1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * EMIF driver 4 * 5 * Copyright (C) 2012 Texas Instruments, Inc. 6 * 7 * Aneesh V <aneesh@ti.com> 8 * Santosh Shilimkar <santosh.shilimkar@ti.com> 9 */ 10 #include <linux/err.h> 11 #include <linux/kernel.h> 12 #include <linux/reboot.h> 13 #include <linux/platform_data/emif_plat.h> 14 #include <linux/io.h> 15 #include <linux/device.h> 16 #include <linux/platform_device.h> 17 #include <linux/interrupt.h> 18 #include <linux/slab.h> 19 #include <linux/of.h> 20 #include <linux/debugfs.h> 21 #include <linux/seq_file.h> 22 #include <linux/module.h> 23 #include <linux/list.h> 24 #include <linux/spinlock.h> 25 #include <linux/pm.h> 26 27 #include "emif.h" 28 #include "jedec_ddr.h" 29 #include "of_memory.h" 30 31 /** 32 * struct emif_data - Per device static data for driver's use 33 * @duplicate: Whether the DDR devices attached to this EMIF 34 * instance are exactly same as that on EMIF1. In 35 * this case we can save some memory and processing 36 * @temperature_level: Maximum temperature of LPDDR2 devices attached 37 * to this EMIF - read from MR4 register. If there 38 * are two devices attached to this EMIF, this 39 * value is the maximum of the two temperature 40 * levels. 41 * @node: node in the device list 42 * @base: base address of memory-mapped IO registers. 43 * @dev: device pointer. 44 * @addressing table with addressing information from the spec 45 * @regs_cache: An array of 'struct emif_regs' that stores 46 * calculated register values for different 47 * frequencies, to avoid re-calculating them on 48 * each DVFS transition. 49 * @curr_regs: The set of register values used in the last 50 * frequency change (i.e. corresponding to the 51 * frequency in effect at the moment) 52 * @plat_data: Pointer to saved platform data. 53 * @debugfs_root: dentry to the root folder for EMIF in debugfs 54 * @np_ddr: Pointer to ddr device tree node 55 */ 56 struct emif_data { 57 u8 duplicate; 58 u8 temperature_level; 59 u8 lpmode; 60 struct list_head node; 61 unsigned long irq_state; 62 void __iomem *base; 63 struct device *dev; 64 const struct lpddr2_addressing *addressing; 65 struct emif_regs *regs_cache[EMIF_MAX_NUM_FREQUENCIES]; 66 struct emif_regs *curr_regs; 67 struct emif_platform_data *plat_data; 68 struct dentry *debugfs_root; 69 struct device_node *np_ddr; 70 }; 71 72 static struct emif_data *emif1; 73 static spinlock_t emif_lock; 74 static unsigned long irq_state; 75 static u32 t_ck; /* DDR clock period in ps */ 76 static LIST_HEAD(device_list); 77 78 #ifdef CONFIG_DEBUG_FS 79 static void do_emif_regdump_show(struct seq_file *s, struct emif_data *emif, 80 struct emif_regs *regs) 81 { 82 u32 type = emif->plat_data->device_info->type; 83 u32 ip_rev = emif->plat_data->ip_rev; 84 85 seq_printf(s, "EMIF register cache dump for %dMHz\n", 86 regs->freq/1000000); 87 88 seq_printf(s, "ref_ctrl_shdw\t: 0x%08x\n", regs->ref_ctrl_shdw); 89 seq_printf(s, "sdram_tim1_shdw\t: 0x%08x\n", regs->sdram_tim1_shdw); 90 seq_printf(s, "sdram_tim2_shdw\t: 0x%08x\n", regs->sdram_tim2_shdw); 91 seq_printf(s, "sdram_tim3_shdw\t: 0x%08x\n", regs->sdram_tim3_shdw); 92 93 if (ip_rev == EMIF_4D) { 94 seq_printf(s, "read_idle_ctrl_shdw_normal\t: 0x%08x\n", 95 regs->read_idle_ctrl_shdw_normal); 96 seq_printf(s, "read_idle_ctrl_shdw_volt_ramp\t: 0x%08x\n", 97 regs->read_idle_ctrl_shdw_volt_ramp); 98 } else if (ip_rev == EMIF_4D5) { 99 seq_printf(s, "dll_calib_ctrl_shdw_normal\t: 0x%08x\n", 100 regs->dll_calib_ctrl_shdw_normal); 101 seq_printf(s, "dll_calib_ctrl_shdw_volt_ramp\t: 0x%08x\n", 102 regs->dll_calib_ctrl_shdw_volt_ramp); 103 } 104 105 if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) { 106 seq_printf(s, "ref_ctrl_shdw_derated\t: 0x%08x\n", 107 regs->ref_ctrl_shdw_derated); 108 seq_printf(s, "sdram_tim1_shdw_derated\t: 0x%08x\n", 109 regs->sdram_tim1_shdw_derated); 110 seq_printf(s, "sdram_tim3_shdw_derated\t: 0x%08x\n", 111 regs->sdram_tim3_shdw_derated); 112 } 113 } 114 115 static int emif_regdump_show(struct seq_file *s, void *unused) 116 { 117 struct emif_data *emif = s->private; 118 struct emif_regs **regs_cache; 119 int i; 120 121 if (emif->duplicate) 122 regs_cache = emif1->regs_cache; 123 else 124 regs_cache = emif->regs_cache; 125 126 for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) { 127 do_emif_regdump_show(s, emif, regs_cache[i]); 128 seq_putc(s, '\n'); 129 } 130 131 return 0; 132 } 133 134 static int emif_regdump_open(struct inode *inode, struct file *file) 135 { 136 return single_open(file, emif_regdump_show, inode->i_private); 137 } 138 139 static const struct file_operations emif_regdump_fops = { 140 .open = emif_regdump_open, 141 .read = seq_read, 142 .release = single_release, 143 }; 144 145 static int emif_mr4_show(struct seq_file *s, void *unused) 146 { 147 struct emif_data *emif = s->private; 148 149 seq_printf(s, "MR4=%d\n", emif->temperature_level); 150 return 0; 151 } 152 153 static int emif_mr4_open(struct inode *inode, struct file *file) 154 { 155 return single_open(file, emif_mr4_show, inode->i_private); 156 } 157 158 static const struct file_operations emif_mr4_fops = { 159 .open = emif_mr4_open, 160 .read = seq_read, 161 .release = single_release, 162 }; 163 164 static int __init_or_module emif_debugfs_init(struct emif_data *emif) 165 { 166 struct dentry *dentry; 167 int ret; 168 169 dentry = debugfs_create_dir(dev_name(emif->dev), NULL); 170 if (!dentry) { 171 ret = -ENOMEM; 172 goto err0; 173 } 174 emif->debugfs_root = dentry; 175 176 dentry = debugfs_create_file("regcache_dump", S_IRUGO, 177 emif->debugfs_root, emif, &emif_regdump_fops); 178 if (!dentry) { 179 ret = -ENOMEM; 180 goto err1; 181 } 182 183 dentry = debugfs_create_file("mr4", S_IRUGO, 184 emif->debugfs_root, emif, &emif_mr4_fops); 185 if (!dentry) { 186 ret = -ENOMEM; 187 goto err1; 188 } 189 190 return 0; 191 err1: 192 debugfs_remove_recursive(emif->debugfs_root); 193 err0: 194 return ret; 195 } 196 197 static void __exit emif_debugfs_exit(struct emif_data *emif) 198 { 199 debugfs_remove_recursive(emif->debugfs_root); 200 emif->debugfs_root = NULL; 201 } 202 #else 203 static inline int __init_or_module emif_debugfs_init(struct emif_data *emif) 204 { 205 return 0; 206 } 207 208 static inline void __exit emif_debugfs_exit(struct emif_data *emif) 209 { 210 } 211 #endif 212 213 /* 214 * Calculate the period of DDR clock from frequency value 215 */ 216 static void set_ddr_clk_period(u32 freq) 217 { 218 /* Divide 10^12 by frequency to get period in ps */ 219 t_ck = (u32)DIV_ROUND_UP_ULL(1000000000000ull, freq); 220 } 221 222 /* 223 * Get bus width used by EMIF. Note that this may be different from the 224 * bus width of the DDR devices used. For instance two 16-bit DDR devices 225 * may be connected to a given CS of EMIF. In this case bus width as far 226 * as EMIF is concerned is 32, where as the DDR bus width is 16 bits. 227 */ 228 static u32 get_emif_bus_width(struct emif_data *emif) 229 { 230 u32 width; 231 void __iomem *base = emif->base; 232 233 width = (readl(base + EMIF_SDRAM_CONFIG) & NARROW_MODE_MASK) 234 >> NARROW_MODE_SHIFT; 235 width = width == 0 ? 32 : 16; 236 237 return width; 238 } 239 240 /* 241 * Get the CL from SDRAM_CONFIG register 242 */ 243 static u32 get_cl(struct emif_data *emif) 244 { 245 u32 cl; 246 void __iomem *base = emif->base; 247 248 cl = (readl(base + EMIF_SDRAM_CONFIG) & CL_MASK) >> CL_SHIFT; 249 250 return cl; 251 } 252 253 static void set_lpmode(struct emif_data *emif, u8 lpmode) 254 { 255 u32 temp; 256 void __iomem *base = emif->base; 257 258 /* 259 * Workaround for errata i743 - LPDDR2 Power-Down State is Not 260 * Efficient 261 * 262 * i743 DESCRIPTION: 263 * The EMIF supports power-down state for low power. The EMIF 264 * automatically puts the SDRAM into power-down after the memory is 265 * not accessed for a defined number of cycles and the 266 * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set to 0x4. 