1 /* 2 * EMIF driver 3 * 4 * Copyright (C) 2012 Texas Instruments, Inc. 5 * 6 * Aneesh V <aneesh@ti.com> 7 * Santosh Shilimkar <santosh.shilimkar@ti.com> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 */ 13 #include <linux/kernel.h> 14 #include <linux/reboot.h> 15 #include <linux/platform_data/emif_plat.h> 16 #include <linux/io.h> 17 #include <linux/device.h> 18 #include <linux/platform_device.h> 19 #include <linux/interrupt.h> 20 #include <linux/slab.h> 21 #include <linux/debugfs.h> 22 #include <linux/seq_file.h> 23 #include <linux/module.h> 24 #include <linux/list.h> 25 #include <linux/spinlock.h> 26 #include <memory/jedec_ddr.h> 27 #include "emif.h" 28 29 /** 30 * struct emif_data - Per device static data for driver's use 31 * @duplicate: Whether the DDR devices attached to this EMIF 32 * instance are exactly same as that on EMIF1. In 33 * this case we can save some memory and processing 34 * @temperature_level: Maximum temperature of LPDDR2 devices attached 35 * to this EMIF - read from MR4 register. If there 36 * are two devices attached to this EMIF, this 37 * value is the maximum of the two temperature 38 * levels. 39 * @node: node in the device list 40 * @base: base address of memory-mapped IO registers. 41 * @dev: device pointer. 42 * @addressing table with addressing information from the spec 43 * @regs_cache: An array of 'struct emif_regs' that stores 44 * calculated register values for different 45 * frequencies, to avoid re-calculating them on 46 * each DVFS transition. 47 * @curr_regs: The set of register values used in the last 48 * frequency change (i.e. corresponding to the 49 * frequency in effect at the moment) 50 * @plat_data: Pointer to saved platform data. 51 * @debugfs_root: dentry to the root folder for EMIF in debugfs 52 */ 53 struct emif_data { 54 u8 duplicate; 55 u8 temperature_level; 56 u8 lpmode; 57 struct list_head node; 58 unsigned long irq_state; 59 void __iomem *base; 60 struct device *dev; 61 const struct lpddr2_addressing *addressing; 62 struct emif_regs *regs_cache[EMIF_MAX_NUM_FREQUENCIES]; 63 struct emif_regs *curr_regs; 64 struct emif_platform_data *plat_data; 65 struct dentry *debugfs_root; 66 }; 67 68 static struct emif_data *emif1; 69 static spinlock_t emif_lock; 70 static unsigned long irq_state; 71 static u32 t_ck; /* DDR clock period in ps */ 72 static LIST_HEAD(device_list); 73 74 static void do_emif_regdump_show(struct seq_file *s, struct emif_data *emif, 75 struct emif_regs *regs) 76 { 77 u32 type = emif->plat_data->device_info->type; 78 u32 ip_rev = emif->plat_data->ip_rev; 79 80 seq_printf(s, "EMIF register cache dump for %dMHz\n", 81 regs->freq/1000000); 82 83 seq_printf(s, "ref_ctrl_shdw\t: 0x%08x\n", regs->ref_ctrl_shdw); 84 seq_printf(s, "sdram_tim1_shdw\t: 0x%08x\n", regs->sdram_tim1_shdw); 85 seq_printf(s, "sdram_tim2_shdw\t: 0x%08x\n", regs->sdram_tim2_shdw); 86 seq_printf(s, "sdram_tim3_shdw\t: 0x%08x\n", regs->sdram_tim3_shdw); 87 88 if (ip_rev == EMIF_4D) { 89 seq_printf(s, "read_idle_ctrl_shdw_normal\t: 0x%08x\n", 90 regs->read_idle_ctrl_shdw_normal); 91 seq_printf(s, "read_idle_ctrl_shdw_volt_ramp\t: 0x%08x\n", 92 regs->read_idle_ctrl_shdw_volt_ramp); 93 } else if (ip_rev == EMIF_4D5) { 94 seq_printf(s, "dll_calib_ctrl_shdw_normal\t: 0x%08x\n", 95 regs->dll_calib_ctrl_shdw_normal); 96 seq_printf(s, "dll_calib_ctrl_shdw_volt_ramp\t: 0x%08x\n", 97 regs->dll_calib_ctrl_shdw_volt_ramp); 98 } 99 100 if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) { 101 seq_printf(s, "ref_ctrl_shdw_derated\t: 0x%08x\n", 102 regs->ref_ctrl_shdw_derated); 103 seq_printf(s, "sdram_tim1_shdw_derated\t: 0x%08x\n", 104 regs->sdram_tim1_shdw_derated); 105 seq_printf(s, "sdram_tim3_shdw_derated\t: 0x%08x\n", 106 regs->sdram_tim3_shdw_derated); 107 } 108 } 109 110 static int emif_regdump_show(struct seq_file *s, void *unused) 111 { 112 struct emif_data *emif = s->private; 113 struct emif_regs **regs_cache; 114 int i; 115 116 if (emif->duplicate) 117 regs_cache = emif1->regs_cache; 118 else 119 regs_cache = emif->regs_cache; 120 121 for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) { 122 do_emif_regdump_show(s, emif, regs_cache[i]); 123 seq_printf(s, "\n"); 124 } 125 126 return 0; 127 } 128 129 static int emif_regdump_open(struct inode *inode, struct file *file) 130 { 131 return single_open(file, emif_regdump_show, inode->i_private); 132 } 133 134 static const struct file_operations emif_regdump_fops = { 135 .open = emif_regdump_open, 136 .read = seq_read, 137 .release = single_release, 138 }; 139 140 static int emif_mr4_show(struct seq_file *s, void *unused) 141 { 142 struct emif_data *emif = s->private; 143 144 seq_printf(s, "MR4=%d\n", emif->temperature_level); 145 return 0; 146 } 147 148 static int emif_mr4_open(struct inode *inode, struct file *file) 149 { 150 return single_open(file, emif_mr4_show, inode->i_private); 151 } 152 153 static const struct file_operations emif_mr4_fops = { 154 .open = emif_mr4_open, 155 .read = seq_read, 156 .release = single_release, 157 }; 158 159 static int __init_or_module emif_debugfs_init(struct emif_data *emif) 160 { 161 struct dentry *dentry; 162 int ret; 163 164 dentry = debugfs_create_dir(dev_name(emif->dev), NULL); 165 if (IS_ERR(dentry)) { 166 ret = PTR_ERR(dentry); 167 goto err0; 168 } 169 emif->debugfs_root = dentry; 170 171 dentry = debugfs_create_file("regcache_dump", S_IRUGO, 172 emif->debugfs_root, emif, &emif_regdump_fops); 173 if (IS_ERR(dentry)) { 174 ret = PTR_ERR(dentry); 175 goto err1; 176 } 177 178 dentry = debugfs_create_file("mr4", S_IRUGO, 179 emif->debugfs_root, emif, &emif_mr4_fops); 180 if (IS_ERR(dentry)) { 181 ret = PTR_ERR(dentry); 182 goto err1; 183 } 184 185 return 0; 186 err1: 187 debugfs_remove_recursive(emif->debugfs_root); 188 err0: 189 return ret; 190 } 191 192 static void __exit emif_debugfs_exit(struct emif_data *emif) 193 { 194 debugfs_remove_recursive(emif->debugfs_root); 195 emif->debugfs_root = NULL; 196 } 197 198 /* 199 * Calculate the period of DDR clock from frequency value 200 */ 201 static void set_ddr_clk_period(u32 freq) 202 { 203 /* Divide 10^12 by frequency to get period in ps */ 204 t_ck = (u32)DIV_ROUND_UP_ULL(1000000000000ull, freq); 205 } 206 207 /* 208 * Get bus width used by EMIF. Note that this may be different from the 209 * bus width of the DDR devices used. For instance two 16-bit DDR devices 210 * may be connected to a given CS of EMIF. In this case bus width as far 211 * as EMIF is concerned is 32, where as the DDR bus width is 16 bits. 212 */ 213 static u32 get_emif_bus_width(struct emif_data *emif) 214 { 215 u32 width; 216 void __iomem *base = emif->base; 217 218 width = (readl(base + EMIF_SDRAM_CONFIG) & NARROW_MODE_MASK) 219 >> NARROW_MODE_SHIFT; 220 width = width == 0 ? 