xref: /openbmc/linux/drivers/memory/fsl-corenet-cf.c (revision 87fcfa7b7fe6bf819033fe827a27f710e38639b5)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * CoreNet Coherency Fabric error reporting
4  *
5  * Copyright 2014 Freescale Semiconductor Inc.
6  */
7 
8 #include <linux/interrupt.h>
9 #include <linux/io.h>
10 #include <linux/irq.h>
11 #include <linux/module.h>
12 #include <linux/of.h>
13 #include <linux/of_address.h>
14 #include <linux/of_device.h>
15 #include <linux/of_irq.h>
16 #include <linux/platform_device.h>
17 
18 enum ccf_version {
19 	CCF1,
20 	CCF2,
21 };
22 
23 struct ccf_info {
24 	enum ccf_version version;
25 	int err_reg_offs;
26 	bool has_brr;
27 };
28 
29 static const struct ccf_info ccf1_info = {
30 	.version = CCF1,
31 	.err_reg_offs = 0xa00,
32 	.has_brr = false,
33 };
34 
35 static const struct ccf_info ccf2_info = {
36 	.version = CCF2,
37 	.err_reg_offs = 0xe40,
38 	.has_brr = true,
39 };
40 
41 /*
42  * This register is present but not documented, with different values for
43  * IP_ID, on other chips with fsl,corenet2-cf such as t4240 and b4860.
44  */
45 #define CCF_BRR			0xbf8
46 #define CCF_BRR_IPID		0xffff0000
47 #define CCF_BRR_IPID_T1040	0x09310000
48 
49 static const struct of_device_id ccf_matches[] = {
50 	{
51 		.compatible = "fsl,corenet1-cf",
52 		.data = &ccf1_info,
53 	},
54 	{
55 		.compatible = "fsl,corenet2-cf",
56 		.data = &ccf2_info,
57 	},
58 	{}
59 };
60 MODULE_DEVICE_TABLE(of, ccf_matches);
61 
62 struct ccf_err_regs {
63 	u32 errdet;		/* 0x00 Error Detect Register */
64 	/* 0x04 Error Enable (ccf1)/Disable (ccf2) Register */
65 	u32 errdis;
66 	/* 0x08 Error Interrupt Enable Register (ccf2 only) */
67 	u32 errinten;
68 	u32 cecar;		/* 0x0c Error Capture Attribute Register */
69 	u32 cecaddrh;		/* 0x10 Error Capture Address High */
70 	u32 cecaddrl;		/* 0x14 Error Capture Address Low */
71 	u32 cecar2;		/* 0x18 Error Capture Attribute Register 2 */
72 };
73 
74 /* LAE/CV also valid for errdis and errinten */
75 #define ERRDET_LAE		(1 << 0)  /* Local Access Error */
76 #define ERRDET_CV		(1 << 1)  /* Coherency Violation */
77 #define ERRDET_UTID		(1 << 2)  /* Unavailable Target ID (t1040) */
78 #define ERRDET_MCST		(1 << 3)  /* Multicast Stash (t1040) */
79 #define ERRDET_CTYPE_SHIFT	26	  /* Capture Type (ccf2 only) */
80 #define ERRDET_CTYPE_MASK	(0x1f << ERRDET_CTYPE_SHIFT)
81 #define ERRDET_CAP		(1 << 31) /* Capture Valid (ccf2 only) */
82 
83 #define CECAR_VAL		(1 << 0)  /* Valid (ccf1 only) */
84 #define CECAR_UVT		(1 << 15) /* Unavailable target ID (ccf1) */
85 #define CECAR_SRCID_SHIFT_CCF1	24
86 #define CECAR_SRCID_MASK_CCF1	(0xff << CECAR_SRCID_SHIFT_CCF1)
87 #define CECAR_SRCID_SHIFT_CCF2	18
88 #define CECAR_SRCID_MASK_CCF2	(0xff << CECAR_SRCID_SHIFT_CCF2)
89 
90 #define CECADDRH_ADDRH		0xff
91 
92 struct ccf_private {
93 	const struct ccf_info *info;
94 	struct device *dev;
95 	void __iomem *regs;
96 	struct ccf_err_regs __iomem *err_regs;
97 	bool t1040;
98 };
99 
100 static irqreturn_t ccf_irq(int irq, void *dev_id)
101 {
102 	struct ccf_private *ccf = dev_id;
103 	static DEFINE_RATELIMIT_STATE(ratelimit, DEFAULT_RATELIMIT_INTERVAL,
104 				      DEFAULT_RATELIMIT_BURST);
105 	u32 errdet, cecar, cecar2;
106 	u64 addr;
107 	u32 src_id;
108 	bool uvt = false;
109 	bool cap_valid = false;
110 
111 	errdet = ioread32be(&ccf->err_regs->errdet);
112 	cecar = ioread32be(&ccf->err_regs->cecar);
113 	cecar2 = ioread32be(&ccf->err_regs->cecar2);
114 	addr = ioread32be(&ccf->err_regs->cecaddrl);
115 	addr |= ((u64)(ioread32be(&ccf->err_regs->cecaddrh) &
116 		       CECADDRH_ADDRH)) << 32;
117 
118 	if (!__ratelimit(&ratelimit))
119 		goto out;
120 
121 	switch (ccf->info->version) {
122 	case CCF1:
123 		if (cecar & CECAR_VAL) {
124 			if (cecar & CECAR_UVT)
125 				uvt = true;
126 
127 			src_id = (cecar & CECAR_SRCID_MASK_CCF1) >>
128 				 CECAR_SRCID_SHIFT_CCF1;
