1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Memory-to-memory device framework for Video for Linux 2 and videobuf. 4 * 5 * Helper functions for devices that use videobuf buffers for both their 6 * source and destination. 7 * 8 * Copyright (c) 2009-2010 Samsung Electronics Co., Ltd. 9 * Pawel Osciak, <pawel@osciak.com> 10 * Marek Szyprowski, <m.szyprowski@samsung.com> 11 */ 12 #include <linux/module.h> 13 #include <linux/sched.h> 14 #include <linux/slab.h> 15 16 #include <media/media-device.h> 17 #include <media/videobuf2-v4l2.h> 18 #include <media/v4l2-mem2mem.h> 19 #include <media/v4l2-dev.h> 20 #include <media/v4l2-device.h> 21 #include <media/v4l2-fh.h> 22 #include <media/v4l2-event.h> 23 24 MODULE_DESCRIPTION("Mem to mem device framework for videobuf"); 25 MODULE_AUTHOR("Pawel Osciak, <pawel@osciak.com>"); 26 MODULE_LICENSE("GPL"); 27 28 static bool debug; 29 module_param(debug, bool, 0644); 30 31 #define dprintk(fmt, arg...) \ 32 do { \ 33 if (debug) \ 34 printk(KERN_DEBUG "%s: " fmt, __func__, ## arg);\ 35 } while (0) 36 37 38 /* Instance is already queued on the job_queue */ 39 #define TRANS_QUEUED (1 << 0) 40 /* Instance is currently running in hardware */ 41 #define TRANS_RUNNING (1 << 1) 42 /* Instance is currently aborting */ 43 #define TRANS_ABORT (1 << 2) 44 45 46 /* Offset base for buffers on the destination queue - used to distinguish 47 * between source and destination buffers when mmapping - they receive the same 48 * offsets but for different queues */ 49 #define DST_QUEUE_OFF_BASE (1 << 30) 50 51 enum v4l2_m2m_entity_type { 52 MEM2MEM_ENT_TYPE_SOURCE, 53 MEM2MEM_ENT_TYPE_SINK, 54 MEM2MEM_ENT_TYPE_PROC 55 }; 56 57 static const char * const m2m_entity_name[] = { 58 "source", 59 "sink", 60 "proc" 61 }; 62 63 /** 64 * struct v4l2_m2m_dev - per-device context 65 * @source: &struct media_entity pointer with the source entity 66 * Used only when the M2M device is registered via 67 * v4l2_m2m_unregister_media_controller(). 68 * @source_pad: &struct media_pad with the source pad. 69 * Used only when the M2M device is registered via 70 * v4l2_m2m_unregister_media_controller(). 71 * @sink: &struct media_entity pointer with the sink entity 72 * Used only when the M2M device is registered via 73 * v4l2_m2m_unregister_media_controller(). 74 * @sink_pad: &struct media_pad with the sink pad. 75 * Used only when the M2M device is registered via 76 * v4l2_m2m_unregister_media_controller(). 77 * @proc: &struct media_entity pointer with the M2M device itself. 78 * @proc_pads: &struct media_pad with the @proc pads. 79 * Used only when the M2M device is registered via 80 * v4l2_m2m_unregister_media_controller(). 81 * @intf_devnode: &struct media_intf devnode pointer with the interface 82 * with controls the M2M device. 83 * @curr_ctx: currently running instance 84 * @job_queue: instances queued to run 85 * @job_spinlock: protects job_queue 86 * @job_work: worker to run queued jobs. 87 * @m2m_ops: driver callbacks 88 */ 89 struct v4l2_m2m_dev { 90 struct v4l2_m2m_ctx *curr_ctx; 91 #ifdef CONFIG_MEDIA_CONTROLLER 92 struct media_entity *source; 93 struct media_pad source_pad; 94 struct media_entity sink; 95 struct media_pad sink_pad; 96 struct media_entity proc; 97 struct media_pad proc_pads[2]; 98 struct media_intf_devnode *intf_devnode; 99 #endif 100 101 struct list_head job_queue; 102 spinlock_t job_spinlock; 103 struct work_struct job_work; 104 105 const struct v4l2_m2m_ops *m2m_ops; 106 }; 107 108 static struct v4l2_m2m_queue_ctx *get_queue_ctx(struct v4l2_m2m_ctx *m2m_ctx, 109 enum v4l2_buf_type type) 110 { 111 if (V4L2_TYPE_IS_OUTPUT(type)) 112 return &m2m_ctx->out_q_ctx; 113 else 114 return &m2m_ctx->cap_q_ctx; 115 } 116 117 struct vb2_queue *v4l2_m2m_get_vq(struct v4l2_m2m_ctx *m2m_ctx, 118 enum v4l2_buf_type type) 119 { 120 struct v4l2_m2m_queue_ctx *q_ctx; 121 122 q_ctx = get_queue_ctx(m2m_ctx, type); 123 if (!q_ctx) 124 return NULL; 125 126 return &q_ctx->q; 127 } 128 EXPORT_SYMBOL(v4l2_m2m_get_vq); 129 130 struct vb2_v4l2_buffer *v4l2_m2m_next_buf(struct v4l2_m2m_queue_ctx *q_ctx) 131 { 132 struct v4l2_m2m_buffer *b; 133 unsigned long