267 * As the EMIF supports automatic output impedance calibration, a ZQ 268 * calibration long command is issued every time it exits active 269 * power-down and precharge power-down modes. The EMIF waits and 270 * blocks any other command during this calibration. 271 * The EMIF does not allow selective disabling of ZQ calibration upon 272 * exit of power-down mode. Due to very short periods of power-down 273 * cycles, ZQ calibration overhead creates bandwidth issues and 274 * increases overall system power consumption. On the other hand, 275 * issuing ZQ calibration long commands when exiting self-refresh is 276 * still required. 277 * 278 * WORKAROUND 279 * Because there is no power consumption benefit of the power-down due 280 * to the calibration and there is a performance risk, the guideline 281 * is to not allow power-down state and, therefore, to not have set 282 * the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field to 0x4. 283 */ 284 if ((emif->plat_data->ip_rev == EMIF_4D) && 285 (lpmode == EMIF_LP_MODE_PWR_DN)) { 286 WARN_ONCE(1, 287 "REG_LP_MODE = LP_MODE_PWR_DN(4) is prohibited by erratum i743 switch to LP_MODE_SELF_REFRESH(2)\n"); 288 /* rollback LP_MODE to Self-refresh mode */ 289 lpmode = EMIF_LP_MODE_SELF_REFRESH; 290 } 291 292 temp = readl(base + EMIF_POWER_MANAGEMENT_CONTROL); 293 temp &= ~LP_MODE_MASK; 294 temp |= (lpmode << LP_MODE_SHIFT); 295 writel(temp, base + EMIF_POWER_MANAGEMENT_CONTROL); 296 } 297 298 static void do_freq_update(void) 299 { 300 struct emif_data *emif; 301 302 /* 303 * Workaround for errata i728: Disable LPMODE during FREQ_UPDATE 304 * 305 * i728 DESCRIPTION: 306 * The EMIF automatically puts the SDRAM into self-refresh mode 307 * after the EMIF has not performed accesses during 308 * EMIF_PWR_MGMT_CTRL[7:4] REG_SR_TIM number of DDR clock cycles 309 * and the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set 310 * to 0x2. If during a small window the following three events 311 * occur: 312 * - The SR_TIMING counter expires 313 * - And frequency change is requested 314 * - And OCP access is requested 315 * Then it causes instable clock on the DDR interface. 316 * 317 * WORKAROUND 318 * To avoid the occurrence of the three events, the workaround 319 * is to disable the self-refresh when requesting a frequency 320 * change. Before requesting a frequency change the software must 321 * program EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x0. When the 322 * frequency change has been done, the software can reprogram 323 * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x2 324 */ 325 list_for_each_entry(emif, &device_list, node) { 326 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH) 327 set_lpmode(emif, EMIF_LP_MODE_DISABLE); 328 } 329 330 /* 331 * TODO: Do FREQ_UPDATE here when an API 332 * is available for this as part of the new 333 * clock framework 334 */ 335 336 list_for_each_entry(emif, &device_list, node) { 337 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH) 338 set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH); 339 } 340 } 341 342 /* Find addressing table entry based on the device's type and density */ 343 static const struct lpddr2_addressing *get_addressing_table( 344 const struct ddr_device_info *device_info) 345 { 346 u32 index, type, density; 347 348 type = device_info->type; 349 density = device_info->density; 350 351 switch (type) { 352 case DDR_TYPE_LPDDR2_S4: 353 index = density - 1; 354 break; 355 case DDR_TYPE_LPDDR2_S2: 356 switch (density) { 357 case DDR_DENSITY_1Gb: 358 case DDR_DENSITY_2Gb: 359 index = density + 3; 360 break; 361 default: 362 index = density - 1; 363 } 364 break; 365 default: 366 return NULL; 367 } 368 369 return &lpddr2_jedec_addressing_table[index]; 370 } 371 372 /* 373 * Find the the right timing table from the array of timing 374 * tables of the device using DDR clock frequency 375 */ 376 static const struct lpddr2_timings *get_timings_table(struct emif_data *emif, 377 u32 freq) 378 { 379 u32 i, min, max, freq_nearest; 380 const struct lpddr2_timings *timings = NULL; 381 const struct lpddr2_timings *timings_arr = emif->plat_data->timings; 382 struct device *dev = emif->dev; 383 384 /* Start with a very high frequency - 1GHz */ 385 freq_nearest = 1000000000; 386 387 /* 388 * Find the timings table such that: 389 * 1. the frequency range covers the required frequency(safe) AND 390 * 2. the max_freq is closest to the required frequency(optimal) 391 */ 392 for (i = 0; i < emif->plat_data->timings_arr_size; i++) { 393 max = timings_arr[i].max_freq; 394 min = timings_arr[i].min_freq; 395 if ((freq >= min) && (freq <= max) && (max < freq_nearest)) { 396 freq_nearest = max; 397 timings = &timings_arr[i]; 398 } 399 } 400 401 if (!timings) 402 dev_err(dev, "%s: couldn't find timings for - %dHz\n", 403 __func__, freq); 404 405 dev_dbg(dev, "%s: timings table: freq %d, speed bin freq %d\n", 406 __func__, freq, freq_nearest); 407 408 return timings; 409 } 410 411 static u32 get_sdram_ref_ctrl_shdw(u32 freq, 412 const struct lpddr2_addressing *addressing) 413 { 414 u32 ref_ctrl_shdw = 0, val = 0, freq_khz, t_refi; 415 416 /* Scale down frequency and t_refi to avoid overflow */ 417 freq_khz = freq / 1000; 418 t_refi = addressing->tREFI_ns / 100; 419 420 /* 421 * refresh rate to be set is 'tREFI(in us) * freq in MHz 422 * division by 10000 to account for change in units 423 */ 424 val = t_refi * freq_khz / 10000; 425 ref_ctrl_shdw |= val << REFRESH_RATE_SHIFT; 426 427 return ref_ctrl_shdw; 428 } 429 430 static u32 get_sdram_tim_1_shdw(const struct lpddr2_timings *timings, 431 const struct lpddr2_min_tck *min_tck, 432 const struct lpddr2_addressing *addressing) 433 { 434 u32 tim1 = 0, val = 0; 435 436 val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1; 437 tim1 |= val << T_WTR_SHIFT; 438 439 if (addressing->num_banks == B8) 440 val = DIV_ROUND_UP(timings->tFAW, t_ck*4); 441 else 442 val = max(min_tck->tRRD, DIV_ROUND_UP(timings->tRRD, t_ck)); 443 tim1 |= (val - 1) << T_RRD_SHIFT; 444 445 val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab, t_ck) - 1; 446 tim1 |= val << T_RC_SHIFT; 447 448 val = max(min_tck->tRASmin, DIV_ROUND_UP(timings->tRAS_min, t_ck)); 449 tim1 |= (val - 1) << T_RAS_SHIFT; 450 451 val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1; 452 tim1 |= val << T_WR_SHIFT; 453 454 val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD, t_ck)) - 1; 455 tim1 |= val << T_RCD_SHIFT; 456 457 val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab, t_ck)) - 1; 458 tim1 |= val << T_RP_SHIFT; 459 460 return tim1; 461 } 462 463 static u32 get_sdram_tim_1_shdw_derated(const struct lpddr2_timings *timings, 464 const struct lpddr2_min_tck *min_tck, 465 const struct lpddr2_addressing *addressing) 466 { 467 u32 tim1 = 0, val = 0; 468 469 val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1; 470 tim1 = val << T_WTR_SHIFT; 471 472 /* 473 * tFAW is approximately 4 times tRRD. So add 1875*4 = 7500ps 474 * to tFAW for de-rating 475 */ 476 if (addressing->num_banks == B8) { 477 val = DIV_ROUND_UP(timings->tFAW + 7500, 4 * t_ck) - 1; 478 } else { 479 val = DIV_ROUND_UP(timings->tRRD + 1875, t_ck); 480 val = max(min_tck->tRRD, val) - 1; 481 } 482 tim1 |= val << T_RRD_SHIFT; 483 484 val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab + 1875, t_ck); 485 tim1 |= (val - 1) << T_RC_SHIFT; 486 487 val = DIV_ROUND_UP(timings->tRAS_min + 1875, t_ck); 488 val = max(min_tck->tRASmin, val) - 1; 489 tim1 |= val << T_RAS_SHIFT; 490 491 