1 /* 2 * EMIF driver 3 * 4 * Copyright (C) 2012 Texas Instruments, Inc. 5 * 6 * Aneesh V <aneesh@ti.com> 7 * Santosh Shilimkar <santosh.shilimkar@ti.com> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 */ 13 #include <linux/err.h> 14 #include <linux/kernel.h> 15 #include <linux/reboot.h> 16 #include <linux/platform_data/emif_plat.h> 17 #include <linux/io.h> 18 #include <linux/device.h> 19 #include <linux/platform_device.h> 20 #include <linux/interrupt.h> 21 #include <linux/slab.h> 22 #include <linux/of.h> 23 #include <linux/debugfs.h> 24 #include <linux/seq_file.h> 25 #include <linux/module.h> 26 #include <linux/list.h> 27 #include <linux/spinlock.h> 28 #include <linux/pm.h> 29 #include <memory/jedec_ddr.h> 30 #include "emif.h" 31 #include "of_memory.h" 32 33 /** 34 * struct emif_data - Per device static data for driver's use 35 * @duplicate: Whether the DDR devices attached to this EMIF 36 * instance are exactly same as that on EMIF1. In 37 * this case we can save some memory and processing 38 * @temperature_level: Maximum temperature of LPDDR2 devices attached 39 * to this EMIF - read from MR4 register. If there 40 * are two devices attached to this EMIF, this 41 * value is the maximum of the two temperature 42 * levels. 43 * @node: node in the device list 44 * @base: base address of memory-mapped IO registers. 45 * @dev: device pointer. 46 * @addressing table with addressing information from the spec 47 * @regs_cache: An array of 'struct emif_regs' that stores 48 * calculated register values for different 49 * frequencies, to avoid re-calculating them on 50 * each DVFS transition. 51 * @curr_regs: The set of register values used in the last 52 * frequency change (i.e. corresponding to the 53 * frequency in effect at the moment) 54 * @plat_data: Pointer to saved platform data. 55 * @debugfs_root: dentry to the root folder for EMIF in debugfs 56 * @np_ddr: Pointer to ddr device tree node 57 */ 58 struct emif_data { 59 u8 duplicate; 60 u8 temperature_level; 61 u8 lpmode; 62 struct list_head node; 63 unsigned long irq_state; 64 void __iomem *base; 65 struct device *dev; 66 const struct lpddr2_addressing *addressing; 67 struct emif_regs *regs_cache[EMIF_MAX_NUM_FREQUENCIES]; 68 struct emif_regs *curr_regs; 69 struct emif_platform_data *plat_data; 70 struct dentry *debugfs_root; 71 struct device_node *np_ddr; 72 }; 73 74 static struct emif_data *emif1; 75 static spinlock_t emif_lock; 76 static unsigned long irq_state; 77 static u32 t_ck; /* DDR clock period in ps */ 78 static LIST_HEAD(device_list); 79 80 #ifdef CONFIG_DEBUG_FS 81 static void do_emif_regdump_show(struct seq_file *s, struct emif_data *emif, 82 struct emif_regs *regs) 83 { 84 u32 type = emif->plat_data->device_info->type; 85 u32 ip_rev = emif->plat_data->ip_rev; 86 87 seq_printf(s, "EMIF register cache dump for %dMHz\n", 88 regs->freq/1000000); 89 90 seq_printf(s, "ref_ctrl_shdw\t: 0x%08x\n", regs->ref_ctrl_shdw); 91 seq_printf(s, "sdram_tim1_shdw\t: 0x%08x\n", regs->sdram_tim1_shdw); 92 seq_printf(s, "sdram_tim2_shdw\t: 0x%08x\n", regs->sdram_tim2_shdw); 93 seq_printf(s, "sdram_tim3_shdw\t: 0x%08x\n", regs->sdram_tim3_shdw); 94 95 if (ip_rev == EMIF_4D) { 96 seq_printf(s, "read_idle_ctrl_shdw_normal\t: 0x%08x\n", 97 regs->read_idle_ctrl_shdw_normal); 98 seq_printf(s, "read_idle_ctrl_shdw_volt_ramp\t: 0x%08x\n", 99 regs->read_idle_ctrl_shdw_volt_ramp); 100 } else if (ip_rev == EMIF_4D5) { 101 seq_printf(s, "dll_calib_ctrl_shdw_normal\t: 0x%08x\n", 102 regs->dll_calib_ctrl_shdw_normal); 103 seq_printf(s, "dll_calib_ctrl_shdw_volt_ramp\t: 0x%08x\n", 104 regs->dll_calib_ctrl_shdw_volt_ramp); 105 } 106 107 if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) { 108 seq_printf(s, "ref_ctrl_shdw_derated\t: 0x%08x\n", 109 regs->ref_ctrl_shdw_derated); 110 seq_printf(s, "sdram_tim1_shdw_derated\t: 0x%08x\n", 111 regs->sdram_tim1_shdw_derated); 112 seq_printf(s, "sdram_tim3_shdw_derated\t: 0x%08x\n", 113 regs->sdram_tim3_shdw_derated); 114 } 115 } 116 117 static int emif_regdump_show(struct seq_file *s, void *unused) 118 { 119 struct emif_data *emif = s->private; 120 struct emif_regs **regs_cache; 121 int i; 122 123 if (emif->duplicate) 124 regs_cache = emif1->regs_cache; 125 else 126 regs_cache = emif->regs_cache; 127 128 for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) { 129 do_emif_regdump_show(s, emif, regs_cache[i]); 130 seq_printf(s, "\n"); 131 } 132 133 return 0; 134 } 135 136 static int emif_regdump_open(struct inode *inode, struct file *file) 137 { 138 return single_open(file, emif_regdump_show, inode->i_private); 139 } 140 141 static const struct file_operations emif_regdump_fops = { 142 .open = emif_regdump_open, 143 .read = seq_read, 144 .release = single_release, 145 }; 146 147 static int emif_mr4_show(struct seq_file *s, void *unused) 148 { 149 struct emif_data *emif = s->private; 150 151 seq_printf(s, "MR4=%d\n", emif->temperature_level); 152 return 0; 153 } 154 155 static int emif_mr4_open(struct inode *inode, struct file *file) 156 { 157 return single_open(file, emif_mr4_show, inode->i_private); 158 } 159 160 static const struct file_operations emif_mr4_fops = { 161 .open = emif_mr4_open, 162 .read = seq_read, 163 .release = single_release, 164 }; 165 166 static int __init_or_module emif_debugfs_init(struct emif_data *emif) 167 { 168 struct dentry *dentry; 169 int ret; 170 171 dentry = debugfs_create_dir(dev_name(emif->dev), NULL); 172 if (!dentry) { 173 ret = -ENOMEM; 174 goto err0; 175 } 176 emif->debugfs_root = dentry; 177 178 dentry = debugfs_create_file("regcache_dump", S_IRUGO, 179 emif->debugfs_root, emif, &emif_regdump_fops); 180 if (!dentry) { 181 ret = -ENOMEM; 182 goto err1; 183 } 184 185 dentry = debugfs_create_file("mr4", S_IRUGO, 186 emif->debugfs_root, emif, &emif_mr4_fops); 187 if (!dentry) { 188 ret = -ENOMEM; 189 goto err1; 190 } 191 192 return 0; 193 err1: 194 debugfs_remove_recursive(emif->debugfs_root); 195 err0: 196 return ret; 197 } 198 199 static void __exit emif_debugfs_exit(struct emif_data *emif) 200 { 201 debugfs_remove_recursive(emif->debugfs_root); 202 emif->debugfs_root = NULL; 203 } 204 #else 205 static inline int __init_or_module emif_debugfs_init(struct emif_data *emif) 206 { 207 return 0; 208 } 209 210 static inline void __exit emif_debugfs_exit(struct emif_data *emif) 211 { 212 } 213 #endif 214 215 /* 216 * Calculate the period of DDR clock from frequency value 217 */ 218 static void set_ddr_clk_period(u32 freq) 219 { 220 /* Divide 10^12 by frequency to get period in ps */ 221 t_ck = (u32)DIV_ROUND_UP_ULL(1000000000000ull, freq); 222 } 223 224 /* 225 * Get bus width used by EMIF. Note that this may be different from the 226 * bus width of the DDR devices used. For instance two 16-bit DDR devices 227 * may be connected to a given CS of EMIF. In this case bus width as far 228 * as EMIF is concerned is 32, where as the DDR bus width is 16 bits. 229 */ 230 static u32 get_emif_bus_width(struct emif_data *emif) 231 { 232 u32 width; 233 void __iomem *base = emif->base; 234 235 width = (readl(base + EMIF_SDRAM_CONFIG) & NARROW_MODE_MASK) 236 >> NARROW_MODE_SHIFT; 237 width = width == 0 ? 32 : 16; 238 239 return width; 240 } 241 242 /* 243 * Get the CL from SDRAM_CONFIG register 244 */ 245 static u32 get_cl(struct emif_data *emif) 246 { 247 u32 cl; 248 void __iomem *base = emif->base; 249 250 cl = (readl(base + EMIF_SDRAM_CONFIG) & CL_MASK) >> CL_SHIFT; 251 252 return cl; 253 } 254 255 static void set_lpmode(struct emif_data *emif, u8 lpmode) 256 { 257 u32 temp; 258 void __iomem *base = emif->base; 259 260 /* 261 * Workaround for errata i743 - LPDDR2 Power-Down State is Not 262 * Efficient 263 * 264 * i743 DESCRIPTION: 265 * The EMIF supports power-down state for low power. The EMIF 266 * automatically puts the SDRAM into power-down after the memory is 267 * not accessed for a defined number of cycles and the 268 * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set to 0x4. 