flags; 134 135 spin_lock_irqsave(&q_ctx->rdy_spinlock, flags); 136 137 if (list_empty(&q_ctx->rdy_queue)) { 138 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags); 139 return NULL; 140 } 141 142 b = list_first_entry(&q_ctx->rdy_queue, struct v4l2_m2m_buffer, list); 143 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags); 144 return &b->vb; 145 } 146 EXPORT_SYMBOL_GPL(v4l2_m2m_next_buf); 147 148 struct vb2_v4l2_buffer *v4l2_m2m_last_buf(struct v4l2_m2m_queue_ctx *q_ctx) 149 { 150 struct v4l2_m2m_buffer *b; 151 unsigned long flags; 152 153 spin_lock_irqsave(&q_ctx->rdy_spinlock, flags); 154 155 if (list_empty(&q_ctx->rdy_queue)) { 156 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags); 157 return NULL; 158 } 159 160 b = list_last_entry(&q_ctx->rdy_queue, struct v4l2_m2m_buffer, list); 161 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags); 162 return &b->vb; 163 } 164 EXPORT_SYMBOL_GPL(v4l2_m2m_last_buf); 165 166 struct vb2_v4l2_buffer *v4l2_m2m_buf_remove(struct v4l2_m2m_queue_ctx *q_ctx) 167 { 168 struct v4l2_m2m_buffer *b; 169 unsigned long flags; 170 171 spin_lock_irqsave(&q_ctx->rdy_spinlock, flags); 172 if (list_empty(&q_ctx->rdy_queue)) { 173 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags); 174 return NULL; 175 } 176 b = list_first_entry(&q_ctx->rdy_queue, struct v4l2_m2m_buffer, list); 177 list_del(&b->list); 178 q_ctx->num_rdy--; 179 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags); 180 181 return &b->vb; 182 } 183 EXPORT_SYMBOL_GPL(v4l2_m2m_buf_remove); 184 185 void v4l2_m2m_buf_remove_by_buf(struct v4l2_m2m_queue_ctx *q_ctx, 186 struct vb2_v4l2_buffer *vbuf) 187 { 188 struct v4l2_m2m_buffer *b; 189 unsigned long flags; 190 191 spin_lock_irqsave(&q_ctx->rdy_spinlock, flags); 192 b = container_of(vbuf, struct v4l2_m2m_buffer, vb); 193 list_del(&b->list); 194 q_ctx->num_rdy--; 195 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags); 196 } 197 EXPORT_SYMBOL_GPL(v4l2_m2m_buf_remove_by_buf); 198 199 struct vb2_v4l2_buffer * 200 v4l2_m2m_buf_remove_by_idx(struct v4l2_m2m_queue_ctx *q_ctx, unsigned int idx) 201 202 { 203 struct v4l2_m2m_buffer *b, *tmp; 204 struct vb2_v4l2_buffer *ret = NULL; 205 unsigned long flags; 206 207 spin_lock_irqsave(&q_ctx->rdy_spinlock, flags); 208 list_for_each_entry_safe(b, tmp, &q_ctx->rdy_queue, list) { 209 if (b->vb.vb2_buf.index == idx) { 210 list_del(&b->list); 211 q_ctx->num_rdy--; 212 ret = &b->vb; 213 break; 214 } 215 } 216 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags); 217 218 return ret; 219 } 220 EXPORT_SYMBOL_GPL(v4l2_m2m_buf_remove_by_idx); 221 222 /* 223 * Scheduling handlers 224 */ 225 226 void *v4l2_m2m_get_curr_priv(struct v4l2_m2m_dev *m2m_dev) 227 { 228 unsigned long flags; 229 void *ret = NULL; 230 231 spin_lock_irqsave(&m2m_dev->job_spinlock, flags); 232 if (m2m_dev->curr_ctx) 233 ret = m2m_dev->curr_ctx->priv; 234 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags); 235 236 return ret; 237 } 238 EXPORT_SYMBOL(v4l2_m2m_get_curr_priv); 239 240 /** 241 * v4l2_m2m_try_run() - select next job to perform and run it if possible 242 * @m2m_dev: per-device context 243 * 244 * Get next transaction (if present) from the waiting jobs list and run it. 245 * 246 * Note that this function can run on a given v4l2_m2m_ctx context, 247 * but call .device_run for another context. 248 */ 249 static void v4l2_m2m_try_run(struct v4l2_m2m_dev *m2m_dev) 250 { 251 unsigned long flags; 252 253 spin_lock_irqsave(&m2m_dev->job_spinlock, flags); 254 if (NULL != m2m_dev->curr_ctx) { 255 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags); 256 dprintk("Another instance is running, won't run now\n"); 257 return; 258 } 259 260 if (list_empty(&m2m_dev->job_queue)) { 261 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags); 262 dprintk("No job pending\n"); 263 return; 264 } 265 266 m2m_dev->curr_ctx = list_first_entry(&m2m_dev->job_queue, 267 struct v4l2_m2m_ctx, queue); 268 m2m_dev->curr_ctx->job_flags |= TRANS_RUNNING; 269 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags); 270 271 dprintk("Running job on m2m_ctx: %p\n", m2m_dev->curr_ctx); 272 m2m_dev->m2m_ops->device_run(m2m_dev->curr_ctx->priv); 273 } 274 275 /* 276 * __v4l2_m2m_try_queue() - queue a job 277 * @m2m_dev: m2m device 278 * @m2m_ctx: m2m context 279 * 280 * Check if this context is ready to queue a job. 281 * 282 * This function can run in interrupt context. 