129 			cap_valid = true;
130 		}
131 
132 		break;
133 	case CCF2:
134 		if (errdet & ERRDET_CAP) {
135 			src_id = (cecar & CECAR_SRCID_MASK_CCF2) >>
136 				 CECAR_SRCID_SHIFT_CCF2;
137 			cap_valid = true;
138 		}
139 
140 		break;
141 	}
142 
143 	dev_crit(ccf->dev, "errdet 0x%08x cecar 0x%08x cecar2 0x%08x\n",
144 		 errdet, cecar, cecar2);
145 
146 	if (errdet & ERRDET_LAE) {
147 		if (uvt)
148 			dev_crit(ccf->dev, "LAW Unavailable Target ID\n");
149 		else
150 			dev_crit(ccf->dev, "Local Access Window Error\n");
151 	}
152 
153 	if (errdet & ERRDET_CV)
154 		dev_crit(ccf->dev, "Coherency Violation\n");
155 
156 	if (errdet & ERRDET_UTID)
157 		dev_crit(ccf->dev, "Unavailable Target ID\n");
158 
159 	if (errdet & ERRDET_MCST)
160 		dev_crit(ccf->dev, "Multicast Stash\n");
161 
162 	if (cap_valid) {
163 		dev_crit(ccf->dev, "address 0x%09llx, src id 0x%x\n",
164 			 addr, src_id);
165 	}
166 
167 out:
168 	iowrite32be(errdet, &ccf->err_regs->errdet);
169 	return errdet ? IRQ_HANDLED : IRQ_NONE;
170 }
171 
172 static int ccf_probe(struct platform_device *pdev)
173 {
174 	struct ccf_private *ccf;
175 	struct resource *r;
176 	const struct of_device_id *match;
177 	u32 errinten;
178 	int ret, irq;
179 
180 	match = of_match_device(ccf_matches, &pdev->dev);
181 	if (WARN_ON(!match))
182 		return -ENODEV;
183 
184 	ccf = devm_kzalloc(&pdev->dev, sizeof(*ccf), GFP_KERNEL);
185 	if (!ccf)
186 		return -ENOMEM;
187 
188 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
189 	if (!r) {
190 		dev_err(&pdev->dev, "%s: no mem resource\n", __func__);
191 		return -ENXIO;
192 	}
193 
194 	ccf->regs = devm_ioremap_resource(&pdev->dev, r);
195 	if (IS_ERR(ccf->regs)) {
196 		dev_err(&pdev->dev, "%s: can't map mem resource\n", __func__);
197 		return PTR_ERR(ccf->regs);
198 	}
199 
200 	ccf->dev = &pdev->dev;
201 	ccf->info = match->data;
202 	ccf->err_regs = ccf->regs + ccf->info->err_reg_offs;
203 
204 	if (ccf->info->has_brr) {
205 		u32 brr = ioread32be(ccf->regs + CCF_BRR);
206 
207 		if ((brr & CCF_BRR_IPID) == CCF_BRR_IPID_T1040)
208 			ccf->t1040 = true;
209 	}
210 
211 	dev_set_drvdata(&pdev->dev, ccf);
212 
213 	irq = platform_get_irq(pdev, 0);
214 	if (!irq) {
215 		dev_err(&pdev->dev, "%s: no irq\n", __func__);
216 		return -ENXIO;
217 	}
218 
219 	ret = devm_request_irq(&pdev->dev, irq, ccf_irq, 0, pdev->name, ccf);
220 	if (ret) {
221 		dev_err(&pdev->dev, "%s: can't request irq\n", __func__);
222 		return ret;
223 	}
224 
225 	errinten = ERRDET_LAE | ERRDET_CV;
226 	if (ccf->t1040)
227 		errinten |= ERRDET_UTID | ERRDET_MCST;
228 
229 	switch (ccf->info->version) {
230 	case CCF1:
231 		/* On CCF1 this register enables rather than disables. */
232 		iowrite32be(errinten, &ccf->err_regs->errdis);
233 		break;
234 
235 	case CCF2:
236 		iowrite32be(0, &ccf->err_regs->errdis);
237 		iowrite32be(errinten, &ccf->err_regs->errinten);
238 		break;
239 	}
240 
241 	return 0;
242 }
243 
244 static int ccf_remove(struct platform_device *pdev)
245 {
246 	struct ccf_private *ccf = dev_get_drvdata(&pdev->dev);
247 
248 	switch (ccf->info->version) {
249 	case CCF1:
250 		iowrite32be(0, &ccf->err_regs->errdis);
251 		break;
252 
253 	case CCF2:
254 		/*
255 		 * We clear errdis on ccf1 because that's the only way to
256 		 * disable interrupts, but on ccf2 there's no need to disable
257 		 * detection.
258 		 */
259 		iowrite32be(0, &ccf->err_regs->errinten);
260 		break;
261 	}
262 
263 	return 0;
264 }
265 
266 static struct platform_driver ccf_driver = {
267 	.driver = {
268 		.name = KBUILD_MODNAME,
269 		.of_match_table = ccf_matches,
270 	},
271 	.probe = ccf_probe,
272 	.remove = ccf_remove,
273 };
274 
275 module_platform_driver(ccf_driver);
276 
277 MODULE_LICENSE("GPL");
278 MODULE_AUTHOR("Freescale Semiconductor");
279 MODULE_DESCRIPTION("Freescale CoreNet Coherency Fabric error reporting");
280