32 : 16; 221 222 return width; 223 } 224 225 /* 226 * Get the CL from SDRAM_CONFIG register 227 */ 228 static u32 get_cl(struct emif_data *emif) 229 { 230 u32 cl; 231 void __iomem *base = emif->base; 232 233 cl = (readl(base + EMIF_SDRAM_CONFIG) & CL_MASK) >> CL_SHIFT; 234 235 return cl; 236 } 237 238 static void set_lpmode(struct emif_data *emif, u8 lpmode) 239 { 240 u32 temp; 241 void __iomem *base = emif->base; 242 243 temp = readl(base + EMIF_POWER_MANAGEMENT_CONTROL); 244 temp &= ~LP_MODE_MASK; 245 temp |= (lpmode << LP_MODE_SHIFT); 246 writel(temp, base + EMIF_POWER_MANAGEMENT_CONTROL); 247 } 248 249 static void do_freq_update(void) 250 { 251 struct emif_data *emif; 252 253 /* 254 * Workaround for errata i728: Disable LPMODE during FREQ_UPDATE 255 * 256 * i728 DESCRIPTION: 257 * The EMIF automatically puts the SDRAM into self-refresh mode 258 * after the EMIF has not performed accesses during 259 * EMIF_PWR_MGMT_CTRL[7:4] REG_SR_TIM number of DDR clock cycles 260 * and the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set 261 * to 0x2. If during a small window the following three events 262 * occur: 263 * - The SR_TIMING counter expires 264 * - And frequency change is requested 265 * - And OCP access is requested 266 * Then it causes instable clock on the DDR interface. 267 * 268 * WORKAROUND 269 * To avoid the occurrence of the three events, the workaround 270 * is to disable the self-refresh when requesting a frequency 271 * change. Before requesting a frequency change the software must 272 * program EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x0. When the 273 * frequency change has been done, the software can reprogram 274 * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x2 275 */ 276 list_for_each_entry(emif, &device_list, node) { 277 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH) 278 set_lpmode(emif, EMIF_LP_MODE_DISABLE); 279 } 280 281 /* 282 * TODO: Do FREQ_UPDATE here when an API 283 * is available for this as part of the new 284 * clock framework 285 */ 286 287 list_for_each_entry(emif, &device_list, node) { 288 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH) 289 set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH); 290 } 291 } 292 293 /* Find addressing table entry based on the device's type and density */ 294 static const struct lpddr2_addressing *get_addressing_table( 295 const struct ddr_device_info *device_info) 296 { 297 u32 index, type, density; 298 299 type = device_info->type; 300 density = device_info->density; 301 302 switch (type) { 303 case DDR_TYPE_LPDDR2_S4: 304 index = density - 1; 305 break; 306 case DDR_TYPE_LPDDR2_S2: 307 switch (density) { 308 case DDR_DENSITY_1Gb: 309 case DDR_DENSITY_2Gb: 310 index = density + 3; 311 break; 312 default: 313 index = density - 1; 314 } 315 break; 316 default: 317 return NULL; 318 } 319 320 return &lpddr2_jedec_addressing_table[index]; 321 } 322 323 /* 324 * Find the the right timing table from the array of timing 325 * tables of the device using DDR clock frequency 326 */ 327 static const struct lpddr2_timings *get_timings_table(struct emif_data *emif, 328 u32 freq) 329 { 330 u32 i, min, max, freq_nearest; 331 const struct lpddr2_timings *timings = NULL; 332 const struct lpddr2_timings *timings_arr = emif->plat_data->timings; 333 struct device *dev = emif->dev; 334 335 /* Start with a very high frequency - 1GHz */ 336 freq_nearest = 1000000000; 337 338 /* 339 * Find the timings table such that: 340 * 1. the frequency range covers the required frequency(safe) AND 341 * 2. the max_freq is closest to the required frequency(optimal) 342 */ 343 for (i = 0; i < emif->plat_data->timings_arr_size; i++) { 344 max = timings_arr[i].max_freq; 345 min = timings_arr[i].min_freq; 346 if ((freq >= min) && (freq <= max) && (max < freq_nearest)) { 347 freq_nearest = max; 348 timings = &timings_arr[i]; 349 } 350 } 351 352 if (!timings) 353 dev_err(dev, "%s: couldn't find timings for - %dHz\n", 354 __func__, freq); 355 356 dev_dbg(dev, "%s: timings table: freq %d, speed bin freq %d\n", 357 __func__, freq, freq_nearest); 358 359 return timings; 360 } 361 362 static u32 get_sdram_ref_ctrl_shdw(u32 freq, 363 const struct lpddr2_addressing *addressing) 364 { 365 u32 ref_ctrl_shdw = 0, val = 0, freq_khz, t_refi; 366 367 /* Scale down frequency and t_refi to avoid overflow */ 368 freq_khz = freq / 1000; 369 t_refi = addressing->tREFI_ns / 100; 370 371 /* 372 * refresh rate to be set is 'tREFI(in us) * freq in MHz 373 * division by 10000 to account for change in units 374 */ 375 val = t_refi * freq_khz / 10000; 376 ref_ctrl_shdw |= val << REFRESH_RATE_SHIFT; 377 378 return ref_ctrl_shdw; 379 } 380 381 static u32 get_sdram_tim_1_shdw(const struct lpddr2_timings *timings, 382 const struct lpddr2_min_tck *min_tck, 383 const struct lpddr2_addressing *addressing) 384 { 385 u32 tim1 = 0, val = 0; 386 387 val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1; 388 tim1 |= val << T_WTR_SHIFT; 389 390 if (addressing->num_banks == B8) 391 val = DIV_ROUND_UP(timings->tFAW, t_ck*4); 392 else 393 val = max(min_tck->tRRD, DIV_ROUND_UP(timings->tRRD, t_ck)); 394 tim1 |= (val - 1) << T_RRD_SHIFT; 395 396 val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab, t_ck) - 1; 397 tim1 |= val << T_RC_SHIFT; 398 399 val = max(min_tck->tRASmin, DIV_ROUND_UP(timings->tRAS_min, t_ck)); 400 tim1 |= (val - 1) << T_RAS_SHIFT; 401 402 val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1; 403 tim1 |= val << T_WR_SHIFT; 404 405 val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD, t_ck)) - 1; 406 tim1 |= val << T_RCD_SHIFT; 407 408 val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab, t_ck)) - 1; 409 tim1 |= val << T_RP_SHIFT; 410 411 return tim1; 412 } 413 414 static u32 get_sdram_tim_1_shdw_derated(const struct lpddr2_timings *timings, 415 const struct lpddr2_min_tck *min_tck, 416 const struct lpddr2_addressing *addressing) 417 { 418 u32 tim1 = 0, val = 0; 419 420 val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1; 421 tim1 = val << T_WTR_SHIFT; 422 423 /* 424 * tFAW is approximately 4 times tRRD. So add 1875*4 = 7500ps 425 * to tFAW for de-rating 426 */ 427 if (addressing->num_banks == B8) { 428 val = DIV_ROUND_UP(timings->tFAW + 7500, 4 * t_ck) - 1; 429 } else { 430 val = DIV_ROUND_UP(timings->tRRD + 1875, t_ck); 431 val = max(min_tck->tRRD, val) - 1; 432 } 433 tim1 |= val << T_RRD_SHIFT; 434 435 val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab + 1875, t_ck); 436 tim1 |= (val - 1) << T_RC_SHIFT; 437 438 val = DIV_ROUND_UP(timings->tRAS_min + 1875, t_ck); 439 val = max(min_tck->tRASmin, val) - 1; 440 tim1 |= val << T_RAS_SHIFT; 441 442 val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1; 443 tim1 |= val << T_WR_SHIFT; 444 445 val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD + 1875, t_ck)); 446 tim1 |= (val - 1) << T_RCD_SHIFT; 447 448 val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab + 1875, t_ck)); 449 tim1 |= (val - 1) << T_RP_SHIFT; 450 451 return tim1; 452 } 453 454 static u32 get_sdram_tim_2_shdw(const struct lpddr2_timings *timings, 455 const struct lpddr2_min_tck *min_tck, 456 const struct lpddr2_addressing *addressing, 457 u32 type) 458 { 459 u32 tim2 = 0, val = 0; 460 461 val = min_tck->tCKE - 1; 462 tim2 |= val << T_CKE_SHIFT; 463 464 val = max(min_tck->tRTP, DIV_ROUND_UP(timings->tRTP, t_ck)) - 1; 465 tim2 |= val << T_RTP_SHIFT; 466 467 /* tXSNR = tRFCab_ps + 10 ns(tRFCab_ps for LPDDR2). */ 468 val = DIV_ROUND_UP(addressing->tRFCab_ps + 10000, t_ck) - 1; 469 tim2 |= val << T_XSNR_SHIFT; 470 471 /* XSRD same as XSNR for LPDDR2 */ 472 tim2 |= val << T_XSRD_SHIFT; 473 474 val = max(min_tck->tXP, DIV_ROUND_UP(timings->tXP, t_ck)) - 1; 475 tim2 |= val << T_XP_SHIFT; 476 477 return tim2; 478 } 479 480 static u32 get_sdram_tim_3_shdw(const struct lpddr2_timings *timings, 481 const struct lpddr2_min_tck *min_tck, 482 const struct lpddr2_addressing *addressing, 483 u32 type, u32 ip_rev, u32 derated) 484 { 485 u32 tim3 = 0, val = 0, t_dqsck; 486 487 val = timings->tRAS_max_ns / addressing->tREFI_ns - 1; 488 val = val > 0xF ? 0xF : val; 489 tim3 |= val << T_RAS_MAX_SHIFT; 490 491 val = DIV_ROUND_UP(addressing->tRFCab_ps, t_ck) - 1; 492 tim3 |= val << T_RFC_SHIFT; 493 494 t_dqsck = (derated == EMIF_DERATED_TIMINGS) ? 495 timings->tDQSCK_max_derated : timings->tDQSCK_max; 496 if (ip_rev == EMIF_4D5) 497 val = DIV_ROUND_UP(t_dqsck + 1000, t_ck) - 1; 498 else 499 val = DIV_ROUND_UP(t_dqsck, t_ck) - 1; 500 501 tim3 |= val << T_TDQSCKMAX_SHIFT; 502 503 val = DIV_ROUND_UP(timings->tZQCS, t_ck) - 1; 504 tim3 |= val << ZQ_ZQCS_SHIFT; 505 506 val = DIV_ROUND_UP(timings->tCKESR, t_ck); 507 val = max(min_tck->tCKESR, val) - 1; 508 tim3 |= val << T_CKESR_SHIFT; 509 510 if (ip_rev == EMIF_4D5) { 511 tim3 |= (EMIF_T_CSTA - 1) << T_CSTA_SHIFT; 512 513 val = DIV_ROUND_UP(EMIF_T_PDLL_UL, 128) - 1; 514 tim3 |= val << T_PDLL_UL_SHIFT; 515 } 516 517 return tim3; 518 } 519 520 static u32 get_zq_config_reg(const struct lpddr2_addressing *addressing, 521 bool cs1_used, bool cal_resistors_per_cs) 522 { 523 u32 zq = 0, val = 0; 524 525 val = EMIF_ZQCS_INTERVAL_US * 1000 / addressing->tREFI_ns; 526 zq |= val << ZQ_REFINTERVAL_SHIFT; 527 528 val = DIV_ROUND_UP(T_ZQCL_DEFAULT_NS, T_ZQCS_DEFAULT_NS) - 1; 529 zq |= val << ZQ_ZQCL_MULT_SHIFT; 530 531 val = DIV_ROUND_UP(T_ZQINIT_DEFAULT_NS, T_ZQCL_DEFAULT_NS) - 1; 532 zq |= val << ZQ_ZQINIT_MULT_SHIFT; 533 534 zq |= ZQ_SFEXITEN_ENABLE << ZQ_SFEXITEN_SHIFT; 535 536 if (cal_resistors_per_cs) 537 zq |= ZQ_DUALCALEN_ENABLE << ZQ_DUALCALEN_SHIFT; 538 else 539 zq |= ZQ_DUALCALEN_DISABLE << ZQ_DUALCALEN_SHIFT; 540 541 zq |= ZQ_CS0EN_MASK; /* CS0 is used for sure */ 542 543 val = cs1_used ? 1 : 0; 544 zq |= val << ZQ_CS1EN_SHIFT; 545 546 return zq; 547 } 548 549 static u32 get_temp_alert_config(const struct lpddr2_addressing *addressing, 550 const struct emif_custom_configs *custom_configs, bool cs1_used, 551 u32 sdram_io_width, u32 emif_bus_width) 552 { 553 u32 alert = 0, interval, devcnt; 554 555 if (custom_configs && (custom_configs->mask & 556 EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL)) 557 interval = custom_configs->temp_alert_poll_interval_ms; 558 else 559 interval = TEMP_ALERT_POLL_INTERVAL_DEFAULT_MS; 560 561 interval *= 1000000; /* Convert to ns */ 562 interval /= addressing->tREFI_ns; /* Convert to refresh cycles */ 563 alert |= (interval << TA_REFINTERVAL_SHIFT); 564 565 /* 566 * sdram_io_width is in 'log2(x) - 1' form. Convert emif_bus_width 567 * also to this form and subtract to get TA_DEVCNT, which is 568 * in log2(x) form. 569 */ 570 emif_bus_width = __fls(emif_bus_width) - 1; 571 devcnt = emif_bus_width - sdram_io_width; 572 alert |= devcnt << TA_DEVCNT_SHIFT; 573 574 /* DEVWDT is in 'log2(x) - 3' form */ 575 alert |= (sdram_io_width - 2) << TA_DEVWDT_SHIFT; 576 577 alert |= 1 << TA_SFEXITEN_SHIFT; 578 alert |= 1 << TA_CS0EN_SHIFT; 579 alert |= (cs1_used ? 1 : 0) << TA_CS1EN_SHIFT; 580 581 return alert; 582 } 583 584 static u32 get_read_idle_ctrl_shdw(u8 volt_ramp) 585 { 586 u32 idle = 0, val = 0; 587 588 /* 589 * Maximum value in normal conditions and increased frequency 590 * when voltage is ramping 591 */ 592 if (volt_ramp) 593 val = READ_IDLE_INTERVAL_DVFS / t_ck / 64 - 1; 594 else 595 val = 0x1FF; 596 597 /* 598 * READ_IDLE_CTRL register in EMIF4D has same offset and fields 599 * as DLL_CALIB_CTRL in EMIF4D5, so use the same shifts 600 */ 601 idle |= val << DLL_CALIB_INTERVAL_SHIFT; 602 idle |= EMIF_READ_IDLE_LEN_VAL << ACK_WAIT_SHIFT; 603 604 return idle; 605 } 606 607 static u32 get_dll_calib_ctrl_shdw(u8 volt_ramp) 608 { 609 u32 calib = 0, val = 0; 610 611 if (volt_ramp == DDR_VOLTAGE_RAMPING) 612 val = DLL_CALIB_INTERVAL_DVFS / t_ck / 16 - 1; 613 else 614 val = 0; /* Disabled when voltage is stable */ 615 616 calib |= val << DLL_CALIB_INTERVAL_SHIFT; 617 calib |= DLL_CALIB_ACK_WAIT_VAL << ACK_WAIT_SHIFT; 618 619 return calib; 620 } 621 622 static u32 get_ddr_phy_ctrl_1_attilaphy_4d(const struct lpddr2_timings *timings, 623 u32 freq, u8 RL) 624 { 625 u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_ATTILAPHY, val = 0; 626 627 val = RL + DIV_ROUND_UP(timings->tDQSCK_max, t_ck) - 1; 628 phy |= val << READ_LATENCY_SHIFT_4D; 629 630 if (freq <= 100000000) 631 val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS_ATTILAPHY; 632 else if (freq <= 200000000) 633 val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ_ATTILAPHY; 634 else 635 val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ_ATTILAPHY; 636 637 phy |= val << DLL_SLAVE_DLY_CTRL_SHIFT_4D; 638 639 return phy; 640 } 641 642 static u32 get_phy_ctrl_1_intelliphy_4d5(u32 freq, u8 cl) 643 { 644 u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_INTELLIPHY, half_delay; 645 646 /* 647 * DLL operates at 266 MHz. If DDR frequency is near 266 MHz, 648 * half-delay is not needed else set half-delay 649 */ 650 if (freq >= 265000000 && freq < 267000000) 651 half_delay = 0; 652 else 653 half_delay = 1; 654 655 phy |= half_delay << DLL_HALF_DELAY_SHIFT_4D5; 656 phy |= ((cl + DIV_ROUND_UP(EMIF_PHY_TOTAL_READ_LATENCY_INTELLIPHY_PS, 657 t_ck) - 1) << READ_LATENCY_SHIFT_4D5); 658 659 return phy; 660 } 661 662 static u32 get_ext_phy_ctrl_2_intelliphy_4d5(void) 663 { 664 u32 fifo_we_slave_ratio; 665 666 fifo_we_slave_ratio = DIV_ROUND_CLOSEST( 667 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck); 668 669 return fifo_we_slave_ratio | fifo_we_slave_ratio << 11 | 670 fifo_we_slave_ratio << 22; 671 } 672 673 static u32 get_ext_phy_ctrl_3_intelliphy_4d5(void) 674 { 675 u32 fifo_we_slave_ratio; 676 677 fifo_we_slave_ratio = DIV_ROUND_CLOSEST( 678 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck); 679 680 return fifo_we_slave_ratio >> 10 | fifo_we_slave_ratio << 1 | 681 fifo_we_slave_ratio << 12 | fifo_we_slave_ratio << 23; 682 } 683 684 static u32 get_ext_phy_ctrl_4_intelliphy_4d5(void) 685 { 686 u32 fifo_we_slave_ratio; 687 688 fifo_we_slave_ratio = DIV_ROUND_CLOSEST( 689 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck); 690 691 return fifo_we_slave_ratio >> 9 | fifo_we_slave_ratio << 2 | 692 fifo_we_slave_ratio << 13; 693 } 694 695 static u32 get_pwr_mgmt_ctrl(u32 freq, struct emif_data *emif, u32 ip_rev) 696 { 697 u32 pwr_mgmt_ctrl = 0, timeout; 698 u32 lpmode = EMIF_LP_MODE_SELF_REFRESH; 699 u32 timeout_perf = EMIF_LP_MODE_TIMEOUT_PERFORMANCE; 700 u32 timeout_pwr = EMIF_LP_MODE_TIMEOUT_POWER; 701 u32 freq_threshold = EMIF_LP_MODE_FREQ_THRESHOLD; 702 703 struct emif_custom_configs *cust_cfgs = emif->plat_data->custom_configs; 704 705 if (cust_cfgs && (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE)) { 706 lpmode = cust_cfgs->lpmode; 707 timeout_perf = cust_cfgs->lpmode_timeout_performance; 708 timeout_pwr = cust_cfgs->lpmode_timeout_power; 709 freq_threshold = cust_cfgs->lpmode_freq_threshold; 710 } 711 712 /* Timeout based on DDR frequency */ 713 timeout = freq >= freq_threshold ? timeout_perf : timeout_pwr; 714 715 /* The value to be set in register is "log2(timeout) - 3" */ 716 if (timeout < 16) { 717 timeout = 0; 718 } else { 719 timeout = __fls(timeout) - 3; 720 if (timeout & (timeout - 1)) 721 timeout++; 722 } 723 724 switch (lpmode) { 725 case EMIF_LP_MODE_CLOCK_STOP: 726 pwr_mgmt_ctrl = (timeout << CS_TIM_SHIFT) | 727 SR_TIM_MASK | PD_TIM_MASK; 728 break; 729 case EMIF_LP_MODE_SELF_REFRESH: 730 /* Workaround for errata i735 */ 731 if (timeout < 6) 732 timeout = 6; 733 734 pwr_mgmt_ctrl = (timeout << SR_TIM_SHIFT) | 735 CS_TIM_MASK | PD_TIM_MASK; 736 break; 737 case EMIF_LP_MODE_PWR_DN: 738 pwr_mgmt_ctrl = (timeout << PD_TIM_SHIFT) | 739 CS_TIM_MASK | SR_TIM_MASK; 740 break; 741 case EMIF_LP_MODE_DISABLE: 742 default: 743 pwr_mgmt_ctrl = CS_TIM_MASK | 744 PD_TIM_MASK | SR_TIM_MASK; 745 } 746 747 /* No CS_TIM in EMIF_4D5 */ 748 if (ip_rev == EMIF_4D5) 749 pwr_mgmt_ctrl &= ~CS_TIM_MASK; 750 751 pwr_mgmt_ctrl |= lpmode << LP_MODE_SHIFT; 752 753 return pwr_mgmt_ctrl; 754 } 755 756 /* 757 * Get the temperature level of the EMIF instance: 758 * Reads the MR4 register of attached SDRAM parts to find out the temperature 759 * level. If there are two parts attached(one on each CS), then the temperature 760 * level for the EMIF instance is the higher of the two temperatures. 761 */ 762 static void get_temperature_level(struct emif_data *emif) 763 { 764 u32 temp, temperature_level; 765 void __iomem *base; 766 767 base = emif->base; 768 769 /* Read mode register 4 */ 770 writel(DDR_MR4, base + EMIF_LPDDR2_MODE_REG_CONFIG); 771 temperature_level = readl(base + EMIF_LPDDR2_MODE_REG_DATA); 772 temperature_level = (temperature_level & MR4_SDRAM_REF_RATE_MASK) >> 773 MR4_SDRAM_REF_RATE_SHIFT; 774 775 if (emif->plat_data->device_info->cs1_used) { 776 writel(DDR_MR4 | CS_MASK, base + EMIF_LPDDR2_MODE_REG_CONFIG); 777 temp = readl(base + EMIF_LPDDR2_MODE_REG_DATA); 778 temp = (temp & MR4_SDRAM_REF_RATE_MASK) 779 >> MR4_SDRAM_REF_RATE_SHIFT; 780 temperature_level = max(temp, temperature_level); 781 } 782 783 /* treat everything less than nominal(3) in MR4 as nominal */ 784 if (unlikely(temperature_level < SDRAM_TEMP_NOMINAL)) 785 temperature_level = SDRAM_TEMP_NOMINAL; 786 787 /* if we get reserved value in MR4 persist with the existing value */ 788 if (likely(temperature_level != SDRAM_TEMP_RESERVED_4)) 789 emif->temperature_level = temperature_level; 790 } 791 792 /* 793 * Program EMIF shadow registers that are not dependent on temperature 794 * or voltage 795 */ 796 static void setup_registers(struct emif_data *emif, struct emif_regs *regs) 797 { 798 void __iomem *base = emif->base; 799 800 writel(regs->sdram_tim2_shdw, base + EMIF_SDRAM_TIMING_2_SHDW); 801 writel(regs->phy_ctrl_1_shdw, base + EMIF_DDR_PHY_CTRL_1_SHDW); 802 803 /* Settings specific for EMIF4D5 */ 804 if (emif->plat_data->ip_rev != EMIF_4D5) 805 return; 806 writel(regs->ext_phy_ctrl_2_shdw, base + EMIF_EXT_PHY_CTRL_2_SHDW); 807 writel(regs->ext_phy_ctrl_3_shdw, base + EMIF_EXT_PHY_CTRL_3_SHDW); 808 writel(regs->ext_phy_ctrl_4_shdw, base + EMIF_EXT_PHY_CTRL_4_SHDW); 809 } 810 811 /* 812 * When voltage ramps dll calibration and forced read idle should 813 * happen more often 814 */ 815 static void setup_volt_sensitive_regs(struct emif_data *emif, 816 struct emif_regs *regs, u32 volt_state) 817 { 818 u32 calib_ctrl; 819 void __iomem *base = emif->base; 820 821 /* 822 * EMIF_READ_IDLE_CTRL in EMIF4D refers to the same register as 823 * EMIF_DLL_CALIB_CTRL in EMIF4D5 and dll_calib_ctrl_shadow_* 824 * is an alias of the respective read_idle_ctrl_shdw_* (members of 825 * a union). So, the below code takes care of both cases 826 */ 827 if (volt_state == DDR_VOLTAGE_RAMPING) 828 calib_ctrl = regs->dll_calib_ctrl_shdw_volt_ramp; 829 else 830 calib_ctrl = regs->dll_calib_ctrl_shdw_normal; 831 832 writel(calib_ctrl, base + EMIF_DLL_CALIB_CTRL_SHDW); 833 } 834 835 /* 836 * setup_temperature_sensitive_regs() - set the timings for temperature 837 * sensitive registers. This happens once at initialisation time based 838 * on the temperature at boot time and subsequently based on the temperature 839 * alert interrupt. Temperature alert can happen when the temperature 840 * increases or drops. So this function can have the effect of either 841 * derating the timings or going back to nominal values. 