283 */ 284 static void __v4l2_m2m_try_queue(struct v4l2_m2m_dev *m2m_dev, 285 struct v4l2_m2m_ctx *m2m_ctx) 286 { 287 unsigned long flags_job, flags_out, flags_cap; 288 289 dprintk("Trying to schedule a job for m2m_ctx: %p\n", m2m_ctx); 290 291 if (!m2m_ctx->out_q_ctx.q.streaming 292 || !m2m_ctx->cap_q_ctx.q.streaming) { 293 dprintk("Streaming needs to be on for both queues\n"); 294 return; 295 } 296 297 spin_lock_irqsave(&m2m_dev->job_spinlock, flags_job); 298 299 /* If the context is aborted then don't schedule it */ 300 if (m2m_ctx->job_flags & TRANS_ABORT) { 301 dprintk("Aborted context\n"); 302 goto job_unlock; 303 } 304 305 if (m2m_ctx->job_flags & TRANS_QUEUED) { 306 dprintk("On job queue already\n"); 307 goto job_unlock; 308 } 309 310 spin_lock_irqsave(&m2m_ctx->out_q_ctx.rdy_spinlock, flags_out); 311 if (list_empty(&m2m_ctx->out_q_ctx.rdy_queue) 312 && !m2m_ctx->out_q_ctx.buffered) { 313 dprintk("No input buffers available\n"); 314 goto out_unlock; 315 } 316 spin_lock_irqsave(&m2m_ctx->cap_q_ctx.rdy_spinlock, flags_cap); 317 if (list_empty(&m2m_ctx->cap_q_ctx.rdy_queue) 318 && !m2m_ctx->cap_q_ctx.buffered) { 319 dprintk("No output buffers available\n"); 320 goto cap_unlock; 321 } 322 spin_unlock_irqrestore(&m2m_ctx->cap_q_ctx.rdy_spinlock, flags_cap); 323 spin_unlock_irqrestore(&m2m_ctx->out_q_ctx.rdy_spinlock, flags_out); 324 325 if (m2m_dev->m2m_ops->job_ready 326 && (!m2m_dev->m2m_ops->job_ready(m2m_ctx->priv))) { 327 dprintk("Driver not ready\n"); 328 goto job_unlock; 329 } 330 331 list_add_tail(&m2m_ctx->queue, &m2m_dev->job_queue); 332 m2m_ctx->job_flags |= TRANS_QUEUED; 333 334 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags_job); 335 return; 336 337 cap_unlock: 338 spin_unlock_irqrestore(&m2m_ctx->cap_q_ctx.rdy_spinlock, flags_cap); 339 out_unlock: 340 spin_unlock_irqrestore(&m2m_ctx->out_q_ctx.rdy_spinlock, flags_out); 341 job_unlock: 342 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags_job); 343 } 344 345 /** 346 * v4l2_m2m_try_schedule() - schedule and possibly run a job for any context 347 * @m2m_ctx: m2m context 348 * 349 * Check if this context is ready to queue a job. If suitable, 350 * run the next queued job on the mem2mem device. 351 * 352 * This function shouldn't run in interrupt context. 353 * 354 * Note that v4l2_m2m_try_schedule() can schedule one job for this context, 355 * and then run another job for another context. 356 */ 357 void v4l2_m2m_try_schedule(struct v4l2_m2m_ctx *m2m_ctx) 358 { 359 struct v4l2_m2m_dev *m2m_dev = m2m_ctx->m2m_dev; 360 361 __v4l2_m2m_try_queue(m2m_dev, m2m_ctx); 362 v4l2_m2m_try_run(m2m_dev); 363 } 364 EXPORT_SYMBOL_GPL(v4l2_m2m_try_schedule); 365 366 /** 367 * v4l2_m2m_device_run_work() - run pending jobs for the context 368 * @work: Work structure used for scheduling the execution of this function. 369 */ 370 static void v4l2_m2m_device_run_work(struct work_struct *work) 371 { 372 struct v4l2_m2m_dev *m2m_dev = 373 container_of(work, struct v4l2_m2m_dev, job_work); 374 375 v4l2_m2m_try_run(m2m_dev); 376 } 377 378 /** 379 * v4l2_m2m_cancel_job() - cancel pending jobs for the context 380 * @m2m_ctx: m2m context with jobs to be canceled 381 * 382 * In case of streamoff or release called on any context, 383 * 1] If the context is currently running, then abort job will be called 384 * 2] If the context is queued, then the context will be removed from 385 * the job_queue 386 */ 387 static void v4l2_m2m_cancel_job(struct v4l2_m2m_ctx *m2m_ctx) 388 { 389 struct v4l2_m2m_dev *m2m_dev; 390 unsigned long flags; 391 392 m2m_dev = m2m_ctx->m2m_dev; 393 spin_lock_irqsave(&m2m_dev->job_spinlock, flags); 394 395 m2m_ctx->job_flags |= TRANS_ABORT; 396 if (m2m_ctx->job_flags & TRANS_RUNNING) { 397 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags); 398 if (m2m_dev->m2m_ops->job_abort) 399 m2m_dev->m2m_ops->job_abort(m2m_ctx->priv); 400 dprintk("m2m_ctx %p running, will wait to complete\n", m2m_ctx); 401 wait_event(m2m_ctx->finished, 402 !