1 /* 2 * EMIF driver 3 * 4 * Copyright (C) 2012 Texas Instruments, Inc. 5 * 6 * Aneesh V <aneesh@ti.com> 7 * Santosh Shilimkar <santosh.shilimkar@ti.com> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 */ 13 #include <linux/err.h> 14 #include <linux/kernel.h> 15 #include <linux/reboot.h> 16 #include <linux/platform_data/emif_plat.h> 17 #include <linux/io.h> 18 #include <linux/device.h> 19 #include <linux/platform_device.h> 20 #include <linux/interrupt.h> 21 #include <linux/slab.h> 22 #include <linux/of.h> 23 #include <linux/debugfs.h> 24 #include <linux/seq_file.h> 25 #include <linux/module.h> 26 #include <linux/list.h> 27 #include <linux/spinlock.h> 28 #include <memory/jedec_ddr.h> 29 #include "emif.h" 30 #include "of_memory.h" 31 32 /** 33 * struct emif_data - Per device static data for driver's use 34 * @duplicate: Whether the DDR devices attached to this EMIF 35 * instance are exactly same as that on EMIF1. In 36 * this case we can save some memory and processing 37 * @temperature_level: Maximum temperature of LPDDR2 devices attached 38 * to this EMIF - read from MR4 register. If there 39 * are two devices attached to this EMIF, this 40 * value is the maximum of the two temperature 41 * levels. 42 * @node: node in the device list 43 * @base: base address of memory-mapped IO registers. 44 * @dev: device pointer. 45 * @addressing table with addressing information from the spec 46 * @regs_cache: An array of 'struct emif_regs' that stores 47 * calculated register values for different 48 * frequencies, to avoid re-calculating them on 49 * each DVFS transition. 50 * @curr_regs: The set of register values used in the last 51 * frequency change (i.e. corresponding to the 52 * frequency in effect at the moment) 53 * @plat_data: Pointer to saved platform data. 54 * @debugfs_root: dentry to the root folder for EMIF in debugfs 55 * @np_ddr: Pointer to ddr device tree node 56 */ 57 struct emif_data { 58 u8 duplicate; 59 u8 temperature_level; 60 u8 lpmode; 61 struct list_head node; 62 unsigned long irq_state; 63 void __iomem *base; 64 struct device *dev; 65 const struct lpddr2_addressing *addressing; 66 struct emif_regs *regs_cache[EMIF_MAX_NUM_FREQUENCIES]; 67 struct emif_regs *curr_regs; 68 struct emif_platform_data *plat_data; 69 struct dentry *debugfs_root; 70 struct device_node *np_ddr; 71 }; 72 73 static struct emif_data *emif1; 74 static spinlock_t emif_lock; 75 static unsigned long irq_state; 76 static u32 t_ck; /* DDR clock period in ps */ 77 static LIST_HEAD(device_list); 78 79 #ifdef CONFIG_DEBUG_FS 80 static void do_emif_regdump_show(struct seq_file *s, struct emif_data *emif, 81 struct emif_regs *regs) 82 { 83 u32 type = emif->plat_data->device_info->type; 84 u32 ip_rev = emif->plat_data->ip_rev; 85 86 seq_printf(s, "EMIF register cache dump for %dMHz\n", 87 regs->freq/1000000); 88 89 seq_printf(s, "ref_ctrl_shdw\t: 0x%08x\n", regs->ref_ctrl_shdw); 90 seq_printf(s, "sdram_tim1_shdw\t: 0x%08x\n", regs->sdram_tim1_shdw); 91 seq_printf(s, "sdram_tim2_shdw\t: 0x%08x\n", regs->sdram_tim2_shdw); 92 seq_printf(s, "sdram_tim3_shdw\t: 0x%08x\n", regs->sdram_tim3_shdw); 93 94 if (ip_rev == EMIF_4D) { 95 seq_printf(s, "read_idle_ctrl_shdw_normal\t: 0x%08x\n", 96 regs->read_idle_ctrl_shdw_normal); 97 seq_printf(s, "read_idle_ctrl_shdw_volt_ramp\t: 0x%08x\n", 98 regs->read_idle_ctrl_shdw_volt_ramp); 99 } else if (ip_rev == EMIF_4D5) { 100 seq_printf(s, "dll_calib_ctrl_shdw_normal\t: 0x%08x\n", 101 regs->dll_calib_ctrl_shdw_normal); 102 seq_printf(s, "dll_calib_ctrl_shdw_volt_ramp\t: 0x%08x\n", 103 regs->dll_calib_ctrl_shdw_volt_ramp); 104 } 105 106 if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) { 107 seq_printf(s, "ref_ctrl_shdw_derated\t: 0x%08x\n", 108 regs->ref_ctrl_shdw_derated); 109 seq_printf(s, "sdram_tim1_shdw_derated\t: 0x%08x\n", 110 regs->sdram_tim1_shdw_derated); 111 seq_printf(s, "sdram_tim3_shdw_derated\t: 0x%08x\n", 112 regs->sdram_tim3_shdw_derated); 113 } 114 } 115 116 static int emif_regdump_show(struct seq_file *s, void *unused) 117 { 118 struct emif_data *emif = s->private; 119 struct emif_regs **regs_cache; 120 int i; 121 122 if (emif->duplicate) 123 regs_cache = emif1->regs_cache; 124 else 125 regs_cache = emif->regs_cache; 126 127 for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) { 128 do_emif_regdump_show(s, emif, regs_cache[i]); 129 seq_printf(s, "\n"); 130 } 131 132 return 0; 133 } 134 135 static int emif_regdump_open(struct inode *inode, struct file *file) 136 { 137 return single_open(file, emif_regdump_show, inode->i_private); 138 } 139 140 static const struct file_operations emif_regdump_fops = { 141 .open = emif_regdump_open, 142 .read = seq_read, 143 .release = single_release, 144 }; 145 146 static int emif_mr4_show(struct seq_file *s, void *unused) 147 { 148 struct emif_data *emif = s->private; 149 150 seq_printf(s, "MR4=%d\n", emif->temperature_level); 151 return 0; 152 } 153 154 static int emif_mr4_open(struct inode *inode, struct file *file) 155 { 156 return single_open(file, emif_mr4_show, inode->i_private); 157 } 158 159 static const struct file_operations emif_mr4_fops = { 160 .open = emif_mr4_open, 161 .read = seq_read, 162 .release = single_release, 163 }; 164 165 static int __init_or_module emif_debugfs_init(struct emif_data *emif) 166 { 167 struct dentry *dentry; 168 int ret; 169 170 dentry = debugfs_create_dir(dev_name(emif->dev), NULL); 171 if (!dentry) { 172 ret = -ENOMEM; 173 goto err0; 174 } 175 emif->debugfs_root = dentry; 176 177 dentry = debugfs_create_file("regcache_dump", S_IRUGO, 178 emif->debugfs_root, emif, &emif_regdump_fops); 179 if (!dentry) { 180 ret = -ENOMEM; 181 goto err1; 182 } 183 184 dentry = debugfs_create_file("mr4", S_IRUGO, 185 emif->debugfs_root, emif, &emif_mr4_fops); 186 if (!dentry) { 187 ret = -ENOMEM; 188 goto err1; 189 } 190 191 return 0; 192 err1: 193 debugfs_remove_recursive(emif->debugfs_root); 194 err0: 195 return ret; 196 } 197 198 static void __exit emif_debugfs_exit(struct emif_data *emif) 199 { 200 debugfs_remove_recursive(emif->debugfs_root); 201 emif->debugfs_root = NULL; 202 } 203 #else 204 static inline int __init_or_module emif_debugfs_init(struct emif_data *emif) 205 { 206 return 0; 207 } 208 209 static inline void __exit emif_debugfs_exit(struct emif_data *emif) 210 { 211 } 212 #endif 213 214 /* 215 * Calculate the period of DDR clock from frequency value 216 */ 217 static void set_ddr_clk_period(u32 freq) 218 { 219 /* Divide 10^12 by frequency to get period in ps */ 220 t_ck = (u32)DIV_ROUND_UP_ULL(1000000000000ull, freq); 221 } 222 223 /* 224 * Get bus width used by EMIF. Note that this may be different from the 225 * bus width of the DDR devices used. For instance two 16-bit DDR devices 226 * may be connected to a given CS of EMIF. In this case bus width as far 227 * as EMIF is concerned is 32, where as the DDR bus width is 16 bits. 228 */ 229 static u32 get_emif_bus_width(struct emif_data *emif) 230 { 231 u32 width; 232 void __iomem *base = emif->base; 233 234 width = (readl(base + EMIF_SDRAM_CONFIG) & NARROW_MODE_MASK) 235 >> NARROW_MODE_SHIFT; 236 width = width == 0 ? 