xref: /openbmc/linux/drivers/memory/emif.c (revision ab73b751)
1 /*
2  * EMIF driver
3  *
4  * Copyright (C) 2012 Texas Instruments, Inc.
5  *
6  * Aneesh V <aneesh@ti.com>
7  * Santosh Shilimkar <santosh.shilimkar@ti.com>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 #include <linux/kernel.h>
14 #include <linux/reboot.h>
15 #include <linux/platform_data/emif_plat.h>
16 #include <linux/io.h>
17 #include <linux/device.h>
18 #include <linux/platform_device.h>
19 #include <linux/interrupt.h>
20 #include <linux/slab.h>
21 #include <linux/debugfs.h>
22 #include <linux/seq_file.h>
23 #include <linux/module.h>
24 #include <linux/list.h>
25 #include <linux/spinlock.h>
26 #include <memory/jedec_ddr.h>
27 #include "emif.h"
28 
29 /**
30  * struct emif_data - Per device static data for driver's use
31  * @duplicate:			Whether the DDR devices attached to this EMIF
32  *				instance are exactly same as that on EMIF1. In
33  *				this case we can save some memory and processing
34  * @temperature_level:		Maximum temperature of LPDDR2 devices attached
35  *				to this EMIF - read from MR4 register. If there
36  *				are two devices attached to this EMIF, this
37  *				value is the maximum of the two temperature
38  *				levels.
39  * @node:			node in the device list
40  * @base:			base address of memory-mapped IO registers.
41  * @dev:			device pointer.
42  * @addressing			table with addressing information from the spec
43  * @regs_cache:			An array of 'struct emif_regs' that stores
44  *				calculated register values for different
45  *				frequencies, to avoid re-calculating them on
46  *				each DVFS transition.
47  * @curr_regs:			The set of register values used in the last
48  *				frequency change (i.e. corresponding to the
49  *				frequency in effect at the moment)
50  * @plat_data:			Pointer to saved platform data.
51  * @debugfs_root:		dentry to the root folder for EMIF in debugfs
52  */
53 struct emif_data {
54 	u8				duplicate;
55 	u8				temperature_level;
56 	u8				lpmode;
57 	struct list_head		node;
58 	unsigned long			irq_state;
59 	void __iomem			*base;
60 	struct device			*dev;
61 	const struct lpddr2_addressing	*addressing;
62 	struct emif_regs		*regs_cache[EMIF_MAX_NUM_FREQUENCIES];
63 	struct emif_regs		*curr_regs;
64 	struct emif_platform_data	*plat_data;
65 	struct dentry			*debugfs_root;
66 };
67 
68 static struct emif_data *emif1;
69 static spinlock_t	emif_lock;
70 static unsigned long	irq_state;
71 static u32		t_ck; /* DDR clock period in ps */
72 static LIST_HEAD(device_list);
73 
74 static void do_emif_regdump_show(struct seq_file *s, struct emif_data *emif,
75 	struct emif_regs *regs)
76 {
77 	u32 type = emif->plat_data->device_info->type;
78 	u32 ip_rev = emif->plat_data->ip_rev;
79 
80 	seq_printf(s, "EMIF register cache dump for %dMHz\n",
81 		regs->freq/1000000);
82 
83 	seq_printf(s, "ref_ctrl_shdw\t: 0x%08x\n", regs->ref_ctrl_shdw);
84 	seq_printf(s, "sdram_tim1_shdw\t: 0x%08x\n", regs->sdram_tim1_shdw);
85 	seq_printf(s, "sdram_tim2_shdw\t: 0x%08x\n", regs->sdram_tim2_shdw);
86 	seq_printf(s, "sdram_tim3_shdw\t: 0x%08x\n", regs->sdram_tim3_shdw);
87 
88 	if (ip_rev == EMIF_4D) {
89 		seq_printf(s, "read_idle_ctrl_shdw_normal\t: 0x%08x\n",
90 			regs->read_idle_ctrl_shdw_normal);
91 		seq_printf(s, "read_idle_ctrl_shdw_volt_ramp\t: 0x%08x\n",
92 			regs->read_idle_ctrl_shdw_volt_ramp);
93 	} else if (ip_rev == EMIF_4D5) {
94 		seq_printf(s, "dll_calib_ctrl_shdw_normal\t: 0x%08x\n",
95 			regs->dll_calib_ctrl_shdw_normal);
96 		seq_printf(s, "dll_calib_ctrl_shdw_volt_ramp\t: 0x%08x\n",
97 			regs->dll_calib_ctrl_shdw_volt_ramp);
98 	}
99 
100 	if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) {
101 		seq_printf(s, "ref_ctrl_shdw_derated\t: 0x%08x\n",
102 			regs->ref_ctrl_shdw_derated);
103 		seq_printf(s, "sdram_tim1_shdw_derated\t: 0x%08x\n",
104 			regs->sdram_tim1_shdw_derated);
105 		seq_printf(s, "sdram_tim3_shdw_derated\t: 0x%08x\n",
106 			regs->sdram_tim3_shdw_derated);
107 	}
108 }
109 
110 static int emif_regdump_show(struct seq_file *s, void *unused)
111 {
112 	struct emif_data	*emif	= s->private;
113 	struct emif_regs	**regs_cache;
114 	int			i;
115 
116 	if (emif->duplicate)
117 		regs_cache = emif1->regs_cache;
118 	else
119 		regs_cache = emif->regs_cache;
120 
121 	for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) {
122 		do_emif_regdump_show(s, emif, regs_cache[i]);
123 		seq_printf(s, "\n");
124 	}
125 
126 	return 0;
127 }
128 
129 static int emif_regdump_open(struct inode *inode, struct file *file)
130 {
131 	return single_open(file, emif_regdump_show, inode->i_private);
132 }
133 
134 static const struct file_operations emif_regdump_fops = {
135 	.open			= emif_regdump_open,
136 	.read			= seq_read,
137 	.release		= single_release,
138 };
139 
140 static int emif_mr4_show(struct seq_file *s, void *unused)
141 {
142 	struct emif_data *emif = s->private;
143 
144 	seq_printf(s, "MR4=%d\n", emif->temperature_level);
145 	return 0;
146 }
147 
148 static int emif_mr4_open(struct inode *inode, struct file *file)
149 {
150 	return single_open(file, emif_mr4_show, inode->i_private);
151 }
152 
153 static const struct file_operations emif_mr4_fops = {
154 	.open			= emif_mr4_open,
155 	.read			= seq_read,
156 	.release		= single_release,
157 };
158 
159 static int __init_or_module emif_debugfs_init(struct emif_data *emif)
160 {
161 	struct dentry	*dentry;
162 	int		ret;
163 
164 	dentry = debugfs_create_dir(dev_name(emif->dev), NULL);
165 	if (IS_ERR(dentry)) {
166 		ret = PTR_ERR(dentry);
167 		goto err0;
168 	}
169 	emif->debugfs_root = dentry;
170 
171 	dentry = debugfs_create_file("regcache_dump", S_IRUGO,
172 			emif->debugfs_root, emif, &emif_regdump_fops);
173 	if (IS_ERR(dentry)) {
174 		ret = PTR_ERR(dentry);
175 		goto err1;
176 	}
177 
178 	dentry = debugfs_create_file("mr4", S_IRUGO,
179 			emif->debugfs_root, emif, &emif_mr4_fops);
180 	if (IS_ERR(dentry)) {
181 		ret = PTR_ERR(dentry);
182 		goto err1;
183 	}
184 
185 	return 0;
186 err1:
187 	debugfs_remove_recursive(emif->debugfs_root);
188 err0:
189 	return ret;
190 }
191 
192 static void __exit emif_debugfs_exit(struct emif_data *emif)
193 {
194 	debugfs_remove_recursive(emif->debugfs_root);
195 	emif->debugfs_root = NULL;
196 }
197 
198 /*
199  * Calculate the period of DDR clock from frequency value
200  */
201 static void set_ddr_clk_period(u32 freq)
202 {
203 	/* Divide 10^12 by frequency to get period in ps */
204 	t_ck = (u32)DIV_ROUND_UP_ULL(1000000000000ull, freq);
205 }
206 
207 /*
208  * Get bus width used by EMIF. Note that this may be different from the
209  * bus width of the DDR devices used. For instance two 16-bit DDR devices
210  * may be connected to a given CS of EMIF. In this case bus width as far
211  * as EMIF is concerned is 32, where as the DDR bus width is 16 bits.