(m2m_ctx->job_flags & TRANS_RUNNING)); 403 } else if (m2m_ctx->job_flags & TRANS_QUEUED) { 404 list_del(&m2m_ctx->queue); 405 m2m_ctx->job_flags &= ~(TRANS_QUEUED | TRANS_RUNNING); 406 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags); 407 dprintk("m2m_ctx: %p had been on queue and was removed\n", 408 m2m_ctx); 409 } else { 410 /* Do nothing, was not on queue/running */ 411 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags); 412 } 413 } 414 415 void v4l2_m2m_job_finish(struct v4l2_m2m_dev *m2m_dev, 416 struct v4l2_m2m_ctx *m2m_ctx) 417 { 418 unsigned long flags; 419 420 spin_lock_irqsave(&m2m_dev->job_spinlock, flags); 421 if (!m2m_dev->curr_ctx || m2m_dev->curr_ctx != m2m_ctx) { 422 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags); 423 dprintk("Called by an instance not currently running\n"); 424 return; 425 } 426 427 list_del(&m2m_dev->curr_ctx->queue); 428 m2m_dev->curr_ctx->job_flags &= ~(TRANS_QUEUED | TRANS_RUNNING); 429 wake_up(&m2m_dev->curr_ctx->finished); 430 m2m_dev->curr_ctx = NULL; 431 432 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags); 433 434 /* This instance might have more buffers ready, but since we do not 435 * allow more than one job on the job_queue per instance, each has 436 * to be scheduled separately after the previous one finishes. */ 437 __v4l2_m2m_try_queue(m2m_dev, m2m_ctx); 438 439 /* We might be running in atomic context, 440 * but the job must be run in non-atomic context. 441 */ 442 schedule_work(&m2m_dev->job_work); 443 } 444 EXPORT_SYMBOL(v4l2_m2m_job_finish); 445 446 int v4l2_m2m_reqbufs(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, 447 struct v4l2_requestbuffers *reqbufs) 448 { 449 struct vb2_queue *vq; 450 int ret; 451 452 vq = v4l2_m2m_get_vq(m2m_ctx, reqbufs->type); 453 ret = vb2_reqbufs(vq, reqbufs); 454 /* If count == 0, then the owner has released all buffers and he 455 is no longer owner of the queue. Otherwise we have an owner. */ 456 if (ret == 0) 457 vq->owner = reqbufs->count ? file->private_data : NULL; 458 459 return ret; 460 } 461 EXPORT_SYMBOL_GPL(v4l2_m2m_reqbufs); 462 463 int v4l2_m2m_querybuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, 464 struct v4l2_buffer *buf) 465 { 466 struct vb2_queue *vq; 467 int ret = 0; 468 unsigned int i; 469 470 vq = v4l2_m2m_get_vq(m2m_ctx, buf->type); 471 ret = vb2_querybuf(vq, buf); 472 473 /* Adjust MMAP memory offsets for the CAPTURE queue */ 474 if (buf->memory == V4L2_MEMORY_MMAP && !V4L2_TYPE_IS_OUTPUT(vq->type)) { 475 if (V4L2_TYPE_IS_MULTIPLANAR(vq->type)) { 476 for (i = 0; i < buf->length; ++i) 477 buf->m.planes[i].m.mem_offset 478 += DST_QUEUE_OFF_BASE; 479 } else { 480 buf->m.offset += DST_QUEUE_OFF_BASE; 481 } 482 } 483 484 return ret; 485 } 486 EXPORT_SYMBOL_GPL(v4l2_m2m_querybuf); 487 488 int v4l2_m2m_qbuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, 489 struct v4l2_buffer *buf) 490 { 491 struct video_device *vdev = video_devdata(file); 492 struct vb2_queue *vq; 493 int ret; 494 495 vq = v4l2_m2m_get_vq(m2m_ctx, buf->type); 496 if (!V4L2_TYPE_IS_OUTPUT(vq->type) && 497 (buf->flags & V4L2_BUF_FLAG_REQUEST_FD)) { 498 dprintk("%s: requests cannot be used with capture buffers\n", 499 __func__); 500 return -EPERM; 501 } 502 ret = vb2_qbuf(vq, vdev->v4l2_dev->mdev, buf); 503 if (!ret && !(buf->flags & V4L2_BUF_FLAG_IN_REQUEST)) 504 v4l2_m2m_try_schedule(m2m_ctx); 505 506 return ret; 507 } 508 EXPORT_SYMBOL_GPL(v4l2_m2m_qbuf); 509 510 int v4l2_m2m_dqbuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, 511 struct v4l2_buffer *buf) 512 { 513 struct vb2_queue *vq; 514 515 vq = v4l2_m2m_get_vq(m2m_ctx, buf->type); 516 return vb2_dqbuf(vq, buf, file->f_flags & O_NONBLOCK); 517 } 518 EXPORT_SYMBOL_GPL(v4l2_m2m_dqbuf); 519 520 int v4l2_m2m_prepare_buf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, 521 struct v4l2_buffer *buf) 522 { 523 struct video_device *vdev = video_devdata(file); 524 struct vb2_queue *vq; 525 526 vq = v4l2_m2m_get_vq(m2m_ctx, buf->type); 527 return