val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1; 492 tim1 |= val << T_WR_SHIFT; 493 494 val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD + 1875, t_ck)); 495 tim1 |= (val - 1) << T_RCD_SHIFT; 496 497 val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab + 1875, t_ck)); 498 tim1 |= (val - 1) << T_RP_SHIFT; 499 500 return tim1; 501 } 502 503 static u32 get_sdram_tim_2_shdw(const struct lpddr2_timings *timings, 504 const struct lpddr2_min_tck *min_tck, 505 const struct lpddr2_addressing *addressing, 506 u32 type) 507 { 508 u32 tim2 = 0, val = 0; 509 510 val = min_tck->tCKE - 1; 511 tim2 |= val << T_CKE_SHIFT; 512 513 val = max(min_tck->tRTP, DIV_ROUND_UP(timings->tRTP, t_ck)) - 1; 514 tim2 |= val << T_RTP_SHIFT; 515 516 /* tXSNR = tRFCab_ps + 10 ns(tRFCab_ps for LPDDR2). */ 517 val = DIV_ROUND_UP(addressing->tRFCab_ps + 10000, t_ck) - 1; 518 tim2 |= val << T_XSNR_SHIFT; 519 520 /* XSRD same as XSNR for LPDDR2 */ 521 tim2 |= val << T_XSRD_SHIFT; 522 523 val = max(min_tck->tXP, DIV_ROUND_UP(timings->tXP, t_ck)) - 1; 524 tim2 |= val << T_XP_SHIFT; 525 526 return tim2; 527 } 528 529 static u32 get_sdram_tim_3_shdw(const struct lpddr2_timings *timings, 530 const struct lpddr2_min_tck *min_tck, 531 const struct lpddr2_addressing *addressing, 532 u32 type, u32 ip_rev, u32 derated) 533 { 534 u32 tim3 = 0, val = 0, t_dqsck; 535 536 val = timings->tRAS_max_ns / addressing->tREFI_ns - 1; 537 val = val > 0xF ? 0xF : val; 538 tim3 |= val << T_RAS_MAX_SHIFT; 539 540 val = DIV_ROUND_UP(addressing->tRFCab_ps, t_ck) - 1; 541 tim3 |= val << T_RFC_SHIFT; 542 543 t_dqsck = (derated == EMIF_DERATED_TIMINGS) ? 544 timings->tDQSCK_max_derated : timings->tDQSCK_max; 545 if (ip_rev == EMIF_4D5) 546 val = DIV_ROUND_UP(t_dqsck + 1000, t_ck) - 1; 547 else 548 val = DIV_ROUND_UP(t_dqsck, t_ck) - 1; 549 550 tim3 |= val << T_TDQSCKMAX_SHIFT; 551 552 val = DIV_ROUND_UP(timings->tZQCS, t_ck) - 1; 553 tim3 |= val << ZQ_ZQCS_SHIFT; 554 555 val = DIV_ROUND_UP(timings->tCKESR, t_ck); 556 val = max(min_tck->tCKESR, val) - 1; 557 tim3 |= val << T_CKESR_SHIFT; 558 559 if (ip_rev == EMIF_4D5) { 560 tim3 |= (EMIF_T_CSTA - 1) << T_CSTA_SHIFT; 561 562 val = DIV_ROUND_UP(EMIF_T_PDLL_UL, 128) - 1; 563 tim3 |= val << T_PDLL_UL_SHIFT; 564 } 565 566 return tim3; 567 } 568 569 static u32 get_zq_config_reg(const struct lpddr2_addressing *addressing, 570 bool cs1_used, bool cal_resistors_per_cs) 571 { 572 u32 zq = 0, val = 0; 573 574 val = EMIF_ZQCS_INTERVAL_US * 1000 / addressing->tREFI_ns; 575 zq |= val << ZQ_REFINTERVAL_SHIFT; 576 577 val = DIV_ROUND_UP(T_ZQCL_DEFAULT_NS, T_ZQCS_DEFAULT_NS) - 1; 578 zq |= val << ZQ_ZQCL_MULT_SHIFT; 579 580 val = DIV_ROUND_UP(T_ZQINIT_DEFAULT_NS, T_ZQCL_DEFAULT_NS) - 1; 581 zq |= val << ZQ_ZQINIT_MULT_SHIFT; 582 583 zq |= ZQ_SFEXITEN_ENABLE << ZQ_SFEXITEN_SHIFT; 584 585 if (cal_resistors_per_cs) 586 zq |= ZQ_DUALCALEN_ENABLE << ZQ_DUALCALEN_SHIFT; 587 else 588 zq |= ZQ_DUALCALEN_DISABLE << ZQ_DUALCALEN_SHIFT; 589 590 zq |= ZQ_CS0EN_MASK; /* CS0 is used for sure */ 591 592 val = cs1_used ? 1 : 0; 593 zq |= val << ZQ_CS1EN_SHIFT; 594 595 return zq; 596 } 597 598 static u32 get_temp_alert_config(const struct lpddr2_addressing *addressing, 599 const struct emif_custom_configs *custom_configs, bool cs1_used, 600 u32 sdram_io_width, u32 emif_bus_width) 601 { 602 u32 alert = 0, interval, devcnt; 603 604 if (custom_configs && (custom_configs->mask & 605 EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL)) 606 interval = custom_configs->temp_alert_poll_interval_ms; 607 else 608 interval = TEMP_ALERT_POLL_INTERVAL_DEFAULT_MS; 609 610 interval *= 1000000; /* Convert to ns */ 611 interval /= addressing->tREFI_ns; /* Convert to refresh cycles */ 612 alert |= (interval << TA_REFINTERVAL_SHIFT); 613 614 /* 615 * sdram_io_width is in 'log2(x) - 1' form. Convert emif_bus_width 616 * also to this form and subtract to get TA_DEVCNT, which is 617 * in log2(x) form. 618 */ 619 emif_bus_width = __fls(emif_bus_width) - 1; 620 devcnt = emif_bus_width - sdram_io_width; 621 alert |= devcnt << TA_DEVCNT_SHIFT; 622 623 /* DEVWDT is in 'log2(x) - 3' form */ 624 alert |= (sdram_io_width - 2) << TA_DEVWDT_SHIFT; 625 626 alert |= 1 << TA_SFEXITEN_SHIFT; 627 alert |= 1 << TA_CS0EN_SHIFT; 628 alert |= (cs1_used ? 1 : 0) << TA_CS1EN_SHIFT; 629 630 return alert; 631 } 632 633 static u32 get_read_idle_ctrl_shdw(u8 volt_ramp) 634 { 635 u32 idle = 0, val = 0; 636 637 /* 638 * Maximum value in normal conditions and increased frequency 639 * when voltage is ramping 640 */ 641 if (volt_ramp) 642 val = READ_IDLE_INTERVAL_DVFS / t_ck / 64 - 1; 643 else 644 val = 0x1FF; 645 646 /* 647 * READ_IDLE_CTRL register in EMIF4D has same offset and fields 648 * as DLL_CALIB_CTRL in EMIF4D5, so use the same shifts 649 */ 650 idle |= val << DLL_CALIB_INTERVAL_SHIFT; 651 idle |= EMIF_READ_IDLE_LEN_VAL << ACK_WAIT_SHIFT; 652 653 return idle; 654 } 655 656 static u32 get_dll_calib_ctrl_shdw(u8 volt_ramp) 657 { 658 u32 calib = 0, val = 0; 659 660 if (volt_ramp == DDR_VOLTAGE_RAMPING) 661 val = DLL_CALIB_INTERVAL_DVFS / t_ck / 16 - 1; 662 else 663 val = 0; /* Disabled when voltage is stable */ 664 665 calib |= val << DLL_CALIB_INTERVAL_SHIFT; 666 calib |= DLL_CALIB_ACK_WAIT_VAL << ACK_WAIT_SHIFT; 667 668 return calib; 669 } 670 671 static u32 get_ddr_phy_ctrl_1_attilaphy_4d(const struct lpddr2_timings *timings, 672 u32 freq, u8 RL) 673 { 674 u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_ATTILAPHY, val = 0; 675 676 val = RL + DIV_ROUND_UP(timings->tDQSCK_max, t_ck) - 1; 677 phy |= val << READ_LATENCY_SHIFT_4D; 678 679 if (freq <= 100000000) 680 val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS_ATTILAPHY; 681 else if (freq <= 200000000) 682 val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ_ATTILAPHY; 683 else 684 val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ_ATTILAPHY; 685 686 phy |= val << DLL_SLAVE_DLY_CTRL_SHIFT_4D; 687 688 return phy; 689 } 690 691 static u32 get_phy_ctrl_1_intelliphy_4d5(u32 freq, u8 cl) 692 { 693 u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_INTELLIPHY, half_delay; 694 695 /* 696 * DLL operates at 266 MHz. If DDR frequency is near 266 MHz, 697 * half-delay is not needed else set half-delay 698 */ 699 if (freq >= 265000000 && freq < 267000000) 700 half_delay = 0; 701 else 702 half_delay = 1; 703 704 phy |= half_delay << DLL_HALF_DELAY_SHIFT_4D5; 705 phy |= ((cl + DIV_ROUND_UP(EMIF_PHY_TOTAL_READ_LATENCY_INTELLIPHY_PS, 706 t_ck) - 1) << READ_LATENCY_SHIFT_4D5); 707 708 return phy; 709 } 710 711 static u32 get_ext_phy_ctrl_2_intelliphy_4d5(void) 712 { 713 u32 fifo_we_slave_ratio; 714 715 fifo_we_slave_ratio = DIV_ROUND_CLOSEST( 716 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256, t_ck); 717 718 return fifo_we_slave_ratio | fifo_we_slave_ratio << 11 | 719 fifo_we_slave_ratio << 22; 720 } 721 722 static u32 get_ext_phy_ctrl_3_intelliphy_4d5(void) 723 { 724 u32 fifo_we_slave_ratio; 725 726 fifo_we_slave_ratio = DIV_ROUND_CLOSEST( 727 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256, t_ck); 728 729 return fifo_we_slave_ratio >> 10 | fifo_we_slave_ratio << 1 | 730 fifo_we_slave_ratio << 12 | fifo_we_slave_ratio << 23; 731 } 732 733 static u32 get_ext_phy_ctrl_4_intelliphy_4d5(void) 734 { 735 u32 fifo_we_slave_ratio; 736 737 fifo_we_slave_ratio = DIV_ROUND_CLOSEST( 738 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256, t_ck); 739 740 return fifo_we_slave_ratio >> 9 | fifo_we_slave_ratio << 2 | 741 fifo_we_slave_ratio << 13; 742 } 743 744 static u32 get_pwr_mgmt_ctrl(u32 freq, struct emif_data *emif, u32 ip_rev) 745 { 746 u32 pwr_mgmt_ctrl = 0, timeout; 747 u32 lpmode = EMIF_LP_MODE_SELF_REFRESH; 748 u32 timeout_perf = EMIF_LP_MODE_TIMEOUT_PERFORMANCE; 