212  */
213 static u32 get_emif_bus_width(struct emif_data *emif)
214 {
215 	u32		width;
216 	void __iomem	*base = emif->base;
217 
218 	width = (readl(base + EMIF_SDRAM_CONFIG) & NARROW_MODE_MASK)
219 			>> NARROW_MODE_SHIFT;
220 	width = width == 0 ? 32 : 16;
221 
222 	return width;
223 }
224 
225 /*
226  * Get the CL from SDRAM_CONFIG register
227  */
228 static u32 get_cl(struct emif_data *emif)
229 {
230 	u32		cl;
231 	void __iomem	*base = emif->base;
232 
233 	cl = (readl(base + EMIF_SDRAM_CONFIG) & CL_MASK) >> CL_SHIFT;
234 
235 	return cl;
236 }
237 
238 static void set_lpmode(struct emif_data *emif, u8 lpmode)
239 {
240 	u32 temp;
241 	void __iomem *base = emif->base;
242 
243 	temp = readl(base + EMIF_POWER_MANAGEMENT_CONTROL);
244 	temp &= ~LP_MODE_MASK;
245 	temp |= (lpmode << LP_MODE_SHIFT);
246 	writel(temp, base + EMIF_POWER_MANAGEMENT_CONTROL);
247 }
248 
249 static void do_freq_update(void)
250 {
251 	struct emif_data *emif;
252 
253 	/*
254 	 * Workaround for errata i728: Disable LPMODE during FREQ_UPDATE
255 	 *
256 	 * i728 DESCRIPTION:
257 	 * The EMIF automatically puts the SDRAM into self-refresh mode
258 	 * after the EMIF has not performed accesses during
259 	 * EMIF_PWR_MGMT_CTRL[7:4] REG_SR_TIM number of DDR clock cycles
260 	 * and the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set
261 	 * to 0x2. If during a small window the following three events
262 	 * occur:
263 	 * - The SR_TIMING counter expires
264 	 * - And frequency change is requested
265 	 * - And OCP access is requested
266 	 * Then it causes instable clock on the DDR interface.
267 	 *
268 	 * WORKAROUND
269 	 * To avoid the occurrence of the three events, the workaround
270 	 * is to disable the self-refresh when requesting a frequency
271 	 * change. Before requesting a frequency change the software must
272 	 * program EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x0. When the
273 	 * frequency change has been done, the software can reprogram
274 	 * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x2
275 	 */
276 	list_for_each_entry(emif, &device_list, node) {
277 		if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
278 			set_lpmode(emif, EMIF_LP_MODE_DISABLE);
279 	}
280 
281 	/*
282 	 * TODO: Do FREQ_UPDATE here when an API
283 	 * is available for this as part of the new
284 	 * clock framework
285 	 */
286 
287 	list_for_each_entry(emif, &device_list, node) {
288 		if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
289 			set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH);
290 	}
291 }
292 
293 /* Find addressing table entry based on the device's type and density */
294 static const struct lpddr2_addressing *get_addressing_table(
295 	const struct ddr_device_info *device_info)
296 {
297 	u32		index, type, density;
298 
299 	type = device_info->type;
300 	density = device_info->density;
301 
302 	switch (type) {
303 	case DDR_TYPE_LPDDR2_S4:
304 		index = density - 1;
305 		break;
306 	case DDR_TYPE_LPDDR2_S2:
307 		switch (density) {
308 		case DDR_DENSITY_1Gb:
309 		case DDR_DENSITY_2Gb:
310 			index = density + 3;
311 			break;
312 		default:
313 			index = density - 1;
314 		}
315 		break;
316 	default:
317 		return NULL;
318 	}
319 
320 	return &lpddr2_jedec_addressing_table[index];
321 }
322 
323 /*
324  * Find the the right timing table from the array of timing
325  * tables of the device using DDR clock frequency
326  */
327 static const struct lpddr2_timings *get_timings_table(struct emif_data *emif,
328 		u32 freq)
329 {
330 	u32				i, min, max, freq_nearest;
331 	const struct lpddr2_timings	*timings = NULL;
332 	const struct lpddr2_timings	*timings_arr = emif->plat_data->timings;
333 	struct				device *dev = emif->dev;
334 
335 	/* Start with a very high frequency - 1GHz */
336 	freq_nearest = 1000000000;
337 
338 	/*
339 	 * Find the timings table such that:
340 	 *  1. the frequency range covers the required frequency(safe) AND
341 	 *  2. the max_freq is closest to the required frequency(optimal)
342 	 */
343 	for (i = 0; i < emif->plat_data->timings_arr_size; i++) {
344 		max = timings_arr[i].max_freq;
345 		min = timings_arr[i].min_freq;
346 		if ((freq >= min) && (freq <= max) && (max < freq_nearest)) {
347 			freq_nearest = max;
348 			timings = &timings_arr[i];
349 		}
350 	}
351 
352 	if (!timings)
353 		dev_err(dev, "%s: couldn't find timings for - %dHz\n",
354 			__func__, freq);
355 
356 	dev_dbg(dev, "%s: timings table: freq %d, speed bin freq %d\n",
357 		__func__, freq, freq_nearest);
358 
359 	return timings;
360 }
361 
362 static u32 get_sdram_ref_ctrl_shdw(u32 freq,
363 		const struct lpddr2_addressing *addressing)
364 {
365 	u32 ref_ctrl_shdw = 0, val = 0, freq_khz, t_refi;
366 
367 	/* Scale down frequency and t_refi to avoid overflow */
368 	freq_khz = freq / 1000;
369 	t_refi = addressing->tREFI_ns / 100;
370 
371 	/*
372 	 * refresh rate to be set is 'tREFI(in us) * freq in MHz
373 	 * division by 10000 to account for change in units
374 	 */
375 	val = t_refi * freq_khz / 10000;
376 	ref_ctrl_shdw |= val << REFRESH_RATE_SHIFT;
377 
378 	return ref_ctrl_shdw;
379 }
380 
381 static u32 get_sdram_tim_1_shdw(const struct lpddr2_timings *timings,
382 		const struct lpddr2_min_tck *min_tck,
383 		const struct lpddr2_addressing *addressing)
384 {
385 	u32 tim1 = 0, val = 0;
386 
387 	val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1;
388 	tim1 |= val << T_WTR_SHIFT;
389 
390 	if (addressing->num_banks == B8)
391 		val = DIV_ROUND_UP(timings->tFAW, t_ck*4);
392 	else
393 		val = max(min_tck->tRRD, DIV_ROUND_UP(timings->tRRD, t_ck));
394 	tim1 |= (val - 1) << T_RRD_SHIFT;
395 
396 	val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab, t_ck) - 1;
397 	tim1 |= val << T_RC_SHIFT;
398 
399 	val = max(min_tck->tRASmin, DIV_ROUND_UP(timings->tRAS_min, t_ck));
400 	tim1 |= (val - 1) << T_RAS_SHIFT;
401 
402 	val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1;
403 	tim1 |= val << T_WR_SHIFT;
404 
405 	val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD, t_ck)) - 1;
406 	tim1 |= val << T_RCD_SHIFT;
407 
408 	val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab, t_ck)) - 1;
409 	tim1 |= val << T_RP_SHIFT;
410 
411 	return tim1;
412 }
413 
414 static u32 get_sdram_tim_1_shdw_derated(const struct lpddr2_timings *timings,
415 		const struct lpddr2_min_tck *min_tck,
416 		const struct lpddr2_addressing *addressing)
417 {
418 	u32 tim1 = 0, val = 0;
419 
420 	val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1;
421 	tim1 = val << T_WTR_SHIFT;
422 
423 	/*
424 	 * tFAW is approximately 4 times tRRD. So add 1875*4 = 7500ps
425 	 * to tFAW for de-rating
426 	 */
427 	if (addressing->num_banks == B8) {
428 		val = DIV_ROUND_UP(timings->tFAW + 7500, 4 * t_ck) - 1;
429 	} else {
430 		val = DIV_ROUND_UP(timings->tRRD + 1875, t_ck);
431 		val = max(min_tck->tRRD, val) - 1;
432 	}
433 	tim1 |= val << T_RRD_SHIFT;
434 
435 	val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab + 1875, t_ck);
436 	tim1 |= (val - 1) << T_RC_SHIFT;
437 
438 	val = DIV_ROUND_UP(timings->tRAS_min + 1875, t_ck);
439 	val = max(min_tck->tRASmin, val) - 1;
440 	tim1 |= val << T_RAS_SHIFT;
441 
442 	val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1;
443 	tim1 |= val << T_WR_SHIFT;
444 
445 	val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD + 1875, t_ck));
446 	tim1 |= (val - 1) << T_RCD_SHIFT;
447 
448 	val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab + 1875, t_ck));
449 	tim1 |= (val - 1) << T_RP_SHIFT;
450 
451 	return tim1;
452 }
453 
454 static u32 get_sdram_tim_2_shdw(const struct lpddr2_timings *timings,
455 		const struct lpddr2_min_tck *min_tck,
456 		const struct lpddr2_addressing *addressing,
457 		u32 type)
458 {
459 	u32 tim2 = 0, val = 0;
460 
461 	val = min_tck->tCKE - 1;
462 	tim2 |= val << T_CKE_SHIFT;
463 
464 	val = max(min_tck->tRTP, DIV_ROUND_UP(timings->tRTP, t_ck)) - 1;
465 	tim2 |= val << T_RTP_SHIFT;
466 
467 	/* tXSNR = tRFCab_ps + 10 ns(tRFCab_ps for LPDDR2). */
468 	val = DIV_ROUND_UP(addressing->tRFCab_ps + 10000, t_ck) - 1;
469 	tim2 |= val << T_XSNR_SHIFT;
470 
471 	/* XSRD same as XSNR for LPDDR2 */
472 	tim2 |= val << T_XSRD_SHIFT;
473 
474 	val = max(min_tck->tXP, DIV_ROUND_UP(timings->tXP, t_ck)) - 1;
475 	tim2 |= val << T_XP_SHIFT;
476 
477 	return tim2;
478 }
479 
480 static u32 get_sdram_tim_3_shdw(const struct lpddr2_timings *timings,
481 		const struct lpddr2_min_tck *min_tck,
482 		const struct lpddr2_addressing *addressing,
483 		u32 type, u32 ip_rev, u32 derated)
484 {
485 	u32 tim3 = 0, val = 0, t_dqsck;
486 
487 	val = timings->tRAS_max_ns / addressing->tREFI_ns - 1;
488 	val = val > 0xF ? 0xF : val;
489 	tim3 |= val << T_RAS_MAX_SHIFT;
490 
491 	val = DIV_ROUND_UP(addressing->tRFCab_ps, t_ck) - 1;
492 	tim3 |= val << T_RFC_SHIFT;
493 
494 	t_dqsck = (derated == EMIF_DERATED_TIMINGS) ?