842 */ 843 static void setup_temperature_sensitive_regs(struct emif_data *emif, 844 struct emif_regs *regs) 845 { 846 u32 tim1, tim3, ref_ctrl, type; 847 void __iomem *base = emif->base; 848 u32 temperature; 849 850 type = emif->plat_data->device_info->type; 851 852 tim1 = regs->sdram_tim1_shdw; 853 tim3 = regs->sdram_tim3_shdw; 854 ref_ctrl = regs->ref_ctrl_shdw; 855 856 /* No de-rating for non-lpddr2 devices */ 857 if (type != DDR_TYPE_LPDDR2_S2 && type != DDR_TYPE_LPDDR2_S4) 858 goto out; 859 860 temperature = emif->temperature_level; 861 if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH) { 862 ref_ctrl = regs->ref_ctrl_shdw_derated; 863 } else if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH_AND_TIMINGS) { 864 tim1 = regs->sdram_tim1_shdw_derated; 865 tim3 = regs->sdram_tim3_shdw_derated; 866 ref_ctrl = regs->ref_ctrl_shdw_derated; 867 } 868 869 out: 870 writel(tim1, base + EMIF_SDRAM_TIMING_1_SHDW); 871 writel(tim3, base + EMIF_SDRAM_TIMING_3_SHDW); 872 writel(ref_ctrl, base + EMIF_SDRAM_REFRESH_CTRL_SHDW); 873 } 874 875 static irqreturn_t handle_temp_alert(void __iomem *base, struct emif_data *emif) 876 { 877 u32 old_temp_level; 878 irqreturn_t ret = IRQ_HANDLED; 879 880 spin_lock_irqsave(&emif_lock, irq_state); 881 old_temp_level = emif->temperature_level; 882 get_temperature_level(emif); 883 884 if (unlikely(emif->temperature_level == old_temp_level)) { 885 goto out; 886 } else if (!emif->curr_regs) { 887 dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n"); 888 goto out; 889 } 890 891 if (emif->temperature_level < old_temp_level || 892 emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) { 893 /* 894 * Temperature coming down - defer handling to thread OR 895 * Temperature far too high - do kernel_power_off() from 896 * thread context 897 */ 898 ret = IRQ_WAKE_THREAD; 899 } else { 900 /* Temperature is going up - handle immediately */ 901 setup_temperature_sensitive_regs(emif, emif->curr_regs); 902 do_freq_update(); 903 } 904 905 out: 906 spin_unlock_irqrestore(&emif_lock, irq_state); 907 return ret; 908 } 909 910 static irqreturn_t emif_interrupt_handler(int irq, void *dev_id) 911 { 912 u32 interrupts; 913 struct emif_data *emif = dev_id; 914 void __iomem *base = emif->base; 915 struct device *dev = emif->dev; 916 irqreturn_t ret = IRQ_HANDLED; 917 918 /* Save the status and clear it */ 919 interrupts = readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS); 920 writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS); 921 922 /* 923 * Handle temperature alert 924 * Temperature alert should be same for all ports 925 * So, it's enough to process it only for one of the ports 926 */ 927 if (interrupts & TA_SYS_MASK) 928 ret = handle_temp_alert(base, emif); 929 930 if (interrupts & ERR_SYS_MASK) 931 dev_err(dev, "Access error from SYS port - %x\n", interrupts); 932 933 if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) { 934 /* Save the status and clear it */ 935 interrupts = readl(base + EMIF_LL_OCP_INTERRUPT_STATUS); 936 writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_STATUS); 937 938 if (interrupts & ERR_LL_MASK) 939 dev_err(dev, "Access error from LL port - %x\n", 940 interrupts); 941 } 942 943 return ret; 944 } 945 946 static irqreturn_t emif_threaded_isr(int irq, void *dev_id) 947 { 948 struct emif_data *emif = dev_id; 949 950 if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) { 951 dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n"); 952 kernel_power_off(); 953 return IRQ_HANDLED; 954 } 955 956 spin_lock_irqsave(&emif_lock, irq_state); 957 958 if (emif->curr_regs) { 959 setup_temperature_sensitive_regs(emif, emif->curr_regs); 960 do_freq_update(); 961 } else { 962 dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n"); 963 } 964 965 spin_unlock_irqrestore(&emif_lock, irq_state); 966 967 return IRQ_HANDLED; 968 } 969 970 static void clear_all_interrupts(struct emif_data *emif) 971 { 972 void __iomem *base = emif->base; 973 974 writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS), 975 base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS); 976 if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) 977 writel(readl(base + EMIF_LL_OCP_INTERRUPT_STATUS), 978 base + EMIF_LL_OCP_INTERRUPT_STATUS); 979 } 980 981 static void disable_and_clear_all_interrupts(struct emif_data *emif) 982 { 983 void __iomem *base = emif->base; 984 985 /* Disable all interrupts */ 986 writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET), 987 base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_CLEAR); 988 if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) 989 writel(readl(base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET), 990 base + EMIF_LL_OCP_INTERRUPT_ENABLE_CLEAR); 991 992 /* Clear all interrupts */ 993 clear_all_interrupts(emif); 994 } 995 996 static int __init_or_module setup_interrupts(struct emif_data *emif, u32 irq) 997 { 998 u32 interrupts, type; 999 void __iomem *base = emif->base; 1000 1001 type = emif->plat_data->device_info->type; 1002 1003 clear_all_interrupts(emif); 1004 1005 /* Enable interrupts for SYS interface */ 1006 interrupts = EN_ERR_SYS_MASK; 1007 if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) 1008 interrupts |= EN_TA_SYS_MASK; 1009 writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET); 1010 1011 /* Enable interrupts for LL interface */ 1012 if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) { 1013 /* TA need not be enabled for LL */ 1014 interrupts = EN_ERR_LL_MASK; 1015 writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET); 1016 } 1017 1018 /* setup IRQ handlers */ 1019 return devm_request_threaded_irq(emif->dev, irq, 1020 emif_interrupt_handler, 1021 emif_threaded_isr, 1022 0, dev_name(emif->dev), 1023 emif); 1024 1025 } 1026 1027 static void __init_or_module emif_onetime_settings(struct emif_data *emif) 1028 { 1029 u32 pwr_mgmt_ctrl, zq, temp_alert_cfg; 1030 void __iomem *base = emif->base; 1031 const struct lpddr2_addressing *addressing; 1032 const struct ddr_device_info *device_info; 1033 1034 device_info = emif->plat_data->device_info; 1035 addressing = get_addressing_table(device_info); 1036 1037 /* 1038 * Init power management settings 1039 * We don't know the frequency yet. Use a high frequency 1040 * value for a conservative timeout setting 1041 */ 1042 pwr_mgmt_ctrl = get_pwr_mgmt_ctrl(1000000000, emif, 1043 emif->plat_data->ip_rev); 1044 emif->lpmode = (pwr_mgmt_ctrl & LP_MODE_MASK) >> LP_MODE_SHIFT; 1045 writel(pwr_mgmt_ctrl, base + EMIF_POWER_MANAGEMENT_CONTROL); 1046 1047 /* Init ZQ calibration settings */ 1048 zq = get_zq_config_reg(addressing, device_info->cs1_used, 1049 device_info->cal_resistors_per_cs); 1050 writel(zq, base + EMIF_SDRAM_OUTPUT_IMPEDANCE_CALIBRATION_CONFIG); 1051 1052 /* Check temperature level temperature level*/ 1053 get_temperature_level(emif); 1054 if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) 1055 dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n"); 1056 1057 /* Init temperature polling */ 1058 