev->nand_irq);
285 			goto err_free_irq;
286 		}
287 	}
288 
289 	/* legacy dts may still use "simple-bus" compatible */
290 	ret = of_platform_default_populate(dev->dev.of_node, NULL, &dev->dev);
291 	if (ret)
292 		goto err_free_nandirq;
293 
294 	return 0;
295 
296 err_free_nandirq:
297 	free_irq(fsl_ifc_ctrl_dev->nand_irq, fsl_ifc_ctrl_dev);
298 err_free_irq:
299 	free_irq(fsl_ifc_ctrl_dev->irq, fsl_ifc_ctrl_dev);
300 err_unmap_nandirq:
301 	irq_dispose_mapping(fsl_ifc_ctrl_dev->nand_irq);
302 	irq_dispose_mapping(fsl_ifc_ctrl_dev->irq);
303 err:
304 	iounmap(fsl_ifc_ctrl_dev->gregs);
305 	return ret;
306 }
307 
308 static const struct of_device_id fsl_ifc_match[] = {
309 	{
310 		.compatible = "fsl,ifc",
311 	},
312 	{},
313 };
314 
315 static struct platform_driver fsl_ifc_ctrl_driver = {
316 	.driver = {
317 		.name	= "fsl-ifc",
318 		.of_match_table = fsl_ifc_match,
319 	},
320 	.probe       = fsl_ifc_ctrl_probe,
321 	.remove      = fsl_ifc_ctrl_remove,
322 };
323 
324 static int __init fsl_ifc_init(void)
325 {
326 	return platform_driver_register(&fsl_ifc_ctrl_driver);
327 }
328 subsys_initcall(fsl_ifc_init);
329 
330 MODULE_AUTHOR("Freescale Semiconductor");
331 MODULE_DESCRIPTION("Freescale Integrated Flash Controller driver");
332