749 u32 timeout_pwr = EMIF_LP_MODE_TIMEOUT_POWER; 750 u32 freq_threshold = EMIF_LP_MODE_FREQ_THRESHOLD; 751 u32 mask; 752 u8 shift; 753 754 struct emif_custom_configs *cust_cfgs = emif->plat_data->custom_configs; 755 756 if (cust_cfgs && (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE)) { 757 lpmode = cust_cfgs->lpmode; 758 timeout_perf = cust_cfgs->lpmode_timeout_performance; 759 timeout_pwr = cust_cfgs->lpmode_timeout_power; 760 freq_threshold = cust_cfgs->lpmode_freq_threshold; 761 } 762 763 /* Timeout based on DDR frequency */ 764 timeout = freq >= freq_threshold ? timeout_perf : timeout_pwr; 765 766 /* 767 * The value to be set in register is "log2(timeout) - 3" 768 * if timeout < 16 load 0 in register 769 * if timeout is not a power of 2, round to next highest power of 2 770 */ 771 if (timeout < 16) { 772 timeout = 0; 773 } else { 774 if (timeout & (timeout - 1)) 775 timeout <<= 1; 776 timeout = __fls(timeout) - 3; 777 } 778 779 switch (lpmode) { 780 case EMIF_LP_MODE_CLOCK_STOP: 781 shift = CS_TIM_SHIFT; 782 mask = CS_TIM_MASK; 783 break; 784 case EMIF_LP_MODE_SELF_REFRESH: 785 /* Workaround for errata i735 */ 786 if (timeout < 6) 787 timeout = 6; 788 789 shift = SR_TIM_SHIFT; 790 mask = SR_TIM_MASK; 791 break; 792 case EMIF_LP_MODE_PWR_DN: 793 shift = PD_TIM_SHIFT; 794 mask = PD_TIM_MASK; 795 break; 796 case EMIF_LP_MODE_DISABLE: 797 default: 798 mask = 0; 799 shift = 0; 800 break; 801 } 802 /* Round to maximum in case of overflow, BUT warn! */ 803 if (lpmode != EMIF_LP_MODE_DISABLE && timeout > mask >> shift) { 804 pr_err("TIMEOUT Overflow - lpmode=%d perf=%d pwr=%d freq=%d\n", 805 lpmode, 806 timeout_perf, 807 timeout_pwr, 808 freq_threshold); 809 WARN(1, "timeout=0x%02x greater than 0x%02x. Using max\n", 810 timeout, mask >> shift); 811 timeout = mask >> shift; 812 } 813 814 /* Setup required timing */ 815 pwr_mgmt_ctrl = (timeout << shift) & mask; 816 /* setup a default mask for rest of the modes */ 817 pwr_mgmt_ctrl |= (SR_TIM_MASK | CS_TIM_MASK | PD_TIM_MASK) & 818 ~mask; 819 820 /* No CS_TIM in EMIF_4D5 */ 821 if (ip_rev == EMIF_4D5) 822 pwr_mgmt_ctrl &= ~CS_TIM_MASK; 823 824 pwr_mgmt_ctrl |= lpmode << LP_MODE_SHIFT; 825 826 return pwr_mgmt_ctrl; 827 } 828 829 /* 830 * Get the temperature level of the EMIF instance: 831 * Reads the MR4 register of attached SDRAM parts to find out the temperature 832 * level. If there are two parts attached(one on each CS), then the temperature 833 * level for the EMIF instance is the higher of the two temperatures. 834 */ 835 static void get_temperature_level(struct emif_data *emif) 836 { 837 u32 temp, temperature_level; 838 void __iomem *base; 839 840 base = emif->base; 841 842 /* Read mode register 4 */ 843 writel(DDR_MR4, base + EMIF_LPDDR2_MODE_REG_CONFIG); 844 temperature_level = readl(base + EMIF_LPDDR2_MODE_REG_DATA); 845 temperature_level = (temperature_level & MR4_SDRAM_REF_RATE_MASK) >> 846 MR4_SDRAM_REF_RATE_SHIFT; 847 848 if (emif->plat_data->device_info->cs1_used) { 849 writel(DDR_MR4 | CS_MASK, base + EMIF_LPDDR2_MODE_REG_CONFIG); 850 temp = readl(base + EMIF_LPDDR2_MODE_REG_DATA); 851 temp = (temp & MR4_SDRAM_REF_RATE_MASK) 852 >> MR4_SDRAM_REF_RATE_SHIFT; 853 temperature_level = max(temp, temperature_level); 854 } 855 856 /* treat everything less than nominal(3) in MR4 as nominal */ 857 if (unlikely(temperature_level < SDRAM_TEMP_NOMINAL)) 858 temperature_level = SDRAM_TEMP_NOMINAL; 859 860 /* if we get reserved value in MR4 persist with the existing value */ 861 if (likely(temperature_level != SDRAM_TEMP_RESERVED_4)) 862 emif->temperature_level = temperature_level; 863 } 864 865 /* 866 * Program EMIF shadow registers that are not dependent on temperature 867 * or voltage 868 */ 869 static void setup_registers(struct emif_data *emif, struct emif_regs *regs) 870 { 871 void __iomem *base = emif->base; 872 873 writel(regs->sdram_tim2_shdw, base + EMIF_SDRAM_TIMING_2_SHDW); 874 writel(regs->phy_ctrl_1_shdw, base + EMIF_DDR_PHY_CTRL_1_SHDW); 875 writel(regs->pwr_mgmt_ctrl_shdw, 876 base + EMIF_POWER_MANAGEMENT_CTRL_SHDW); 877 878 /* Settings specific for EMIF4D5 */ 879 if (emif->plat_data->ip_rev != EMIF_4D5) 880 return; 881 writel(regs->ext_phy_ctrl_2_shdw, base + EMIF_EXT_PHY_CTRL_2_SHDW); 882 writel(regs->ext_phy_ctrl_3_shdw, base + EMIF_EXT_PHY_CTRL_3_SHDW); 883 writel(regs->ext_phy_ctrl_4_shdw, base + EMIF_EXT_PHY_CTRL_4_SHDW); 884 } 885 886 /* 887 * When voltage ramps dll calibration and forced read idle should 888 * happen more often 889 */ 890 static void setup_volt_sensitive_regs(struct emif_data *emif, 891 struct emif_regs *regs, u32 volt_state) 892 { 893 u32 calib_ctrl; 894 void __iomem *base = emif->base; 895 896 /* 897 * EMIF_READ_IDLE_CTRL in EMIF4D refers to the same register as 898 * EMIF_DLL_CALIB_CTRL in EMIF4D5 and dll_calib_ctrl_shadow_* 899 * is an alias of the respective read_idle_ctrl_shdw_* (members of 900 * a union). So, the below code takes care of both cases 901 */ 902 if (volt_state == DDR_VOLTAGE_RAMPING) 903 calib_ctrl = regs->dll_calib_ctrl_shdw_volt_ramp; 904 else 905 calib_ctrl = regs->dll_calib_ctrl_shdw_normal; 906 907 writel(calib_ctrl, base + EMIF_DLL_CALIB_CTRL_SHDW); 908 } 909 910 /* 911 * setup_temperature_sensitive_regs() - set the timings for temperature 912 * sensitive registers. This happens once at initialisation time based 913 * on the temperature at boot time and subsequently based on the temperature 914 * alert interrupt. Temperature alert can happen when the temperature 915 * increases or drops. So this function can have the effect of either 916 * derating the timings or going back to nominal values. 917 */ 918 static void setup_temperature_sensitive_regs(struct emif_data *emif, 919 struct emif_regs *regs) 920 { 921 u32 tim1, tim3, ref_ctrl, type; 922 void __iomem *base = emif->base; 923 u32 temperature; 924 925 type = emif->plat_data->device_info->type; 926 927 tim1 = regs->sdram_tim1_shdw; 928 tim3 = regs->sdram_tim3_shdw; 929 ref_ctrl = regs->ref_ctrl_shdw; 930 931 /* No de-rating for non-lpddr2 devices */ 932 if (type != DDR_TYPE_LPDDR2_S2 && type != DDR_TYPE_LPDDR2_S4) 933 goto out; 934 935 temperature = emif->temperature_level; 936 if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH) { 937 ref_ctrl = regs->ref_ctrl_shdw_derated; 938 } else if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH_AND_TIMINGS) { 939 tim1 = regs->sdram_tim1_shdw_derated; 940 tim3 = regs->sdram_tim3_shdw_derated; 941 ref_ctrl = regs->ref_ctrl_shdw_derated; 942 } 943 944 out: 945 writel(tim1, base + EMIF_SDRAM_TIMING_1_SHDW); 946 writel(tim3, base + EMIF_SDRAM_TIMING_3_SHDW); 947 writel(ref_ctrl, base + EMIF_SDRAM_REFRESH_CTRL_SHDW); 948 } 949 950 static irqreturn_t handle_temp_alert(void __iomem *base, struct emif_data *emif) 951 { 952 u32 old_temp_level; 953 irqreturn_t ret = IRQ_HANDLED; 954 struct emif_custom_configs *custom_configs; 955 956 spin_lock_irqsave(&emif_lock, irq_state); 957 old_temp_level = emif->temperature_level; 958 get_temperature_level(emif); 959 960 if (unlikely(emif->temperature_level == old_temp_level)) { 961 goto out; 962 } else if (!emif->curr_regs) { 963 dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n"); 964 goto out; 965 } 966 967 custom_configs = emif->plat_data->custom_configs; 968 969 /* 970 * IF we detect higher than "nominal rating" from DDR sensor 971 * on an unsupported DDR part, shutdown system 972 */ 973 if (custom_configs && !