269 * As the EMIF supports automatic output impedance calibration, a ZQ 270 * calibration long command is issued every time it exits active 271 * power-down and precharge power-down modes. The EMIF waits and 272 * blocks any other command during this calibration. 273 * The EMIF does not allow selective disabling of ZQ calibration upon 274 * exit of power-down mode. Due to very short periods of power-down 275 * cycles, ZQ calibration overhead creates bandwidth issues and 276 * increases overall system power consumption. On the other hand, 277 * issuing ZQ calibration long commands when exiting self-refresh is 278 * still required. 279 * 280 * WORKAROUND 281 * Because there is no power consumption benefit of the power-down due 282 * to the calibration and there is a performance risk, the guideline 283 * is to not allow power-down state and, therefore, to not have set 284 * the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field to 0x4. 285 */ 286 if ((emif->plat_data->ip_rev == EMIF_4D) && 287 (EMIF_LP_MODE_PWR_DN == lpmode)) { 288 WARN_ONCE(1, 289 "REG_LP_MODE = LP_MODE_PWR_DN(4) is prohibited by" 290 "erratum i743 switch to LP_MODE_SELF_REFRESH(2)\n"); 291 /* rollback LP_MODE to Self-refresh mode */ 292 lpmode = EMIF_LP_MODE_SELF_REFRESH; 293 } 294 295 temp = readl(base + EMIF_POWER_MANAGEMENT_CONTROL); 296 temp &= ~LP_MODE_MASK; 297 temp |= (lpmode << LP_MODE_SHIFT); 298 writel(temp, base + EMIF_POWER_MANAGEMENT_CONTROL); 299 } 300 301 static void do_freq_update(void) 302 { 303 struct emif_data *emif; 304 305 /* 306 * Workaround for errata i728: Disable LPMODE during FREQ_UPDATE 307 * 308 * i728 DESCRIPTION: 309 * The EMIF automatically puts the SDRAM into self-refresh mode 310 * after the EMIF has not performed accesses during 311 * EMIF_PWR_MGMT_CTRL[7:4] REG_SR_TIM number of DDR clock cycles 312 * and the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set 313 * to 0x2. If during a small window the following three events 314 * occur: 315 * - The SR_TIMING counter expires 316 * - And frequency change is requested 317 * - And OCP access is requested 318 * Then it causes instable clock on the DDR interface. 319 * 320 * WORKAROUND 321 * To avoid the occurrence of the three events, the workaround 322 * is to disable the self-refresh when requesting a frequency 323 * change. Before requesting a frequency change the software must 324 * program EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x0. When the 325 * frequency change has been done, the software can reprogram 326 * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x2 327 */ 328 list_for_each_entry(emif, &device_list, node) { 329 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH) 330 set_lpmode(emif, EMIF_LP_MODE_DISABLE); 331 } 332 333 /* 334 * TODO: Do FREQ_UPDATE here when an API 335 * is available for this as part of the new 336 * clock framework 337 */ 338 339 list_for_each_entry(emif, &device_list, node) { 340 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH) 341 set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH); 342 } 343 } 344 345 /* Find addressing table entry based on the device's type and density */ 346 static const struct lpddr2_addressing *get_addressing_table( 347 const struct ddr_device_info *device_info) 348 { 349 u32 index, type, density; 350 351 type = device_info->type; 352 density = device_info->density; 353 354 switch (type) { 355 case DDR_TYPE_LPDDR2_S4: 356 index = density - 1; 357 break; 358 case DDR_TYPE_LPDDR2_S2: 359 switch (density) { 360 case DDR_DENSITY_1Gb: 361 case DDR_DENSITY_2Gb: 362 index = density + 3; 363 break; 364 default: 365 index = density - 1; 366 } 367 break; 368 default: 369 return NULL; 370 } 371 372 return &lpddr2_jedec_addressing_table[index]; 373 } 374 375 /* 376 * Find the the right timing table from the array of timing 377 * tables of the device using DDR clock frequency 378 */ 379 static const struct lpddr2_timings *get_timings_table(struct emif_data *emif, 380 u32 freq) 381 { 382 u32 i, min, max, freq_nearest; 383 const struct lpddr2_timings *timings = NULL; 384 const struct lpddr2_timings *timings_arr = emif->plat_data->timings; 385 struct device *dev = emif->dev; 386 387 /* Start with a very high frequency - 1GHz */ 388 freq_nearest = 1000000000; 389 390 /* 391 * Find the timings table such that: 392 * 1. the frequency range covers the required frequency(safe) AND 393 * 2. the max_freq is closest to the required frequency(optimal) 394 */ 395 for (i = 0; i < emif->plat_data->timings_arr_size; i++) { 396 max = timings_arr[i].max_freq; 397 min = timings_arr[i].min_freq; 398 if ((freq >= min) && (freq <= max) && (max < freq_nearest)) { 399 freq_nearest = max; 400 timings = &timings_arr[i]; 401 } 402 } 403 404 if (!timings) 405 dev_err(dev, "%s: couldn't find timings for - %dHz\n", 406 __func__, freq); 407 408 dev_dbg(dev, "%s: timings table: freq %d, speed bin freq %d\n", 409 __func__, freq, freq_nearest); 410 411 return timings; 412 } 413 414 static u32 get_sdram_ref_ctrl_shdw(u32 freq, 415 const struct lpddr2_addressing *addressing) 416 { 417 u32 ref_ctrl_shdw = 0, val = 0, freq_khz, t_refi; 418 419 /* Scale down frequency and t_refi to avoid overflow */ 420 freq_khz = freq / 1000; 421 t_refi = addressing->tREFI_ns / 100; 422 423 /* 424 * refresh rate to be set is 'tREFI(in us) * freq in MHz 425 * division by 10000 to account for change in units 426 */ 427 val = t_refi * freq_khz / 10000; 428 ref_ctrl_shdw |= val << REFRESH_RATE_SHIFT; 429 430 return ref_ctrl_shdw; 431 } 432 433 static u32 get_sdram_tim_1_shdw(const struct lpddr2_timings *timings, 434 const struct lpddr2_min_tck *min_tck, 435 const struct lpddr2_addressing *addressing) 436 { 437 u32 tim1 = 0, val = 0; 438 439 val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1; 440 tim1 |= val << T_WTR_SHIFT; 441 442 if (addressing->num_banks == B8) 443 val = DIV_ROUND_UP(timings->tFAW, t_ck*4); 444 else 445 val = max(min_tck->tRRD, DIV_ROUND_UP(timings->tRRD, t_ck)); 446 tim1 |= (val - 1) << T_RRD_SHIFT; 447 448 val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab, t_ck) - 1; 449 tim1 |= val << T_RC_SHIFT; 450 451 val = max(min_tck->tRASmin, DIV_ROUND_UP(timings->tRAS_min, t_ck)); 452 tim1 |= (val - 1) << T_RAS_SHIFT; 453 454 val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1; 455 tim1 |= val << T_WR_SHIFT; 456 457 val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD, t_ck)) - 1; 458 tim1 |= val << T_RCD_SHIFT; 459 460 val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab, t_ck)) - 1; 461 tim1 |= val << T_RP_SHIFT; 462 463 return tim1; 464 } 465 466 static u32 get_sdram_tim_1_shdw_derated(const struct lpddr2_timings *timings, 467 const struct lpddr2_min_tck *min_tck, 468 const struct lpddr2_addressing *addressing) 469 { 470 u32 tim1 = 0, val = 0; 471 472 val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1; 473 tim1 = val << T_WTR_SHIFT; 474 475 /* 476 * tFAW is approximately 4 times tRRD. So add 1875*4 = 7500ps 477 * to tFAW for de-rating 478 */ 479 if (addressing->num_banks == B8) { 480 val = DIV_ROUND_UP(timings->tFAW + 7500, 4 * t_ck) - 1; 481 } else { 482 val = DIV_ROUND_UP(timings->tRRD + 1875, t_ck); 483 val = max(min_tck->tRRD, val) - 1; 484 } 485 tim1 |= val << T_RRD_SHIFT; 486 487 val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab + 1875, t_ck); 488 tim1 |= (val - 1) << T_RC_SHIFT; 489 490 val = DIV_ROUND_UP(timings->tRAS_min + 1875, t_ck); 491 val = max(min_tck->tRASmin, val) - 1; 492 tim1 |= val << T_RAS_SHIFT; 493 494 val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1; 