vb2_prepare_buf(vq, vdev->v4l2_dev->mdev, buf); 528 } 529 EXPORT_SYMBOL_GPL(v4l2_m2m_prepare_buf); 530 531 int v4l2_m2m_create_bufs(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, 532 struct v4l2_create_buffers *create) 533 { 534 struct vb2_queue *vq; 535 536 vq = v4l2_m2m_get_vq(m2m_ctx, create->format.type); 537 return vb2_create_bufs(vq, create); 538 } 539 EXPORT_SYMBOL_GPL(v4l2_m2m_create_bufs); 540 541 int v4l2_m2m_expbuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, 542 struct v4l2_exportbuffer *eb) 543 { 544 struct vb2_queue *vq; 545 546 vq = v4l2_m2m_get_vq(m2m_ctx, eb->type); 547 return vb2_expbuf(vq, eb); 548 } 549 EXPORT_SYMBOL_GPL(v4l2_m2m_expbuf); 550 551 int v4l2_m2m_streamon(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, 552 enum v4l2_buf_type type) 553 { 554 struct vb2_queue *vq; 555 int ret; 556 557 vq = v4l2_m2m_get_vq(m2m_ctx, type); 558 ret = vb2_streamon(vq, type); 559 if (!ret) 560 v4l2_m2m_try_schedule(m2m_ctx); 561 562 return ret; 563 } 564 EXPORT_SYMBOL_GPL(v4l2_m2m_streamon); 565 566 int v4l2_m2m_streamoff(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, 567 enum v4l2_buf_type type) 568 { 569 struct v4l2_m2m_dev *m2m_dev; 570 struct v4l2_m2m_queue_ctx *q_ctx; 571 unsigned long flags_job, flags; 572 int ret; 573 574 /* wait until the current context is dequeued from job_queue */ 575 v4l2_m2m_cancel_job(m2m_ctx); 576 577 q_ctx = get_queue_ctx(m2m_ctx, type); 578 ret = vb2_streamoff(&q_ctx->q, type); 579 if (ret) 580 return ret; 581 582 m2m_dev = m2m_ctx->m2m_dev; 583 spin_lock_irqsave(&m2m_dev->job_spinlock, flags_job); 584 /* We should not be scheduled anymore, since we're dropping a queue. */ 585 if (m2m_ctx->job_flags & TRANS_QUEUED) 586 list_del(&m2m_ctx->queue); 587 m2m_ctx->job_flags = 0; 588 589 spin_lock_irqsave(&q_ctx->rdy_spinlock, flags); 590 /* Drop queue, since streamoff returns device to the same state as after 591 * calling reqbufs. */ 592 INIT_LIST_HEAD(&q_ctx->rdy_queue); 593 q_ctx->num_rdy = 0; 594 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags); 595 596 if (m2m_dev->curr_ctx == m2m_ctx) { 597 m2m_dev->curr_ctx = NULL; 598 wake_up(&m2m_ctx->finished); 599 } 600 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags_job); 601 602 return 0; 603 } 604 EXPORT_SYMBOL_GPL(v4l2_m2m_streamoff); 605 606 __poll_t v4l2_m2m_poll(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, 607 struct poll_table_struct *wait) 608 { 609 struct video_device *vfd = video_devdata(file); 610 __poll_t req_events = poll_requested_events(wait); 611 struct vb2_queue *src_q, *dst_q; 612 struct vb2_buffer *src_vb = NULL, *dst_vb = NULL; 613 __poll_t rc = 0; 614 unsigned long flags; 615 616 src_q = v4l2_m2m_get_src_vq(m2m_ctx); 617 dst_q = v4l2_m2m_get_dst_vq(m2m_ctx); 618 619 poll_wait(file, &src_q->done_wq, wait); 620 poll_wait(file, &dst_q->done_wq, wait); 621 622 if (test_bit(V4L2_FL_USES_V4L2_FH, &vfd->flags)) { 623 struct v4l2_fh *fh = file->private_data; 624 625 poll_wait(file, &fh->wait, wait); 626 if (v4l2_event_pending(fh)) 627 rc = EPOLLPRI; 628 if (!(req_events & (EPOLLOUT | EPOLLWRNORM | EPOLLIN | EPOLLRDNORM))) 629 return rc; 630 } 631 632 /* 633 * There has to be at least one buffer queued on each queued_list, which 634 * means either in driver already or waiting for driver to claim it 635 * and start processing. 636 */ 637 if ((!src_q->streaming || src_q->error || 638 list_empty(&src_q->queued_list)) && 639 (!dst_q->streaming || dst_q->error || 640 list_empty(&dst_q->queued_list))) { 641 rc |= EPOLLERR; 642 goto end; 643 } 644 645 spin_lock_irqsave(&dst_q->done_lock, flags); 646 if (list_empty(&dst_q->done_list)) { 647 /* 648 * If the last buffer was dequeued from the capture queue, 649 * return immediately. DQBUF will return -EPIPE. 