temp_alert_cfg = get_temp_alert_config(addressing, 1059 emif->plat_data->custom_configs, device_info->cs1_used, 1060 device_info->io_width, get_emif_bus_width(emif)); 1061 writel(temp_alert_cfg, base + EMIF_TEMPERATURE_ALERT_CONFIG); 1062 1063 /* 1064 * Program external PHY control registers that are not frequency 1065 * dependent 1066 */ 1067 if (emif->plat_data->phy_type != EMIF_PHY_TYPE_INTELLIPHY) 1068 return; 1069 writel(EMIF_EXT_PHY_CTRL_1_VAL, base + EMIF_EXT_PHY_CTRL_1_SHDW); 1070 writel(EMIF_EXT_PHY_CTRL_5_VAL, base + EMIF_EXT_PHY_CTRL_5_SHDW); 1071 writel(EMIF_EXT_PHY_CTRL_6_VAL, base + EMIF_EXT_PHY_CTRL_6_SHDW); 1072 writel(EMIF_EXT_PHY_CTRL_7_VAL, base + EMIF_EXT_PHY_CTRL_7_SHDW); 1073 writel(EMIF_EXT_PHY_CTRL_8_VAL, base + EMIF_EXT_PHY_CTRL_8_SHDW); 1074 writel(EMIF_EXT_PHY_CTRL_9_VAL, base + EMIF_EXT_PHY_CTRL_9_SHDW); 1075 writel(EMIF_EXT_PHY_CTRL_10_VAL, base + EMIF_EXT_PHY_CTRL_10_SHDW); 1076 writel(EMIF_EXT_PHY_CTRL_11_VAL, base + EMIF_EXT_PHY_CTRL_11_SHDW); 1077 writel(EMIF_EXT_PHY_CTRL_12_VAL, base + EMIF_EXT_PHY_CTRL_12_SHDW); 1078 writel(EMIF_EXT_PHY_CTRL_13_VAL, base + EMIF_EXT_PHY_CTRL_13_SHDW); 1079 writel(EMIF_EXT_PHY_CTRL_14_VAL, base + EMIF_EXT_PHY_CTRL_14_SHDW); 1080 writel(EMIF_EXT_PHY_CTRL_15_VAL, base + EMIF_EXT_PHY_CTRL_15_SHDW); 1081 writel(EMIF_EXT_PHY_CTRL_16_VAL, base + EMIF_EXT_PHY_CTRL_16_SHDW); 1082 writel(EMIF_EXT_PHY_CTRL_17_VAL, base + EMIF_EXT_PHY_CTRL_17_SHDW); 1083 writel(EMIF_EXT_PHY_CTRL_18_VAL, base + EMIF_EXT_PHY_CTRL_18_SHDW); 1084 writel(EMIF_EXT_PHY_CTRL_19_VAL, base + EMIF_EXT_PHY_CTRL_19_SHDW); 1085 writel(EMIF_EXT_PHY_CTRL_20_VAL, base + EMIF_EXT_PHY_CTRL_20_SHDW); 1086 writel(EMIF_EXT_PHY_CTRL_21_VAL, base + EMIF_EXT_PHY_CTRL_21_SHDW); 1087 writel(EMIF_EXT_PHY_CTRL_22_VAL, base + EMIF_EXT_PHY_CTRL_22_SHDW); 1088 writel(EMIF_EXT_PHY_CTRL_23_VAL, base + EMIF_EXT_PHY_CTRL_23_SHDW); 1089 writel(EMIF_EXT_PHY_CTRL_24_VAL, base + EMIF_EXT_PHY_CTRL_24_SHDW); 1090 } 1091 1092 static void get_default_timings(struct emif_data *emif) 1093 { 1094 struct emif_platform_data *pd = emif->plat_data; 1095 1096 pd->timings = lpddr2_jedec_timings; 1097 pd->timings_arr_size = ARRAY_SIZE(lpddr2_jedec_timings); 1098 1099 dev_warn(emif->dev, "%s: using default timings\n", __func__); 1100 } 1101 1102 static int is_dev_data_valid(u32 type, u32 density, u32 io_width, u32 phy_type, 1103 u32 ip_rev, struct device *dev) 1104 { 1105 int valid; 1106 1107 valid = (type == DDR_TYPE_LPDDR2_S4 || 1108 type == DDR_TYPE_LPDDR2_S2) 1109 && (density >= DDR_DENSITY_64Mb 1110 && density <= DDR_DENSITY_8Gb) 1111 && (io_width >= DDR_IO_WIDTH_8 1112 && io_width <= DDR_IO_WIDTH_32); 1113 1114 /* Combinations of EMIF and PHY revisions that we support today */ 1115 switch (ip_rev) { 1116 case EMIF_4D: 1117 valid = valid && (phy_type == EMIF_PHY_TYPE_ATTILAPHY); 1118 break; 1119 case EMIF_4D5: 1120 valid = valid && (phy_type == EMIF_PHY_TYPE_INTELLIPHY); 1121 break; 1122 default: 1123 valid = 0; 1124 } 1125 1126 if (!valid) 1127 dev_err(dev, "%s: invalid DDR details\n", __func__); 1128 return valid; 1129 } 1130 1131 static int is_custom_config_valid(struct emif_custom_configs *cust_cfgs, 1132 struct device *dev) 1133 { 1134 int valid = 1; 1135 1136 if ((cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE) && 1137 (cust_cfgs->lpmode != EMIF_LP_MODE_DISABLE)) 1138 valid = cust_cfgs->lpmode_freq_threshold && 1139 cust_cfgs->lpmode_timeout_performance && 1140 cust_cfgs->lpmode_timeout_power; 1141 1142 if (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL) 1143 valid = valid && cust_cfgs->temp_alert_poll_interval_ms; 1144 1145 if (!valid) 1146 dev_warn(dev, "%s: invalid custom configs\n", __func__); 1147 1148 return valid; 1149 } 1150 1151 static struct emif_data *__init_or_module get_device_details( 1152 struct platform_device *pdev) 1153 { 1154 u32 size; 1155 struct emif_data *emif = NULL; 1156 struct ddr_device_info *dev_info; 1157 struct emif_custom_configs *cust_cfgs; 1158 struct emif_platform_data *pd; 1159 struct device *dev; 1160 void *temp; 1161 1162 pd = pdev->dev.platform_data; 1163 dev = &pdev->dev; 1164 1165 if (!(pd && pd->device_info && is_dev_data_valid(pd->device_info->type, 1166 pd->device_info->density, pd->device_info->io_width, 1167 pd->phy_type, pd->ip_rev, dev))) { 1168 dev_err(dev, "%s: invalid device data\n", __func__); 1169 goto error; 1170 } 1171 1172 emif = devm_kzalloc(dev, sizeof(*emif), GFP_KERNEL); 1173 temp = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL); 1174 dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL); 1175 1176 if (!emif || !pd || !dev_info) { 1177 dev_err(dev, "%s:%d: allocation error\n", __func__, __LINE__); 1178 goto error; 1179 } 1180 1181 memcpy(temp, pd, sizeof(*pd)); 1182 pd = temp; 1183 memcpy(dev_info, pd->device_info, sizeof(*dev_info)); 1184 1185 pd->device_info = dev_info; 1186 emif->plat_data = pd; 1187 emif->dev = dev; 1188 emif->temperature_level = SDRAM_TEMP_NOMINAL; 1189 1190 /* 1191 * For EMIF instances other than EMIF1 see if the devices connected 1192 * are exactly same as on EMIF1(which is typically the case). If so, 1193 * mark it as a duplicate of EMIF1 and skip copying timings data. 1194 * This will save some memory and some computation later. 1195 */ 1196 emif->duplicate = emif1 && (memcmp(dev_info, 1197 emif1->plat_data->device_info, 1198 sizeof(struct ddr_device_info)) == 0); 1199 1200 if (emif->duplicate) { 1201 pd->timings = NULL; 1202 pd->min_tck = NULL; 1203 goto out; 1204 } else if (emif1) { 1205 dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n", 1206 __func__); 1207 } 1208 1209 /* 1210 * Copy custom configs - ignore allocation error, if any, as 1211 * custom_configs is not very critical 1212 */ 1213 cust_cfgs = pd->custom_configs; 1214 if (cust_cfgs && is_custom_config_valid(cust_cfgs, dev)) { 1215 temp = devm_kzalloc(dev, sizeof(*cust_cfgs), GFP_KERNEL); 1216 if (temp) 1217 memcpy(temp, cust_cfgs, sizeof(*cust_cfgs)); 1218 else 1219 dev_warn(dev, "%s:%d: allocation error\n", __func__, 1220 __LINE__); 1221 pd->custom_configs = temp; 1222 } 1223 1224 /* 1225 * Copy timings and min-tck values from platform data. If it is not 1226 * available or if memory allocation fails, use JEDEC defaults 1227 */ 1228 size = sizeof(struct lpddr2_timings) * pd->timings_arr_size; 1229 if (pd->timings) { 1230 temp = devm_kzalloc(dev, size, GFP_KERNEL); 1231 if (temp) { 1232 memcpy(temp, pd->timings, sizeof(*pd->timings)); 1233 pd->timings = temp; 1234 } else { 1235 dev_warn(dev, "%s:%d: allocation error\n", __func__, 1236 __LINE__); 1237 get_default_timings(emif); 1238 } 1239 } else { 1240 