495 tim1 |= val << T_WR_SHIFT; 496 497 val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD + 1875, t_ck)); 498 tim1 |= (val - 1) << T_RCD_SHIFT; 499 500 val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab + 1875, t_ck)); 501 tim1 |= (val - 1) << T_RP_SHIFT; 502 503 return tim1; 504 } 505 506 static u32 get_sdram_tim_2_shdw(const struct lpddr2_timings *timings, 507 const struct lpddr2_min_tck *min_tck, 508 const struct lpddr2_addressing *addressing, 509 u32 type) 510 { 511 u32 tim2 = 0, val = 0; 512 513 val = min_tck->tCKE - 1; 514 tim2 |= val << T_CKE_SHIFT; 515 516 val = max(min_tck->tRTP, DIV_ROUND_UP(timings->tRTP, t_ck)) - 1; 517 tim2 |= val << T_RTP_SHIFT; 518 519 /* tXSNR = tRFCab_ps + 10 ns(tRFCab_ps for LPDDR2). */ 520 val = DIV_ROUND_UP(addressing->tRFCab_ps + 10000, t_ck) - 1; 521 tim2 |= val << T_XSNR_SHIFT; 522 523 /* XSRD same as XSNR for LPDDR2 */ 524 tim2 |= val << T_XSRD_SHIFT; 525 526 val = max(min_tck->tXP, DIV_ROUND_UP(timings->tXP, t_ck)) - 1; 527 tim2 |= val << T_XP_SHIFT; 528 529 return tim2; 530 } 531 532 static u32 get_sdram_tim_3_shdw(const struct lpddr2_timings *timings, 533 const struct lpddr2_min_tck *min_tck, 534 const struct lpddr2_addressing *addressing, 535 u32 type, u32 ip_rev, u32 derated) 536 { 537 u32 tim3 = 0, val = 0, t_dqsck; 538 539 val = timings->tRAS_max_ns / addressing->tREFI_ns - 1; 540 val = val > 0xF ? 0xF : val; 541 tim3 |= val << T_RAS_MAX_SHIFT; 542 543 val = DIV_ROUND_UP(addressing->tRFCab_ps, t_ck) - 1; 544 tim3 |= val << T_RFC_SHIFT; 545 546 t_dqsck = (derated == EMIF_DERATED_TIMINGS) ? 547 timings->tDQSCK_max_derated : timings->tDQSCK_max; 548 if (ip_rev == EMIF_4D5) 549 val = DIV_ROUND_UP(t_dqsck + 1000, t_ck) - 1; 550 else 551 val = DIV_ROUND_UP(t_dqsck, t_ck) - 1; 552 553 tim3 |= val << T_TDQSCKMAX_SHIFT; 554 555 val = DIV_ROUND_UP(timings->tZQCS, t_ck) - 1; 556 tim3 |= val << ZQ_ZQCS_SHIFT; 557 558 val = DIV_ROUND_UP(timings->tCKESR, t_ck); 559 val = max(min_tck->tCKESR, val) - 1; 560 tim3 |= val << T_CKESR_SHIFT; 561 562 if (ip_rev == EMIF_4D5) { 563 tim3 |= (EMIF_T_CSTA - 1) << T_CSTA_SHIFT; 564 565 val = DIV_ROUND_UP(EMIF_T_PDLL_UL, 128) - 1; 566 tim3 |= val << T_PDLL_UL_SHIFT; 567 } 568 569 return tim3; 570 } 571 572 static u32 get_zq_config_reg(const struct lpddr2_addressing *addressing, 573 bool cs1_used, bool cal_resistors_per_cs) 574 { 575 u32 zq = 0, val = 0; 576 577 val = EMIF_ZQCS_INTERVAL_US * 1000 / addressing->tREFI_ns; 578 zq |= val << ZQ_REFINTERVAL_SHIFT; 579 580 val = DIV_ROUND_UP(T_ZQCL_DEFAULT_NS, T_ZQCS_DEFAULT_NS) - 1; 581 zq |= val << ZQ_ZQCL_MULT_SHIFT; 582 583 val = DIV_ROUND_UP(T_ZQINIT_DEFAULT_NS, T_ZQCL_DEFAULT_NS) - 1; 584 zq |= val << ZQ_ZQINIT_MULT_SHIFT; 585 586 zq |= ZQ_SFEXITEN_ENABLE << ZQ_SFEXITEN_SHIFT; 587 588 if (cal_resistors_per_cs) 589 zq |= ZQ_DUALCALEN_ENABLE << ZQ_DUALCALEN_SHIFT; 590 else 591 zq |= ZQ_DUALCALEN_DISABLE << ZQ_DUALCALEN_SHIFT; 592 593 zq |= ZQ_CS0EN_MASK; /* CS0 is used for sure */ 594 595 val = cs1_used ? 1 : 0; 596 zq |= val << ZQ_CS1EN_SHIFT; 597 598 return zq; 599 } 600 601 static u32 get_temp_alert_config(const struct lpddr2_addressing *addressing, 602 const struct emif_custom_configs *custom_configs, bool cs1_used, 603 u32 sdram_io_width, u32 emif_bus_width) 604 { 605 u32 alert = 0, interval, devcnt; 606 607 if (custom_configs && (custom_configs->mask & 608 EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL)) 609 interval = custom_configs->temp_alert_poll_interval_ms; 610 else 611 interval = TEMP_ALERT_POLL_INTERVAL_DEFAULT_MS; 612 613 interval *= 1000000; /* Convert to ns */ 614 interval /= addressing->tREFI_ns; /* Convert to refresh cycles */ 615 alert |= (interval << TA_REFINTERVAL_SHIFT); 616 617 /* 618 * sdram_io_width is in 'log2(x) - 1' form. Convert emif_bus_width 619 * also to this form and subtract to get TA_DEVCNT, which is 620 * in log2(x) form. 621 */ 622 emif_bus_width = __fls(emif_bus_width) - 1; 623 devcnt = emif_bus_width - sdram_io_width; 624 alert |= devcnt << TA_DEVCNT_SHIFT; 625 626 /* DEVWDT is in 'log2(x) - 3' form */ 627 alert |= (sdram_io_width - 2) << TA_DEVWDT_SHIFT; 628 629 alert |= 1 << TA_SFEXITEN_SHIFT; 630 alert |= 1 << TA_CS0EN_SHIFT; 631 alert |= (cs1_used ? 1 : 0) << TA_CS1EN_SHIFT; 632 633 return alert; 634 } 635 636 static u32 get_read_idle_ctrl_shdw(u8 volt_ramp) 637 { 638 u32 idle = 0, val = 0; 639 640 /* 641 * Maximum value in normal conditions and increased frequency 642 * when voltage is ramping 643 */ 644 if (volt_ramp) 645 val = READ_IDLE_INTERVAL_DVFS / t_ck / 64 - 1; 646 else 647 val = 0x1FF; 648 649 /* 650 * READ_IDLE_CTRL register in EMIF4D has same offset and fields 651 * as DLL_CALIB_CTRL in EMIF4D5, so use the same shifts 652 */ 653 idle |= val << DLL_CALIB_INTERVAL_SHIFT; 654 idle |= EMIF_READ_IDLE_LEN_VAL << ACK_WAIT_SHIFT; 655 656 return idle; 657 } 658 659 static u32 get_dll_calib_ctrl_shdw(u8 volt_ramp) 660 { 661 u32 calib = 0, val = 0; 662 663 if (volt_ramp == DDR_VOLTAGE_RAMPING) 664 val = DLL_CALIB_INTERVAL_DVFS / t_ck / 16 - 1; 665 else 666 val = 0; /* Disabled when voltage is stable */ 667 668 calib |= val << DLL_CALIB_INTERVAL_SHIFT; 669 calib |= DLL_CALIB_ACK_WAIT_VAL << ACK_WAIT_SHIFT; 670 671 return calib; 672 } 673 674 static u32 get_ddr_phy_ctrl_1_attilaphy_4d(const struct lpddr2_timings *timings, 675 u32 freq, u8 RL) 676 { 677 u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_ATTILAPHY, val = 0; 678 679 val = RL + DIV_ROUND_UP(timings->tDQSCK_max, t_ck) - 1; 680 phy |= val << READ_LATENCY_SHIFT_4D; 681 682 if (freq <= 100000000) 683 val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS_ATTILAPHY; 684 else if (freq <= 200000000) 685 val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ_ATTILAPHY; 686 else 687 val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ_ATTILAPHY; 688 689 phy |= val << DLL_SLAVE_DLY_CTRL_SHIFT_4D; 690 691 return phy; 692 } 693 694 static u32 get_phy_ctrl_1_intelliphy_4d5(u32 freq, u8 cl) 695 { 696 u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_INTELLIPHY, half_delay; 697 698 /* 699 * DLL operates at 266 MHz. If DDR frequency is near 266 MHz, 700 * half-delay is not needed else set half-delay 701 */ 702 if (freq >= 265000000 && freq < 267000000) 703 half_delay = 0; 704 else 705 half_delay = 1; 706 707 phy |= half_delay << DLL_HALF_DELAY_SHIFT_4D5; 708 phy |= ((cl + DIV_ROUND_UP(EMIF_PHY_TOTAL_READ_LATENCY_INTELLIPHY_PS, 709 t_ck) - 1) << READ_LATENCY_SHIFT_4D5); 710 711 return phy; 712 } 713 714 static u32 get_ext_phy_ctrl_2_intelliphy_4d5(void) 715 { 716 u32 fifo_we_slave_ratio; 717 718 fifo_we_slave_ratio = DIV_ROUND_CLOSEST( 719 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck); 720 721 return fifo_we_slave_ratio | fifo_we_slave_ratio << 11 | 722 fifo_we_slave_ratio << 22; 723 } 724 725 static u32 get_ext_phy_ctrl_3_intelliphy_4d5(void) 726 { 727 u32 fifo_we_slave_ratio; 728 729 fifo_we_slave_ratio = DIV_ROUND_CLOSEST( 730 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck); 731 732 return fifo_we_slave_ratio >> 10 | fifo_we_slave_ratio << 1 | 733 fifo_we_slave_ratio << 12 | fifo_we_slave_ratio << 23; 734 } 735 736 static u32 get_ext_phy_ctrl_4_intelliphy_4d5(void) 737 { 738 u32 fifo_we_slave_ratio; 739 740 fifo_we_slave_ratio = DIV_ROUND_CLOSEST( 741 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck); 742 743 return fifo_we_slave_ratio >> 9 | fifo_we_slave_ratio << 2 | 744 fifo_we_slave_ratio << 13; 745 } 746 747 static u32 get_pwr_mgmt_ctrl(u32 freq, struct emif_data *emif, u32 ip_rev) 748 { 749 u32 pwr_mgmt_ctrl = 0, timeout; 750 u32 lpmode = EMIF_LP_MODE_SELF_REFRESH; 751 u32 timeout_perf = EMIF_LP_MODE_TIMEOUT_PERFORMANCE; 752 u32 timeout_pwr = EMIF_LP_MODE_TIMEOUT_POWER; 753 u32 freq_threshold = EMIF_LP_MODE_FREQ_THRESHOLD; 