(custom_configs->mask & 974 EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART)) { 975 if (emif->temperature_level >= SDRAM_TEMP_HIGH_DERATE_REFRESH) { 976 dev_err(emif->dev, 977 "%s:NOT Extended temperature capable memory. Converting MR4=0x%02x as shutdown event\n", 978 __func__, emif->temperature_level); 979 /* 980 * Temperature far too high - do kernel_power_off() 981 * from thread context 982 */ 983 emif->temperature_level = SDRAM_TEMP_VERY_HIGH_SHUTDOWN; 984 ret = IRQ_WAKE_THREAD; 985 goto out; 986 } 987 } 988 989 if (emif->temperature_level < old_temp_level || 990 emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) { 991 /* 992 * Temperature coming down - defer handling to thread OR 993 * Temperature far too high - do kernel_power_off() from 994 * thread context 995 */ 996 ret = IRQ_WAKE_THREAD; 997 } else { 998 /* Temperature is going up - handle immediately */ 999 setup_temperature_sensitive_regs(emif, emif->curr_regs); 1000 do_freq_update(); 1001 } 1002 1003 out: 1004 spin_unlock_irqrestore(&emif_lock, irq_state); 1005 return ret; 1006 } 1007 1008 static irqreturn_t emif_interrupt_handler(int irq, void *dev_id) 1009 { 1010 u32 interrupts; 1011 struct emif_data *emif = dev_id; 1012 void __iomem *base = emif->base; 1013 struct device *dev = emif->dev; 1014 irqreturn_t ret = IRQ_HANDLED; 1015 1016 /* Save the status and clear it */ 1017 interrupts = readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS); 1018 writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS); 1019 1020 /* 1021 * Handle temperature alert 1022 * Temperature alert should be same for all ports 1023 * So, it's enough to process it only for one of the ports 1024 */ 1025 if (interrupts & TA_SYS_MASK) 1026 ret = handle_temp_alert(base, emif); 1027 1028 if (interrupts & ERR_SYS_MASK) 1029 dev_err(dev, "Access error from SYS port - %x\n", interrupts); 1030 1031 if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) { 1032 /* Save the status and clear it */ 1033 interrupts = readl(base + EMIF_LL_OCP_INTERRUPT_STATUS); 1034 writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_STATUS); 1035 1036 if (interrupts & ERR_LL_MASK) 1037 dev_err(dev, "Access error from LL port - %x\n", 1038 interrupts); 1039 } 1040 1041 return ret; 1042 } 1043 1044 static irqreturn_t emif_threaded_isr(int irq, void *dev_id) 1045 { 1046 struct emif_data *emif = dev_id; 1047 1048 if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) { 1049 dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n"); 1050 1051 /* If we have Power OFF ability, use it, else try restarting */ 1052 if (pm_power_off) { 1053 kernel_power_off(); 1054 } else { 1055 WARN(1, "FIXME: NO pm_power_off!!! trying restart\n"); 1056 kernel_restart("SDRAM Over-temp Emergency restart"); 1057 } 1058 return IRQ_HANDLED; 1059 } 1060 1061 spin_lock_irqsave(&emif_lock, irq_state); 1062 1063 if (emif->curr_regs) { 1064 setup_temperature_sensitive_regs(emif, emif->curr_regs); 1065 do_freq_update(); 1066 } else { 1067 dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n"); 1068 } 1069 1070 spin_unlock_irqrestore(&emif_lock, irq_state); 1071 1072 return IRQ_HANDLED; 1073 } 1074 1075 static void clear_all_interrupts(struct emif_data *emif) 1076 { 1077 void __iomem *base = emif->base; 1078 1079 writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS), 1080 base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS); 1081 if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) 1082 writel(readl(base + EMIF_LL_OCP_INTERRUPT_STATUS), 1083 base + EMIF_LL_OCP_INTERRUPT_STATUS); 1084 } 1085 1086 static void disable_and_clear_all_interrupts(struct emif_data *emif) 1087 { 1088 void __iomem *base = emif->base; 1089 1090 /* Disable all interrupts */ 1091 writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET), 1092 base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_CLEAR); 1093 if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) 1094 writel(readl(base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET), 1095 base + EMIF_LL_OCP_INTERRUPT_ENABLE_CLEAR); 1096 1097 /* Clear all interrupts */ 1098 clear_all_interrupts(emif); 1099 } 1100 1101 static int __init_or_module setup_interrupts(struct emif_data *emif, u32 irq) 1102 { 1103 u32 interrupts, type; 1104 void __iomem *base = emif->base; 1105 1106 type = emif->plat_data->device_info->type; 1107 1108 clear_all_interrupts(emif); 1109 1110 /* Enable interrupts for SYS interface */ 1111 interrupts = EN_ERR_SYS_MASK; 1112 if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) 1113 interrupts |= EN_TA_SYS_MASK; 1114 writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET); 1115 1116 /* Enable interrupts for LL interface */ 1117 if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) { 1118 /* TA need not be enabled for LL */ 1119 interrupts = EN_ERR_LL_MASK; 1120 writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET); 1121 } 1122 1123 /* setup IRQ handlers */ 1124 return devm_request_threaded_irq(emif->dev, irq, 1125 emif_interrupt_handler, 1126 emif_threaded_isr, 1127 0, dev_name(emif->dev), 1128 emif); 1129 1130 } 1131 1132 static void __init_or_module emif_onetime_settings(struct emif_data *emif) 1133 { 1134 u32 pwr_mgmt_ctrl, zq, temp_alert_cfg; 1135 void __iomem *base = emif->base; 1136 const struct lpddr2_addressing *addressing; 1137 const struct ddr_device_info *device_info; 1138 1139 device_info = emif->plat_data->device_info; 1140 addressing = get_addressing_table(device_info); 1141 1142 /* 1143 * Init power management settings 1144 * We don't know the frequency yet. Use a high frequency 1145 * value for a conservative timeout setting 1146 */ 1147 pwr_mgmt_ctrl = get_pwr_mgmt_ctrl(1000000000, emif, 1148 emif->plat_data->ip_rev); 1149 emif->lpmode = (pwr_mgmt_ctrl & LP_MODE_MASK) >> LP_MODE_SHIFT; 1150 writel(pwr_mgmt_ctrl, base + EMIF_POWER_MANAGEMENT_CONTROL); 1151 1152 /* Init ZQ calibration settings */ 1153 zq = get_zq_config_reg(addressing, device_info->cs1_used, 1154 device_info->cal_resistors_per_cs); 1155 writel(zq, base + EMIF_SDRAM_OUTPUT_IMPEDANCE_CALIBRATION_CONFIG); 1156 1157 /* Check temperature level temperature level*/ 1158 get_temperature_level(emif); 1159 if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) 1160 dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n"); 1161 1162 /* Init temperature polling */ 1163 temp_alert_cfg = get_temp_alert_config(addressing, 1164 emif->plat_data->custom_configs, device_info->cs1_used, 1165 device_info->io_width, get_emif_bus_width(emif)); 1166 writel(temp_alert_cfg, base + EMIF_TEMPERATURE_ALERT_CONFIG); 1167 1168 /* 1169 * Program external PHY control registers that are not frequency 1170 * dependent 1171 */ 1172 if (emif->plat_data->phy_type != EMIF_PHY_TYPE_INTELLIPHY) 1173 return; 1174 writel(EMIF_EXT_PHY_CTRL_1_VAL, base + EMIF_EXT_PHY_CTRL_1_SHDW); 1175 writel(EMIF_EXT_PHY_CTRL_5_VAL, base + EMIF_EXT_PHY_CTRL_5_SHDW); 1176 writel(EMIF_EXT_PHY_CTRL_6_VAL, base + EMIF_EXT_PHY_CTRL_6_SHDW); 1177 writel(EMIF_EXT_PHY_CTRL_7_VAL, base + EMIF_EXT_PHY_CTRL_7_SHDW); 1178 writel(EMIF_EXT_PHY_CTRL_8_VAL, base + EMIF_EXT_PHY_CTRL_8_SHDW); 1179 writel(EMIF_EXT_PHY_CTRL_9_VAL, base + EMIF_EXT_PHY_CTRL_9_SHDW); 1180 writel(EMIF_EXT_PHY_CTRL_10_VAL, base + EMIF_EXT_PHY_CTRL_10_SHDW); 1181 writel(EMIF_EXT_PHY_CTRL_11_VAL, base + EMIF_EXT_PHY_CTRL_11_SHDW); 1182 writel(EMIF_EXT_PHY_CTRL_12_VAL, base + EMIF_EXT_PHY_CTRL_12_SHDW); 1183 writel(EMIF_EXT_PHY_CTRL_13_VAL, base + EMIF_EXT_PHY_CTRL_13_SHDW); 1184 writel(EMIF_EXT_PHY_CTRL_14_VAL, base + EMIF_EXT_PHY_CTRL_14_SHDW); 1185 writel(EMIF_EXT_PHY_CTRL_15_VAL, base + EMIF_EXT_PHY_CTRL_15_SHDW); 1186 writel(EMIF_EXT_PHY_CTRL_16_VAL, base + EMIF_EXT_PHY_CTRL_16_SHDW); 1187 writel(EMIF_EXT_PHY_CTRL_17_VAL, base + EMIF_EXT_PHY_CTRL_17_SHDW); 1188 writel(EMIF_EXT_PHY_CTRL_18_VAL, base + EMIF_EXT_PHY_CTRL_18_SHDW); 1189 writel(EMIF_EXT_PHY_CTRL_19_VAL, base + EMIF_EXT_PHY_CTRL_19_SHDW); 1190 writel(EMIF_EXT_PHY_CTRL_20_VAL, base + EMIF_EXT_PHY_CTRL_20_SHDW); 1191 