get_default_timings(emif); 1241 } 1242 1243 if (pd->min_tck) { 1244 temp = devm_kzalloc(dev, sizeof(*pd->min_tck), GFP_KERNEL); 1245 if (temp) { 1246 memcpy(temp, pd->min_tck, sizeof(*pd->min_tck)); 1247 pd->min_tck = temp; 1248 } else { 1249 dev_warn(dev, "%s:%d: allocation error\n", __func__, 1250 __LINE__); 1251 pd->min_tck = &lpddr2_jedec_min_tck; 1252 } 1253 } else { 1254 pd->min_tck = &lpddr2_jedec_min_tck; 1255 } 1256 1257 out: 1258 return emif; 1259 1260 error: 1261 return NULL; 1262 } 1263 1264 static int __init_or_module emif_probe(struct platform_device *pdev) 1265 { 1266 struct emif_data *emif; 1267 struct resource *res; 1268 int irq; 1269 1270 emif = get_device_details(pdev); 1271 if (!emif) { 1272 pr_err("%s: error getting device data\n", __func__); 1273 goto error; 1274 } 1275 1276 list_add(&emif->node, &device_list); 1277 emif->addressing = get_addressing_table(emif->plat_data->device_info); 1278 1279 /* Save pointers to each other in emif and device structures */ 1280 emif->dev = &pdev->dev; 1281 platform_set_drvdata(pdev, emif); 1282 1283 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1284 if (!res) { 1285 dev_err(emif->dev, "%s: error getting memory resource\n", 1286 __func__); 1287 goto error; 1288 } 1289 1290 emif->base = devm_request_and_ioremap(emif->dev, res); 1291 if (!emif->base) { 1292 dev_err(emif->dev, "%s: devm_request_and_ioremap() failed\n", 1293 __func__); 1294 goto error; 1295 } 1296 1297 irq = platform_get_irq(pdev, 0); 1298 if (irq < 0) { 1299 dev_err(emif->dev, "%s: error getting IRQ resource - %d\n", 1300 __func__, irq); 1301 goto error; 1302 } 1303 1304 emif_onetime_settings(emif); 1305 emif_debugfs_init(emif); 1306 disable_and_clear_all_interrupts(emif); 1307 setup_interrupts(emif, irq); 1308 1309 /* One-time actions taken on probing the first device */ 1310 if (!emif1) { 1311 emif1 = emif; 1312 spin_lock_init(&emif_lock); 1313 1314 /* 1315 * TODO: register notifiers for frequency and voltage 1316 * change here once the respective frameworks are 1317 * available 1318 */ 1319 } 1320 1321 dev_info(&pdev->dev, "%s: device configured with addr = %p and IRQ%d\n", 1322 __func__, emif->base, irq); 1323 1324 return 0; 1325 error: 1326 return -ENODEV; 1327 } 1328 1329 static int __exit emif_remove(struct platform_device *pdev) 1330 { 1331 struct emif_data *emif = platform_get_drvdata(pdev); 1332 1333 emif_debugfs_exit(emif); 1334 1335 return 0; 1336 } 1337 1338 static void emif_shutdown(struct platform_device *pdev) 1339 { 1340 struct emif_data *emif = platform_get_drvdata(pdev); 1341 1342 disable_and_clear_all_interrupts(emif); 1343 } 1344 1345 static int get_emif_reg_values(struct emif_data *emif, u32 freq, 1346 struct emif_regs *regs) 1347 { 1348 u32 cs1_used, ip_rev, phy_type; 1349 u32 cl, type; 1350 const struct lpddr2_timings *timings; 1351 const struct lpddr2_min_tck *min_tck; 1352 const struct ddr_device_info *device_info; 1353 const struct lpddr2_addressing *addressing; 1354 struct emif_data *emif_for_calc; 1355 struct device *dev; 1356 const struct emif_custom_configs *custom_configs; 1357 1358 dev = emif->dev; 1359 /* 1360 * If the devices on this EMIF instance is duplicate of EMIF1, 1361 * use EMIF1 details for the calculation 1362 */ 1363 emif_for_calc = emif->duplicate ? emif1 : emif; 1364 timings = get_timings_table(emif_for_calc, freq); 1365 addressing = emif_for_calc->addressing; 1366 if (!timings || !addressing) { 1367 dev_err(dev, "%s: not enough data available for %dHz", 1368 __func__, freq); 1369 return -1; 1370 } 1371 1372 device_info = emif_for_calc->plat_data->device_info; 1373 type = device_info->type; 1374 cs1_used = device_info->cs1_used; 1375 ip_rev = emif_for_calc->plat_data->ip_rev; 1376 phy_type = emif_for_calc->plat_data->phy_type; 1377 1378 min_tck = emif_for_calc->plat_data->min_tck; 1379 custom_configs = emif_for_calc->plat_data->custom_configs; 1380 1381 set_ddr_clk_period(freq); 1382 1383 regs->ref_ctrl_shdw = get_sdram_ref_ctrl_shdw(freq, addressing); 1384 regs->sdram_tim1_shdw = get_sdram_tim_1_shdw(timings, min_tck, 1385 addressing); 1386 regs->sdram_tim2_shdw = get_sdram_tim_2_shdw(timings, min_tck, 1387 addressing, type); 1388 regs->sdram_tim3_shdw = get_sdram_tim_3_shdw(timings, min_tck, 1389 addressing, type, ip_rev, EMIF_NORMAL_TIMINGS); 1390 1391 cl = get_cl(emif); 1392 1393 if (phy_type == EMIF_PHY_TYPE_ATTILAPHY && ip_rev == EMIF_4D) { 1394 regs->phy_ctrl_1_shdw = get_ddr_phy_ctrl_1_attilaphy_4d( 1395 timings, freq, cl); 1396 } else if (phy_type == EMIF_PHY_TYPE_INTELLIPHY && ip_rev == EMIF_4D5) { 1397 regs->phy_ctrl_1_shdw = get_phy_ctrl_1_intelliphy_4d5(freq, cl); 1398 regs->ext_phy_ctrl_2_shdw = get_ext_phy_ctrl_2_intelliphy_4d5(); 1399 regs->ext_phy_ctrl_3_shdw = get_ext_phy_ctrl_3_intelliphy_4d5(); 1400 regs->ext_phy_ctrl_4_shdw = get_ext_phy_ctrl_4_intelliphy_4d5(); 1401 } else { 1402 return -1; 1403 } 1404 1405 /* Only timeout values in pwr_mgmt_ctrl_shdw register */ 1406 regs->pwr_mgmt_ctrl_shdw = 1407 get_pwr_mgmt_ctrl(freq, emif_for_calc, ip_rev) & 1408 (CS_TIM_MASK | SR_TIM_MASK | PD_TIM_MASK); 1409 1410 if (ip_rev & EMIF_4D) { 1411 regs->read_idle_ctrl_shdw_normal = 1412 get_read_idle_ctrl_shdw(DDR_VOLTAGE_STABLE); 1413 1414 regs->read_idle_ctrl_shdw_volt_ramp = 1415 get_read_idle_ctrl_shdw(DDR_VOLTAGE_RAMPING); 1416 } else if (ip_rev & EMIF_4D5) { 1417 regs->dll_calib_ctrl_shdw_normal = 1418 get_dll_calib_ctrl_shdw(DDR_VOLTAGE_STABLE); 1419 1420 regs->dll_calib_ctrl_shdw_volt_ramp = 1421 get_dll_calib_ctrl_shdw(DDR_VOLTAGE_RAMPING); 1422 } 1423 1424 if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) { 1425 regs->ref_ctrl_shdw_derated = get_sdram_ref_ctrl_shdw(freq / 4, 1426 addressing); 1427 1428 regs->sdram_tim1_shdw_derated = 1429 get_sdram_tim_1_shdw_derated(timings, min_tck, 1430 addressing); 1431 1432 regs->sdram_tim3_shdw_derated = get_sdram_tim_3_shdw(timings, 1433 min_tck, addressing, type, ip_rev, 1434 EMIF_DERATED_TIMINGS); 1435 } 1436 1437 regs->freq = freq; 1438 1439 return 0; 1440 } 1441 1442 /* 1443 * get_regs() - gets the cached emif_regs structure for a given EMIF instance 1444 * given frequency(freq): 1445 * 1446 * As an optimisation, every EMIF instance other than EMIF1 shares the 1447 * register cache with EMIF1 if the devices connected on this instance 1448 * are same as that on EMIF1(indicated by the duplicate flag) 1449 * 1450 * If we do not have an entry corresponding to the frequency given, we 1451 * allocate a new entry and calculate the values 1452 * 1453 * Upon finding the right reg dump, save it in curr_regs. It can be 1454 * directly used for thermal de-rating and voltage ramping changes. 