754 u32 mask; 755 u8 shift; 756 757 struct emif_custom_configs *cust_cfgs = emif->plat_data->custom_configs; 758 759 if (cust_cfgs && (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE)) { 760 lpmode = cust_cfgs->lpmode; 761 timeout_perf = cust_cfgs->lpmode_timeout_performance; 762 timeout_pwr = cust_cfgs->lpmode_timeout_power; 763 freq_threshold = cust_cfgs->lpmode_freq_threshold; 764 } 765 766 /* Timeout based on DDR frequency */ 767 timeout = freq >= freq_threshold ? timeout_perf : timeout_pwr; 768 769 /* 770 * The value to be set in register is "log2(timeout) - 3" 771 * if timeout < 16 load 0 in register 772 * if timeout is not a power of 2, round to next highest power of 2 773 */ 774 if (timeout < 16) { 775 timeout = 0; 776 } else { 777 if (timeout & (timeout - 1)) 778 timeout <<= 1; 779 timeout = __fls(timeout) - 3; 780 } 781 782 switch (lpmode) { 783 case EMIF_LP_MODE_CLOCK_STOP: 784 shift = CS_TIM_SHIFT; 785 mask = CS_TIM_MASK; 786 break; 787 case EMIF_LP_MODE_SELF_REFRESH: 788 /* Workaround for errata i735 */ 789 if (timeout < 6) 790 timeout = 6; 791 792 shift = SR_TIM_SHIFT; 793 mask = SR_TIM_MASK; 794 break; 795 case EMIF_LP_MODE_PWR_DN: 796 shift = PD_TIM_SHIFT; 797 mask = PD_TIM_MASK; 798 break; 799 case EMIF_LP_MODE_DISABLE: 800 default: 801 mask = 0; 802 shift = 0; 803 break; 804 } 805 /* Round to maximum in case of overflow, BUT warn! */ 806 if (lpmode != EMIF_LP_MODE_DISABLE && timeout > mask >> shift) { 807 pr_err("TIMEOUT Overflow - lpmode=%d perf=%d pwr=%d freq=%d\n", 808 lpmode, 809 timeout_perf, 810 timeout_pwr, 811 freq_threshold); 812 WARN(1, "timeout=0x%02x greater than 0x%02x. Using max\n", 813 timeout, mask >> shift); 814 timeout = mask >> shift; 815 } 816 817 /* Setup required timing */ 818 pwr_mgmt_ctrl = (timeout << shift) & mask; 819 /* setup a default mask for rest of the modes */ 820 pwr_mgmt_ctrl |= (SR_TIM_MASK | CS_TIM_MASK | PD_TIM_MASK) & 821 ~mask; 822 823 /* No CS_TIM in EMIF_4D5 */ 824 if (ip_rev == EMIF_4D5) 825 pwr_mgmt_ctrl &= ~CS_TIM_MASK; 826 827 pwr_mgmt_ctrl |= lpmode << LP_MODE_SHIFT; 828 829 return pwr_mgmt_ctrl; 830 } 831 832 /* 833 * Get the temperature level of the EMIF instance: 834 * Reads the MR4 register of attached SDRAM parts to find out the temperature 835 * level. If there are two parts attached(one on each CS), then the temperature 836 * level for the EMIF instance is the higher of the two temperatures. 837 */ 838 static void get_temperature_level(struct emif_data *emif) 839 { 840 u32 temp, temperature_level; 841 void __iomem *base; 842 843 base = emif->base; 844 845 /* Read mode register 4 */ 846 writel(DDR_MR4, base + EMIF_LPDDR2_MODE_REG_CONFIG); 847 temperature_level = readl(base + EMIF_LPDDR2_MODE_REG_DATA); 848 temperature_level = (temperature_level & MR4_SDRAM_REF_RATE_MASK) >> 849 MR4_SDRAM_REF_RATE_SHIFT; 850 851 if (emif->plat_data->device_info->cs1_used) { 852 writel(DDR_MR4 | CS_MASK, base + EMIF_LPDDR2_MODE_REG_CONFIG); 853 temp = readl(base + EMIF_LPDDR2_MODE_REG_DATA); 854 temp = (temp & MR4_SDRAM_REF_RATE_MASK) 855 >> MR4_SDRAM_REF_RATE_SHIFT; 856 temperature_level = max(temp, temperature_level); 857 } 858 859 /* treat everything less than nominal(3) in MR4 as nominal */ 860 if (unlikely(temperature_level < SDRAM_TEMP_NOMINAL)) 861 temperature_level = SDRAM_TEMP_NOMINAL; 862 863 /* if we get reserved value in MR4 persist with the existing value */ 864 if (likely(temperature_level != SDRAM_TEMP_RESERVED_4)) 865 emif->temperature_level = temperature_level; 866 } 867 868 /* 869 * Program EMIF shadow registers that are not dependent on temperature 870 * or voltage 871 */ 872 static void setup_registers(struct emif_data *emif, struct emif_regs *regs) 873 { 874 void __iomem *base = emif->base; 875 876 writel(regs->sdram_tim2_shdw, base + EMIF_SDRAM_TIMING_2_SHDW); 877 writel(regs->phy_ctrl_1_shdw, base + EMIF_DDR_PHY_CTRL_1_SHDW); 878 writel(regs->pwr_mgmt_ctrl_shdw, 879 base + EMIF_POWER_MANAGEMENT_CTRL_SHDW); 880 881 /* Settings specific for EMIF4D5 */ 882 if (emif->plat_data->ip_rev != EMIF_4D5) 883 return; 884 writel(regs->ext_phy_ctrl_2_shdw, base + EMIF_EXT_PHY_CTRL_2_SHDW); 885 writel(regs->ext_phy_ctrl_3_shdw, base + EMIF_EXT_PHY_CTRL_3_SHDW); 886 writel(regs->ext_phy_ctrl_4_shdw, base + EMIF_EXT_PHY_CTRL_4_SHDW); 887 } 888 889 /* 890 * When voltage ramps dll calibration and forced read idle should 891 * happen more often 892 */ 893 static void setup_volt_sensitive_regs(struct emif_data *emif, 894 struct emif_regs *regs, u32 volt_state) 895 { 896 u32 calib_ctrl; 897 void __iomem *base = emif->base; 898 899 /* 900 * EMIF_READ_IDLE_CTRL in EMIF4D refers to the same register as 901 * EMIF_DLL_CALIB_CTRL in EMIF4D5 and dll_calib_ctrl_shadow_* 902 * is an alias of the respective read_idle_ctrl_shdw_* (members of 903 * a union). So, the below code takes care of both cases 904 */ 905 if (volt_state == DDR_VOLTAGE_RAMPING) 906 calib_ctrl = regs->dll_calib_ctrl_shdw_volt_ramp; 907 else 908 calib_ctrl = regs->dll_calib_ctrl_shdw_normal; 909 910 writel(calib_ctrl, base + EMIF_DLL_CALIB_CTRL_SHDW); 911 } 912 913 /* 914 * setup_temperature_sensitive_regs() - set the timings for temperature 915 * sensitive registers. This happens once at initialisation time based 916 * on the temperature at boot time and subsequently based on the temperature 917 * alert interrupt. Temperature alert can happen when the temperature 918 * increases or drops. So this function can have the effect of either 919 * derating the timings or going back to nominal values. 920 */ 921 static void setup_temperature_sensitive_regs(struct emif_data *emif, 922 struct emif_regs *regs) 923 { 924 u32 tim1, tim3, ref_ctrl, type; 925 void __iomem *base = emif->base; 926 u32 temperature; 927 928 type = emif->plat_data->device_info->type; 929 930 tim1 = regs->sdram_tim1_shdw; 931 tim3 = regs->sdram_tim3_shdw; 932 ref_ctrl = regs->ref_ctrl_shdw; 933 934 /* No de-rating for non-lpddr2 devices */ 935 if (type != DDR_TYPE_LPDDR2_S2 && type != DDR_TYPE_LPDDR2_S4) 936 goto out; 937 938 temperature = emif->temperature_level; 939 if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH) { 940 ref_ctrl = regs->ref_ctrl_shdw_derated; 941 } else if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH_AND_TIMINGS) { 942 tim1 = regs->sdram_tim1_shdw_derated; 943 tim3 = regs->sdram_tim3_shdw_derated; 944 ref_ctrl = regs->ref_ctrl_shdw_derated; 945 } 946 947 out: 948 writel(tim1, base + EMIF_SDRAM_TIMING_1_SHDW); 949 writel(tim3, base + EMIF_SDRAM_TIMING_3_SHDW); 950 writel(ref_ctrl, base + EMIF_SDRAM_REFRESH_CTRL_SHDW); 951 } 952 953 static irqreturn_t handle_temp_alert(void __iomem *base, struct emif_data *emif) 954 { 955 u32 old_temp_level; 956 irqreturn_t ret = IRQ_HANDLED; 957 struct emif_custom_configs *custom_configs; 958 959 spin_lock_irqsave(&emif_lock, irq_state); 960 old_temp_level = emif->temperature_level; 961 get_temperature_level(emif); 962 963 if (unlikely(emif->temperature_level == old_temp_level)) { 964 goto out; 965 } else if (!emif->curr_regs) { 966 dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n"); 967 goto out; 968 } 969 970 custom_configs = emif->plat_data->custom_configs; 971 972 /* 973 * IF we detect higher than "nominal rating" from DDR sensor 974 * on an unsupported DDR part, shutdown system 975 */ 976 if (custom_configs && !(custom_configs->mask & 977 EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART)) { 978 if (emif->temperature_level >= SDRAM_TEMP_HIGH_DERATE_REFRESH) { 979 dev_err(emif->dev, 980 "%s:NOT Extended temperature capable memory." 