495 		timings->tDQSCK_max_derated : timings->tDQSCK_max;
496 	if (ip_rev == EMIF_4D5)
497 		val = DIV_ROUND_UP(t_dqsck + 1000, t_ck) - 1;
498 	else
499 		val = DIV_ROUND_UP(t_dqsck, t_ck) - 1;
500 
501 	tim3 |= val << T_TDQSCKMAX_SHIFT;
502 
503 	val = DIV_ROUND_UP(timings->tZQCS, t_ck) - 1;
504 	tim3 |= val << ZQ_ZQCS_SHIFT;
505 
506 	val = DIV_ROUND_UP(timings->tCKESR, t_ck);
507 	val = max(min_tck->tCKESR, val) - 1;
508 	tim3 |= val << T_CKESR_SHIFT;
509 
510 	if (ip_rev == EMIF_4D5) {
511 		tim3 |= (EMIF_T_CSTA - 1) << T_CSTA_SHIFT;
512 
513 		val = DIV_ROUND_UP(EMIF_T_PDLL_UL, 128) - 1;
514 		tim3 |= val << T_PDLL_UL_SHIFT;
515 	}
516 
517 	return tim3;
518 }
519 
520 static u32 get_zq_config_reg(const struct lpddr2_addressing *addressing,
521 		bool cs1_used, bool cal_resistors_per_cs)
522 {
523 	u32 zq = 0, val = 0;
524 
525 	val = EMIF_ZQCS_INTERVAL_US * 1000 / addressing->tREFI_ns;
526 	zq |= val << ZQ_REFINTERVAL_SHIFT;
527 
528 	val = DIV_ROUND_UP(T_ZQCL_DEFAULT_NS, T_ZQCS_DEFAULT_NS) - 1;
529 	zq |= val << ZQ_ZQCL_MULT_SHIFT;
530 
531 	val = DIV_ROUND_UP(T_ZQINIT_DEFAULT_NS, T_ZQCL_DEFAULT_NS) - 1;
532 	zq |= val << ZQ_ZQINIT_MULT_SHIFT;
533 
534 	zq |= ZQ_SFEXITEN_ENABLE << ZQ_SFEXITEN_SHIFT;
535 
536 	if (cal_resistors_per_cs)
537 		zq |= ZQ_DUALCALEN_ENABLE << ZQ_DUALCALEN_SHIFT;
538 	else
539 		zq |= ZQ_DUALCALEN_DISABLE << ZQ_DUALCALEN_SHIFT;
540 
541 	zq |= ZQ_CS0EN_MASK; /* CS0 is used for sure */
542 
543 	val = cs1_used ? 1 : 0;
544 	zq |= val << ZQ_CS1EN_SHIFT;
545 
546 	return zq;
547 }
548 
549 static u32 get_temp_alert_config(const struct lpddr2_addressing *addressing,
550 		const struct emif_custom_configs *custom_configs, bool cs1_used,
551 		u32 sdram_io_width, u32 emif_bus_width)
552 {
553 	u32 alert = 0, interval, devcnt;
554 
555 	if (custom_configs && (custom_configs->mask &
556 				EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL))
557 		interval = custom_configs->temp_alert_poll_interval_ms;
558 	else
559 		interval = TEMP_ALERT_POLL_INTERVAL_DEFAULT_MS;
560 
561 	interval *= 1000000;			/* Convert to ns */
562 	interval /= addressing->tREFI_ns;	/* Convert to refresh cycles */
563 	alert |= (interval << TA_REFINTERVAL_SHIFT);
564 
565 	/*
566 	 * sdram_io_width is in 'log2(x) - 1' form. Convert emif_bus_width
567 	 * also to this form and subtract to get TA_DEVCNT, which is
568 	 * in log2(x) form.
569 	 */
570 	emif_bus_width = __fls(emif_bus_width) - 1;
571 	devcnt = emif_bus_width - sdram_io_width;
572 	alert |= devcnt << TA_DEVCNT_SHIFT;
573 
574 	/* DEVWDT is in 'log2(x) - 3' form */
575 	alert |= (sdram_io_width - 2) << TA_DEVWDT_SHIFT;
576 
577 	alert |= 1 << TA_SFEXITEN_SHIFT;
578 	alert |= 1 << TA_CS0EN_SHIFT;
579 	alert |= (cs1_used ? 1 : 0) << TA_CS1EN_SHIFT;
580 
581 	return alert;
582 }
583 
584 static u32 get_read_idle_ctrl_shdw(u8 volt_ramp)
585 {
586 	u32 idle = 0, val = 0;
587 
588 	/*
589 	 * Maximum value in normal conditions and increased frequency
590 	 * when voltage is ramping
591 	 */
592 	if (volt_ramp)
593 		val = READ_IDLE_INTERVAL_DVFS / t_ck / 64 - 1;
594 	else
595 		val = 0x1FF;
596 
597 	/*
598 	 * READ_IDLE_CTRL register in EMIF4D has same offset and fields
599 	 * as DLL_CALIB_CTRL in EMIF4D5, so use the same shifts
600 	 */
601 	idle |= val << DLL_CALIB_INTERVAL_SHIFT;
602 	idle |= EMIF_READ_IDLE_LEN_VAL << ACK_WAIT_SHIFT;
603 
604 	return idle;
605 }
606 
607 static u32 get_dll_calib_ctrl_shdw(u8 volt_ramp)
608 {
609 	u32 calib = 0, val = 0;
610 
611 	if (volt_ramp == DDR_VOLTAGE_RAMPING)
612 		val = DLL_CALIB_INTERVAL_DVFS / t_ck / 16 - 1;
613 	else
614 		val = 0; /* Disabled when voltage is stable */
615 
616 	calib |= val << DLL_CALIB_INTERVAL_SHIFT;
617 	calib |= DLL_CALIB_ACK_WAIT_VAL << ACK_WAIT_SHIFT;
618 
619 	return calib;
620 }
621 
622 static u32 get_ddr_phy_ctrl_1_attilaphy_4d(const struct lpddr2_timings *timings,
623 	u32 freq, u8 RL)
624 {
625 	u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_ATTILAPHY, val = 0;
626 
627 	val = RL + DIV_ROUND_UP(timings->tDQSCK_max, t_ck) - 1;
628 	phy |= val << READ_LATENCY_SHIFT_4D;
629 
630 	if (freq <= 100000000)
631 		val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS_ATTILAPHY;
632 	else if (freq <= 200000000)
633 		val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ_ATTILAPHY;
634 	else
635 		val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ_ATTILAPHY;
636 
637 	phy |= val << DLL_SLAVE_DLY_CTRL_SHIFT_4D;
638 
639 	return phy;
640 }
641 
642 static u32 get_phy_ctrl_1_intelliphy_4d5(u32 freq, u8 cl)
643 {
644 	u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_INTELLIPHY, half_delay;
645 
646 	/*
647 	 * DLL operates at 266 MHz. If DDR frequency is near 266 MHz,
648 	 * half-delay is not needed else set half-delay
649 	 */
650 	if (freq >= 265000000 && freq < 267000000)
651 		half_delay = 0;
652 	else
653 		half_delay = 1;
654 
655 	phy |= half_delay << DLL_HALF_DELAY_SHIFT_4D5;
656 	phy |= ((cl + DIV_ROUND_UP(EMIF_PHY_TOTAL_READ_LATENCY_INTELLIPHY_PS,
657 			t_ck) - 1) << READ_LATENCY_SHIFT_4D5);
658 
659 	return phy;
660 }
661 
662 static u32 get_ext_phy_ctrl_2_intelliphy_4d5(void)
663 {
664 	u32 fifo_we_slave_ratio;
665 
666 	fifo_we_slave_ratio =  DIV_ROUND_CLOSEST(
667 		EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck);
668 
669 	return fifo_we_slave_ratio | fifo_we_slave_ratio << 11 |
670 		fifo_we_slave_ratio << 22;
671 }
672 
673 static u32 get_ext_phy_ctrl_3_intelliphy_4d5(void)
674 {
675 	u32 fifo_we_slave_ratio;
676 
677 	fifo_we_slave_ratio =  DIV_ROUND_CLOSEST(
678 		EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck);
679 
680 	return fifo_we_slave_ratio >> 10 | fifo_we_slave_ratio << 1 |