1455 */ 1456 static struct emif_regs *get_regs(struct emif_data *emif, u32 freq) 1457 { 1458 int i; 1459 struct emif_regs **regs_cache; 1460 struct emif_regs *regs = NULL; 1461 struct device *dev; 1462 1463 dev = emif->dev; 1464 if (emif->curr_regs && emif->curr_regs->freq == freq) { 1465 dev_dbg(dev, "%s: using curr_regs - %u Hz", __func__, freq); 1466 return emif->curr_regs; 1467 } 1468 1469 if (emif->duplicate) 1470 regs_cache = emif1->regs_cache; 1471 else 1472 regs_cache = emif->regs_cache; 1473 1474 for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) { 1475 if (regs_cache[i]->freq == freq) { 1476 regs = regs_cache[i]; 1477 dev_dbg(dev, 1478 "%s: reg dump found in reg cache for %u Hz\n", 1479 __func__, freq); 1480 break; 1481 } 1482 } 1483 1484 /* 1485 * If we don't have an entry for this frequency in the cache create one 1486 * and calculate the values 1487 */ 1488 if (!regs) { 1489 regs = devm_kzalloc(emif->dev, sizeof(*regs), GFP_ATOMIC); 1490 if (!regs) 1491 return NULL; 1492 1493 if (get_emif_reg_values(emif, freq, regs)) { 1494 devm_kfree(emif->dev, regs); 1495 return NULL; 1496 } 1497 1498 /* 1499 * Now look for an un-used entry in the cache and save the 1500 * newly created struct. If there are no free entries 1501 * over-write the last entry 1502 */ 1503 for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) 1504 ; 1505 1506 if (i >= EMIF_MAX_NUM_FREQUENCIES) { 1507 dev_warn(dev, "%s: regs_cache full - reusing a slot!!\n", 1508 __func__); 1509 i = EMIF_MAX_NUM_FREQUENCIES - 1; 1510 devm_kfree(emif->dev, regs_cache[i]); 1511 } 1512 regs_cache[i] = regs; 1513 } 1514 1515 return regs; 1516 } 1517 1518 static void do_volt_notify_handling(struct emif_data *emif, u32 volt_state) 1519 { 1520 dev_dbg(emif->dev, "%s: voltage notification : %d", __func__, 1521 volt_state); 1522 1523 if (!emif->curr_regs) { 1524 dev_err(emif->dev, 1525 "%s: volt-notify before registers are ready: %d\n", 1526 __func__, volt_state); 1527 return; 1528 } 1529 1530 setup_volt_sensitive_regs(emif, emif->curr_regs, volt_state); 1531 } 1532 1533 /* 1534 * TODO: voltage notify handling should be hooked up to 1535 * regulator framework as soon as the necessary support 1536 * is available in mainline kernel. This function is un-used 1537 * right now. 1538 */ 1539 static void __attribute__((unused)) volt_notify_handling(u32 volt_state) 1540 { 1541 struct emif_data *emif; 1542 1543 spin_lock_irqsave(&emif_lock, irq_state); 1544 1545 list_for_each_entry(emif, &device_list, node) 1546 do_volt_notify_handling(emif, volt_state); 1547 do_freq_update(); 1548 1549 spin_unlock_irqrestore(&emif_lock, irq_state); 1550 } 1551 1552 static void do_freq_pre_notify_handling(struct emif_data *emif, u32 new_freq) 1553 { 1554 struct emif_regs *regs; 1555 1556 regs = get_regs(emif, new_freq); 1557 if (!regs) 1558 return; 1559 1560 emif->curr_regs = regs; 1561 1562 /* 1563 * Update the shadow registers: 1564 * Temperature and voltage-ramp sensitive settings are also configured 1565 * in terms of DDR cycles. So, we need to update them too when there 1566 * is a freq change 1567 */ 1568 dev_dbg(emif->dev, "%s: setting up shadow registers for %uHz", 1569 __func__, new_freq); 1570 setup_registers(emif, regs); 1571 setup_temperature_sensitive_regs(emif, regs); 1572 setup_volt_sensitive_regs(emif, regs, DDR_VOLTAGE_STABLE); 1573 1574 /* 1575 * Part of workaround for errata i728. See do_freq_update() 1576 * for more details 1577 */ 1578 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH) 1579 set_lpmode(emif, EMIF_LP_MODE_DISABLE); 1580 } 1581 1582 /* 1583 * TODO: frequency notify handling should be hooked up to 1584 * clock framework as soon as the necessary support is 1585 * available in mainline kernel. This function is un-used 1586 * right now. 1587 */ 1588 static void __attribute__((unused)) freq_pre_notify_handling(u32 new_freq) 1589 { 1590 struct emif_data *emif; 1591 1592 /* 1593 * NOTE: we are taking the spin-lock here and releases it 1594 * only in post-notifier. This doesn't look good and 1595 * Sparse complains about it, but this seems to be 1596 * un-avoidable. We need to lock a sequence of events 1597 * that is split between EMIF and clock framework. 1598 * 1599 * 1. EMIF driver updates EMIF timings in shadow registers in the 1600 * frequency pre-notify callback from clock framework 1601 * 2. clock framework sets up the registers for the new frequency 1602 * 3. clock framework initiates a hw-sequence that updates 1603 * the frequency EMIF timings synchronously. 1604 * 1605 * All these 3 steps should be performed as an atomic operation 1606 * vis-a-vis similar sequence in the EMIF interrupt handler 1607 * for temperature events. Otherwise, there could be race 1608 * conditions that could result in incorrect EMIF timings for 1609 * a given frequency 1610 */ 1611 spin_lock_irqsave(&emif_lock, irq_state); 1612 1613 list_for_each_entry(emif, &device_list, node) 1614 do_freq_pre_notify_handling(emif, new_freq); 1615 } 1616 1617 static void do_freq_post_notify_handling(struct emif_data *emif) 1618 { 1619 /* 1620 * Part of workaround for errata i728. See do_freq_update() 1621 * for more details 1622 */ 1623 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH) 1624 set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH); 1625 } 1626 1627 /* 1628 * TODO: frequency notify handling should be hooked up to 1629 * clock framework as soon as the necessary support is 1630 * available in mainline kernel. This function is un-used 1631 * right now. 1632 */ 1633 static void __attribute__((unused)) freq_post_notify_handling(void) 1634 { 1635 struct emif_data *emif; 1636 1637 list_for_each_entry(emif, &device_list, node) 1638 do_freq_post_notify_handling(emif); 1639 1640 /* 1641 * Lock is done in pre-notify handler. See freq_pre_notify_handling() 1642 * for more details 1643 */ 1644 spin_unlock_irqrestore(&emif_lock, irq_state); 1645 } 1646 1647 static struct platform_driver emif_driver = { 1648 .remove = __exit_p(emif_remove), 1649 .shutdown = emif_shutdown, 1650 .driver = { 1651 .name = "emif", 1652 }, 1653 }; 1654 1655 static int __init_or_module emif_register(void) 1656 { 1657 return platform_driver_probe(&emif_driver, emif_probe); 1658 } 1659 1660 static void __exit emif_unregister(void) 1661 { 1662 platform_driver_unregister(&emif_driver); 1663 } 1664 1665 module_init(emif_register); 1666 module_exit(emif_unregister); 1667 MODULE_DESCRIPTION("TI EMIF SDRAM Controller Driver"); 1668 MODULE_LICENSE("GPL"); 1669 MODULE_ALIAS("platform:emif"); 1670 MODULE_AUTHOR("Texas Instruments Inc"); 1671