650 */ 651 if (dst_q->last_buffer_dequeued) { 652 spin_unlock_irqrestore(&dst_q->done_lock, flags); 653 return rc | EPOLLIN | EPOLLRDNORM; 654 } 655 } 656 spin_unlock_irqrestore(&dst_q->done_lock, flags); 657 658 spin_lock_irqsave(&src_q->done_lock, flags); 659 if (!list_empty(&src_q->done_list)) 660 src_vb = list_first_entry(&src_q->done_list, struct vb2_buffer, 661 done_entry); 662 if (src_vb && (src_vb->state == VB2_BUF_STATE_DONE 663 || src_vb->state == VB2_BUF_STATE_ERROR)) 664 rc |= EPOLLOUT | EPOLLWRNORM; 665 spin_unlock_irqrestore(&src_q->done_lock, flags); 666 667 spin_lock_irqsave(&dst_q->done_lock, flags); 668 if (!list_empty(&dst_q->done_list)) 669 dst_vb = list_first_entry(&dst_q->done_list, struct vb2_buffer, 670 done_entry); 671 if (dst_vb && (dst_vb->state == VB2_BUF_STATE_DONE 672 || dst_vb->state == VB2_BUF_STATE_ERROR)) 673 rc |= EPOLLIN | EPOLLRDNORM; 674 spin_unlock_irqrestore(&dst_q->done_lock, flags); 675 676 end: 677 return rc; 678 } 679 EXPORT_SYMBOL_GPL(v4l2_m2m_poll); 680 681 int v4l2_m2m_mmap(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, 682 struct vm_area_struct *vma) 683 { 684 unsigned long offset = vma->vm_pgoff << PAGE_SHIFT; 685 struct vb2_queue *vq; 686 687 if (offset < DST_QUEUE_OFF_BASE) { 688 vq = v4l2_m2m_get_src_vq(m2m_ctx); 689 } else { 690 vq = v4l2_m2m_get_dst_vq(m2m_ctx); 691 vma->vm_pgoff -= (DST_QUEUE_OFF_BASE >> PAGE_SHIFT); 692 } 693 694 return vb2_mmap(vq, vma); 695 } 696 EXPORT_SYMBOL(v4l2_m2m_mmap); 697 698 #if defined(CONFIG_MEDIA_CONTROLLER) 699 void v4l2_m2m_unregister_media_controller(struct v4l2_m2m_dev *m2m_dev) 700 { 701 media_remove_intf_links(&m2m_dev->intf_devnode->intf); 702 media_devnode_remove(m2m_dev->intf_devnode); 703 704 media_entity_remove_links(m2m_dev->source); 705 media_entity_remove_links(&m2m_dev->sink); 706 media_entity_remove_links(&m2m_dev->proc); 707 media_device_unregister_entity(m2m_dev->source); 708 media_device_unregister_entity(&m2m_dev->sink); 709 media_device_unregister_entity(&m2m_dev->proc); 710 kfree(m2m_dev->source->name); 711 kfree(m2m_dev->sink.name); 712 kfree(m2m_dev->proc.name); 713 } 714 EXPORT_SYMBOL_GPL(v4l2_m2m_unregister_media_controller); 715 716 static int v4l2_m2m_register_entity(struct media_device *mdev, 717 struct v4l2_m2m_dev *m2m_dev, enum v4l2_m2m_entity_type type, 718 struct video_device *vdev, int function) 719 { 720 struct media_entity *entity; 721 struct media_pad *pads; 722 char *name; 723 unsigned int len; 724 int num_pads; 725 int ret; 726 727 switch (type) { 728 case MEM2MEM_ENT_TYPE_SOURCE: 729 entity = m2m_dev->source; 730 pads = &m2m_dev->source_pad; 731 pads[0].flags = MEDIA_PAD_FL_SOURCE; 732 num_pads = 1; 733 break; 734 case MEM2MEM_ENT_TYPE_SINK: 735 entity = &m2m_dev->sink; 736 pads = &m2m_dev->sink_pad; 737 pads[0].flags = MEDIA_PAD_FL_SINK; 738 num_pads = 1; 739 break; 740 case MEM2MEM_ENT_TYPE_PROC: 741 entity = &m2m_dev->proc; 742 pads = m2m_dev->proc_pads; 743 pads[0].flags = MEDIA_PAD_FL_SINK; 744 pads[1].flags = MEDIA_PAD_FL_SOURCE; 745 num_pads = 2; 746 break; 747 default: 748 return -EINVAL; 749 } 750 751 entity->obj_type = MEDIA_ENTITY_TYPE_BASE; 752 if (type != MEM2MEM_ENT_TYPE_PROC) { 753 entity->info.dev.major = VIDEO_MAJOR; 754 entity->info.dev.minor = vdev->minor; 755 } 756 len = strlen(vdev->name) + 2 + strlen(m2m_entity_name[type]); 757 name = kmalloc(len, GFP_KERNEL); 758 if (!name) 759 return -ENOMEM; 760 snprintf(name, len, "%s-%s", vdev->name, m2m_entity_name[type]); 761 entity->name = name; 762 entity->function = function; 763 764 ret = media_entity_pads_init(entity, num_pads, pads); 765 if (ret) 766 return ret; 767 ret = media_device_register_entity(mdev, entity); 768 if (ret) 769 return ret; 770 771 return 0; 772 } 773 774 int v4l2_m2m_register_media_controller(struct v4l2_m2m_dev *m2m_dev, 775 struct video_device *vdev, int function) 776 { 777 struct media_device *mdev = vdev->v4l2_dev->mdev; 778 struct media_link *link; 779 int ret; 780 781 if (!mdev) 782 return 0; 783 784 /* A memory-to-memory device consists in two 785 * DMA engine and one video processing entities. 