681 		fifo_we_slave_ratio << 12 | fifo_we_slave_ratio << 23;
682 }
683 
684 static u32 get_ext_phy_ctrl_4_intelliphy_4d5(void)
685 {
686 	u32 fifo_we_slave_ratio;
687 
688 	fifo_we_slave_ratio =  DIV_ROUND_CLOSEST(
689 		EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck);
690 
691 	return fifo_we_slave_ratio >> 9 | fifo_we_slave_ratio << 2 |
692 		fifo_we_slave_ratio << 13;
693 }
694 
695 static u32 get_pwr_mgmt_ctrl(u32 freq, struct emif_data *emif, u32 ip_rev)
696 {
697 	u32 pwr_mgmt_ctrl	= 0, timeout;
698 	u32 lpmode		= EMIF_LP_MODE_SELF_REFRESH;
699 	u32 timeout_perf	= EMIF_LP_MODE_TIMEOUT_PERFORMANCE;
700 	u32 timeout_pwr		= EMIF_LP_MODE_TIMEOUT_POWER;
701 	u32 freq_threshold	= EMIF_LP_MODE_FREQ_THRESHOLD;
702 
703 	struct emif_custom_configs *cust_cfgs = emif->plat_data->custom_configs;
704 
705 	if (cust_cfgs && (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE)) {
706 		lpmode		= cust_cfgs->lpmode;
707 		timeout_perf	= cust_cfgs->lpmode_timeout_performance;
708 		timeout_pwr	= cust_cfgs->lpmode_timeout_power;
709 		freq_threshold  = cust_cfgs->lpmode_freq_threshold;
710 	}
711 
712 	/* Timeout based on DDR frequency */
713 	timeout = freq >= freq_threshold ? timeout_perf : timeout_pwr;
714 
715 	/* The value to be set in register is "log2(timeout) - 3" */
716 	if (timeout < 16) {
717 		timeout = 0;
718 	} else {
719 		timeout = __fls(timeout) - 3;
720 		if (timeout & (timeout - 1))
721 			timeout++;
722 	}
723 
724 	switch (lpmode) {
725 	case EMIF_LP_MODE_CLOCK_STOP:
726 		pwr_mgmt_ctrl = (timeout << CS_TIM_SHIFT) |
727 					SR_TIM_MASK | PD_TIM_MASK;
728 		break;
729 	case EMIF_LP_MODE_SELF_REFRESH:
730 		/* Workaround for errata i735 */
731 		if (timeout < 6)
732 			timeout = 6;
733 
734 		pwr_mgmt_ctrl = (timeout << SR_TIM_SHIFT) |
735 					CS_TIM_MASK | PD_TIM_MASK;
736 		break;
737 	case EMIF_LP_MODE_PWR_DN:
738 		pwr_mgmt_ctrl = (timeout << PD_TIM_SHIFT) |
739 					CS_TIM_MASK | SR_TIM_MASK;
740 		break;
741 	case EMIF_LP_MODE_DISABLE:
742 	default:
743 		pwr_mgmt_ctrl = CS_TIM_MASK |
744 					PD_TIM_MASK | SR_TIM_MASK;
745 	}
746 
747 	/* No CS_TIM in EMIF_4D5 */
748 	if (ip_rev == EMIF_4D5)
749 		pwr_mgmt_ctrl &= ~CS_TIM_MASK;
750 
751 	pwr_mgmt_ctrl |= lpmode << LP_MODE_SHIFT;
752 
753 	return pwr_mgmt_ctrl;
754 }
755 
756 /*
757  * Get the temperature level of the EMIF instance:
758  * Reads the MR4 register of attached SDRAM parts to find out the temperature
759  * level. If there are two parts attached(one on each CS), then the temperature
760  * level for the EMIF instance is the higher of the two temperatures.
761  */
762 static void get_temperature_level(struct emif_data *emif)
763 {
764 	u32		temp, temperature_level;
765 	void __iomem	*base;
766 
767 	base = emif->base;
768 
769 	/* Read mode register 4 */
770 	writel(DDR_MR4, base + EMIF_LPDDR2_MODE_REG_CONFIG);
771 	temperature_level = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
772 	temperature_level = (temperature_level & MR4_SDRAM_REF_RATE_MASK) >>
773 				MR4_SDRAM_REF_RATE_SHIFT;
774 
775 	if (emif->plat_data->device_info->cs1_used) {
776 		writel(DDR_MR4 | CS_MASK, base + EMIF_LPDDR2_MODE_REG_CONFIG);
777 		temp = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
778 		temp = (temp & MR4_SDRAM_REF_RATE_MASK)
779 				>> MR4_SDRAM_REF_RATE_SHIFT;
780 		temperature_level = max(temp, temperature_level);
781 	}
782 
783 	/* treat everything less than nominal(3) in MR4 as nominal */
784 	if (unlikely(temperature_level < SDRAM_TEMP_NOMINAL))
785 		temperature_level = SDRAM_TEMP_NOMINAL;
786 
787 	/* if we get reserved value in MR4 persist with the existing value */
788 	if (likely(temperature_level != SDRAM_TEMP_RESERVED_4))
789 		emif->temperature_level = temperature_level;
790 }
791 
792 /*
793  * Program EMIF shadow registers that are not dependent on temperature
794  * or voltage
795  */
796 static void setup_registers(struct emif_data *emif, struct emif_regs *regs)
797 {
798 	void __iomem	*base = emif->base;
799 
800 	writel(regs->sdram_tim2_shdw, base + EMIF_SDRAM_TIMING_2_SHDW);
801 	writel(regs->phy_ctrl_1_shdw, base + EMIF_DDR_PHY_CTRL_1_SHDW);
802 
803 	/* Settings specific for EMIF4D5 */
804 	if (emif->plat_data->ip_rev != EMIF_4D5)
805 		return;
806 	writel(regs->ext_phy_ctrl_2_shdw, base + EMIF_EXT_PHY_CTRL_2_SHDW);
807 	writel(regs->ext_phy_ctrl_3_shdw, base + EMIF_EXT_PHY_CTRL_3_SHDW);
808 	writel(regs->ext_phy_ctrl_4_shdw, base + EMIF_EXT_PHY_CTRL_4_SHDW);
809 }
810 
811 /*
812  * When voltage ramps dll calibration and forced read idle should
813  * happen more often
814  */
815 static void setup_volt_sensitive_regs(struct emif_data *emif,
816 		struct emif_regs *regs, u32 volt_state)
817 {
818 	u32		calib_ctrl;
819 	void __iomem	*base = emif->base;
820 
821 	/*
822 	 * EMIF_READ_IDLE_CTRL in EMIF4D refers to the same register as
823 	 * EMIF_DLL_CALIB_CTRL in EMIF4D5 and dll_calib_ctrl_shadow_*
824 	 * is an alias of the respective read_idle_ctrl_shdw_* (members of
825 	 * a union). So, the below code takes care of both cases
826 	 */
827 	if (volt_state == DDR_VOLTAGE_RAMPING)
828 		calib_ctrl = regs->dll_calib_ctrl_shdw_volt_ramp;
829 	else
830 		calib_ctrl = regs->dll_calib_ctrl_shdw_normal;
831 
832 	writel(calib_ctrl, base + EMIF_DLL_CALIB_CTRL_SHDW);
833 }
834 
835 /*
836  * setup_temperature_sensitive_regs() - set the timings for temperature
837  * sensitive registers. This happens once at initialisation time based
838  * on the temperature at boot time and subsequently based on the temperature
839  * alert interrupt. Temperature alert can happen when the temperature
840  * increases or drops. So this function can have the effect of either
841  * derating the timings or going back to nominal values.