981 "Converting MR4=0x%02x as shutdown event\n", 982 __func__, emif->temperature_level); 983 /* 984 * Temperature far too high - do kernel_power_off() 985 * from thread context 986 */ 987 emif->temperature_level = SDRAM_TEMP_VERY_HIGH_SHUTDOWN; 988 ret = IRQ_WAKE_THREAD; 989 goto out; 990 } 991 } 992 993 if (emif->temperature_level < old_temp_level || 994 emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) { 995 /* 996 * Temperature coming down - defer handling to thread OR 997 * Temperature far too high - do kernel_power_off() from 998 * thread context 999 */ 1000 ret = IRQ_WAKE_THREAD; 1001 } else { 1002 /* Temperature is going up - handle immediately */ 1003 setup_temperature_sensitive_regs(emif, emif->curr_regs); 1004 do_freq_update(); 1005 } 1006 1007 out: 1008 spin_unlock_irqrestore(&emif_lock, irq_state); 1009 return ret; 1010 } 1011 1012 static irqreturn_t emif_interrupt_handler(int irq, void *dev_id) 1013 { 1014 u32 interrupts; 1015 struct emif_data *emif = dev_id; 1016 void __iomem *base = emif->base; 1017 struct device *dev = emif->dev; 1018 irqreturn_t ret = IRQ_HANDLED; 1019 1020 /* Save the status and clear it */ 1021 interrupts = readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS); 1022 writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS); 1023 1024 /* 1025 * Handle temperature alert 1026 * Temperature alert should be same for all ports 1027 * So, it's enough to process it only for one of the ports 1028 */ 1029 if (interrupts & TA_SYS_MASK) 1030 ret = handle_temp_alert(base, emif); 1031 1032 if (interrupts & ERR_SYS_MASK) 1033 dev_err(dev, "Access error from SYS port - %x\n", interrupts); 1034 1035 if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) { 1036 /* Save the status and clear it */ 1037 interrupts = readl(base + EMIF_LL_OCP_INTERRUPT_STATUS); 1038 writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_STATUS); 1039 1040 if (interrupts & ERR_LL_MASK) 1041 dev_err(dev, "Access error from LL port - %x\n", 1042 interrupts); 1043 } 1044 1045 return ret; 1046 } 1047 1048 static irqreturn_t emif_threaded_isr(int irq, void *dev_id) 1049 { 1050 struct emif_data *emif = dev_id; 1051 1052 if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) { 1053 dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n"); 1054 1055 /* If we have Power OFF ability, use it, else try restarting */ 1056 if (pm_power_off) { 1057 kernel_power_off(); 1058 } else { 1059 WARN(1, "FIXME: NO pm_power_off!!! trying restart\n"); 1060 kernel_restart("SDRAM Over-temp Emergency restart"); 1061 } 1062 return IRQ_HANDLED; 1063 } 1064 1065 spin_lock_irqsave(&emif_lock, irq_state); 1066 1067 if (emif->curr_regs) { 1068 setup_temperature_sensitive_regs(emif, emif->curr_regs); 1069 do_freq_update(); 1070 } else { 1071 dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n"); 1072 } 1073 1074 spin_unlock_irqrestore(&emif_lock, irq_state); 1075 1076 return IRQ_HANDLED; 1077 } 1078 1079 static void clear_all_interrupts(struct emif_data *emif) 1080 { 1081 void __iomem *base = emif->base; 1082 1083 writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS), 1084 base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS); 1085 if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) 1086 writel(readl(base + EMIF_LL_OCP_INTERRUPT_STATUS), 1087 base + EMIF_LL_OCP_INTERRUPT_STATUS); 1088 } 1089 1090 static void disable_and_clear_all_interrupts(struct emif_data *emif) 1091 { 1092 void __iomem *base = emif->base; 1093 1094 /* Disable all interrupts */ 1095 writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET), 1096 base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_CLEAR); 1097 if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) 1098 writel(readl(base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET), 1099 base + EMIF_LL_OCP_INTERRUPT_ENABLE_CLEAR); 1100 1101 /* Clear all interrupts */ 1102 clear_all_interrupts(emif); 1103 } 1104 1105 static int __init_or_module setup_interrupts(struct emif_data *emif, u32 irq) 1106 { 1107 u32 interrupts, type; 1108 void __iomem *base = emif->base; 1109 1110 type = emif->plat_data->device_info->type; 1111 1112 clear_all_interrupts(emif); 1113 1114 /* Enable interrupts for SYS interface */ 1115 interrupts = EN_ERR_SYS_MASK; 1116 if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) 1117 interrupts |= EN_TA_SYS_MASK; 1118 writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET); 1119 1120 /* Enable interrupts for LL interface */ 1121 if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) { 1122 /* TA need not be enabled for LL */ 1123 interrupts = EN_ERR_LL_MASK; 1124 writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET); 1125 } 1126 1127 /* setup IRQ handlers */ 1128 return devm_request_threaded_irq(emif->dev, irq, 1129 emif_interrupt_handler, 1130 emif_threaded_isr, 1131 0, dev_name(emif->dev), 1132 emif); 1133 1134 } 1135 1136 static void __init_or_module emif_onetime_settings(struct emif_data *emif) 1137 { 1138 u32 pwr_mgmt_ctrl, zq, temp_alert_cfg; 1139 void __iomem *base = emif->base; 1140 const struct lpddr2_addressing *addressing; 1141 const struct ddr_device_info *device_info; 1142 1143 device_info = emif->plat_data->device_info; 1144 addressing = get_addressing_table(device_info); 1145 1146 /* 1147 * Init power management settings 1148 * We don't know the frequency yet. Use a high frequency 1149 * value for a conservative timeout setting 1150 */ 1151 pwr_mgmt_ctrl = get_pwr_mgmt_ctrl(1000000000, emif, 1152 emif->plat_data->ip_rev); 1153 emif->lpmode = (pwr_mgmt_ctrl & LP_MODE_MASK) >> LP_MODE_SHIFT; 1154 writel(pwr_mgmt_ctrl, base + EMIF_POWER_MANAGEMENT_CONTROL); 1155 1156 /* Init ZQ calibration settings */ 1157 zq = get_zq_config_reg(addressing, device_info->cs1_used, 1158 device_info->cal_resistors_per_cs); 1159 writel(zq, base + EMIF_SDRAM_OUTPUT_IMPEDANCE_CALIBRATION_CONFIG); 1160 1161 /* Check temperature level temperature level*/ 1162 get_temperature_level(emif); 1163 if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) 1164 dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n"); 1165 1166 /* Init temperature polling */ 1167 temp_alert_cfg = get_temp_alert_config(addressing, 1168 emif->plat_data->custom_configs, device_info->cs1_used, 1169 device_info->io_width, get_emif_bus_width(emif)); 1170 writel(temp_alert_cfg, base + EMIF_TEMPERATURE_ALERT_CONFIG); 1171 1172 /* 1173 * Program external PHY control registers that are not frequency 1174 * dependent 1175 */ 1176 if (emif->plat_data->phy_type != EMIF_PHY_TYPE_INTELLIPHY) 1177 return; 1178 writel(EMIF_EXT_PHY_CTRL_1_VAL, base + EMIF_EXT_PHY_CTRL_1_SHDW); 1179 writel(EMIF_EXT_PHY_CTRL_5_VAL, base + EMIF_EXT_PHY_CTRL_5_SHDW); 1180 writel(EMIF_EXT_PHY_CTRL_6_VAL, base + EMIF_EXT_PHY_CTRL_6_SHDW); 1181 writel(EMIF_EXT_PHY_CTRL_7_VAL, base + EMIF_EXT_PHY_CTRL_7_SHDW); 1182 writel(EMIF_EXT_PHY_CTRL_8_VAL, base + EMIF_EXT_PHY_CTRL_8_SHDW); 1183 writel(EMIF_EXT_PHY_CTRL_9_VAL, base + EMIF_EXT_PHY_CTRL_9_SHDW); 1184 writel(EMIF_EXT_PHY_CTRL_10_VAL, base + EMIF_EXT_PHY_CTRL_10_SHDW); 1185 writel(EMIF_EXT_PHY_CTRL_11_VAL, base + EMIF_EXT_PHY_CTRL_11_SHDW); 1186 writel(EMIF_EXT_PHY_CTRL_12_VAL, base + EMIF_EXT_PHY_CTRL_12_SHDW); 1187 writel(EMIF_EXT_PHY_CTRL_13_VAL, base + EMIF_EXT_PHY_CTRL_13_SHDW); 1188 writel(EMIF_EXT_PHY_CTRL_14_VAL, base + EMIF_EXT_PHY_CTRL_14_SHDW); 1189 writel(EMIF_EXT_PHY_CTRL_15_VAL, base + EMIF_EXT_PHY_CTRL_15_SHDW); 1190 writel(EMIF_EXT_PHY_CTRL_16_VAL, base + EMIF_EXT_PHY_CTRL_16_SHDW); 1191 writel(EMIF_EXT_PHY_CTRL_17_VAL, base + EMIF_EXT_PHY_CTRL_17_SHDW); 1192 writel(EMIF_EXT_PHY_CTRL_18_VAL, base + EMIF_EXT_PHY_CTRL_18_SHDW); 1193 writel(EMIF_EXT_PHY_CTRL_19_VAL, base + EMIF_EXT_PHY_CTRL_19_SHDW); 1194 writel(EMIF_EXT_PHY_CTRL_20_VAL, base + EMIF_EXT_PHY_CTRL_20_SHDW); 1195 writel(EMIF_EXT_PHY_CTRL_21_VAL, base + EMIF_EXT_PHY_CTRL_21_SHDW); 1196 writel(EMIF_EXT_PHY_CTRL_22_VAL, base + EMIF_EXT_PHY_CTRL_22_SHDW); 1197 writel(EMIF_EXT_PHY_CTRL_23_VAL, base + EMIF_EXT_PHY_CTRL_23_SHDW); 1198 writel(EMIF_EXT_PHY_CTRL_24_VAL, base + EMIF_EXT_PHY_CTRL_24_SHDW); 1199 } 1200 1201 static void get_default_timings(struct emif_data *emif) 1202 { 1203 struct emif_platform_data *pd = emif->plat_data; 1204 1205 pd->timings = lpddr2_jedec_timings; 1206 pd->timings_arr_size = ARRAY_SIZE(lpddr2_jedec_timings); 1207 1208 dev_warn(emif->dev, "%s: using default timings\n", __func__); 1209 } 1210 1211 static int is_dev_data_valid(u32 type, u32 density, u32 io_width, u32 phy_type, 1212 u32 ip_rev, struct device *dev) 1213 { 1214 int valid; 1215 1216 valid = (type == DDR_TYPE_LPDDR2_S4 || 1217 type == DDR_TYPE_LPDDR2_S2) 1218 && (density >= DDR_DENSITY_64Mb 1219 && density <= DDR_DENSITY_8Gb) 1220 && (io_width >= DDR_IO_WIDTH_8 1221 && io_width <= DDR_IO_WIDTH_32); 1222 1223 /* Combinations of EMIF and PHY revisions that we support today */ 1224 switch (ip_rev) { 1225 case EMIF_4D: 1226 valid = valid && (phy_type == EMIF_PHY_TYPE_ATTILAPHY); 1227 break; 1228 case EMIF_4D5: 1229 valid = valid && (phy_type == EMIF_PHY_TYPE_INTELLIPHY); 1230 break; 1231 default: 1232 valid = 0; 1233 } 1234 1235 if (!valid) 1236 dev_err(dev, "%s: invalid DDR details\n", __func__); 1237 return valid; 1238 } 1239 1240 static int is_custom_config_valid(struct emif_custom_configs *cust_cfgs, 1241 struct device *dev) 1242 { 1243 int valid = 1; 1244 1245 if ((cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE) && 1246 (cust_cfgs->lpmode != EMIF_LP_MODE_DISABLE)) 1247 valid = cust_cfgs->lpmode_freq_threshold && 1248 cust_cfgs->lpmode_timeout_performance && 1249 cust_cfgs->lpmode_timeout_power; 1250 1251 if (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL) 1252 valid = valid && cust_cfgs->temp_alert_poll_interval_ms; 1253 1254 if (!valid) 1255 dev_warn(dev, "%s: invalid custom configs\n", __func__); 1256 1257 return valid; 1258 } 1259 1260 #if defined(CONFIG_OF) 1261 static void __init_or_module of_get_custom_configs(struct device_node *np_emif, 1262 struct emif_data *emif) 1263 { 1264 struct emif_custom_configs *cust_cfgs = NULL; 1265 int len; 1266 const __be32 *lpmode, *poll_intvl; 1267 1268 lpmode = of_get_property(np_emif, "low-power-mode", &len); 1269 poll_intvl = of_get_property(np_emif, "temp-alert-poll-interval", &len); 1270 1271 if (lpmode || poll_intvl) 1272 cust_cfgs = devm_kzalloc(emif->dev, sizeof(*cust_cfgs), 1273 GFP_KERNEL); 1274 1275 if (!cust_cfgs) 1276 return; 1277 1278 if (lpmode) { 1279 cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_LPMODE; 1280 cust_cfgs->lpmode = be32_to_cpup(lpmode); 1281 of_property_read_u32(np_emif, 1282 "low-power-mode-timeout-performance", 1283 &cust_cfgs->lpmode_timeout_performance); 1284 of_property_read_u32(np_emif, 1285 "low-power-mode-timeout-power", 1286 &cust_cfgs->lpmode_timeout_power); 1287 of_property_read_u32(np_emif, 1288 "low-power-mode-freq-threshold", 1289 &cust_cfgs->lpmode_freq_threshold); 1290 } 1291 1292 if (poll_intvl) { 1293 cust_cfgs->mask |= 1294 EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL; 1295 cust_cfgs->temp_alert_poll_interval_ms = 1296 be32_to_cpup(poll_intvl); 1297 } 1298 1299 if (of_find_property(np_emif, "extended-temp-part", &len)) 1300 cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART; 1301 1302 if (!is_custom_config_valid(cust_cfgs, emif->dev)) { 1303 devm_kfree(emif->dev, cust_cfgs); 1304 return; 1305 } 1306 1307 emif->plat_data->custom_configs = cust_cfgs; 1308 } 1309 1310 static void __init_or_module of_get_ddr_info(struct device_node *np_emif, 1311 struct device_node *np_ddr, 1312 struct ddr_device_info *dev_info) 1313 { 1314 u32 density = 0, io_width = 0; 1315 int len; 1316 1317 if (of_find_property(np_emif, "cs1-used", &len)) 1318 dev_info->cs1_used = true; 1319 1320 if (of_find_property(np_emif, "cal-resistor-per-cs", &len)) 1321 dev_info->cal_resistors_per_cs = true; 1322 1323 if (of_device_is_compatible(np_ddr , "jedec,lpddr2-s4")) 1324 dev_info->type = DDR_TYPE_LPDDR2_S4; 1325 else if (of_device_is_compatible(np_ddr , "jedec,lpddr2-s2")) 1326 dev_info->type = DDR_TYPE_LPDDR2_S2; 1327 1328 of_property_read_u32(np_ddr, "density", &density); 1329 of_property_read_u32(np_ddr, "io-width", &io_width); 1330 1331 /* Convert from density in Mb to the density encoding in jedc_ddr.h */ 1332 if (density & (density - 1)) 1333 dev_info->density = 0; 1334 else 1335 dev_info->density = __fls(density) - 5; 1336 1337 /* Convert from io_width in bits to io_width encoding in jedc_ddr.h */ 1338 if (io_width & (io_width - 1)) 1339 dev_info->io_width = 0; 1340 else 1341 dev_info->io_width = __fls(io_width) - 1; 1342 } 1343 1344 static struct emif_data * __init_or_module of_get_memory_device_details( 1345 struct device_node *np_emif, struct device *dev) 1346 { 1347 struct emif_data *emif = NULL; 1348 struct ddr_device_info *dev_info = NULL; 1349 struct emif_platform_data *pd = NULL; 1350 struct device_node *np_ddr; 1351 int len; 1352 1353 np_ddr = of_parse_phandle(np_emif, "device-handle", 0); 1354 if (!np_ddr) 1355 goto error; 1356 emif = devm_kzalloc(dev, sizeof(struct emif_data), GFP_KERNEL); 1357 pd = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL); 1358 dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL); 1359 1360 if (!emif || !pd || !dev_info) { 1361 dev_err(dev, "%s: Out of memory!!\n", 1362 __func__); 1363 goto error; 1364 } 1365 1366 emif->plat_data = pd; 1367 pd->device_info = dev_info; 1368 emif->dev = dev; 1369 emif->np_ddr = np_ddr; 1370 emif->temperature_level = SDRAM_TEMP_NOMINAL; 1371 1372 if (of_device_is_compatible(np_emif, "ti,emif-4d")) 1373 emif->plat_data->ip_rev = EMIF_4D; 1374 else if (of_device_is_compatible(np_emif, "ti,emif-4d5")) 1375 emif->plat_data->ip_rev = EMIF_4D5; 1376 1377 of_property_read_u32(np_emif, "phy-type", &pd->phy_type); 1378 1379 if (of_find_property(np_emif, "hw-caps-ll-interface", &len)) 1380 pd->hw_caps |= EMIF_HW_CAPS_LL_INTERFACE; 1381 1382 of_get_ddr_info(np_emif, np_ddr, dev_info); 1383 if (!is_dev_data_valid(pd->device_info->type, pd->device_info->density, 1384 pd->device_info->io_width, pd->phy_type, pd->ip_rev, 1385 emif->dev)) { 1386 dev_err(dev, "%s: invalid device data!!\n", __func__); 1387 goto error; 1388 } 1389 /* 1390 * For EMIF instances other than EMIF1 see if the devices connected 1391 * are exactly same as on EMIF1(which is typically the case). If so, 1392 * mark it as a duplicate of EMIF1. This will save some memory and 1393 * computation. 1394 */ 1395 if (emif1 && emif1->np_ddr == np_ddr) { 1396 emif->duplicate = true; 1397 goto out; 1398 } else if (emif1) { 1399 dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n", 1400 __func__); 1401 } 1402 1403 of_get_custom_configs(np_emif, emif); 1404 emif->plat_data->timings = of_get_ddr_timings(np_ddr, emif->dev, 1405 emif->plat_data->device_info->type, 1406 &emif->plat_data->timings_arr_size); 1407 1408 emif->plat_data->min_tck = of_get_min_tck(np_ddr, emif->dev); 1409 goto out; 1410 1411 error: 1412 return NULL; 1413 out: 1414 return emif; 1415 } 1416 1417 #else 1418 1419 static struct emif_data * __init_or_module of_get_memory_device_details( 1420 struct device_node *np_emif, struct device *dev) 1421 { 1422 return NULL; 1423 } 1424 #endif 1425 1426 static struct emif_data *__init_or_module get_device_details( 1427 struct platform_device *pdev) 1428 { 1429 u32 size; 1430 struct emif_data *emif = NULL; 1431 struct ddr_device_info *dev_info; 1432 struct emif_custom_configs *cust_cfgs; 1433 struct emif_platform_data *pd; 1434 struct device *dev; 1435 void *temp; 1436 1437 pd = pdev->dev.platform_data; 1438 dev = &pdev->dev; 1439 1440 if (!