786 * The DMA engine entities are linked to a V4L interface 787 */ 788 789 /* Create the three entities with their pads */ 790 m2m_dev->source = &vdev->entity; 791 ret = v4l2_m2m_register_entity(mdev, m2m_dev, 792 MEM2MEM_ENT_TYPE_SOURCE, vdev, MEDIA_ENT_F_IO_V4L); 793 if (ret) 794 return ret; 795 ret = v4l2_m2m_register_entity(mdev, m2m_dev, 796 MEM2MEM_ENT_TYPE_PROC, vdev, function); 797 if (ret) 798 goto err_rel_entity0; 799 ret = v4l2_m2m_register_entity(mdev, m2m_dev, 800 MEM2MEM_ENT_TYPE_SINK, vdev, MEDIA_ENT_F_IO_V4L); 801 if (ret) 802 goto err_rel_entity1; 803 804 /* Connect the three entities */ 805 ret = media_create_pad_link(m2m_dev->source, 0, &m2m_dev->proc, 1, 806 MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED); 807 if (ret) 808 goto err_rel_entity2; 809 810 ret = media_create_pad_link(&m2m_dev->proc, 0, &m2m_dev->sink, 0, 811 MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED); 812 if (ret) 813 goto err_rm_links0; 814 815 /* Create video interface */ 816 m2m_dev->intf_devnode = media_devnode_create(mdev, 817 MEDIA_INTF_T_V4L_VIDEO, 0, 818 VIDEO_MAJOR, vdev->minor); 819 if (!m2m_dev->intf_devnode) { 820 ret = -ENOMEM; 821 goto err_rm_links1; 822 } 823 824 /* Connect the two DMA engines to the interface */ 825 link = media_create_intf_link(m2m_dev->source, 826 &m2m_dev->intf_devnode->intf, 827 MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED); 828 if (!link) { 829 ret = -ENOMEM; 830 goto err_rm_devnode; 831 } 832 833 link = media_create_intf_link(&m2m_dev->sink, 834 &m2m_dev->intf_devnode->intf, 835 MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED); 836 if (!link) { 837 ret = -ENOMEM; 838 goto err_rm_intf_link; 839 } 840 return 0; 841 842 err_rm_intf_link: 843 media_remove_intf_links(&m2m_dev->intf_devnode->intf); 844 err_rm_devnode: 845 media_devnode_remove(m2m_dev->intf_devnode); 846 err_rm_links1: 847 media_entity_remove_links(&m2m_dev->sink); 848 err_rm_links0: 849 media_entity_remove_links(&m2m_dev->proc); 850 media_entity_remove_links(m2m_dev->source); 851 err_rel_entity2: 852 media_device_unregister_entity(&m2m_dev->proc); 853 kfree(m2m_dev->proc.name); 854 err_rel_entity1: 855 media_device_unregister_entity(&m2m_dev->sink); 856 kfree(m2m_dev->sink.name); 857 err_rel_entity0: 858 media_device_unregister_entity(m2m_dev->source); 859 kfree(m2m_dev->source->name); 860 return ret; 861 return 0; 862 } 863 EXPORT_SYMBOL_GPL(v4l2_m2m_register_media_controller); 864 #endif 865 866 struct v4l2_m2m_dev *v4l2_m2m_init(const struct v4l2_m2m_ops *m2m_ops) 867 { 868 struct v4l2_m2m_dev *m2m_dev; 869 870 if (!m2m_ops || WARN_ON(!m2m_ops->device_run)) 871 return ERR_PTR(-EINVAL); 872 873 m2m_dev = kzalloc(sizeof *m2m_dev, GFP_KERNEL); 874 if (!m2m_dev) 875 return ERR_PTR(-ENOMEM); 876 877 m2m_dev->curr_ctx = NULL; 878 m2m_dev->m2m_ops = m2m_ops; 879 INIT_LIST_HEAD(&m2m_dev->job_queue); 880 spin_lock_init(&m2m_dev->job_spinlock); 881 INIT_WORK(&m2m_dev->job_work, v4l2_m2m_device_run_work); 882 883 return m2m_dev; 884 } 885 EXPORT_SYMBOL_GPL(v4l2_m2m_init); 886 887 void v4l2_m2m_release(struct v4l2_m2m_dev *m2m_dev) 888 { 889 kfree(m2m_dev); 890 } 891 EXPORT_SYMBOL_GPL(v4l2_m2m_release); 892 893 struct v4l2_m2m_ctx *v4l2_m2m_ctx_init(struct v4l2_m2m_dev *m2m_dev, 894 void *drv_priv, 895 int (*queue_init)(void *priv, struct vb2_queue *src_vq, struct vb2_queue *dst_vq)) 896 { 897 struct v4l2_m2m_ctx *m2m_ctx; 898 struct v4l2_m2m_queue_ctx *out_q_ctx, *cap_q_ctx; 899 int ret; 900 901 m2m_ctx = kzalloc(sizeof *m2m_ctx, GFP_KERNEL); 902 if (!m2m_ctx) 903 return ERR_PTR(-ENOMEM); 904 905 m2m_ctx->priv = drv_priv; 906 m2m_ctx->m2m_dev = m2m_dev; 907 init_waitqueue_head(&m2m_ctx->finished); 908 909 out_q_ctx = &m2m_ctx->out_q_ctx; 910 cap_q_ctx = &m2m_ctx->cap_q_ctx; 911 912 INIT_LIST_HEAD(&out_q_ctx->rdy_queue); 913 INIT_LIST_HEAD(&cap_q_ctx->rdy_queue); 914 spin_lock_init(&out_q_ctx->rdy_spinlock); 915 spin_lock_init(&cap_q_ctx->rdy_spinlock); 916 917 INIT_LIST_HEAD(&m2m_ctx->queue); 918 919 ret = queue_init(drv_priv, &out_q_ctx->q, &cap_q_ctx->q); 920 921 if (ret) 922 goto err; 923 /* 924 * Both queues should use same the mutex to lock the m2m context. 925 * This lock is used in some v4l2_m2m_* helpers. 