32 : 16; 237 238 return width; 239 } 240 241 /* 242 * Get the CL from SDRAM_CONFIG register 243 */ 244 static u32 get_cl(struct emif_data *emif) 245 { 246 u32 cl; 247 void __iomem *base = emif->base; 248 249 cl = (readl(base + EMIF_SDRAM_CONFIG) & CL_MASK) >> CL_SHIFT; 250 251 return cl; 252 } 253 254 static void set_lpmode(struct emif_data *emif, u8 lpmode) 255 { 256 u32 temp; 257 void __iomem *base = emif->base; 258 259 temp = readl(base + EMIF_POWER_MANAGEMENT_CONTROL); 260 temp &= ~LP_MODE_MASK; 261 temp |= (lpmode << LP_MODE_SHIFT); 262 writel(temp, base + EMIF_POWER_MANAGEMENT_CONTROL); 263 } 264 265 static void do_freq_update(void) 266 { 267 struct emif_data *emif; 268 269 /* 270 * Workaround for errata i728: Disable LPMODE during FREQ_UPDATE 271 * 272 * i728 DESCRIPTION: 273 * The EMIF automatically puts the SDRAM into self-refresh mode 274 * after the EMIF has not performed accesses during 275 * EMIF_PWR_MGMT_CTRL[7:4] REG_SR_TIM number of DDR clock cycles 276 * and the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set 277 * to 0x2. If during a small window the following three events 278 * occur: 279 * - The SR_TIMING counter expires 280 * - And frequency change is requested 281 * - And OCP access is requested 282 * Then it causes instable clock on the DDR interface. 283 * 284 * WORKAROUND 285 * To avoid the occurrence of the three events, the workaround 286 * is to disable the self-refresh when requesting a frequency 287 * change. Before requesting a frequency change the software must 288 * program EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x0. When the 289 * frequency change has been done, the software can reprogram 290 * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x2 291 */ 292 list_for_each_entry(emif, &device_list, node) { 293 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH) 294 set_lpmode(emif, EMIF_LP_MODE_DISABLE); 295 } 296 297 /* 298 * TODO: Do FREQ_UPDATE here when an API 299 * is available for this as part of the new 300 * clock framework 301 */ 302 303 list_for_each_entry(emif, &device_list, node) { 304 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH) 305 set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH); 306 } 307 } 308 309 /* Find addressing table entry based on the device's type and density */ 310 static const struct lpddr2_addressing *get_addressing_table( 311 const struct ddr_device_info *device_info) 312 { 313 u32 index, type, density; 314 315 type = device_info->type; 316 density = device_info->density; 317 318 switch (type) { 319 case DDR_TYPE_LPDDR2_S4: 320 index = density - 1; 321 break; 322 case DDR_TYPE_LPDDR2_S2: 323 switch (density) { 324 case DDR_DENSITY_1Gb: 325 case DDR_DENSITY_2Gb: 326 index = density + 3; 327 break; 328 default: 329 index = density - 1; 330 } 331 break; 332 default: 333 return NULL; 334 } 335 336 return &lpddr2_jedec_addressing_table[index]; 337 } 338 339 /* 340 * Find the the right timing table from the array of timing 341 * tables of the device using DDR clock frequency 342 */ 343 static const struct lpddr2_timings *get_timings_table(struct emif_data *emif, 344 u32 freq) 345 { 346 u32 i, min, max, freq_nearest; 347 const struct lpddr2_timings *timings = NULL; 348 const struct lpddr2_timings *timings_arr = emif->plat_data->timings; 349 struct device *dev = emif->dev; 350 351 /* Start with a very high frequency - 1GHz */ 352 freq_nearest = 1000000000; 353 354 /* 355 * Find the timings table such that: 356 * 1. the frequency range covers the required frequency(safe) AND 357 * 2. the max_freq is closest to the required frequency(optimal) 358 */ 359 for (i = 0; i < emif->plat_data->timings_arr_size; i++) { 360 max = timings_arr[i].max_freq; 361 min = timings_arr[i].min_freq; 362 if ((freq >= min) && (freq <= max) && (max < freq_nearest)) { 363 freq_nearest = max; 364 timings = &timings_arr[i]; 365 } 366 } 367 368 if (!timings) 369 dev_err(dev, "%s: couldn't find timings for - %dHz\n", 370 __func__, freq); 371 372 dev_dbg(dev, "%s: timings table: freq %d, speed bin freq %d\n", 373 __func__, freq, freq_nearest); 374 375 return timings; 376 } 377 378 static u32 get_sdram_ref_ctrl_shdw(u32 freq, 379 const struct lpddr2_addressing *addressing) 380 { 381 u32 ref_ctrl_shdw = 0, val = 0, freq_khz, t_refi; 382 383 /* Scale down frequency and t_refi to avoid overflow */ 384 freq_khz = freq / 1000; 385 t_refi = addressing->tREFI_ns / 100; 386 387 /* 388 * refresh rate to be set is 'tREFI(in us) * freq in MHz 389 * division by 10000 to account for change in units 390 */ 391 val = t_refi * freq_khz / 10000; 392 ref_ctrl_shdw |= val << REFRESH_RATE_SHIFT; 393 394 return ref_ctrl_shdw; 395 } 396 397 static u32 get_sdram_tim_1_shdw(const struct lpddr2_timings *timings, 398 const struct lpddr2_min_tck *min_tck, 399 const struct lpddr2_addressing *addressing) 400 { 401 u32 tim1 = 0, val = 0; 402 403 val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1; 404 tim1 |= val << T_WTR_SHIFT; 405 406 if (addressing->num_banks == B8) 407 val = DIV_ROUND_UP(timings->tFAW, t_ck*4); 408 else 409 val = max(min_tck->tRRD, DIV_ROUND_UP(timings->tRRD, t_ck)); 410 tim1 |= (val - 1) << T_RRD_SHIFT; 411 412 val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab, t_ck) - 1; 413 tim1 |= val << T_RC_SHIFT; 414 415 val = max(min_tck->tRASmin, DIV_ROUND_UP(timings->tRAS_min, t_ck)); 416 tim1 |= (val - 1) << T_RAS_SHIFT; 417 418 val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1; 419 tim1 |= val << T_WR_SHIFT; 420 421 val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD, t_ck)) - 1; 422 tim1 |= val << T_RCD_SHIFT; 423 424 val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab, t_ck)) - 1; 425 tim1 |= val << T_RP_SHIFT; 426 427 return tim1; 428 } 429 430 static u32 get_sdram_tim_1_shdw_derated(const struct lpddr2_timings *timings, 431 const struct lpddr2_min_tck *min_tck, 432 const struct lpddr2_addressing *addressing) 433 { 434 u32 tim1 = 0, val = 0; 435 436 val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1; 437 tim1 = val << T_WTR_SHIFT; 438 439 /* 440 * tFAW is approximately 4 times tRRD. So add 1875*4 = 7500ps 441 * to tFAW for de-rating 442 */ 443 if (addressing->num_banks == B8) { 444 val = DIV_ROUND_UP(timings->tFAW + 7500, 4 * t_ck) - 1; 445 } else { 446 val = DIV_ROUND_UP(timings->tRRD + 1875, t_ck); 447 val = max(min_tck->tRRD, val) - 1; 448 } 449 tim1 |= val << T_RRD_SHIFT; 450 451 val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab + 1875, t_ck); 452 tim1 |= (val - 1) << T_RC_SHIFT; 453 454 val = DIV_ROUND_UP(timings->tRAS_min + 1875, t_ck); 455 val = max(min_tck->tRASmin, val) - 1; 456 tim1 |= val << T_RAS_SHIFT; 457 458 val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1; 459 tim1 |= val << T_WR_SHIFT; 460 461 val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD + 1875, t_ck)); 462 tim1 |= (val - 1) << T_RCD_SHIFT; 463 464 val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab + 1875, t_ck)); 465 tim1 |= (val - 1) << T_RP_SHIFT; 466 467 return tim1; 468 } 469 470 static u32 get_sdram_tim_2_shdw(const struct lpddr2_timings *timings, 471 const struct lpddr2_min_tck *min_tck, 472 const struct lpddr2_addressing *addressing, 473 u32 type) 474 { 475 u32 tim2 = 0, val = 0; 476 477 val = min_tck->tCKE - 1; 478 tim2 |= val << T_CKE_SHIFT; 479 480 val = max(min_tck->tRTP, DIV_ROUND_UP(timings->tRTP, t_ck)) - 1; 481 tim2 |= val << T_RTP_SHIFT; 482 483 /* tXSNR = tRFCab_ps + 10 ns(tRFCab_ps for LPDDR2). */ 484 val = DIV_ROUND_UP(addressing->tRFCab_ps + 10000, t_ck) - 1; 485 tim2 |= val << T_XSNR_SHIFT; 486 487 /* XSRD same as XSNR for LPDDR2 */ 488 tim2 |= val << T_XSRD_SHIFT; 489 490 val = max(min_tck->tXP, DIV_ROUND_UP(timings->tXP, t_ck)) - 1; 491 tim2 |= val << T_XP_SHIFT; 492 493 return tim2; 494 } 495 496 static u32 get_sdram_tim_3_shdw(const struct lpddr2_timings *timings, 497 const struct lpddr2_min_tck *min_tck, 498 const struct lpddr2_addressing *addressing, 499 u32 type, u32 ip_rev, u32 derated) 500 { 501 u32 tim3 = 0, val = 0, t_dqsck; 502 503 val = timings->tRAS_max_ns / addressing->tREFI_ns - 1; 504 val = val > 0xF ? 