(pd && pd->device_info && is_dev_data_valid(pd->device_info->type, 1441 pd->device_info->density, pd->device_info->io_width, 1442 pd->phy_type, pd->ip_rev, dev))) { 1443 dev_err(dev, "%s: invalid device data\n", __func__); 1444 goto error; 1445 } 1446 1447 emif = devm_kzalloc(dev, sizeof(*emif), GFP_KERNEL); 1448 temp = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL); 1449 dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL); 1450 1451 if (!emif || !pd || !dev_info) { 1452 dev_err(dev, "%s:%d: allocation error\n", __func__, __LINE__); 1453 goto error; 1454 } 1455 1456 memcpy(temp, pd, sizeof(*pd)); 1457 pd = temp; 1458 memcpy(dev_info, pd->device_info, sizeof(*dev_info)); 1459 1460 pd->device_info = dev_info; 1461 emif->plat_data = pd; 1462 emif->dev = dev; 1463 emif->temperature_level = SDRAM_TEMP_NOMINAL; 1464 1465 /* 1466 * For EMIF instances other than EMIF1 see if the devices connected 1467 * are exactly same as on EMIF1(which is typically the case). If so, 1468 * mark it as a duplicate of EMIF1 and skip copying timings data. 1469 * This will save some memory and some computation later. 1470 */ 1471 emif->duplicate = emif1 && (memcmp(dev_info, 1472 emif1->plat_data->device_info, 1473 sizeof(struct ddr_device_info)) == 0); 1474 1475 if (emif->duplicate) { 1476 pd->timings = NULL; 1477 pd->min_tck = NULL; 1478 goto out; 1479 } else if (emif1) { 1480 dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n", 1481 __func__); 1482 } 1483 1484 /* 1485 * Copy custom configs - ignore allocation error, if any, as 1486 * custom_configs is not very critical 1487 */ 1488 cust_cfgs = pd->custom_configs; 1489 if (cust_cfgs && is_custom_config_valid(cust_cfgs, dev)) { 1490 temp = devm_kzalloc(dev, sizeof(*cust_cfgs), GFP_KERNEL); 1491 if (temp) 1492 memcpy(temp, cust_cfgs, sizeof(*cust_cfgs)); 1493 else 1494 dev_warn(dev, "%s:%d: allocation error\n", __func__, 1495 __LINE__); 1496 pd->custom_configs = temp; 1497 } 1498 1499 /* 1500 * Copy timings and min-tck values from platform data. If it is not 1501 * available or if memory allocation fails, use JEDEC defaults 1502 */ 1503 size = sizeof(struct lpddr2_timings) * pd->timings_arr_size; 1504 if (pd->timings) { 1505 temp = devm_kzalloc(dev, size, GFP_KERNEL); 1506 if (temp) { 1507 memcpy(temp, pd->timings, size); 1508 pd->timings = temp; 1509 } else { 1510 dev_warn(dev, "%s:%d: allocation error\n", __func__, 1511 __LINE__); 1512 get_default_timings(emif); 1513 } 1514 } else { 1515 get_default_timings(emif); 1516 } 1517 1518 if (pd->min_tck) { 1519 temp = devm_kzalloc(dev, sizeof(*pd->min_tck), GFP_KERNEL); 1520 if (temp) { 1521 memcpy(temp, pd->min_tck, sizeof(*pd->min_tck)); 1522 pd->min_tck = temp; 1523 } else { 1524 dev_warn(dev, "%s:%d: allocation error\n", __func__, 1525 __LINE__); 1526 pd->min_tck = &lpddr2_jedec_min_tck; 1527 } 1528 } else { 1529 pd->min_tck = &lpddr2_jedec_min_tck; 1530 } 1531 1532 out: 1533 return emif; 1534 1535 error: 1536 return NULL; 1537 } 1538 1539 static int __init_or_module emif_probe(struct platform_device *pdev) 1540 { 1541 struct emif_data *emif; 1542 struct resource *res; 1543 int irq; 1544 1545 if (pdev->dev.of_node) 1546 emif = of_get_memory_device_details(pdev->dev.of_node, &pdev->dev); 1547 else 1548 emif = get_device_details(pdev); 1549 1550 if (!emif) { 1551 pr_err("%s: error getting device data\n", __func__); 1552 goto error; 1553 } 1554 1555 list_add(&emif->node, &device_list); 1556 emif->addressing = get_addressing_table(emif->plat_data->device_info); 1557 1558 /* Save pointers to each other in emif and device structures */ 1559 emif->dev = &pdev->dev; 1560 platform_set_drvdata(pdev, emif); 1561 1562 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1563 emif->base = devm_ioremap_resource(emif->dev, res); 1564 if (IS_ERR(emif->base)) 1565 goto error; 1566 1567 irq = platform_get_irq(pdev, 0); 1568 if (irq < 0) { 1569 dev_err(emif->dev, "%s: error getting IRQ resource - %d\n", 1570 __func__, irq); 1571 goto error; 1572 } 1573 1574 emif_onetime_settings(emif); 1575 emif_debugfs_init(emif); 1576 disable_and_clear_all_interrupts(emif); 1577 setup_interrupts(emif, irq); 1578 1579 /* One-time actions taken on probing the first device */ 1580 if (!emif1) { 1581 emif1 = emif; 1582 spin_lock_init(&emif_lock); 1583 1584 /* 1585 * TODO: register notifiers for frequency and voltage 1586 * change here once the respective frameworks are 1587 * available 1588 */ 1589 } 1590 1591 dev_info(&pdev->dev, "%s: device configured with addr = %p and IRQ%d\n", 1592 __func__, emif->base, irq); 1593 1594 return 0; 1595 error: 1596 return -ENODEV; 1597 } 1598 1599 static int __exit emif_remove(struct platform_device *pdev) 1600 { 1601 struct emif_data *emif = platform_get_drvdata(pdev); 1602 1603 emif_debugfs_exit(emif); 1604 1605 return 0; 1606 } 1607 1608 static void emif_shutdown(struct platform_device *pdev) 1609 { 1610 struct emif_data *emif = platform_get_drvdata(pdev); 1611 1612 disable_and_clear_all_interrupts(emif); 1613 } 1614 1615 static int get_emif_reg_values(struct emif_data *emif, u32 freq, 1616 struct emif_regs *regs) 1617 { 1618 u32 cs1_used, ip_rev, phy_type; 1619 u32 cl, type; 1620 const struct lpddr2_timings *timings; 1621 const struct lpddr2_min_tck *min_tck; 1622 const struct ddr_device_info *device_info; 1623 const struct lpddr2_addressing *addressing; 1624 struct emif_data *emif_for_calc; 1625 struct device *dev; 1626 const struct emif_custom_configs *custom_configs; 1627 1628 dev = emif->dev; 1629 /* 1630 * If the devices on this EMIF instance is duplicate of EMIF1, 1631 * use EMIF1 details for the calculation 1632 */ 1633 emif_for_calc = emif->duplicate ? emif1 : emif; 1634 timings = get_timings_table(emif_for_calc, freq); 1635 addressing = emif_for_calc->addressing; 1636 if (!timings || !addressing) { 1637 dev_err(dev, "%s: not enough data available for %dHz", 1638 __func__, freq); 1639 return -1; 1640 } 1641 1642 device_info = emif_for_calc->plat_data->device_info; 1643 type = device_info->type; 1644 cs1_used = device_info->cs1_used; 1645 ip_rev = emif_for_calc->plat_data->ip_rev; 1646 phy_type = emif_for_calc->plat_data->phy_type; 1647 1648 min_tck = emif_for_calc->plat_data->min_tck; 1649 custom_configs = emif_for_calc->plat_data->custom_configs; 1650 1651 set_ddr_clk_period(freq); 1652 1653 regs->ref_ctrl_shdw = get_sdram_ref_ctrl_shdw(freq, addressing); 1654 regs->sdram_tim1_shdw = get_sdram_tim_1_shdw(timings, min_tck, 1655 addressing); 1656 regs->sdram_tim2_shdw = get_sdram_tim_2_shdw(timings, min_tck, 1657 addressing, type); 1658 regs->sdram_tim3_shdw = get_sdram_tim_3_shdw(timings, min_tck, 1659 addressing, type, ip_rev, EMIF_NORMAL_TIMINGS); 1660 1661 cl = get_cl(emif); 1662 1663 if (phy_type == EMIF_PHY_TYPE_ATTILAPHY && ip_rev == EMIF_4D) { 1664 regs->phy_ctrl_1_shdw = get_ddr_phy_ctrl_1_attilaphy_4d( 1665 timings, freq, cl); 1666 } else if (phy_type == EMIF_PHY_TYPE_INTELLIPHY && ip_rev == EMIF_4D5) { 1667 regs->phy_ctrl_1_shdw = get_phy_ctrl_1_intelliphy_4d5(freq, cl); 1668 regs->ext_phy_ctrl_2_shdw = get_ext_phy_ctrl_2_intelliphy_4d5(); 1669 regs->ext_phy_ctrl_3_shdw = get_ext_phy_ctrl_3_intelliphy_4d5(); 1670 regs->ext_phy_ctrl_4_shdw = get_ext_phy_ctrl_4_intelliphy_4d5(); 1671 } else { 1672 return -1; 1673 } 1674 1675 /* Only timeout values in pwr_mgmt_ctrl_shdw register */ 1676 regs->pwr_mgmt_ctrl_shdw = 1677 get_pwr_mgmt_ctrl(freq, emif_for_calc, ip_rev) & 1678 (CS_TIM_MASK | SR_TIM_MASK | PD_TIM_MASK); 1679 1680 if (ip_rev & EMIF_4D) { 1681 regs->read_idle_ctrl_shdw_normal = 1682 get_read_idle_ctrl_shdw(DDR_VOLTAGE_STABLE); 1683 1684 regs->read_idle_ctrl_shdw_volt_ramp = 1685 get_read_idle_ctrl_shdw(DDR_VOLTAGE_RAMPING); 1686 } else if (ip_rev & EMIF_4D5) { 1687 regs->dll_calib_ctrl_shdw_normal = 1688 get_dll_calib_ctrl_shdw(DDR_VOLTAGE_STABLE); 1689 1690 regs->dll_calib_ctrl_shdw_volt_ramp = 1691 get_dll_calib_ctrl_shdw(DDR_VOLTAGE_RAMPING); 1692 } 1693 1694 if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) { 1695 regs->ref_ctrl_shdw_derated = get_sdram_ref_ctrl_shdw(freq / 4, 1696 addressing); 1697 1698 regs->sdram_tim1_shdw_derated = 1699 get_sdram_tim_1_shdw_derated(timings, min_tck, 1700 addressing); 1701 1702 regs->sdram_tim3_shdw_derated = get_sdram_tim_3_shdw(timings, 1703 min_tck, addressing, type, ip_rev, 1704 EMIF_DERATED_TIMINGS); 1705 } 1706 1707 regs->freq = freq; 1708 1709 return 0; 1710 } 1711 1712 /* 1713 * get_regs() - gets the cached emif_regs structure for a given EMIF instance 1714 * given frequency(freq): 1715 * 1716 * As an optimisation, every EMIF instance other than EMIF1 shares the 1717 * register cache with EMIF1 if the devices connected on this instance 1718 * are same as that on EMIF1(indicated by the duplicate flag) 1719 * 1720 * If we do not have an entry corresponding to the frequency given, we 1721 * allocate a new entry and calculate the values 1722 * 1723 * Upon finding the right reg dump, save it in curr_regs. It can be 1724 * directly used for thermal de-rating and voltage ramping changes. 