writel(EMIF_EXT_PHY_CTRL_21_VAL, base + EMIF_EXT_PHY_CTRL_21_SHDW); 1192 writel(EMIF_EXT_PHY_CTRL_22_VAL, base + EMIF_EXT_PHY_CTRL_22_SHDW); 1193 writel(EMIF_EXT_PHY_CTRL_23_VAL, base + EMIF_EXT_PHY_CTRL_23_SHDW); 1194 writel(EMIF_EXT_PHY_CTRL_24_VAL, base + EMIF_EXT_PHY_CTRL_24_SHDW); 1195 } 1196 1197 static void get_default_timings(struct emif_data *emif) 1198 { 1199 struct emif_platform_data *pd = emif->plat_data; 1200 1201 pd->timings = lpddr2_jedec_timings; 1202 pd->timings_arr_size = ARRAY_SIZE(lpddr2_jedec_timings); 1203 1204 dev_warn(emif->dev, "%s: using default timings\n", __func__); 1205 } 1206 1207 static int is_dev_data_valid(u32 type, u32 density, u32 io_width, u32 phy_type, 1208 u32 ip_rev, struct device *dev) 1209 { 1210 int valid; 1211 1212 valid = (type == DDR_TYPE_LPDDR2_S4 || 1213 type == DDR_TYPE_LPDDR2_S2) 1214 && (density >= DDR_DENSITY_64Mb 1215 && density <= DDR_DENSITY_8Gb) 1216 && (io_width >= DDR_IO_WIDTH_8 1217 && io_width <= DDR_IO_WIDTH_32); 1218 1219 /* Combinations of EMIF and PHY revisions that we support today */ 1220 switch (ip_rev) { 1221 case EMIF_4D: 1222 valid = valid && (phy_type == EMIF_PHY_TYPE_ATTILAPHY); 1223 break; 1224 case EMIF_4D5: 1225 valid = valid && (phy_type == EMIF_PHY_TYPE_INTELLIPHY); 1226 break; 1227 default: 1228 valid = 0; 1229 } 1230 1231 if (!valid) 1232 dev_err(dev, "%s: invalid DDR details\n", __func__); 1233 return valid; 1234 } 1235 1236 static int is_custom_config_valid(struct emif_custom_configs *cust_cfgs, 1237 struct device *dev) 1238 { 1239 int valid = 1; 1240 1241 if ((cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE) && 1242 (cust_cfgs->lpmode != EMIF_LP_MODE_DISABLE)) 1243 valid = cust_cfgs->lpmode_freq_threshold && 1244 cust_cfgs->lpmode_timeout_performance && 1245 cust_cfgs->lpmode_timeout_power; 1246 1247 if (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL) 1248 valid = valid && cust_cfgs->temp_alert_poll_interval_ms; 1249 1250 if (!valid) 1251 dev_warn(dev, "%s: invalid custom configs\n", __func__); 1252 1253 return valid; 1254 } 1255 1256 #if defined(CONFIG_OF) 1257 static void __init_or_module of_get_custom_configs(struct device_node *np_emif, 1258 struct emif_data *emif) 1259 { 1260 struct emif_custom_configs *cust_cfgs = NULL; 1261 int len; 1262 const __be32 *lpmode, *poll_intvl; 1263 1264 lpmode = of_get_property(np_emif, "low-power-mode", &len); 1265 poll_intvl = of_get_property(np_emif, "temp-alert-poll-interval", &len); 1266 1267 if (lpmode || poll_intvl) 1268 cust_cfgs = devm_kzalloc(emif->dev, sizeof(*cust_cfgs), 1269 GFP_KERNEL); 1270 1271 if (!cust_cfgs) 1272 return; 1273 1274 if (lpmode) { 1275 cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_LPMODE; 1276 cust_cfgs->lpmode = be32_to_cpup(lpmode); 1277 of_property_read_u32(np_emif, 1278 "low-power-mode-timeout-performance", 1279 &cust_cfgs->lpmode_timeout_performance); 1280 of_property_read_u32(np_emif, 1281 "low-power-mode-timeout-power", 1282 &cust_cfgs->lpmode_timeout_power); 1283 of_property_read_u32(np_emif, 1284 "low-power-mode-freq-threshold", 1285 &cust_cfgs->lpmode_freq_threshold); 1286 } 1287 1288 if (poll_intvl) { 1289 cust_cfgs->mask |= 1290 EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL; 1291 cust_cfgs->temp_alert_poll_interval_ms = 1292 be32_to_cpup(poll_intvl); 1293 } 1294 1295 if (of_find_property(np_emif, "extended-temp-part", &len)) 1296 cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART; 1297 1298 if (!is_custom_config_valid(cust_cfgs, emif->dev)) { 1299 devm_kfree(emif->dev, cust_cfgs); 1300 return; 1301 } 1302 1303 emif->plat_data->custom_configs = cust_cfgs; 1304 } 1305 1306 static void __init_or_module of_get_ddr_info(struct device_node *np_emif, 1307 struct device_node *np_ddr, 1308 struct ddr_device_info *dev_info) 1309 { 1310 u32 density = 0, io_width = 0; 1311 int len; 1312 1313 if (of_find_property(np_emif, "cs1-used", &len)) 1314 dev_info->cs1_used = true; 1315 1316 if (of_find_property(np_emif, "cal-resistor-per-cs", &len)) 1317 dev_info->cal_resistors_per_cs = true; 1318 1319 if (of_device_is_compatible(np_ddr, "jedec,lpddr2-s4")) 1320 dev_info->type = DDR_TYPE_LPDDR2_S4; 1321 else if (of_device_is_compatible(np_ddr, "jedec,lpddr2-s2")) 1322 dev_info->type = DDR_TYPE_LPDDR2_S2; 1323 1324 of_property_read_u32(np_ddr, "density", &density); 1325 of_property_read_u32(np_ddr, "io-width", &io_width); 1326 1327 /* Convert from density in Mb to the density encoding in jedc_ddr.h */ 1328 if (density & (density - 1)) 1329 dev_info->density = 0; 1330 else 1331 dev_info->density = __fls(density) - 5; 1332 1333 /* Convert from io_width in bits to io_width encoding in jedc_ddr.h */ 1334 if (io_width & (io_width - 1)) 1335 dev_info->io_width = 0; 1336 else 1337 dev_info->io_width = __fls(io_width) - 1; 1338 } 1339 1340 static struct emif_data * __init_or_module of_get_memory_device_details( 1341 struct device_node *np_emif, struct device *dev) 1342 { 1343 struct emif_data *emif = NULL; 1344 struct ddr_device_info *dev_info = NULL; 1345 struct emif_platform_data *pd = NULL; 1346 struct device_node *np_ddr; 1347 int len; 1348 1349 np_ddr = of_parse_phandle(np_emif, "device-handle", 0); 1350 if (!np_ddr) 1351 goto error; 1352 emif = devm_kzalloc(dev, sizeof(struct emif_data), GFP_KERNEL); 1353 pd = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL); 1354 dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL); 1355 1356 if (!emif || !pd || !dev_info) { 1357 dev_err(dev, "%s: Out of memory!!\n", 1358 __func__); 1359 goto error; 1360 } 1361 1362 emif->plat_data = pd; 1363 pd->device_info = dev_info; 1364 emif->dev = dev; 1365 emif->np_ddr = np_ddr; 1366 emif->temperature_level = SDRAM_TEMP_NOMINAL; 1367 1368 if (of_device_is_compatible(np_emif, "ti,emif-4d")) 1369 emif->plat_data->ip_rev = EMIF_4D; 1370 else if (of_device_is_compatible(np_emif, "ti,emif-4d5")) 1371 emif->plat_data->ip_rev = EMIF_4D5; 1372 1373 of_property_read_u32(np_emif, "phy-type", &pd->phy_type); 1374 1375 if (of_find_property(np_emif, "hw-caps-ll-interface", &len)) 1376 pd->hw_caps |= EMIF_HW_CAPS_LL_INTERFACE; 1377 1378 of_get_ddr_info(np_emif, np_ddr, dev_info); 1379 if (!is_dev_data_valid(pd->device_info->type, pd->device_info->density, 1380 pd->device_info->io_width, pd->phy_type, pd->ip_rev, 1381 emif->dev)) { 1382 dev_err(dev, "%s: invalid device data!!\n", __func__); 1383 goto error; 1384 } 1385 /* 1386 * For EMIF instances other than EMIF1 see if the devices connected 1387 * are exactly same as on EMIF1(which is typically the case). If so, 1388 * mark it as a duplicate of EMIF1. This will save some memory and 1389 * computation. 1390 */ 1391 if (emif1 && emif1->np_ddr == np_ddr) { 1392 emif->duplicate = true; 1393 goto out; 1394 } else if (emif1) { 1395 dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n", 1396 __func__); 1397 } 1398 1399 of_get_custom_configs(np_emif, emif); 1400 emif->plat_data->timings = of_get_ddr_timings(np_ddr, emif->dev, 1401 emif->plat_data->device_info->type, 1402 &emif->plat_data->timings_arr_size); 1403 1404 emif->plat_data->min_tck = of_get_min_tck(np_ddr, emif->dev); 1405 goto out; 1406 1407 error: 1408 return NULL; 1409 out: 1410 return emif; 1411 } 1412 1413 #else 1414 1415 static struct emif_data * __init_or_module of_get_memory_device_details( 1416 struct device_node *np_emif, struct device *dev) 1417 { 1418 return NULL; 1419 } 1420 #endif 1421 1422 static struct emif_data *__init_or_module get_device_details( 1423 struct platform_device *pdev) 1424 { 1425 u32 size; 1426 struct emif_data *emif = NULL; 1427 struct ddr_device_info *dev_info; 1428 struct emif_custom_configs *cust_cfgs; 1429 struct emif_platform_data *pd; 1430 struct device *dev; 1431 void *temp; 1432 1433 pd = pdev->dev.platform_data; 1434 dev = &pdev->dev; 1435 1436 if (!