0xF : val; 505 tim3 |= val << T_RAS_MAX_SHIFT; 506 507 val = DIV_ROUND_UP(addressing->tRFCab_ps, t_ck) - 1; 508 tim3 |= val << T_RFC_SHIFT; 509 510 t_dqsck = (derated == EMIF_DERATED_TIMINGS) ? 511 timings->tDQSCK_max_derated : timings->tDQSCK_max; 512 if (ip_rev == EMIF_4D5) 513 val = DIV_ROUND_UP(t_dqsck + 1000, t_ck) - 1; 514 else 515 val = DIV_ROUND_UP(t_dqsck, t_ck) - 1; 516 517 tim3 |= val << T_TDQSCKMAX_SHIFT; 518 519 val = DIV_ROUND_UP(timings->tZQCS, t_ck) - 1; 520 tim3 |= val << ZQ_ZQCS_SHIFT; 521 522 val = DIV_ROUND_UP(timings->tCKESR, t_ck); 523 val = max(min_tck->tCKESR, val) - 1; 524 tim3 |= val << T_CKESR_SHIFT; 525 526 if (ip_rev == EMIF_4D5) { 527 tim3 |= (EMIF_T_CSTA - 1) << T_CSTA_SHIFT; 528 529 val = DIV_ROUND_UP(EMIF_T_PDLL_UL, 128) - 1; 530 tim3 |= val << T_PDLL_UL_SHIFT; 531 } 532 533 return tim3; 534 } 535 536 static u32 get_zq_config_reg(const struct lpddr2_addressing *addressing, 537 bool cs1_used, bool cal_resistors_per_cs) 538 { 539 u32 zq = 0, val = 0; 540 541 val = EMIF_ZQCS_INTERVAL_US * 1000 / addressing->tREFI_ns; 542 zq |= val << ZQ_REFINTERVAL_SHIFT; 543 544 val = DIV_ROUND_UP(T_ZQCL_DEFAULT_NS, T_ZQCS_DEFAULT_NS) - 1; 545 zq |= val << ZQ_ZQCL_MULT_SHIFT; 546 547 val = DIV_ROUND_UP(T_ZQINIT_DEFAULT_NS, T_ZQCL_DEFAULT_NS) - 1; 548 zq |= val << ZQ_ZQINIT_MULT_SHIFT; 549 550 zq |= ZQ_SFEXITEN_ENABLE << ZQ_SFEXITEN_SHIFT; 551 552 if (cal_resistors_per_cs) 553 zq |= ZQ_DUALCALEN_ENABLE << ZQ_DUALCALEN_SHIFT; 554 else 555 zq |= ZQ_DUALCALEN_DISABLE << ZQ_DUALCALEN_SHIFT; 556 557 zq |= ZQ_CS0EN_MASK; /* CS0 is used for sure */ 558 559 val = cs1_used ? 1 : 0; 560 zq |= val << ZQ_CS1EN_SHIFT; 561 562 return zq; 563 } 564 565 static u32 get_temp_alert_config(const struct lpddr2_addressing *addressing, 566 const struct emif_custom_configs *custom_configs, bool cs1_used, 567 u32 sdram_io_width, u32 emif_bus_width) 568 { 569 u32 alert = 0, interval, devcnt; 570 571 if (custom_configs && (custom_configs->mask & 572 EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL)) 573 interval = custom_configs->temp_alert_poll_interval_ms; 574 else 575 interval = TEMP_ALERT_POLL_INTERVAL_DEFAULT_MS; 576 577 interval *= 1000000; /* Convert to ns */ 578 interval /= addressing->tREFI_ns; /* Convert to refresh cycles */ 579 alert |= (interval << TA_REFINTERVAL_SHIFT); 580 581 /* 582 * sdram_io_width is in 'log2(x) - 1' form. Convert emif_bus_width 583 * also to this form and subtract to get TA_DEVCNT, which is 584 * in log2(x) form. 585 */ 586 emif_bus_width = __fls(emif_bus_width) - 1; 587 devcnt = emif_bus_width - sdram_io_width; 588 alert |= devcnt << TA_DEVCNT_SHIFT; 589 590 /* DEVWDT is in 'log2(x) - 3' form */ 591 alert |= (sdram_io_width - 2) << TA_DEVWDT_SHIFT; 592 593 alert |= 1 << TA_SFEXITEN_SHIFT; 594 alert |= 1 << TA_CS0EN_SHIFT; 595 alert |= (cs1_used ? 1 : 0) << TA_CS1EN_SHIFT; 596 597 return alert; 598 } 599 600 static u32 get_read_idle_ctrl_shdw(u8 volt_ramp) 601 { 602 u32 idle = 0, val = 0; 603 604 /* 605 * Maximum value in normal conditions and increased frequency 606 * when voltage is ramping 607 */ 608 if (volt_ramp) 609 val = READ_IDLE_INTERVAL_DVFS / t_ck / 64 - 1; 610 else 611 val = 0x1FF; 612 613 /* 614 * READ_IDLE_CTRL register in EMIF4D has same offset and fields 615 * as DLL_CALIB_CTRL in EMIF4D5, so use the same shifts 616 */ 617 idle |= val << DLL_CALIB_INTERVAL_SHIFT; 618 idle |= EMIF_READ_IDLE_LEN_VAL << ACK_WAIT_SHIFT; 619 620 return idle; 621 } 622 623 static u32 get_dll_calib_ctrl_shdw(u8 volt_ramp) 624 { 625 u32 calib = 0, val = 0; 626 627 if (volt_ramp == DDR_VOLTAGE_RAMPING) 628 val = DLL_CALIB_INTERVAL_DVFS / t_ck / 16 - 1; 629 else 630 val = 0; /* Disabled when voltage is stable */ 631 632 calib |= val << DLL_CALIB_INTERVAL_SHIFT; 633 calib |= DLL_CALIB_ACK_WAIT_VAL << ACK_WAIT_SHIFT; 634 635 return calib; 636 } 637 638 static u32 get_ddr_phy_ctrl_1_attilaphy_4d(const struct lpddr2_timings *timings, 639 u32 freq, u8 RL) 640 { 641 u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_ATTILAPHY, val = 0; 642 643 val = RL + DIV_ROUND_UP(timings->tDQSCK_max, t_ck) - 1; 644 phy |= val << READ_LATENCY_SHIFT_4D; 645 646 if (freq <= 100000000) 647 val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS_ATTILAPHY; 648 else if (freq <= 200000000) 649 val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ_ATTILAPHY; 650 else 651 val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ_ATTILAPHY; 652 653 phy |= val << DLL_SLAVE_DLY_CTRL_SHIFT_4D; 654 655 return phy; 656 } 657 658 static u32 get_phy_ctrl_1_intelliphy_4d5(u32 freq, u8 cl) 659 { 660 u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_INTELLIPHY, half_delay; 661 662 /* 663 * DLL operates at 266 MHz. If DDR frequency is near 266 MHz, 664 * half-delay is not needed else set half-delay 665 */ 666 if (freq >= 265000000 && freq < 267000000) 667 half_delay = 0; 668 else 669 half_delay = 1; 670 671 phy |= half_delay << DLL_HALF_DELAY_SHIFT_4D5; 672 phy |= ((cl + DIV_ROUND_UP(EMIF_PHY_TOTAL_READ_LATENCY_INTELLIPHY_PS, 673 t_ck) - 1) << READ_LATENCY_SHIFT_4D5); 674 675 return phy; 676 } 677 678 static u32 get_ext_phy_ctrl_2_intelliphy_4d5(void) 679 { 680 u32 fifo_we_slave_ratio; 681 682 fifo_we_slave_ratio = DIV_ROUND_CLOSEST( 683 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck); 684 685 return fifo_we_slave_ratio | fifo_we_slave_ratio << 11 | 686 fifo_we_slave_ratio << 22; 687 } 688 689 static u32 get_ext_phy_ctrl_3_intelliphy_4d5(void) 690 { 691 u32 fifo_we_slave_ratio; 692 693 fifo_we_slave_ratio = DIV_ROUND_CLOSEST( 694 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck); 695 696 return fifo_we_slave_ratio >> 10 | fifo_we_slave_ratio << 1 | 697 fifo_we_slave_ratio << 12 | fifo_we_slave_ratio << 23; 698 } 699 700 static u32 get_ext_phy_ctrl_4_intelliphy_4d5(void) 701 { 702 u32 fifo_we_slave_ratio; 703 704 fifo_we_slave_ratio = DIV_ROUND_CLOSEST( 705 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck); 706 707 return fifo_we_slave_ratio >> 9 | fifo_we_slave_ratio << 2 | 708 fifo_we_slave_ratio << 13; 709 } 710 711 static u32 get_pwr_mgmt_ctrl(u32 freq, struct emif_data *emif, u32 ip_rev) 712 { 713 u32 pwr_mgmt_ctrl = 0, timeout; 714 u32 lpmode = EMIF_LP_MODE_SELF_REFRESH; 715 u32 timeout_perf = EMIF_LP_MODE_TIMEOUT_PERFORMANCE; 716 u32 timeout_pwr = EMIF_LP_MODE_TIMEOUT_POWER; 717 u32 freq_threshold = EMIF_LP_MODE_FREQ_THRESHOLD; 718 719 struct emif_custom_configs *cust_cfgs = emif->plat_data->custom_configs; 720 721 if (cust_cfgs && (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE)) { 722 lpmode = cust_cfgs->lpmode; 723 timeout_perf = cust_cfgs->lpmode_timeout_performance; 724 timeout_pwr = cust_cfgs->lpmode_timeout_power; 725 freq_threshold = cust_cfgs->lpmode_freq_threshold; 726 } 727 728 /* Timeout based on DDR frequency */ 729 timeout = freq >= freq_threshold ? timeout_perf : timeout_pwr; 730 731 /* The value to be set in register is "log2(timeout) - 3" */ 732 if (timeout < 16) { 733 timeout = 0; 734 } else { 735 timeout = __fls(timeout) - 3; 736 if (timeout & (timeout - 1)) 737 timeout++; 738 } 739 740 switch (lpmode) { 741 case EMIF_LP_MODE_CLOCK_STOP: 742 pwr_mgmt_ctrl = (timeout << CS_TIM_SHIFT) | 743 SR_TIM_MASK | PD_TIM_MASK; 744 break; 745 case EMIF_LP_MODE_SELF_REFRESH: 746 /* Workaround for errata i735 */ 747 if (timeout < 6) 748 timeout = 6; 749 750 pwr_mgmt_ctrl = (timeout << SR_TIM_SHIFT) | 751 CS_TIM_MASK | PD_TIM_MASK; 752 break; 753 case EMIF_LP_MODE_PWR_DN: 754 pwr_mgmt_ctrl = (timeout << PD_TIM_SHIFT) | 755 CS_TIM_MASK | SR_TIM_MASK; 756 break; 757 case EMIF_LP_MODE_DISABLE: 758 default: 759 pwr_mgmt_ctrl = CS_TIM_MASK | 760 PD_TIM_MASK | SR_TIM_MASK; 761 } 762 763 /* No CS_TIM in EMIF_4D5 */ 764 if (ip_rev == EMIF_4D5) 765 pwr_mgmt_ctrl &= ~CS_TIM_MASK; 766 767 pwr_mgmt_ctrl |= lpmode << LP_MODE_SHIFT; 768 769 return pwr_mgmt_ctrl; 770 } 771 772 /* 773 * Get the temperature level of the EMIF instance: 774 * Reads the MR4 register of attached SDRAM parts to find out the temperature 775 * level. If there are two parts attached(one on each CS), then the temperature 776 * level for the EMIF instance is the higher of the two temperatures. 777 */ 778 static void get_temperature_level(struct emif_data *emif) 779 { 780 u32 temp, temperature_level; 781 void __iomem *base; 782 783 base = emif->base; 784 785 /* Read mode register 4 */ 786 writel(DDR_MR4, base + EMIF_LPDDR2_MODE_REG_CONFIG); 787 temperature_level = readl(base + EMIF_LPDDR2_MODE_REG_DATA); 788 temperature_level = (temperature_level & MR4_SDRAM_REF_RATE_MASK) >> 789 MR4_SDRAM_REF_RATE_SHIFT; 790 791 if (emif->plat_data->device_info->cs1_used) { 792 writel(DDR_MR4 | CS_MASK, base + EMIF_LPDDR2_MODE_REG_CONFIG); 793 temp = readl(base + EMIF_LPDDR2_MODE_REG_DATA); 794 temp = (temp & MR4_SDRAM_REF_RATE_MASK) 795 >> MR4_SDRAM_REF_RATE_SHIFT; 796 temperature_level = max(temp, temperature_level); 797 } 798 799 /* treat everything less than nominal(3) in MR4 as nominal */ 800 if (unlikely(temperature_level < SDRAM_TEMP_NOMINAL)) 801 temperature_level = SDRAM_TEMP_NOMINAL; 802 803 /* if we get reserved value in MR4 persist with the existing value */ 804 if (likely(temperature_level != SDRAM_TEMP_RESERVED_4)) 805 emif->temperature_level = temperature_level; 806 } 807 808 /* 809 * Program EMIF shadow registers that are not dependent on temperature 810 * or voltage 811 */ 812 static void setup_registers(struct emif_data *emif, struct emif_regs *regs) 813 { 814 void __iomem *base = emif->base; 815 816 writel(regs->sdram_tim2_shdw, base + EMIF_SDRAM_TIMING_2_SHDW); 817 writel(regs->phy_ctrl_1_shdw, base + EMIF_DDR_PHY_CTRL_1_SHDW); 818 819 /* Settings specific for EMIF4D5 */ 820 if (emif->plat_data->ip_rev != EMIF_4D5) 821 return; 822 writel(regs->ext_phy_ctrl_2_shdw, base + EMIF_EXT_PHY_CTRL_2_SHDW); 823 writel(regs->ext_phy_ctrl_3_shdw, base + EMIF_EXT_PHY_CTRL_3_SHDW); 824 writel(regs->ext_phy_ctrl_4_shdw, base + EMIF_EXT_PHY_CTRL_4_SHDW); 825 } 826 827 /* 828 * When voltage ramps dll calibration and forced read idle should 829 * happen more often 830 */ 831 static void setup_volt_sensitive_regs(struct emif_data *emif, 832 struct emif_regs *regs, u32 volt_state) 833 { 834 u32 calib_ctrl; 835 void __iomem *base = emif->base; 836 837 /* 838 * EMIF_READ_IDLE_CTRL in EMIF4D refers to the same register as 839 * EMIF_DLL_CALIB_CTRL in EMIF4D5 and dll_calib_ctrl_shadow_* 840 * is an alias of the respective read_idle_ctrl_shdw_* (members of 841 * a union). So, the below code takes care of both cases 842 */ 843 if (volt_state == DDR_VOLTAGE_RAMPING) 844 calib_ctrl = regs->dll_calib_ctrl_shdw_volt_ramp; 845 else 846 calib_ctrl = regs->dll_calib_ctrl_shdw_normal; 847 848 writel(calib_ctrl, base + EMIF_DLL_CALIB_CTRL_SHDW); 849 } 850 851 /* 852 * setup_temperature_sensitive_regs() - set the timings for temperature 853 * sensitive registers. This happens once at initialisation time based 854 * on the temperature at boot time and subsequently based on the temperature 855 * alert interrupt. Temperature alert can happen when the temperature 856 * increases or drops. So this function can have the effect of either 857 * derating the timings or going back to nominal values. 858 */ 859 static void setup_temperature_sensitive_regs(struct emif_data *emif, 860 struct emif_regs *regs) 861 { 862 u32 tim1, tim3, ref_ctrl, type; 863 void __iomem *base = emif->base; 864 u32 temperature; 865 866 type = emif->plat_data->device_info->type; 867 868 tim1 = regs->sdram_tim1_shdw; 869 tim3 = regs->sdram_tim3_shdw; 870 ref_ctrl = regs->ref_ctrl_shdw; 871 872 /* No de-rating for non-lpddr2 devices */ 873 if (type != DDR_TYPE_LPDDR2_S2 && type != DDR_TYPE_LPDDR2_S4) 874 goto out; 875 876 temperature = emif->temperature_level; 877 if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH) { 878 ref_ctrl = regs->ref_ctrl_shdw_derated; 879 } else if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH_AND_TIMINGS) { 880 tim1 = regs->sdram_tim1_shdw_derated; 881 tim3 = regs->sdram_tim3_shdw_derated; 882 ref_ctrl = regs->ref_ctrl_shdw_derated; 883 } 884 885 out: 886 writel(tim1, base + EMIF_SDRAM_TIMING_1_SHDW); 887 writel(tim3, base + EMIF_SDRAM_TIMING_3_SHDW); 888 writel(ref_ctrl, base + EMIF_SDRAM_REFRESH_CTRL_SHDW); 889 } 890 891 static irqreturn_t handle_temp_alert(void __iomem *base, struct emif_data *emif) 892 { 893 u32 old_temp_level; 894 irqreturn_t ret = IRQ_HANDLED; 895 896 spin_lock_irqsave(&emif_lock, irq_state); 897 old_temp_level = emif->temperature_level; 898 get_temperature_level(emif); 899 900 if (unlikely(emif->temperature_level == old_temp_level)) { 901 goto out; 902 } else if (!emif->curr_regs) { 903 dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n"); 904 goto out; 905 } 906 907 if (emif->temperature_level < old_temp_level || 908 emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) { 909 /* 910 * Temperature coming down - defer handling to thread OR 911 * Temperature far too high - do kernel_power_off() from 912 * thread context 913 */ 914 ret = IRQ_WAKE_THREAD; 915 } else { 916 /* Temperature is going up - handle immediately */ 917 setup_temperature_sensitive_regs(emif, emif->curr_regs); 918 do_freq_update(); 919 } 920 921 out: 922 spin_unlock_irqrestore(&emif_lock, irq_state); 923 return ret; 924 } 925 926 static irqreturn_t emif_interrupt_handler(int irq, void *dev_id) 927 { 928 u32 interrupts; 929 struct emif_data *emif = dev_id; 930 void __iomem *base = emif->base; 931 struct device *dev = emif->dev; 932 irqreturn_t ret = IRQ_HANDLED; 933 934 /* Save the status and clear it */ 935 interrupts = readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS); 936 writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS); 937 938 /* 939 * Handle temperature alert 940 * Temperature alert should be same for all ports 941 * So, it's enough to process it only for one of the ports 942 */ 943 if (interrupts & TA_SYS_MASK) 944 ret = handle_temp_alert(base, emif); 945 946 if (interrupts & ERR_SYS_MASK) 947 dev_err(dev, "Access error from SYS port - %x\n", interrupts); 948 949 if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) { 950 /* Save the status and clear it */ 951 interrupts = readl(base + EMIF_LL_OCP_INTERRUPT_STATUS); 952 writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_STATUS); 953 954 if (interrupts & ERR_LL_MASK) 955 dev_err(dev, "Access error from LL port - %x\n", 956 interrupts); 957 } 958 959 return ret; 960 } 961 962 static irqreturn_t emif_threaded_isr(int irq, void *dev_id) 963 { 964 struct emif_data *emif = dev_id; 965 966 if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) { 967 dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n"); 968 kernel_power_off(); 969 return IRQ_HANDLED; 970 } 971 972 spin_lock_irqsave(&emif_lock, irq_state); 973 974 if (emif->curr_regs) { 975 setup_temperature_sensitive_regs(emif, emif->curr_regs); 976 do_freq_update(); 977 } else { 978 dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n"); 979 } 980 981 spin_unlock_irqrestore(&emif_lock, irq_state); 982 983 return IRQ_HANDLED; 984 } 985 986 static void clear_all_interrupts(struct emif_data *emif) 987 { 988 void __iomem *base = emif->base; 989 990 writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS), 991 base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS); 992 if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) 993 writel(readl(base + EMIF_LL_OCP_INTERRUPT_STATUS), 994 base + EMIF_LL_OCP_INTERRUPT_STATUS); 995 } 996 997 static void disable_and_clear_all_interrupts(struct emif_data *emif) 998 { 999 void __iomem *base = emif->base; 1000 1001 /* Disable all interrupts */ 1002 writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET), 1003 base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_CLEAR); 1004 if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) 1005 writel(readl(base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET), 1006 base + EMIF_LL_OCP_INTERRUPT_ENABLE_CLEAR); 1007 1008 /* Clear all interrupts */ 1009 clear_all_interrupts(emif); 1010 } 1011 1012 static int __init_or_module setup_interrupts(struct emif_data *emif, u32 irq) 1013 { 1014 u32 interrupts, type; 1015 void __iomem *base = emif->base; 1016 1017 type = emif->plat_data->device_info->type; 1018 1019 clear_all_interrupts(emif); 1020 1021 /* Enable interrupts for SYS interface */ 1022 interrupts = EN_ERR_SYS_MASK; 1023 if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) 1024 interrupts |= EN_TA_SYS_MASK; 1025 writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET); 1026 1027 /* Enable interrupts for LL interface */ 1028 if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) { 1029 /* TA need not be enabled for LL */ 1030 interrupts = EN_ERR_LL_MASK; 1031 writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET); 1032 } 1033 1034 /* setup IRQ handlers */ 1035 return devm_request_threaded_irq(emif->dev, irq, 1036 emif_interrupt_handler, 1037 emif_threaded_isr, 1038 0, dev_name(emif->dev), 1039 emif); 1040 1041 } 1042 1043 static void __init_or_module emif_onetime_settings(struct emif_data *emif) 1044 { 1045 u32 pwr_mgmt_ctrl, zq, temp_alert_cfg; 1046 void __iomem *base = emif->base; 1047 const struct lpddr2_addressing *addressing; 1048 const struct ddr_device_info *device_info; 1049 1050 device_info = emif->plat_data->device_info; 1051 addressing = get_addressing_table(device_info); 1052 1053 /* 1054 * Init power management settings 1055 * We don't know the frequency yet. Use a high frequency 1056 * value for a conservative timeout setting 1057 */ 1058 pwr_mgmt_ctrl = get_pwr_mgmt_ctrl(1000000000, emif, 1059 emif->plat_data->ip_rev); 1060 emif->lpmode = (pwr_mgmt_ctrl & LP_MODE_MASK) >> LP_MODE_SHIFT; 1061 writel(pwr_mgmt_ctrl, base + EMIF_POWER_MANAGEMENT_CONTROL); 1062 1063 /* Init ZQ calibration settings */ 1064 zq = get_zq_config_reg(addressing, device_info->cs1_used, 1065 device_info->cal_resistors_per_cs); 1066 writel(zq, base + EMIF_SDRAM_OUTPUT_IMPEDANCE_CALIBRATION_CONFIG); 1067 1068 /* Check temperature level temperature level*/ 1069 get_temperature_level(emif); 1070 if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) 1071 dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n"); 1072 1073 /* Init temperature polling */ 1074 temp_alert_cfg = get_temp_alert_config(addressing, 1075 emif->plat_data->custom_configs, device_info->cs1_used, 1076 device_info->io_width, get_emif_bus_width(emif)); 1077 writel(temp_alert_cfg, base + EMIF_TEMPERATURE_ALERT_CONFIG); 1078 1079 /* 1080 * Program external PHY control registers that are not frequency 1081 * dependent 1082 */ 1083 if (emif->plat_data->phy_type != EMIF_PHY_TYPE_INTELLIPHY) 1084 return; 1085 writel(EMIF_EXT_PHY_CTRL_1_VAL, base + EMIF_EXT_PHY_CTRL_1_SHDW); 1086 writel(EMIF_EXT_PHY_CTRL_5_VAL, base + EMIF_EXT_PHY_CTRL_5_SHDW); 1087 writel(EMIF_EXT_PHY_CTRL_6_VAL, base + EMIF_EXT_PHY_CTRL_6_SHDW); 1088 writel(EMIF_EXT_PHY_CTRL_7_VAL, base + EMIF_EXT_PHY_CTRL_7_SHDW); 1089 writel(EMIF_EXT_PHY_CTRL_8_VAL, base + EMIF_EXT_PHY_CTRL_8_SHDW); 1090 writel(EMIF_EXT_PHY_CTRL_9_VAL, base + EMIF_EXT_PHY_CTRL_9_SHDW); 1091 writel(EMIF_EXT_PHY_CTRL_10_VAL, base + EMIF_EXT_PHY_CTRL_10_SHDW); 1092 writel(EMIF_EXT_PHY_CTRL_11_VAL, base + EMIF_EXT_PHY_CTRL_11_SHDW); 1093 writel(EMIF_EXT_PHY_CTRL_12_VAL, base + EMIF_EXT_PHY_CTRL_12_SHDW); 1094 writel(EMIF_EXT_PHY_CTRL_13_VAL, base + EMIF_EXT_PHY_CTRL_13_SHDW); 1095 writel(EMIF_EXT_PHY_CTRL_14_VAL, base + EMIF_EXT_PHY_CTRL_14_SHDW); 1096 writel(EMIF_EXT_PHY_CTRL_15_VAL, base + EMIF_EXT_PHY_CTRL_15_SHDW); 1097 writel(EMIF_EXT_PHY_CTRL_16_VAL, base + EMIF_EXT_PHY_CTRL_16_SHDW); 1098 writel(EMIF_EXT_PHY_CTRL_17_VAL, base + EMIF_EXT_PHY_CTRL_17_SHDW); 1099 writel(EMIF_EXT_PHY_CTRL_18_VAL, base + EMIF_EXT_PHY_CTRL_18_SHDW); 1100 writel(EMIF_EXT_PHY_CTRL_19_VAL, base + EMIF_EXT_PHY_CTRL_19_SHDW); 1101 writel(EMIF_EXT_PHY_CTRL_20_VAL, base + EMIF_EXT_PHY_CTRL_20_SHDW); 1102 writel(EMIF_EXT_PHY_CTRL_21_VAL, base + EMIF_EXT_PHY_CTRL_21_SHDW); 1103 writel(EMIF_EXT_PHY_CTRL_22_VAL, base + EMIF_EXT_PHY_CTRL_22_SHDW); 1104 writel(EMIF_EXT_PHY_CTRL_23_VAL, base + EMIF_EXT_PHY_CTRL_23_SHDW); 1105 writel(EMIF_EXT_PHY_CTRL_24_VAL, base + EMIF_EXT_PHY_CTRL_24_SHDW); 1106 } 1107 1108 static void get_default_timings(struct emif_data *emif) 1109 { 1110 struct emif_platform_data *pd = emif->plat_data; 1111 1112 pd->timings = lpddr2_jedec_timings; 1113 pd->timings_arr_size = ARRAY_SIZE(lpddr2_jedec_timings); 1114 1115 dev_warn(emif->dev, "%s: using default timings\n", __func__); 1116 } 1117 1118 static int is_dev_data_valid(u32 type, u32 density, u32 io_width, u32 phy_type, 1119 u32 ip_rev, struct device *dev) 1120 { 1121 int valid; 1122 1123 valid = (type == DDR_TYPE_LPDDR2_S4 || 1124 type == DDR_TYPE_LPDDR2_S2) 1125 && (density >= DDR_DENSITY_64Mb 1126 && density <= DDR_DENSITY_8Gb) 1127 && (io_width >= DDR_IO_WIDTH_8 1128 && io_width <= DDR_IO_WIDTH_32); 1129 1130 /* Combinations of EMIF and PHY revisions that we support today */ 1131 switch (ip_rev) { 1132 case EMIF_4D: 1133 valid = valid && (phy_type == EMIF_PHY_TYPE_ATTILAPHY); 1134 break; 1135 case EMIF_4D5: 1136 valid = valid && (phy_type == EMIF_PHY_TYPE_INTELLIPHY); 1137 break; 1138 default: 1139 valid = 0; 1140 } 1141 1142 if (!valid) 1143 dev_err(dev, "%s: invalid DDR details\n", __func__); 1144 return valid; 1145 } 1146 1147 static int is_custom_config_valid(struct emif_custom_configs *cust_cfgs, 1148 struct device *dev) 1149 { 1150 int valid = 1; 1151 1152 if ((cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE) && 1153 (cust_cfgs->lpmode != EMIF_LP_MODE_DISABLE)) 1154 valid = cust_cfgs->lpmode_freq_threshold && 1155 cust_cfgs->lpmode_timeout_performance && 1156 cust_cfgs->lpmode_timeout_power; 1157 1158 if (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL) 1159 valid = valid && cust_cfgs->temp_alert_poll_interval_ms; 1160 1161 if (!valid) 1162 dev_warn(dev, "%s: invalid custom configs\n", __func__); 1163 1164 return valid; 1165 } 1166 1167 #if defined(CONFIG_OF) 1168 static void __init_or_module of_get_custom_configs(struct device_node *np_emif, 1169 struct emif_data *emif) 1170 { 1171 struct emif_custom_configs *cust_cfgs = NULL; 1172 int len; 1173 const int *lpmode, *poll_intvl; 1174 1175 lpmode = of_get_property(np_emif, "low-power-mode", &len); 1176 poll_intvl = of_get_property(np_emif, "temp-alert-poll-interval", &len); 1177 1178 if (lpmode || poll_intvl) 1179 cust_cfgs = devm_kzalloc(emif->dev, sizeof(*cust_cfgs), 1180 GFP_KERNEL); 1181 1182 if (!cust_cfgs) 1183 return; 1184 1185 if (lpmode) { 1186 cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_LPMODE; 1187 cust_cfgs->lpmode = *lpmode; 1188 of_property_read_u32(np_emif, 1189 "low-power-mode-timeout-performance", 1190 &cust_cfgs->lpmode_timeout_performance); 1191 of_property_read_u32(np_emif, 1192 "low-power-mode-timeout-power", 1193 &cust_cfgs->lpmode_timeout_power); 1194 of_property_read_u32(np_emif, 1195 "low-power-mode-freq-threshold", 1196 &cust_cfgs->lpmode_freq_threshold); 1197 } 1198 1199 if (poll_intvl) { 1200 cust_cfgs->mask |= 1201 EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL; 1202 cust_cfgs->temp_alert_poll_interval_ms = *poll_intvl; 1203 } 1204 1205 if (!is_custom_config_valid(cust_cfgs, emif->dev)) { 1206 devm_kfree(emif->dev, cust_cfgs); 1207 return; 1208 } 1209 1210 emif->plat_data->custom_configs = cust_cfgs; 1211 } 1212 1213 static void __init_or_module of_get_ddr_info(struct device_node *np_emif, 1214 struct device_node *np_ddr, 1215 struct ddr_device_info *dev_info) 1216 { 1217 u32 density = 0, io_width = 0; 1218 int len; 1219 1220 if (of_find_property(np_emif, "cs1-used", &len)) 1221 dev_info->cs1_used = true; 1222 1223 if (of_find_property(np_emif, "cal-resistor-per-cs", &len)) 1224 dev_info->cal_resistors_per_cs = true; 1225 1226 if (of_device_is_compatible(np_ddr , "jedec,lpddr2-s4")) 1227 dev_info->type = DDR_TYPE_LPDDR2_S4; 1228 else if (of_device_is_compatible(np_ddr , "jedec,lpddr2-s2")) 1229 dev_info->type = DDR_TYPE_LPDDR2_S2; 1230 1231 of_property_read_u32(np_ddr, "density", &density); 1232 of_property_read_u32(np_ddr, "io-width", &io_width); 1233 1234 /* Convert from density in Mb to the density encoding in jedc_ddr.h */ 1235 if (density & (density - 1)) 1236 dev_info->density = 0; 1237 else 1238 dev_info->density = __fls(density) - 5; 1239 1240 /* Convert from io_width in bits to io_width encoding in jedc_ddr.h */ 1241 if (io_width & (io_width - 1)) 1242 dev_info->io_width = 0; 1243 else 1244 dev_info->io_width = __fls(io_width) - 1; 1245 } 1246 1247 static struct emif_data * __init_or_module of_get_memory_device_details( 1248 struct device_node *np_emif, struct device *dev) 1249 { 1250 struct emif_data *emif = NULL; 1251 struct ddr_device_info *dev_info = NULL; 1252 struct emif_platform_data *pd = NULL; 1253 struct device_node *np_ddr; 1254 int len; 1255 1256 np_ddr = of_parse_phandle(np_emif, "device-handle", 0); 1257 if (!np_ddr) 1258 goto error; 1259 emif = devm_kzalloc(dev, sizeof(struct emif_data), GFP_KERNEL); 1260 pd = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL); 1261 dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL); 1262 1263 if (!emif || !pd || !dev_info) { 1264 dev_err(dev, "%s: Out of memory!!\n", 1265 __func__); 1266 goto error; 1267 } 1268 1269 emif->plat_data = pd; 1270 pd->device_info = dev_info; 1271 emif->dev = dev; 1272 emif->np_ddr = np_ddr; 1273 emif->temperature_level = SDRAM_TEMP_NOMINAL; 1274 1275 if (of_device_is_compatible(np_emif, "ti,emif-4d")) 1276 emif->plat_data->ip_rev = EMIF_4D; 1277 else if (of_device_is_compatible(np_emif, "ti,emif-4d5")) 1278 emif->plat_data->ip_rev = EMIF_4D5; 1279 1280 of_property_read_u32(np_emif, "phy-type", &pd->phy_type); 1281 1282 if (of_find_property(np_emif, "hw-caps-ll-interface", &len)) 1283 pd->hw_caps |= EMIF_HW_CAPS_LL_INTERFACE; 1284 1285 of_get_ddr_info(np_emif, np_ddr, dev_info); 1286 if (!is_dev_data_valid(pd->device_info->type, pd->device_info->density, 1287 pd->device_info->io_width, pd->phy_type, pd->ip_rev, 1288 emif->dev)) { 1289 dev_err(dev, "%s: invalid device data!!\n", __func__); 1290 goto error; 1291 } 1292 /* 1293 * For EMIF instances other than EMIF1 see if the devices connected 1294 * are exactly same as on EMIF1(which is typically the case). If so, 1295 * mark it as a duplicate of EMIF1. This will save some memory and 1296 * computation. 1297 */ 1298 if (emif1 && emif1->np_ddr == np_ddr) { 1299 emif->duplicate = true; 1300 goto out; 1301 } else if (emif1) { 1302 dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n", 1303 __func__); 1304 } 1305 1306 of_get_custom_configs(np_emif, emif); 1307 emif->plat_data->timings = of_get_ddr_timings(np_ddr, emif->dev, 1308 emif->plat_data->device_info->type, 1309 &emif->plat_data->timings_arr_size); 1310 1311 emif->plat_data->min_tck = of_get_min_tck(np_ddr, emif->dev); 1312 goto out; 1313 1314 error: 1315 return NULL; 1316 out: 1317 return emif; 1318 } 1319 1320 #else 1321 1322 static struct emif_data * __init_or_module of_get_memory_device_details( 1323 struct device_node *np_emif, struct device *dev) 1324 { 1325 return NULL; 1326 } 1327 #endif 1328 1329 static struct emif_data *__init_or_module get_device_details( 1330 struct platform_device *pdev) 1331 { 1332 u32 size; 1333 struct emif_data *emif = NULL; 1334 struct ddr_device_info *dev_info; 1335 struct emif_custom_configs *cust_cfgs; 1336 struct emif_platform_data *pd; 1337 struct device *dev; 1338 void *temp; 1339 1340 pd = pdev->dev.platform_data; 1341 dev = &pdev->dev; 1342 1343 if (!(pd && pd->device_info && is_dev_data_valid(pd->device_info->type, 1344 pd->device_info->density, pd->device_info->io_width, 1345 pd->phy_type, pd->ip_rev, dev))) { 1346 dev_err(dev, "%s: invalid device data\n", __func__); 1347 goto error; 1348 } 1349 1350 emif = devm_kzalloc(dev, sizeof(*emif), GFP_KERNEL); 1351 temp = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL); 1352 dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL); 1353 1354 if (!emif || !pd || !dev_info) { 1355 dev_err(dev, "%s:%d: allocation error\n", __func__, __LINE__); 1356 goto error; 1357 } 1358 1359 memcpy(temp, pd, sizeof(*pd)); 1360 pd = temp; 1361 memcpy(dev_info, pd->device_info, sizeof(*dev_info)); 1362 1363 pd->device_info = dev_info; 1364 emif->plat_data = pd; 1365 emif->dev = dev; 1366 emif->temperature_level = SDRAM_TEMP_NOMINAL; 1367 1368 /* 1369 * For EMIF instances other than EMIF1 see if the devices connected 1370 * are exactly same as on EMIF1(which is typically the case). If so, 1371 * mark it as a duplicate of EMIF1 and skip copying timings data. 1372 * This will save some memory and some computation later. 