842  */
843 static void setup_temperature_sensitive_regs(struct emif_data *emif,
844 		struct emif_regs *regs)
845 {
846 	u32		tim1, tim3, ref_ctrl, type;
847 	void __iomem	*base = emif->base;
848 	u32		temperature;
849 
850 	type = emif->plat_data->device_info->type;
851 
852 	tim1 = regs->sdram_tim1_shdw;
853 	tim3 = regs->sdram_tim3_shdw;
854 	ref_ctrl = regs->ref_ctrl_shdw;
855 
856 	/* No de-rating for non-lpddr2 devices */
857 	if (type != DDR_TYPE_LPDDR2_S2 && type != DDR_TYPE_LPDDR2_S4)
858 		goto out;
859 
860 	temperature = emif->temperature_level;
861 	if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH) {
862 		ref_ctrl = regs->ref_ctrl_shdw_derated;
863 	} else if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH_AND_TIMINGS) {
864 		tim1 = regs->sdram_tim1_shdw_derated;
865 		tim3 = regs->sdram_tim3_shdw_derated;
866 		ref_ctrl = regs->ref_ctrl_shdw_derated;
867 	}
868 
869 out:
870 	writel(tim1, base + EMIF_SDRAM_TIMING_1_SHDW);
871 	writel(tim3, base + EMIF_SDRAM_TIMING_3_SHDW);
872 	writel(ref_ctrl, base + EMIF_SDRAM_REFRESH_CTRL_SHDW);
873 }
874 
875 static irqreturn_t handle_temp_alert(void __iomem *base, struct emif_data *emif)
876 {
877 	u32		old_temp_level;
878 	irqreturn_t	ret = IRQ_HANDLED;
879 
880 	spin_lock_irqsave(&emif_lock, irq_state);
881 	old_temp_level = emif->temperature_level;
882 	get_temperature_level(emif);
883 
884 	if (unlikely(emif->temperature_level == old_temp_level)) {
885 		goto out;
886 	} else if (!emif->curr_regs) {
887 		dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
888 		goto out;
889 	}
890 
891 	if (emif->temperature_level < old_temp_level ||
892 		emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
893 		/*
894 		 * Temperature coming down - defer handling to thread OR
895 		 * Temperature far too high - do kernel_power_off() from
896 		 * thread context
897 		 */
898 		ret = IRQ_WAKE_THREAD;
899 	} else {
900 		/* Temperature is going up - handle immediately */
901 		setup_temperature_sensitive_regs(emif, emif->curr_regs);
902 		do_freq_update();
903 	}
904 
905 out:
906 	spin_unlock_irqrestore(&emif_lock, irq_state);
907 	return ret;
908 }
909 
910 static irqreturn_t emif_interrupt_handler(int irq, void *dev_id)
911 {
912 	u32			interrupts;
913 	struct emif_data	*emif = dev_id;
914 	void __iomem		*base = emif->base;
915 	struct device		*dev = emif->dev;
916 	irqreturn_t		ret = IRQ_HANDLED;
917 
918 	/* Save the status and clear it */
919 	interrupts = readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
920 	writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
921 
922 	/*
923 	 * Handle temperature alert
924 	 * Temperature alert should be same for all ports
925 	 * So, it's enough to process it only for one of the ports
926 	 */
927 	if (interrupts & TA_SYS_MASK)
928 		ret = handle_temp_alert(base, emif);
929 
930 	if (interrupts & ERR_SYS_MASK)
931 		dev_err(dev, "Access error from SYS port - %x\n", interrupts);
932 
933 	if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
934 		/* Save the status and clear it */
935 		interrupts = readl(base + EMIF_LL_OCP_INTERRUPT_STATUS);
936 		writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_STATUS);
937 
938 		if (interrupts & ERR_LL_MASK)
939 			dev_err(dev, "Access error from LL port - %x\n",
940 				interrupts);
941 	}
942 
943 	return ret;
944 }
945 
946 static irqreturn_t emif_threaded_isr(int irq, void *dev_id)
947 {
948 	struct emif_data	*emif = dev_id;
949 
950 	if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
951 		dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
952 		kernel_power_off();
953 		return IRQ_HANDLED;
954 	}
955 
956 	spin_lock_irqsave(&emif_lock, irq_state);
957 
958 	if (emif->curr_regs) {
959 		setup_temperature_sensitive_regs(emif, emif->curr_regs);
960 		do_freq_update();
961 	} else {
962 		dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
963 	}
964 
965 	spin_unlock_irqrestore(&emif_lock, irq_state);
966 
967 	return IRQ_HANDLED;
968 }
969 
970 static void clear_all_interrupts(struct emif_data *emif)
971 {
972 	void __iomem	*base = emif->base;
973 
974 	writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS),
975 		base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
976 	if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
977 		writel(readl(base + EMIF_LL_OCP_INTERRUPT_STATUS),
978 			base + EMIF_LL_OCP_INTERRUPT_STATUS);
979 }
980 
981 static void disable_and_clear_all_interrupts(struct emif_data *emif)
982 {
983 	void __iomem		*base = emif->base;
984 
985 	/* Disable all interrupts */
986 	writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET),
987 		base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_CLEAR);
988 	if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
989 		writel(readl(base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET),
990 			base + EMIF_LL_OCP_INTERRUPT_ENABLE_CLEAR);
991 
992 	/* Clear all interrupts */
993 	clear_all_interrupts(emif);
994 }
995 
996 static int __init_or_module setup_interrupts(struct emif_data *emif, u32 irq)
997 {
998 	u32		interrupts, type;
999 	void __iomem	*base = emif->base;
1000 
1001 	type = emif->plat_data->device_info->type;
1002 
1003 	clear_all_interrupts(emif);
1004 
1005 	/* Enable interrupts for SYS interface */
1006 	interrupts = EN_ERR_SYS_MASK;
1007 	if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4)
1008 		interrupts |= EN_TA_SYS_MASK;
1009 	writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET);
1010 
1011 	/* Enable interrupts for LL interface */
1012 	if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
1013 		/* TA need not be enabled for LL */
1014 		interrupts = EN_ERR_LL_MASK;
1015 		writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET);
1016 	}
1017 
1018 	/* setup IRQ handlers */
1019 	return devm_request_threaded_irq(emif->dev, irq,
1020 				    emif_interrupt_handler,
1021 				    emif_threaded_isr,
1022 				    0, dev_name(emif->dev),
1023 				    emif);
1024 
1025 }
1026 
1027 static void __init_or_module emif_onetime_settings(struct emif_data *emif)
1028 {
1029 	u32				pwr_mgmt_ctrl, zq, temp_alert_cfg;
1030 	void __iomem			*base = emif->base;
1031 	const struct lpddr2_addressing	*addressing;
1032 	const struct ddr_device_info	*device_info;
1033 
1034 	device_info = emif->plat_data->device_info;