(pd && pd->device_info && is_dev_data_valid(pd->device_info->type, 1437 pd->device_info->density, pd->device_info->io_width, 1438 pd->phy_type, pd->ip_rev, dev))) { 1439 dev_err(dev, "%s: invalid device data\n", __func__); 1440 goto error; 1441 } 1442 1443 emif = devm_kzalloc(dev, sizeof(*emif), GFP_KERNEL); 1444 temp = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL); 1445 dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL); 1446 1447 if (!emif || !pd || !dev_info) { 1448 dev_err(dev, "%s:%d: allocation error\n", __func__, __LINE__); 1449 goto error; 1450 } 1451 1452 memcpy(temp, pd, sizeof(*pd)); 1453 pd = temp; 1454 memcpy(dev_info, pd->device_info, sizeof(*dev_info)); 1455 1456 pd->device_info = dev_info; 1457 emif->plat_data = pd; 1458 emif->dev = dev; 1459 emif->temperature_level = SDRAM_TEMP_NOMINAL; 1460 1461 /* 1462 * For EMIF instances other than EMIF1 see if the devices connected 1463 * are exactly same as on EMIF1(which is typically the case). If so, 1464 * mark it as a duplicate of EMIF1 and skip copying timings data. 1465 * This will save some memory and some computation later. 1466 */ 1467 emif->duplicate = emif1 && (memcmp(dev_info, 1468 emif1->plat_data->device_info, 1469 sizeof(struct ddr_device_info)) == 0); 1470 1471 if (emif->duplicate) { 1472 pd->timings = NULL; 1473 pd->min_tck = NULL; 1474 goto out; 1475 } else if (emif1) { 1476 dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n", 1477 __func__); 1478 } 1479 1480 /* 1481 * Copy custom configs - ignore allocation error, if any, as 1482 * custom_configs is not very critical 1483 */ 1484 cust_cfgs = pd->custom_configs; 1485 if (cust_cfgs && is_custom_config_valid(cust_cfgs, dev)) { 1486 temp = devm_kzalloc(dev, sizeof(*cust_cfgs), GFP_KERNEL); 1487 if (temp) 1488 memcpy(temp, cust_cfgs, sizeof(*cust_cfgs)); 1489 else 1490 dev_warn(dev, "%s:%d: allocation error\n", __func__, 1491 __LINE__); 1492 pd->custom_configs = temp; 1493 } 1494 1495 /* 1496 * Copy timings and min-tck values from platform data. If it is not 1497 * available or if memory allocation fails, use JEDEC defaults 1498 */ 1499 size = sizeof(struct lpddr2_timings) * pd->timings_arr_size; 1500 if (pd->timings) { 1501 temp = devm_kzalloc(dev, size, GFP_KERNEL); 1502 if (temp) { 1503 memcpy(temp, pd->timings, size); 1504 pd->timings = temp; 1505 } else { 1506 dev_warn(dev, "%s:%d: allocation error\n", __func__, 1507 __LINE__); 1508 get_default_timings(emif); 1509 } 1510 } else { 1511 get_default_timings(emif); 1512 } 1513 1514 if (pd->min_tck) { 1515 temp = devm_kzalloc(dev, sizeof(*pd->min_tck), GFP_KERNEL); 1516 if (temp) { 1517 memcpy(temp, pd->min_tck, sizeof(*pd->min_tck)); 1518 pd->min_tck = temp; 1519 } else { 1520 dev_warn(dev, "%s:%d: allocation error\n", __func__, 1521 __LINE__); 1522 pd->min_tck = &lpddr2_jedec_min_tck; 1523 } 1524 } else { 1525 pd->min_tck = &lpddr2_jedec_min_tck; 1526 } 1527 1528 out: 1529 return emif; 1530 1531 error: 1532 return NULL; 1533 } 1534 1535 static int __init_or_module emif_probe(struct platform_device *pdev) 1536 { 1537 struct emif_data *emif; 1538 struct resource *res; 1539 int irq; 1540 1541 if (pdev->dev.of_node) 1542 emif = of_get_memory_device_details(pdev->dev.of_node, &pdev->dev); 1543 else 1544 emif = get_device_details(pdev); 1545 1546 if (!emif) { 1547 pr_err("%s: error getting device data\n", __func__); 1548 goto error; 1549 } 1550 1551 list_add(&emif->node, &device_list); 1552 emif->addressing = get_addressing_table(emif->plat_data->device_info); 1553 1554 /* Save pointers to each other in emif and device structures */ 1555 emif->dev = &pdev->dev; 1556 platform_set_drvdata(pdev, emif); 1557 1558 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1559 emif->base = devm_ioremap_resource(emif->dev, res); 1560 if (IS_ERR(emif->base)) 1561 goto error; 1562 1563 irq = platform_get_irq(pdev, 0); 1564 if (irq < 0) 1565 goto error; 1566 1567 emif_onetime_settings(emif); 1568 emif_debugfs_init(emif); 1569 disable_and_clear_all_interrupts(emif); 1570 setup_interrupts(emif, irq); 1571 1572 /* One-time actions taken on probing the first device */ 1573 if (!emif1) { 1574 emif1 = emif; 1575 spin_lock_init(&emif_lock); 1576 1577 /* 1578 * TODO: register notifiers for frequency and voltage 1579 * change here once the respective frameworks are 1580 * available 1581 */ 1582 } 1583 1584 dev_info(&pdev->dev, "%s: device configured with addr = %p and IRQ%d\n", 1585 __func__, emif->base, irq); 1586 1587 return 0; 1588 error: 1589 return -ENODEV; 1590 } 1591 1592 static int __exit emif_remove(struct platform_device *pdev) 1593 { 1594 struct emif_data *emif = platform_get_drvdata(pdev); 1595 1596 emif_debugfs_exit(emif); 1597 1598 return 0; 1599 } 1600 1601 static void emif_shutdown(struct platform_device *pdev) 1602 { 1603 struct emif_data *emif = platform_get_drvdata(pdev); 1604 1605 disable_and_clear_all_interrupts(emif); 1606 } 1607 1608 static int get_emif_reg_values(struct emif_data *emif, u32 freq, 1609 struct emif_regs *regs) 1610 { 1611 u32 ip_rev, phy_type; 1612 u32 cl, type; 1613 const struct lpddr2_timings *timings; 1614 const struct lpddr2_min_tck *min_tck; 1615 const struct ddr_device_info *device_info; 1616 const struct lpddr2_addressing *addressing; 1617 struct emif_data *emif_for_calc; 1618 struct device *dev; 1619 1620 dev = emif->dev; 1621 /* 1622 * If the devices on this EMIF instance is duplicate of EMIF1, 1623 * use EMIF1 details for the calculation 1624 */ 1625 emif_for_calc = emif->duplicate ? emif1 : emif; 1626 timings = get_timings_table(emif_for_calc, freq); 1627 addressing = emif_for_calc->addressing; 1628 if (!timings || !addressing) { 1629 dev_err(dev, "%s: not enough data available for %dHz", 1630 __func__, freq); 1631 return -1; 1632 } 1633 1634 device_info = emif_for_calc->plat_data->device_info; 1635 type = device_info->type; 1636 ip_rev = emif_for_calc->plat_data->ip_rev; 1637 phy_type = emif_for_calc->plat_data->phy_type; 1638 1639 min_tck = emif_for_calc->plat_data->min_tck; 1640 1641 set_ddr_clk_period(freq); 1642 1643 regs->ref_ctrl_shdw = get_sdram_ref_ctrl_shdw(freq, addressing); 1644 regs->sdram_tim1_shdw = get_sdram_tim_1_shdw(timings, min_tck, 1645 addressing); 1646 regs->sdram_tim2_shdw = get_sdram_tim_2_shdw(timings, min_tck, 1647 addressing, type); 1648 regs->sdram_tim3_shdw = get_sdram_tim_3_shdw(timings, min_tck, 1649 addressing, type, ip_rev, EMIF_NORMAL_TIMINGS); 1650 1651 cl = get_cl(emif); 1652 1653 if (phy_type == EMIF_PHY_TYPE_ATTILAPHY && ip_rev == EMIF_4D) { 1654 regs->phy_ctrl_1_shdw = get_ddr_phy_ctrl_1_attilaphy_4d( 1655 timings, freq, cl); 1656 } else if (phy_type == EMIF_PHY_TYPE_INTELLIPHY && ip_rev == EMIF_4D5) { 1657 regs->phy_ctrl_1_shdw = get_phy_ctrl_1_intelliphy_4d5(freq, cl); 1658 regs->ext_phy_ctrl_2_shdw = get_ext_phy_ctrl_2_intelliphy_4d5(); 1659 regs->ext_phy_ctrl_3_shdw = get_ext_phy_ctrl_3_intelliphy_4d5(); 1660 regs->ext_phy_ctrl_4_shdw = get_ext_phy_ctrl_4_intelliphy_4d5(); 1661 } else { 1662 return -1; 1663 } 1664 1665 /* Only timeout values in pwr_mgmt_ctrl_shdw register */ 1666 regs->pwr_mgmt_ctrl_shdw = 1667 get_pwr_mgmt_ctrl(freq, emif_for_calc, ip_rev) & 1668 (CS_TIM_MASK | SR_TIM_MASK | PD_TIM_MASK); 1669 1670 if (ip_rev & EMIF_4D) { 1671 regs->read_idle_ctrl_shdw_normal = 1672 get_read_idle_ctrl_shdw(DDR_VOLTAGE_STABLE); 1673 1674 regs->read_idle_ctrl_shdw_volt_ramp = 1675 get_read_idle_ctrl_shdw(DDR_VOLTAGE_RAMPING); 1676 } else if (ip_rev & EMIF_4D5) { 1677 regs->dll_calib_ctrl_shdw_normal = 1678 get_dll_calib_ctrl_shdw(DDR_VOLTAGE_STABLE); 1679 1680 regs->dll_calib_ctrl_shdw_volt_ramp = 1681 get_dll_calib_ctrl_shdw(DDR_VOLTAGE_RAMPING); 1682 } 1683 1684 if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) { 1685 regs->ref_ctrl_shdw_derated = get_sdram_ref_ctrl_shdw(freq / 4, 1686 addressing); 1687 1688 regs->sdram_tim1_shdw_derated = 1689 get_sdram_tim_1_shdw_derated(timings, min_tck, 1690 addressing); 1691 1692 regs->sdram_tim3_shdw_derated = get_sdram_tim_3_shdw(timings, 1693 min_tck, addressing, type, ip_rev, 1694 EMIF_DERATED_TIMINGS); 1695 } 1696 1697 regs->freq = freq; 1698 1699 return 0; 1700 } 1701 1702 /* 1703 * get_regs() - gets the cached emif_regs structure for a given EMIF instance 1704 * given frequency(freq): 1705 * 1706 * As an optimisation, every EMIF instance other than EMIF1 shares the 1707 * register cache with EMIF1 if the devices connected on this instance 1708 * are same as that on EMIF1(indicated by the duplicate flag) 1709 * 1710 * If we do not have an entry corresponding to the frequency given, we 1711 * allocate a new entry and calculate the values 1712 * 1713 * Upon finding the right reg dump, save it in curr_regs. It can be 1714 * directly used for thermal de-rating and voltage ramping changes. 