1373 */ 1374 emif->duplicate = emif1 && (memcmp(dev_info, 1375 emif1->plat_data->device_info, 1376 sizeof(struct ddr_device_info)) == 0); 1377 1378 if (emif->duplicate) { 1379 pd->timings = NULL; 1380 pd->min_tck = NULL; 1381 goto out; 1382 } else if (emif1) { 1383 dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n", 1384 __func__); 1385 } 1386 1387 /* 1388 * Copy custom configs - ignore allocation error, if any, as 1389 * custom_configs is not very critical 1390 */ 1391 cust_cfgs = pd->custom_configs; 1392 if (cust_cfgs && is_custom_config_valid(cust_cfgs, dev)) { 1393 temp = devm_kzalloc(dev, sizeof(*cust_cfgs), GFP_KERNEL); 1394 if (temp) 1395 memcpy(temp, cust_cfgs, sizeof(*cust_cfgs)); 1396 else 1397 dev_warn(dev, "%s:%d: allocation error\n", __func__, 1398 __LINE__); 1399 pd->custom_configs = temp; 1400 } 1401 1402 /* 1403 * Copy timings and min-tck values from platform data. If it is not 1404 * available or if memory allocation fails, use JEDEC defaults 1405 */ 1406 size = sizeof(struct lpddr2_timings) * pd->timings_arr_size; 1407 if (pd->timings) { 1408 temp = devm_kzalloc(dev, size, GFP_KERNEL); 1409 if (temp) { 1410 memcpy(temp, pd->timings, sizeof(*pd->timings)); 1411 pd->timings = temp; 1412 } else { 1413 dev_warn(dev, "%s:%d: allocation error\n", __func__, 1414 __LINE__); 1415 get_default_timings(emif); 1416 } 1417 } else { 1418 get_default_timings(emif); 1419 } 1420 1421 if (pd->min_tck) { 1422 temp = devm_kzalloc(dev, sizeof(*pd->min_tck), GFP_KERNEL); 1423 if (temp) { 1424 memcpy(temp, pd->min_tck, sizeof(*pd->min_tck)); 1425 pd->min_tck = temp; 1426 } else { 1427 dev_warn(dev, "%s:%d: allocation error\n", __func__, 1428 __LINE__); 1429 pd->min_tck = &lpddr2_jedec_min_tck; 1430 } 1431 } else { 1432 pd->min_tck = &lpddr2_jedec_min_tck; 1433 } 1434 1435 out: 1436 return emif; 1437 1438 error: 1439 return NULL; 1440 } 1441 1442 static int __init_or_module emif_probe(struct platform_device *pdev) 1443 { 1444 struct emif_data *emif; 1445 struct resource *res; 1446 int irq; 1447 1448 if (pdev->dev.of_node) 1449 emif = of_get_memory_device_details(pdev->dev.of_node, &pdev->dev); 1450 else 1451 emif = get_device_details(pdev); 1452 1453 if (!emif) { 1454 pr_err("%s: error getting device data\n", __func__); 1455 goto error; 1456 } 1457 1458 list_add(&emif->node, &device_list); 1459 emif->addressing = get_addressing_table(emif->plat_data->device_info); 1460 1461 /* Save pointers to each other in emif and device structures */ 1462 emif->dev = &pdev->dev; 1463 platform_set_drvdata(pdev, emif); 1464 1465 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1466 if (!res) { 1467 dev_err(emif->dev, "%s: error getting memory resource\n", 1468 __func__); 1469 goto error; 1470 } 1471 1472 emif->base = devm_ioremap_resource(emif->dev, res); 1473 if (IS_ERR(emif->base)) 1474 goto error; 1475 1476 irq = platform_get_irq(pdev, 0); 1477 if (irq < 0) { 1478 dev_err(emif->dev, "%s: error getting IRQ resource - %d\n", 1479 __func__, irq); 1480 goto error; 1481 } 1482 1483 emif_onetime_settings(emif); 1484 emif_debugfs_init(emif); 1485 disable_and_clear_all_interrupts(emif); 1486 setup_interrupts(emif, irq); 1487 1488 /* One-time actions taken on probing the first device */ 1489 if (!emif1) { 1490 emif1 = emif; 1491 spin_lock_init(&emif_lock); 1492 1493 /* 1494 * TODO: register notifiers for frequency and voltage 1495 * change here once the respective frameworks are 1496 * available 1497 */ 1498 } 1499 1500 dev_info(&pdev->dev, "%s: device configured with addr = %p and IRQ%d\n", 1501 __func__, emif->base, irq); 1502 1503 return 0; 1504 error: 1505 return -ENODEV; 1506 } 1507 1508 static int __exit emif_remove(struct platform_device *pdev) 1509 { 1510 struct emif_data *emif = platform_get_drvdata(pdev); 1511 1512 emif_debugfs_exit(emif); 1513 1514 return 0; 1515 } 1516 1517 static void emif_shutdown(struct platform_device *pdev) 1518 { 1519 struct emif_data *emif = platform_get_drvdata(pdev); 1520 1521 disable_and_clear_all_interrupts(emif); 1522 } 1523 1524 static int get_emif_reg_values(struct emif_data *emif, u32 freq, 1525 struct emif_regs *regs) 1526 { 1527 u32 cs1_used, ip_rev, phy_type; 1528 u32 cl, type; 1529 const struct lpddr2_timings *timings; 1530 const struct lpddr2_min_tck *min_tck; 1531 const struct ddr_device_info *device_info; 1532 const struct lpddr2_addressing *addressing; 1533 struct emif_data *emif_for_calc; 1534 struct device *dev; 1535 const struct emif_custom_configs *custom_configs; 1536 1537 dev = emif->dev; 1538 /* 1539 * If the devices on this EMIF instance is duplicate of EMIF1, 1540 * use EMIF1 details for the calculation 1541 */ 1542 emif_for_calc = emif->duplicate ? emif1 : emif; 1543 timings = get_timings_table(emif_for_calc, freq); 1544 addressing = emif_for_calc->addressing; 1545 if (!timings || !addressing) { 1546 dev_err(dev, "%s: not enough data available for %dHz", 1547 __func__, freq); 1548 return -1; 1549 } 1550 1551 device_info = emif_for_calc->plat_data->device_info; 1552 type = device_info->type; 1553 cs1_used = device_info->cs1_used; 1554 ip_rev = emif_for_calc->plat_data->ip_rev; 1555 phy_type = emif_for_calc->plat_data->phy_type; 1556 1557 min_tck = emif_for_calc->plat_data->min_tck; 1558 custom_configs = emif_for_calc->plat_data->custom_configs; 1559 1560 set_ddr_clk_period(freq); 1561 1562 regs->ref_ctrl_shdw = get_sdram_ref_ctrl_shdw(freq, addressing); 1563 regs->sdram_tim1_shdw = get_sdram_tim_1_shdw(timings, min_tck, 1564 addressing); 1565 regs->sdram_tim2_shdw = get_sdram_tim_2_shdw(timings, min_tck, 1566 addressing, type); 1567 regs->sdram_tim3_shdw = get_sdram_tim_3_shdw(timings, min_tck, 1568 addressing, type, ip_rev, EMIF_NORMAL_TIMINGS); 1569 1570 cl = get_cl(emif); 1571 1572 if (phy_type == EMIF_PHY_TYPE_ATTILAPHY && ip_rev == EMIF_4D) { 1573 regs->phy_ctrl_1_shdw = get_ddr_phy_ctrl_1_attilaphy_4d( 1574 timings, freq, cl); 1575 } else if (phy_type == EMIF_PHY_TYPE_INTELLIPHY && ip_rev == EMIF_4D5) { 1576 regs->phy_ctrl_1_shdw = get_phy_ctrl_1_intelliphy_4d5(freq, cl); 1577 regs->ext_phy_ctrl_2_shdw = get_ext_phy_ctrl_2_intelliphy_4d5(); 1578 regs->ext_phy_ctrl_3_shdw = get_ext_phy_ctrl_3_intelliphy_4d5(); 1579 regs->ext_phy_ctrl_4_shdw = get_ext_phy_ctrl_4_intelliphy_4d5(); 1580 } else { 1581 return -1; 1582 } 1583 1584 /* Only timeout values in pwr_mgmt_ctrl_shdw register */ 1585 regs->pwr_mgmt_ctrl_shdw = 1586 get_pwr_mgmt_ctrl(freq, emif_for_calc, ip_rev) & 1587 (CS_TIM_MASK | SR_TIM_MASK | PD_TIM_MASK); 1588 1589 if (ip_rev & EMIF_4D) { 1590 regs->read_idle_ctrl_shdw_normal = 1591 get_read_idle_ctrl_shdw(DDR_VOLTAGE_STABLE); 1592 1593 regs->read_idle_ctrl_shdw_volt_ramp = 1594 get_read_idle_ctrl_shdw(DDR_VOLTAGE_RAMPING); 1595 } else if (ip_rev & EMIF_4D5) { 1596 regs->dll_calib_ctrl_shdw_normal = 1597 get_dll_calib_ctrl_shdw(DDR_VOLTAGE_STABLE); 1598 1599 regs->dll_calib_ctrl_shdw_volt_ramp = 1600 get_dll_calib_ctrl_shdw(DDR_VOLTAGE_RAMPING); 1601 } 1602 1603 if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) { 1604 regs->ref_ctrl_shdw_derated = get_sdram_ref_ctrl_shdw(freq / 4, 1605 addressing); 1606 1607 regs->sdram_tim1_shdw_derated = 1608 get_sdram_tim_1_shdw_derated(timings, min_tck, 1609 addressing); 1610 1611 regs->sdram_tim3_shdw_derated = get_sdram_tim_3_shdw(timings, 1612 min_tck, addressing, type, ip_rev, 1613 EMIF_DERATED_TIMINGS); 1614 } 1615 1616 regs->freq = freq; 1617 1618 return 0; 1619 } 1620 1621 /* 1622 * get_regs() - gets the cached emif_regs structure for a given EMIF instance 1623 * given frequency(freq): 1624 * 1625 * As an optimisation, every EMIF instance other than EMIF1 shares the 1626 * register cache with EMIF1 if the devices connected on this instance 1627 * are same as that on EMIF1(indicated by the duplicate flag) 1628 * 1629 * If we do not have an entry corresponding to the frequency given, we 1630 * allocate a new entry and calculate the values 1631 * 1632 * Upon finding the right reg dump, save it in curr_regs. It can be 1633 * directly used for thermal de-rating and voltage ramping changes. 