1035 	addressing = get_addressing_table(device_info);
1036 
1037 	/*
1038 	 * Init power management settings
1039 	 * We don't know the frequency yet. Use a high frequency
1040 	 * value for a conservative timeout setting
1041 	 */
1042 	pwr_mgmt_ctrl = get_pwr_mgmt_ctrl(1000000000, emif,
1043 			emif->plat_data->ip_rev);
1044 	emif->lpmode = (pwr_mgmt_ctrl & LP_MODE_MASK) >> LP_MODE_SHIFT;
1045 	writel(pwr_mgmt_ctrl, base + EMIF_POWER_MANAGEMENT_CONTROL);
1046 
1047 	/* Init ZQ calibration settings */
1048 	zq = get_zq_config_reg(addressing, device_info->cs1_used,
1049 		device_info->cal_resistors_per_cs);
1050 	writel(zq, base + EMIF_SDRAM_OUTPUT_IMPEDANCE_CALIBRATION_CONFIG);
1051 
1052 	/* Check temperature level temperature level*/
1053 	get_temperature_level(emif);
1054 	if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN)
1055 		dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
1056 
1057 	/* Init temperature polling */
1058 	temp_alert_cfg = get_temp_alert_config(addressing,
1059 		emif->plat_data->custom_configs, device_info->cs1_used,
1060 		device_info->io_width, get_emif_bus_width(emif));
1061 	writel(temp_alert_cfg, base + EMIF_TEMPERATURE_ALERT_CONFIG);
1062 
1063 	/*
1064 	 * Program external PHY control registers that are not frequency
1065 	 * dependent
1066 	 */
1067 	if (emif->plat_data->phy_type != EMIF_PHY_TYPE_INTELLIPHY)
1068 		return;
1069 	writel(EMIF_EXT_PHY_CTRL_1_VAL, base + EMIF_EXT_PHY_CTRL_1_SHDW);
1070 	writel(EMIF_EXT_PHY_CTRL_5_VAL, base + EMIF_EXT_PHY_CTRL_5_SHDW);
1071 	writel(EMIF_EXT_PHY_CTRL_6_VAL, base + EMIF_EXT_PHY_CTRL_6_SHDW);
1072 	writel(EMIF_EXT_PHY_CTRL_7_VAL, base + EMIF_EXT_PHY_CTRL_7_SHDW);
1073 	writel(EMIF_EXT_PHY_CTRL_8_VAL, base + EMIF_EXT_PHY_CTRL_8_SHDW);
1074 	writel(EMIF_EXT_PHY_CTRL_9_VAL, base + EMIF_EXT_PHY_CTRL_9_SHDW);
1075 	writel(EMIF_EXT_PHY_CTRL_10_VAL, base + EMIF_EXT_PHY_CTRL_10_SHDW);
1076 	writel(EMIF_EXT_PHY_CTRL_11_VAL, base + EMIF_EXT_PHY_CTRL_11_SHDW);
1077 	writel(EMIF_EXT_PHY_CTRL_12_VAL, base + EMIF_EXT_PHY_CTRL_12_SHDW);
1078 	writel(EMIF_EXT_PHY_CTRL_13_VAL, base + EMIF_EXT_PHY_CTRL_13_SHDW);
1079 	writel(EMIF_EXT_PHY_CTRL_14_VAL, base + EMIF_EXT_PHY_CTRL_14_SHDW);
1080 	writel(EMIF_EXT_PHY_CTRL_15_VAL, base + EMIF_EXT_PHY_CTRL_15_SHDW);
1081 	writel(EMIF_EXT_PHY_CTRL_16_VAL, base + EMIF_EXT_PHY_CTRL_16_SHDW);
1082 	writel(EMIF_EXT_PHY_CTRL_17_VAL, base + EMIF_EXT_PHY_CTRL_17_SHDW);
1083 	writel(EMIF_EXT_PHY_CTRL_18_VAL, base + EMIF_EXT_PHY_CTRL_18_SHDW);
1084 	writel(EMIF_EXT_PHY_CTRL_19_VAL, base + EMIF_EXT_PHY_CTRL_19_SHDW);
1085 	writel(EMIF_EXT_PHY_CTRL_20_VAL, base + EMIF_EXT_PHY_CTRL_20_SHDW);
1086 	writel(EMIF_EXT_PHY_CTRL_21_VAL, base + EMIF_EXT_PHY_CTRL_21_SHDW);
1087 	writel(EMIF_EXT_PHY_CTRL_22_VAL, base + EMIF_EXT_PHY_CTRL_22_SHDW);
1088 	writel(EMIF_EXT_PHY_CTRL_23_VAL, base + EMIF_EXT_PHY_CTRL_23_SHDW);
1089 	writel(EMIF_EXT_PHY_CTRL_24_VAL, base + EMIF_EXT_PHY_CTRL_24_SHDW);
1090 }
1091 
1092 static void get_default_timings(struct emif_data *emif)
1093 {
1094 	struct emif_platform_data *pd = emif->plat_data;
1095 
1096 	pd->timings		= lpddr2_jedec_timings;
1097 	pd->timings_arr_size	= ARRAY_SIZE(lpddr2_jedec_timings);
1098 
1099 	dev_warn(emif->dev, "%s: using default timings\n", __func__);
1100 }
1101 
1102 static int is_dev_data_valid(u32 type, u32 density, u32 io_width, u32 phy_type,
1103 		u32 ip_rev, struct device *dev)
1104 {
1105 	int valid;
1106 
1107 	valid = (type == DDR_TYPE_LPDDR2_S4 ||
1108 			type == DDR_TYPE_LPDDR2_S2)
1109 		&& (density >= DDR_DENSITY_64Mb
1110 			&& density <= DDR_DENSITY_8Gb)
1111 		&& (io_width >= DDR_IO_WIDTH_8
1112 			&& io_width <= DDR_IO_WIDTH_32);
1113 
1114 	/* Combinations of EMIF and PHY revisions that we support today */
1115 	switch (ip_rev) {
1116 	case EMIF_4D:
1117 		valid = valid && (phy_type == EMIF_PHY_TYPE_ATTILAPHY);
1118 		break;
1119 	case EMIF_4D5:
1120 		valid = valid && (phy_type == EMIF_PHY_TYPE_INTELLIPHY);
1121 		break;
1122 	default:
1123 		valid = 0;
1124 	}
1125 
1126 	if (!valid)
1127 		dev_err(dev, "%s: invalid DDR details\n", __func__);
1128 	return valid;
1129 }
1130 
1131 static int is_custom_config_valid(struct emif_custom_configs *cust_cfgs,
1132 		struct device *dev)
1133 {
1134 	int valid = 1;
1135 
1136 	if ((cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE) &&
1137 		(cust_cfgs->lpmode != EMIF_LP_MODE_DISABLE))
1138 		valid = cust_cfgs->lpmode_freq_threshold &&
1139 			cust_cfgs->lpmode_timeout_performance &&
1140 			cust_cfgs->lpmode_timeout_power;
1141 
1142 	if (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL)
1143 		valid = valid && cust_cfgs->temp_alert_poll_interval_ms;
1144 
1145 	if (!valid)
1146 		dev_warn(dev, "%s: invalid custom configs\n", __func__);
1147 
1148 	return valid;
1149 }
1150 
1151 static struct emif_data *__init_or_module get_device_details(
1152 		struct platform_device *pdev)
1153 {
1154 	u32				size;
1155 	struct emif_data		*emif = NULL;
1156 	struct ddr_device_info		*dev_info;
1157 	struct emif_custom_configs	*cust_cfgs;
1158 	struct emif_platform_data	*pd;
1159 	struct device			*dev;
1160 	void				*temp;
1161 
1162 	pd = pdev->dev.platform_data;
1163 	dev = &pdev->dev;
1164 
1165 	if (!(pd && pd->device_info && is_dev_data_valid(pd->device_info->type,
1166 			pd->device_info->density, pd->device_info->io_width,
1167 			pd->phy_type, pd->ip_rev, dev))) {
1168 		dev_err(dev, "%s: invalid device data\n", __func__);
1169 		goto error;
1170 	}
1171 
1172 	emif	= devm_kzalloc(dev, sizeof(*emif), GFP_KERNEL);
1173 	temp	= devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
1174 	dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL);
1175 
1176 	if (!emif || !pd || !dev_info) {
1177 		dev_err(dev, "%s:%d: allocation error\n", __func__, __LINE__);
1178 		goto error;
1179 	}
1180 
1181 	memcpy(temp, pd, sizeof(*pd));
1182 	pd = temp;
1183 	memcpy(dev_info, pd->device_info, sizeof(*dev_info));
1184 
1185 	pd->device_info		= dev_info;
1186 	emif->plat_data		= pd;
1187 	emif->dev		= dev;
1188 	emif->temperature_level	= SDRAM_TEMP_NOMINAL;
1189 
1190 	/*
1191 	 * For EMIF instances other than EMIF1 see if the devices connected
1192 	 * are exactly same as on EMIF1(which is typically the case). If so,
1193 	 * mark it as a duplicate of EMIF1 and skip copying timings data.
1194 	 * This will save some memory and some computation later.