1725 */ 1726 static struct emif_regs *get_regs(struct emif_data *emif, u32 freq) 1727 { 1728 int i; 1729 struct emif_regs **regs_cache; 1730 struct emif_regs *regs = NULL; 1731 struct device *dev; 1732 1733 dev = emif->dev; 1734 if (emif->curr_regs && emif->curr_regs->freq == freq) { 1735 dev_dbg(dev, "%s: using curr_regs - %u Hz", __func__, freq); 1736 return emif->curr_regs; 1737 } 1738 1739 if (emif->duplicate) 1740 regs_cache = emif1->regs_cache; 1741 else 1742 regs_cache = emif->regs_cache; 1743 1744 for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) { 1745 if (regs_cache[i]->freq == freq) { 1746 regs = regs_cache[i]; 1747 dev_dbg(dev, 1748 "%s: reg dump found in reg cache for %u Hz\n", 1749 __func__, freq); 1750 break; 1751 } 1752 } 1753 1754 /* 1755 * If we don't have an entry for this frequency in the cache create one 1756 * and calculate the values 1757 */ 1758 if (!regs) { 1759 regs = devm_kzalloc(emif->dev, sizeof(*regs), GFP_ATOMIC); 1760 if (!regs) 1761 return NULL; 1762 1763 if (get_emif_reg_values(emif, freq, regs)) { 1764 devm_kfree(emif->dev, regs); 1765 return NULL; 1766 } 1767 1768 /* 1769 * Now look for an un-used entry in the cache and save the 1770 * newly created struct. If there are no free entries 1771 * over-write the last entry 1772 */ 1773 for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) 1774 ; 1775 1776 if (i >= EMIF_MAX_NUM_FREQUENCIES) { 1777 dev_warn(dev, "%s: regs_cache full - reusing a slot!!\n", 1778 __func__); 1779 i = EMIF_MAX_NUM_FREQUENCIES - 1; 1780 devm_kfree(emif->dev, regs_cache[i]); 1781 } 1782 regs_cache[i] = regs; 1783 } 1784 1785 return regs; 1786 } 1787 1788 static void do_volt_notify_handling(struct emif_data *emif, u32 volt_state) 1789 { 1790 dev_dbg(emif->dev, "%s: voltage notification : %d", __func__, 1791 volt_state); 1792 1793 if (!emif->curr_regs) { 1794 dev_err(emif->dev, 1795 "%s: volt-notify before registers are ready: %d\n", 1796 __func__, volt_state); 1797 return; 1798 } 1799 1800 setup_volt_sensitive_regs(emif, emif->curr_regs, volt_state); 1801 } 1802 1803 /* 1804 * TODO: voltage notify handling should be hooked up to 1805 * regulator framework as soon as the necessary support 1806 * is available in mainline kernel. This function is un-used 1807 * right now. 1808 */ 1809 static void __attribute__((unused)) volt_notify_handling(u32 volt_state) 1810 { 1811 struct emif_data *emif; 1812 1813 spin_lock_irqsave(&emif_lock, irq_state); 1814 1815 list_for_each_entry(emif, &device_list, node) 1816 do_volt_notify_handling(emif, volt_state); 1817 do_freq_update(); 1818 1819 spin_unlock_irqrestore(&emif_lock, irq_state); 1820 } 1821 1822 static void do_freq_pre_notify_handling(struct emif_data *emif, u32 new_freq) 1823 { 1824 struct emif_regs *regs; 1825 1826 regs = get_regs(emif, new_freq); 1827 if (!regs) 1828 return; 1829 1830 emif->curr_regs = regs; 1831 1832 /* 1833 * Update the shadow registers: 1834 * Temperature and voltage-ramp sensitive settings are also configured 1835 * in terms of DDR cycles. So, we need to update them too when there 1836 * is a freq change 1837 */ 1838 dev_dbg(emif->dev, "%s: setting up shadow registers for %uHz", 1839 __func__, new_freq); 1840 setup_registers(emif, regs); 1841 setup_temperature_sensitive_regs(emif, regs); 1842 setup_volt_sensitive_regs(emif, regs, DDR_VOLTAGE_STABLE); 1843 1844 /* 1845 * Part of workaround for errata i728. See do_freq_update() 1846 * for more details 1847 */ 1848 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH) 1849 set_lpmode(emif, EMIF_LP_MODE_DISABLE); 1850 } 1851 1852 /* 1853 * TODO: frequency notify handling should be hooked up to 1854 * clock framework as soon as the necessary support is 1855 * available in mainline kernel. This function is un-used 1856 * right now. 1857 */ 1858 static void __attribute__((unused)) freq_pre_notify_handling(u32 new_freq) 1859 { 1860 struct emif_data *emif; 1861 1862 /* 1863 * NOTE: we are taking the spin-lock here and releases it 1864 * only in post-notifier. This doesn't look good and 1865 * Sparse complains about it, but this seems to be 1866 * un-avoidable. We need to lock a sequence of events 1867 * that is split between EMIF and clock framework. 1868 * 1869 * 1. EMIF driver updates EMIF timings in shadow registers in the 1870 * frequency pre-notify callback from clock framework 1871 * 2. clock framework sets up the registers for the new frequency 1872 * 3. clock framework initiates a hw-sequence that updates 1873 * the frequency EMIF timings synchronously. 1874 * 1875 * All these 3 steps should be performed as an atomic operation 1876 * vis-a-vis similar sequence in the EMIF interrupt handler 1877 * for temperature events. Otherwise, there could be race 1878 * conditions that could result in incorrect EMIF timings for 1879 * a given frequency 1880 */ 1881 spin_lock_irqsave(&emif_lock, irq_state); 1882 1883 list_for_each_entry(emif, &device_list, node) 1884 do_freq_pre_notify_handling(emif, new_freq); 1885 } 1886 1887 static void do_freq_post_notify_handling(struct emif_data *emif) 1888 { 1889 /* 1890 * Part of workaround for errata i728. See do_freq_update() 1891 * for more details 1892 */ 1893 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH) 1894 set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH); 1895 } 1896 1897 /* 1898 * TODO: frequency notify handling should be hooked up to 1899 * clock framework as soon as the necessary support is 1900 * available in mainline kernel. This function is un-used 1901 * right now. 1902 */ 1903 static void __attribute__((unused)) freq_post_notify_handling(void) 1904 { 1905 struct emif_data *emif; 1906 1907 list_for_each_entry(emif, &device_list, node) 1908 do_freq_post_notify_handling(emif); 1909 1910 /* 1911 * Lock is done in pre-notify handler. See freq_pre_notify_handling() 1912 * for more details 1913 */ 1914 spin_unlock_irqrestore(&emif_lock, irq_state); 1915 } 1916 1917 #if defined(CONFIG_OF) 1918 static const struct of_device_id emif_of_match[] = { 1919 { .compatible = "ti,emif-4d" }, 1920 { .compatible = "ti,emif-4d5" }, 1921 {}, 1922 }; 1923 MODULE_DEVICE_TABLE(of, emif_of_match); 1924 #endif 1925 1926 static struct platform_driver emif_driver = { 1927 .remove = __exit_p(emif_remove), 1928 .shutdown = emif_shutdown, 1929 .driver = { 1930 .name = "emif", 1931 .of_match_table = of_match_ptr(emif_of_match), 1932 }, 1933 }; 1934 1935 module_platform_driver_probe(emif_driver, emif_probe); 1936 1937 MODULE_DESCRIPTION("TI EMIF SDRAM Controller Driver"); 1938 MODULE_LICENSE("GPL"); 1939 MODULE_ALIAS("platform:emif"); 1940 MODULE_AUTHOR("Texas Instruments Inc"); 1941