1634 */ 1635 static struct emif_regs *get_regs(struct emif_data *emif, u32 freq) 1636 { 1637 int i; 1638 struct emif_regs **regs_cache; 1639 struct emif_regs *regs = NULL; 1640 struct device *dev; 1641 1642 dev = emif->dev; 1643 if (emif->curr_regs && emif->curr_regs->freq == freq) { 1644 dev_dbg(dev, "%s: using curr_regs - %u Hz", __func__, freq); 1645 return emif->curr_regs; 1646 } 1647 1648 if (emif->duplicate) 1649 regs_cache = emif1->regs_cache; 1650 else 1651 regs_cache = emif->regs_cache; 1652 1653 for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) { 1654 if (regs_cache[i]->freq == freq) { 1655 regs = regs_cache[i]; 1656 dev_dbg(dev, 1657 "%s: reg dump found in reg cache for %u Hz\n", 1658 __func__, freq); 1659 break; 1660 } 1661 } 1662 1663 /* 1664 * If we don't have an entry for this frequency in the cache create one 1665 * and calculate the values 1666 */ 1667 if (!regs) { 1668 regs = devm_kzalloc(emif->dev, sizeof(*regs), GFP_ATOMIC); 1669 if (!regs) 1670 return NULL; 1671 1672 if (get_emif_reg_values(emif, freq, regs)) { 1673 devm_kfree(emif->dev, regs); 1674 return NULL; 1675 } 1676 1677 /* 1678 * Now look for an un-used entry in the cache and save the 1679 * newly created struct. If there are no free entries 1680 * over-write the last entry 1681 */ 1682 for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) 1683 ; 1684 1685 if (i >= EMIF_MAX_NUM_FREQUENCIES) { 1686 dev_warn(dev, "%s: regs_cache full - reusing a slot!!\n", 1687 __func__); 1688 i = EMIF_MAX_NUM_FREQUENCIES - 1; 1689 devm_kfree(emif->dev, regs_cache[i]); 1690 } 1691 regs_cache[i] = regs; 1692 } 1693 1694 return regs; 1695 } 1696 1697 static void do_volt_notify_handling(struct emif_data *emif, u32 volt_state) 1698 { 1699 dev_dbg(emif->dev, "%s: voltage notification : %d", __func__, 1700 volt_state); 1701 1702 if (!emif->curr_regs) { 1703 dev_err(emif->dev, 1704 "%s: volt-notify before registers are ready: %d\n", 1705 __func__, volt_state); 1706 return; 1707 } 1708 1709 setup_volt_sensitive_regs(emif, emif->curr_regs, volt_state); 1710 } 1711 1712 /* 1713 * TODO: voltage notify handling should be hooked up to 1714 * regulator framework as soon as the necessary support 1715 * is available in mainline kernel. This function is un-used 1716 * right now. 1717 */ 1718 static void __attribute__((unused)) volt_notify_handling(u32 volt_state) 1719 { 1720 struct emif_data *emif; 1721 1722 spin_lock_irqsave(&emif_lock, irq_state); 1723 1724 list_for_each_entry(emif, &device_list, node) 1725 do_volt_notify_handling(emif, volt_state); 1726 do_freq_update(); 1727 1728 spin_unlock_irqrestore(&emif_lock, irq_state); 1729 } 1730 1731 static void do_freq_pre_notify_handling(struct emif_data *emif, u32 new_freq) 1732 { 1733 struct emif_regs *regs; 1734 1735 regs = get_regs(emif, new_freq); 1736 if (!regs) 1737 return; 1738 1739 emif->curr_regs = regs; 1740 1741 /* 1742 * Update the shadow registers: 1743 * Temperature and voltage-ramp sensitive settings are also configured 1744 * in terms of DDR cycles. So, we need to update them too when there 1745 * is a freq change 1746 */ 1747 dev_dbg(emif->dev, "%s: setting up shadow registers for %uHz", 1748 __func__, new_freq); 1749 setup_registers(emif, regs); 1750 setup_temperature_sensitive_regs(emif, regs); 1751 setup_volt_sensitive_regs(emif, regs, DDR_VOLTAGE_STABLE); 1752 1753 /* 1754 * Part of workaround for errata i728. See do_freq_update() 1755 * for more details 1756 */ 1757 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH) 1758 set_lpmode(emif, EMIF_LP_MODE_DISABLE); 1759 } 1760 1761 /* 1762 * TODO: frequency notify handling should be hooked up to 1763 * clock framework as soon as the necessary support is 1764 * available in mainline kernel. This function is un-used 1765 * right now. 1766 */ 1767 static void __attribute__((unused)) freq_pre_notify_handling(u32 new_freq) 1768 { 1769 struct emif_data *emif; 1770 1771 /* 1772 * NOTE: we are taking the spin-lock here and releases it 1773 * only in post-notifier. This doesn't look good and 1774 * Sparse complains about it, but this seems to be 1775 * un-avoidable. We need to lock a sequence of events 1776 * that is split between EMIF and clock framework. 1777 * 1778 * 1. EMIF driver updates EMIF timings in shadow registers in the 1779 * frequency pre-notify callback from clock framework 1780 * 2. clock framework sets up the registers for the new frequency 1781 * 3. clock framework initiates a hw-sequence that updates 1782 * the frequency EMIF timings synchronously. 1783 * 1784 * All these 3 steps should be performed as an atomic operation 1785 * vis-a-vis similar sequence in the EMIF interrupt handler 1786 * for temperature events. Otherwise, there could be race 1787 * conditions that could result in incorrect EMIF timings for 1788 * a given frequency 1789 */ 1790 spin_lock_irqsave(&emif_lock, irq_state); 1791 1792 list_for_each_entry(emif, &device_list, node) 1793 do_freq_pre_notify_handling(emif, new_freq); 1794 } 1795 1796 static void do_freq_post_notify_handling(struct emif_data *emif) 1797 { 1798 /* 1799 * Part of workaround for errata i728. See do_freq_update() 1800 * for more details 1801 */ 1802 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH) 1803 set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH); 1804 } 1805 1806 /* 1807 * TODO: frequency notify handling should be hooked up to 1808 * clock framework as soon as the necessary support is 1809 * available in mainline kernel. This function is un-used 1810 * right now. 1811 */ 1812 static void __attribute__((unused)) freq_post_notify_handling(void) 1813 { 1814 struct emif_data *emif; 1815 1816 list_for_each_entry(emif, &device_list, node) 1817 do_freq_post_notify_handling(emif); 1818 1819 /* 1820 * Lock is done in pre-notify handler. See freq_pre_notify_handling() 1821 * for more details 1822 */ 1823 spin_unlock_irqrestore(&emif_lock, irq_state); 1824 } 1825 1826 #if defined(CONFIG_OF) 1827 static const struct of_device_id emif_of_match[] = { 1828 { .compatible = "ti,emif-4d" }, 1829 { .compatible = "ti,emif-4d5" }, 1830 {}, 1831 }; 1832 MODULE_DEVICE_TABLE(of, emif_of_match); 1833 #endif 1834 1835 static struct platform_driver emif_driver = { 1836 .remove = __exit_p(emif_remove), 1837 .shutdown = emif_shutdown, 1838 .driver = { 1839 .name = "emif", 1840 .of_match_table = of_match_ptr(emif_of_match), 1841 }, 1842 }; 1843 1844 static int __init_or_module emif_register(void) 1845 { 1846 return platform_driver_probe(&emif_driver, emif_probe); 1847 } 1848 1849 static void __exit emif_unregister(void) 1850 { 1851 platform_driver_unregister(&emif_driver); 1852 } 1853 1854 module_init(emif_register); 1855 module_exit(emif_unregister); 1856 MODULE_DESCRIPTION("TI EMIF SDRAM Controller Driver"); 1857 MODULE_LICENSE("GPL"); 1858 MODULE_ALIAS("platform:emif"); 1859 MODULE_AUTHOR("Texas Instruments Inc"); 1860