1195 	 */
1196 	emif->duplicate = emif1 && (memcmp(dev_info,
1197 		emif1->plat_data->device_info,
1198 		sizeof(struct ddr_device_info)) == 0);
1199 
1200 	if (emif->duplicate) {
1201 		pd->timings = NULL;
1202 		pd->min_tck = NULL;
1203 		goto out;
1204 	} else if (emif1) {
1205 		dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n",
1206 			__func__);
1207 	}
1208 
1209 	/*
1210 	 * Copy custom configs - ignore allocation error, if any, as
1211 	 * custom_configs is not very critical
1212 	 */
1213 	cust_cfgs = pd->custom_configs;
1214 	if (cust_cfgs && is_custom_config_valid(cust_cfgs, dev)) {
1215 		temp = devm_kzalloc(dev, sizeof(*cust_cfgs), GFP_KERNEL);
1216 		if (temp)
1217 			memcpy(temp, cust_cfgs, sizeof(*cust_cfgs));
1218 		else
1219 			dev_warn(dev, "%s:%d: allocation error\n", __func__,
1220 				__LINE__);
1221 		pd->custom_configs = temp;
1222 	}
1223 
1224 	/*
1225 	 * Copy timings and min-tck values from platform data. If it is not
1226 	 * available or if memory allocation fails, use JEDEC defaults
1227 	 */
1228 	size = sizeof(struct lpddr2_timings) * pd->timings_arr_size;
1229 	if (pd->timings) {
1230 		temp = devm_kzalloc(dev, size, GFP_KERNEL);
1231 		if (temp) {
1232 			memcpy(temp, pd->timings, sizeof(*pd->timings));
1233 			pd->timings = temp;
1234 		} else {
1235 			dev_warn(dev, "%s:%d: allocation error\n", __func__,
1236 				__LINE__);
1237 			get_default_timings(emif);
1238 		}
1239 	} else {
1240 		get_default_timings(emif);
1241 	}
1242 
1243 	if (pd->min_tck) {
1244 		temp = devm_kzalloc(dev, sizeof(*pd->min_tck), GFP_KERNEL);
1245 		if (temp) {
1246 			memcpy(temp, pd->min_tck, sizeof(*pd->min_tck));
1247 			pd->min_tck = temp;
1248 		} else {
1249 			dev_warn(dev, "%s:%d: allocation error\n", __func__,
1250 				__LINE__);
1251 			pd->min_tck = &lpddr2_jedec_min_tck;
1252 		}
1253 	} else {
1254 		pd->min_tck = &lpddr2_jedec_min_tck;
1255 	}
1256 
1257 out:
1258 	return emif;
1259 
1260 error:
1261 	return NULL;
1262 }
1263 
1264 static int __init_or_module emif_probe(struct platform_device *pdev)
1265 {
1266 	struct emif_data	*emif;
1267 	struct resource		*res;
1268 	int			irq;
1269 
1270 	emif = get_device_details(pdev);
1271 	if (!emif) {
1272 		pr_err("%s: error getting device data\n", __func__);
1273 		goto error;
1274 	}
1275 
1276 	list_add(&emif->node, &device_list);
1277 	emif->addressing = get_addressing_table(emif->plat_data->device_info);
1278 
1279 	/* Save pointers to each other in emif and device structures */
1280 	emif->dev = &pdev->dev;
1281 	platform_set_drvdata(pdev, emif);
1282 
1283 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1284 	if (!res) {
1285 		dev_err(emif->dev, "%s: error getting memory resource\n",
1286 			__func__);
1287 		goto error;
1288 	}
1289 
1290 	emif->base = devm_request_and_ioremap(emif->dev, res);
1291 	if (!emif->base) {
1292 		dev_err(emif->dev, "%s: devm_request_and_ioremap() failed\n",
1293 			__func__);
1294 		goto error;
1295 	}
1296 
1297 	irq = platform_get_irq(pdev, 0);
1298 	if (irq < 0) {
1299 		dev_err(emif->dev, "%s: error getting IRQ resource - %d\n",
1300 			__func__, irq);
1301 		goto error;
1302 	}
1303 
1304 	emif_onetime_settings(emif);
1305 	emif_debugfs_init(emif);
1306 	disable_and_clear_all_interrupts(emif);
1307 	setup_interrupts(emif, irq);
1308 
1309 	/* One-time actions taken on probing the first device */
1310 	if (!emif1) {
1311 		emif1 = emif;
1312 		spin_lock_init(&emif_lock);
1313 
1314 		/*
1315 		 * TODO: register notifiers for frequency and voltage
1316 		 * change here once the respective frameworks are
1317 		 * available
1318 		 */
1319 	}
1320 
1321 	dev_info(&pdev->dev, "%s: device configured with addr = %p and IRQ%d\n",
1322 		__func__, emif->base, irq);
1323 
1324 	return 0;
1325 error:
1326 	return -ENODEV;
1327 }
1328 
1329 static int __exit emif_remove(struct platform_device *pdev)
1330 {
1331 	struct emif_data *emif = platform_get_drvdata(pdev);
1332 
1333 	emif_debugfs_exit(emif);
1334 
1335 	return 0;
1336 }
1337 
1338 static void emif_shutdown(struct platform_device *pdev)
1339 {
1340 	struct emif_data	*emif = platform_get_drvdata(pdev);
1341 
1342 	disable_and_clear_all_interrupts(emif);
1343 }
1344 
1345 static int get_emif_reg_values(struct emif_data *emif, u32 freq,
1346 		struct emif_regs *regs)
1347 {
1348 	u32				cs1_used, ip_rev, phy_type;
1349 	u32				cl, type;
1350 	const struct lpddr2_timings	*timings;
1351 	const struct lpddr2_min_tck	*min_tck;
1352 	const struct ddr_device_info	*device_info;
1353 	const struct lpddr2_addressing	*addressing;
1354 	struct emif_data		*emif_for_calc;
1355 	struct device			*dev;
1356 	const struct emif_custom_configs *custom_configs;
1357 
1358 	dev = emif->dev;
1359 	/*
1360 	 * If the devices on this EMIF instance is duplicate of EMIF1,
1361 	 * use EMIF1 details for the calculation
1362 	 */
1363 	emif_for_calc	= emif->duplicate ? emif1 : emif;
1364 	timings		= get_timings_table(emif_for_calc, freq);
1365 	addressing	= emif_for_calc->addressing;
1366 	if (!timings || !addressing) {
1367 		dev_err(dev, "%s: not enough data available for %dHz",
1368 			__func__, freq);
1369 		return -1;
1370 	}
1371 
1372 	device_info	= emif_for_calc->plat_data->device_info;
1373 	type		= device_info->type;
1374 	cs1_used	= device_info->cs1_used;
1375 	ip_rev		= emif_for_calc->plat_data->ip_rev;
1376 	phy_type	= emif_for_calc->plat_data->phy_type;
1377 
1378 	min_tck		= emif_for_calc->plat_data->min_tck;
1379 	custom_configs	= emif_for_calc->plat_data->custom_configs;
1380 
1381 	set_ddr_clk_period(freq);
1382 
1383 	regs->ref_ctrl_shdw = get_sdram_ref_ctrl_shdw(freq, addressing);
1384 	regs->sdram_tim1_shdw = get_sdram_tim_1_shdw(timings, min_tck,
1385 			addressing);
1386 	regs->sdram_tim2_shdw = get_sdram_tim_2_shdw(timings, min_tck,
1387 			addressing, type);
1388 	regs->sdram_tim3_shdw = get_sdram_tim_3_shdw(timings, min_tck,
1389 		addressing, type, ip_rev, EMIF_NORMAL_TIMINGS);
1390 
1391 	cl = get_cl(emif);
1392 
1393 	if (phy_type == EMIF_PHY_TYPE_ATTILAPHY && ip_rev == EMIF_4D) {
1394 		regs->phy_ctrl_1_shdw = get_ddr_phy_ctrl_1_attilaphy_4d(
1395 			timings, freq, cl);
1396 	} else if (phy_type == EMIF_PHY_TYPE_INTELLIPHY && ip_rev == EMIF_4D5) {
1397 		regs->phy_ctrl_1_shdw = get_phy_ctrl_1_intelliphy_4d5(freq, cl);
1398 		regs->ext_phy_ctrl_2_shdw = get_ext_phy_ctrl_2_intelliphy_4d5();
1399 		regs->ext_phy_ctrl_3_shdw = get_ext_phy_ctrl_3_intelliphy_4d5();
1400 		regs->ext_phy_ctrl_4_shdw = get_ext_phy_ctrl_4_intelliphy_4d5();
1401 	} else {
1402 		return -1;
1403 	}
1404 
1405 	/* Only timeout values in pwr_mgmt_ctrl_shdw register */
1406 	regs->pwr_mgmt_ctrl_shdw =
1407 		get_pwr_mgmt_ctrl(freq, emif_for_calc, ip_rev) &
1408 		(CS_TIM_MASK | SR_TIM_MASK | PD_TIM_MASK);
1409 
1410 	if (ip_rev & EMIF_4D) {
1411 		regs->read_idle_ctrl_shdw_normal =
1412 			get_read_idle_ctrl_shdw(DDR_VOLTAGE_STABLE);
1413 
1414 		regs->read_idle_ctrl_shdw_volt_ramp =
1415 			get_read_idle_ctrl_shdw(DDR_VOLTAGE_RAMPING);
1416 	} else if (ip_rev & EMIF_4D5) {
1417 		regs->dll_calib_ctrl_shdw_normal =
1418 			get_dll_calib_ctrl_shdw(DDR_VOLTAGE_STABLE);
1419 
1420 		regs->dll_calib_ctrl_shdw_volt_ramp =
1421 			get_dll_calib_ctrl_shdw(DDR_VOLTAGE_RAMPING);
1422 	}
1423 
1424 	if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) {
1425 		regs->ref_ctrl_shdw_derated = get_sdram_ref_ctrl_shdw(freq / 4,
1426 			addressing);
1427 
1428 		regs->sdram_tim1_shdw_derated =
1429 			get_sdram_tim_1_shdw_derated(timings, min_tck,
1430 				addressing);
1431 
1432 		regs->sdram_tim3_shdw_derated = get_sdram_tim_3_shdw(timings,
1433 			min_tck, addressing, type, ip_rev,
1434 			EMIF_DERATED_TIMINGS);
1435 	}
1436 
1437 	regs->freq = freq;
1438 
1439 	return 0;
1440 }
1441 
1442 /*
1443  * get_regs() - gets the cached emif_regs structure for a given EMIF instance
1444  * given frequency(freq):
1445  *
1446  * As an optimisation, every EMIF instance other than EMIF1 shares the
1447  * register cache with EMIF1 if the devices connected on this instance
1448  * are same as that on EMIF1(indicated by the duplicate flag)
1449  *
1450  * If we do not have an entry corresponding to the frequency given, we
1451  * allocate a new entry and calculate the values
1452  *
1453  * Upon finding the right reg dump, save it in curr_regs. It can be
1454  * directly used for thermal de-rating and voltage ramping changes.