1715 */ 1716 static struct emif_regs *get_regs(struct emif_data *emif, u32 freq) 1717 { 1718 int i; 1719 struct emif_regs **regs_cache; 1720 struct emif_regs *regs = NULL; 1721 struct device *dev; 1722 1723 dev = emif->dev; 1724 if (emif->curr_regs && emif->curr_regs->freq == freq) { 1725 dev_dbg(dev, "%s: using curr_regs - %u Hz", __func__, freq); 1726 return emif->curr_regs; 1727 } 1728 1729 if (emif->duplicate) 1730 regs_cache = emif1->regs_cache; 1731 else 1732 regs_cache = emif->regs_cache; 1733 1734 for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) { 1735 if (regs_cache[i]->freq == freq) { 1736 regs = regs_cache[i]; 1737 dev_dbg(dev, 1738 "%s: reg dump found in reg cache for %u Hz\n", 1739 __func__, freq); 1740 break; 1741 } 1742 } 1743 1744 /* 1745 * If we don't have an entry for this frequency in the cache create one 1746 * and calculate the values 1747 */ 1748 if (!regs) { 1749 regs = devm_kzalloc(emif->dev, sizeof(*regs), GFP_ATOMIC); 1750 if (!regs) 1751 return NULL; 1752 1753 if (get_emif_reg_values(emif, freq, regs)) { 1754 devm_kfree(emif->dev, regs); 1755 return NULL; 1756 } 1757 1758 /* 1759 * Now look for an un-used entry in the cache and save the 1760 * newly created struct. If there are no free entries 1761 * over-write the last entry 1762 */ 1763 for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) 1764 ; 1765 1766 if (i >= EMIF_MAX_NUM_FREQUENCIES) { 1767 dev_warn(dev, "%s: regs_cache full - reusing a slot!!\n", 1768 __func__); 1769 i = EMIF_MAX_NUM_FREQUENCIES - 1; 1770 devm_kfree(emif->dev, regs_cache[i]); 1771 } 1772 regs_cache[i] = regs; 1773 } 1774 1775 return regs; 1776 } 1777 1778 static void do_volt_notify_handling(struct emif_data *emif, u32 volt_state) 1779 { 1780 dev_dbg(emif->dev, "%s: voltage notification : %d", __func__, 1781 volt_state); 1782 1783 if (!emif->curr_regs) { 1784 dev_err(emif->dev, 1785 "%s: volt-notify before registers are ready: %d\n", 1786 __func__, volt_state); 1787 return; 1788 } 1789 1790 setup_volt_sensitive_regs(emif, emif->curr_regs, volt_state); 1791 } 1792 1793 /* 1794 * TODO: voltage notify handling should be hooked up to 1795 * regulator framework as soon as the necessary support 1796 * is available in mainline kernel. This function is un-used 1797 * right now. 1798 */ 1799 static void __attribute__((unused)) volt_notify_handling(u32 volt_state) 1800 { 1801 struct emif_data *emif; 1802 1803 spin_lock_irqsave(&emif_lock, irq_state); 1804 1805 list_for_each_entry(emif, &device_list, node) 1806 do_volt_notify_handling(emif, volt_state); 1807 do_freq_update(); 1808 1809 spin_unlock_irqrestore(&emif_lock, irq_state); 1810 } 1811 1812 static void do_freq_pre_notify_handling(struct emif_data *emif, u32 new_freq) 1813 { 1814 struct emif_regs *regs; 1815 1816 regs = get_regs(emif, new_freq); 1817 if (!regs) 1818 return; 1819 1820 emif->curr_regs = regs; 1821 1822 /* 1823 * Update the shadow registers: 1824 * Temperature and voltage-ramp sensitive settings are also configured 1825 * in terms of DDR cycles. So, we need to update them too when there 1826 * is a freq change 1827 */ 1828 dev_dbg(emif->dev, "%s: setting up shadow registers for %uHz", 1829 __func__, new_freq); 1830 setup_registers(emif, regs); 1831 setup_temperature_sensitive_regs(emif, regs); 1832 setup_volt_sensitive_regs(emif, regs, DDR_VOLTAGE_STABLE); 1833 1834 /* 1835 * Part of workaround for errata i728. See do_freq_update() 1836 * for more details 1837 */ 1838 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH) 1839 set_lpmode(emif, EMIF_LP_MODE_DISABLE); 1840 } 1841 1842 /* 1843 * TODO: frequency notify handling should be hooked up to 1844 * clock framework as soon as the necessary support is 1845 * available in mainline kernel. This function is un-used 1846 * right now. 1847 */ 1848 static void __attribute__((unused)) freq_pre_notify_handling(u32 new_freq) 1849 { 1850 struct emif_data *emif; 1851 1852 /* 1853 * NOTE: we are taking the spin-lock here and releases it 1854 * only in post-notifier. This doesn't look good and 1855 * Sparse complains about it, but this seems to be 1856 * un-avoidable. We need to lock a sequence of events 1857 * that is split between EMIF and clock framework. 1858 * 1859 * 1. EMIF driver updates EMIF timings in shadow registers in the 1860 * frequency pre-notify callback from clock framework 1861 * 2. clock framework sets up the registers for the new frequency 1862 * 3. clock framework initiates a hw-sequence that updates 1863 * the frequency EMIF timings synchronously. 1864 * 1865 * All these 3 steps should be performed as an atomic operation 1866 * vis-a-vis similar sequence in the EMIF interrupt handler 1867 * for temperature events. Otherwise, there could be race 1868 * conditions that could result in incorrect EMIF timings for 1869 * a given frequency 1870 */ 1871 spin_lock_irqsave(&emif_lock, irq_state); 1872 1873 list_for_each_entry(emif, &device_list, node) 1874 do_freq_pre_notify_handling(emif, new_freq); 1875 } 1876 1877 static void do_freq_post_notify_handling(struct emif_data *emif) 1878 { 1879 /* 1880 * Part of workaround for errata i728. See do_freq_update() 1881 * for more details 1882 */ 1883 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH) 1884 set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH); 1885 } 1886 1887 /* 1888 * TODO: frequency notify handling should be hooked up to 1889 * clock framework as soon as the necessary support is 1890 * available in mainline kernel. This function is un-used 1891 * right now. 1892 */ 1893 static void __attribute__((unused)) freq_post_notify_handling(void) 1894 { 1895 struct emif_data *emif; 1896 1897 list_for_each_entry(emif, &device_list, node) 1898 do_freq_post_notify_handling(emif); 1899 1900 /* 1901 * Lock is done in pre-notify handler. See freq_pre_notify_handling() 1902 * for more details 1903 */ 1904 spin_unlock_irqrestore(&emif_lock, irq_state); 1905 } 1906 1907 #if defined(CONFIG_OF) 1908 static const struct of_device_id emif_of_match[] = { 1909 { .compatible = "ti,emif-4d" }, 1910 { .compatible = "ti,emif-4d5" }, 1911 {}, 1912 }; 1913 MODULE_DEVICE_TABLE(of, emif_of_match); 1914 #endif 1915 1916 static struct platform_driver emif_driver = { 1917 .remove = __exit_p(emif_remove), 1918 .shutdown = emif_shutdown, 1919 .driver = { 1920 .name = "emif", 1921 .of_match_table = of_match_ptr(emif_of_match), 1922 }, 1923 }; 1924 1925 module_platform_driver_probe(emif_driver, emif_probe); 1926 1927 MODULE_DESCRIPTION("TI EMIF SDRAM Controller Driver"); 1928 MODULE_LICENSE("GPL"); 1929 MODULE_ALIAS("platform:emif"); 1930 MODULE_AUTHOR("Texas Instruments Inc"); 1931