1455  */
1456 static struct emif_regs *get_regs(struct emif_data *emif, u32 freq)
1457 {
1458 	int			i;
1459 	struct emif_regs	**regs_cache;
1460 	struct emif_regs	*regs = NULL;
1461 	struct device		*dev;
1462 
1463 	dev = emif->dev;
1464 	if (emif->curr_regs && emif->curr_regs->freq == freq) {
1465 		dev_dbg(dev, "%s: using curr_regs - %u Hz", __func__, freq);
1466 		return emif->curr_regs;
1467 	}
1468 
1469 	if (emif->duplicate)
1470 		regs_cache = emif1->regs_cache;
1471 	else
1472 		regs_cache = emif->regs_cache;
1473 
1474 	for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) {
1475 		if (regs_cache[i]->freq == freq) {
1476 			regs = regs_cache[i];
1477 			dev_dbg(dev,
1478 				"%s: reg dump found in reg cache for %u Hz\n",
1479 				__func__, freq);
1480 			break;
1481 		}
1482 	}
1483 
1484 	/*
1485 	 * If we don't have an entry for this frequency in the cache create one
1486 	 * and calculate the values
1487 	 */
1488 	if (!regs) {
1489 		regs = devm_kzalloc(emif->dev, sizeof(*regs), GFP_ATOMIC);
1490 		if (!regs)
1491 			return NULL;
1492 
1493 		if (get_emif_reg_values(emif, freq, regs)) {
1494 			devm_kfree(emif->dev, regs);
1495 			return NULL;
1496 		}
1497 
1498 		/*
1499 		 * Now look for an un-used entry in the cache and save the
1500 		 * newly created struct. If there are no free entries
1501 		 * over-write the last entry
1502 		 */
1503 		for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++)
1504 			;
1505 
1506 		if (i >= EMIF_MAX_NUM_FREQUENCIES) {
1507 			dev_warn(dev, "%s: regs_cache full - reusing a slot!!\n",
1508 				__func__);
1509 			i = EMIF_MAX_NUM_FREQUENCIES - 1;
1510 			devm_kfree(emif->dev, regs_cache[i]);
1511 		}
1512 		regs_cache[i] = regs;
1513 	}
1514 
1515 	return regs;
1516 }
1517 
1518 static void do_volt_notify_handling(struct emif_data *emif, u32 volt_state)
1519 {
1520 	dev_dbg(emif->dev, "%s: voltage notification : %d", __func__,
1521 		volt_state);
1522 
1523 	if (!emif->curr_regs) {
1524 		dev_err(emif->dev,
1525 			"%s: volt-notify before registers are ready: %d\n",
1526 			__func__, volt_state);
1527 		return;
1528 	}
1529 
1530 	setup_volt_sensitive_regs(emif, emif->curr_regs, volt_state);
1531 }
1532 
1533 /*
1534  * TODO: voltage notify handling should be hooked up to
1535  * regulator framework as soon as the necessary support
1536  * is available in mainline kernel. This function is un-used
1537  * right now.
1538  */
1539 static void __attribute__((unused)) volt_notify_handling(u32 volt_state)
1540 {
1541 	struct emif_data *emif;
1542 
1543 	spin_lock_irqsave(&emif_lock, irq_state);
1544 
1545 	list_for_each_entry(emif, &device_list, node)
1546 		do_volt_notify_handling(emif, volt_state);
1547 	do_freq_update();
1548 
1549 	spin_unlock_irqrestore(&emif_lock, irq_state);
1550 }
1551 
1552 static void do_freq_pre_notify_handling(struct emif_data *emif, u32 new_freq)
1553 {
1554 	struct emif_regs *regs;
1555 
1556 	regs = get_regs(emif, new_freq);
1557 	if (!regs)
1558 		return;
1559 
1560 	emif->curr_regs = regs;
1561 
1562 	/*
1563 	 * Update the shadow registers:
1564 	 * Temperature and voltage-ramp sensitive settings are also configured
1565 	 * in terms of DDR cycles. So, we need to update them too when there
1566 	 * is a freq change
1567 	 */
1568 	dev_dbg(emif->dev, "%s: setting up shadow registers for %uHz",
1569 		__func__, new_freq);
1570 	setup_registers(emif, regs);
1571 	setup_temperature_sensitive_regs(emif, regs);
1572 	setup_volt_sensitive_regs(emif, regs, DDR_VOLTAGE_STABLE);
1573 
1574 	/*
1575 	 * Part of workaround for errata i728. See do_freq_update()
1576 	 * for more details
1577 	 */
1578 	if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
1579 		set_lpmode(emif, EMIF_LP_MODE_DISABLE);
1580 }
1581 
1582 /*
1583  * TODO: frequency notify handling should be hooked up to
1584  * clock framework as soon as the necessary support is
1585  * available in mainline kernel. This function is un-used
1586  * right now.
1587  */
1588 static void __attribute__((unused)) freq_pre_notify_handling(u32 new_freq)
1589 {
1590 	struct emif_data *emif;
1591 
1592 	/*
1593 	 * NOTE: we are taking the spin-lock here and releases it
1594 	 * only in post-notifier. This doesn't look good and
1595 	 * Sparse complains about it, but this seems to be
1596 	 * un-avoidable. We need to lock a sequence of events
1597 	 * that is split between EMIF and clock framework.
1598 	 *
1599 	 * 1. EMIF driver updates EMIF timings in shadow registers in the
1600 	 *    frequency pre-notify callback from clock framework
1601 	 * 2. clock framework sets up the registers for the new frequency
1602 	 * 3. clock framework initiates a hw-sequence that updates
1603 	 *    the frequency EMIF timings synchronously.
1604 	 *
1605 	 * All these 3 steps should be performed as an atomic operation
1606 	 * vis-a-vis similar sequence in the EMIF interrupt handler
1607 	 * for temperature events. Otherwise, there could be race
1608 	 * conditions that could result in incorrect EMIF timings for
1609 	 * a given frequency
1610 	 */
1611 	spin_lock_irqsave(&emif_lock, irq_state);
1612 
1613 	list_for_each_entry(emif, &device_list, node)
1614 		do_freq_pre_notify_handling(emif, new_freq);
1615 }
1616 
1617 static void do_freq_post_notify_handling(struct emif_data *emif)
1618 {
1619 	/*
1620 	 * Part of workaround for errata i728. See do_freq_update()
1621 	 * for more details
1622 	 */
1623 	if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
1624 		set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH);
1625 }
1626 
1627 /*
1628  * TODO: frequency notify handling should be hooked up to
1629  * clock framework as soon as the necessary support is
1630  * available in mainline kernel. This function is un-used
1631  * right now.
1632  */
1633 static void __attribute__((unused)) freq_post_notify_handling(void)
1634 {
1635 	struct emif_data *emif;
1636 
1637 	list_for_each_entry(emif, &device_list, node)
1638 		do_freq_post_notify_handling(emif);
1639 
1640 	/*
1641 	 * Lock is done in pre-notify handler. See freq_pre_notify_handling()
1642 	 * for more details
1643 	 */
1644 	spin_unlock_irqrestore(&emif_lock, irq_state);
1645 }
1646 
1647 static struct platform_driver emif_driver = {
1648 	.remove		= __exit_p(emif_remove),
1649 	.shutdown	= emif_shutdown,
1650 	.driver = {
1651 		.name = "emif",
1652 	},
1653 };
1654 
1655 static int __init_or_module emif_register(void)
1656 {
1657 	return platform_driver_probe(&emif_driver, emif_probe);
1658 }
1659 
1660 static void __exit emif_unregister(void)
1661 {
1662 	platform_driver_unregister(&emif_driver);
1663 }
1664 
1665 module_init(emif_register);
1666 module_exit(emif_unregister);
1667 MODULE_DESCRIPTION("TI EMIF SDRAM Controller Driver");
1668 MODULE_LICENSE("GPL");
1669 MODULE_ALIAS("platform:emif");
1670 MODULE_AUTHOR("Texas Instruments Inc");
1671