926 */ 927 if (WARN_ON(out_q_ctx->q.lock != cap_q_ctx->q.lock)) { 928 ret = -EINVAL; 929 goto err; 930 } 931 m2m_ctx->q_lock = out_q_ctx->q.lock; 932 933 return m2m_ctx; 934 err: 935 kfree(m2m_ctx); 936 return ERR_PTR(ret); 937 } 938 EXPORT_SYMBOL_GPL(v4l2_m2m_ctx_init); 939 940 void v4l2_m2m_ctx_release(struct v4l2_m2m_ctx *m2m_ctx) 941 { 942 /* wait until the current context is dequeued from job_queue */ 943 v4l2_m2m_cancel_job(m2m_ctx); 944 945 vb2_queue_release(&m2m_ctx->cap_q_ctx.q); 946 vb2_queue_release(&m2m_ctx->out_q_ctx.q); 947 948 kfree(m2m_ctx); 949 } 950 EXPORT_SYMBOL_GPL(v4l2_m2m_ctx_release); 951 952 void v4l2_m2m_buf_queue(struct v4l2_m2m_ctx *m2m_ctx, 953 struct vb2_v4l2_buffer *vbuf) 954 { 955 struct v4l2_m2m_buffer *b = container_of(vbuf, 956 struct v4l2_m2m_buffer, vb); 957 struct v4l2_m2m_queue_ctx *q_ctx; 958 unsigned long flags; 959 960 q_ctx = get_queue_ctx(m2m_ctx, vbuf->vb2_buf.vb2_queue->type); 961 if (!q_ctx) 962 return; 963 964 spin_lock_irqsave(&q_ctx->rdy_spinlock, flags); 965 list_add_tail(&b->list, &q_ctx->rdy_queue); 966 q_ctx->num_rdy++; 967 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags); 968 } 969 EXPORT_SYMBOL_GPL(v4l2_m2m_buf_queue); 970 971 void v4l2_m2m_buf_copy_metadata(const struct vb2_v4l2_buffer *out_vb, 972 struct vb2_v4l2_buffer *cap_vb, 973 bool copy_frame_flags) 974 { 975 u32 mask = V4L2_BUF_FLAG_TIMECODE | V4L2_BUF_FLAG_TSTAMP_SRC_MASK; 976 977 if (copy_frame_flags) 978 mask |= V4L2_BUF_FLAG_KEYFRAME | V4L2_BUF_FLAG_PFRAME | 979 V4L2_BUF_FLAG_BFRAME; 980 981 cap_vb->vb2_buf.timestamp = out_vb->vb2_buf.timestamp; 982 983 if (out_vb->flags & V4L2_BUF_FLAG_TIMECODE) 984 cap_vb->timecode = out_vb->timecode; 985 cap_vb->field = out_vb->field; 986 cap_vb->flags &= ~mask; 987 cap_vb->flags |= out_vb->flags & mask; 988 cap_vb->vb2_buf.copied_timestamp = 1; 989 } 990 EXPORT_SYMBOL_GPL(v4l2_m2m_buf_copy_metadata); 991 992 void v4l2_m2m_request_queue(struct media_request *req) 993 { 994 struct media_request_object *obj, *obj_safe; 995 struct v4l2_m2m_ctx *m2m_ctx = NULL; 996 997 /* 998 * Queue all objects. Note that buffer objects are at the end of the 999 * objects list, after all other object types. Once buffer objects 1000 * are queued, the driver might delete them immediately (if the driver 1001 * processes the buffer at once), so we have to use 1002 * list_for_each_entry_safe() to handle the case where the object we 1003 * queue is deleted. 1004 */ 1005 list_for_each_entry_safe(obj, obj_safe, &req->objects, list) { 1006 struct v4l2_m2m_ctx *m2m_ctx_obj; 1007 struct vb2_buffer *vb; 1008 1009 if (!obj->ops->queue) 1010 continue; 1011 1012 if (vb2_request_object_is_buffer(obj)) { 1013 /* Sanity checks */ 1014 vb = container_of(obj, struct vb2_buffer, req_obj); 1015 WARN_ON(!V4L2_TYPE_IS_OUTPUT(vb->vb2_queue->type)); 1016 m2m_ctx_obj = container_of(vb->vb2_queue, 1017 struct v4l2_m2m_ctx, 1018 out_q_ctx.q); 1019 WARN_ON(m2m_ctx && m2m_ctx_obj != m2m_ctx); 1020 m2m_ctx = m2m_ctx_obj; 1021 } 1022 1023 /* 1024 * The buffer we queue here can in theory be immediately 1025 * unbound, hence the use of list_for_each_entry_safe() 1026 * above and why we call the queue op last. 1027 */ 1028 obj->ops->queue(obj); 1029 } 1030 1031 WARN_ON(!m2m_ctx); 1032 1033 if (m2m_ctx) 1034 v4l2_m2m_try_schedule(m2m_ctx); 1035 } 1036 EXPORT_SYMBOL_GPL(v4l2_m2m_request_queue); 1037 1038 /* Videobuf2 ioctl helpers */ 1039 1040 int v4l2_m2m_ioctl_reqbufs(struct file *file, void *priv, 1041 struct v4l2_requestbuffers *rb) 1042 { 1043 struct v4l2_fh *fh = file->private_data; 1044 1045 return v4l2_m2m_reqbufs(file, fh->m2m_ctx, rb); 1046 } 1047 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_reqbufs); 1048 1049 int v4l2_m2m_ioctl_create_bufs(struct file *file, void *priv, 1050 struct v4l2_create_buffers *create) 1051 { 1052 struct v4l2_fh *fh = file->private_data; 1053 1054 return v4l2_m2m_create_bufs(file, fh->m2m_ctx, create); 1055 } 1056 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_create_bufs); 1057 1058 int v4l2_m2m_ioctl_querybuf(struct file *file, void *priv, 1059 struct v4l2_buffer *buf) 1060 { 1061 struct v4l2_fh *fh = file->private_data; 1062 1063 return v4l2_m2m_querybuf(file, fh->m2m_ctx, buf); 1064 } 1065 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_querybuf); 1066 1067 int v4l2_m2m_ioctl_qbuf(struct file *file, void *priv, 1068 struct v4l2_buffer *buf) 1069 { 1070 struct v4l2_fh *fh = file->private_data; 1071 1072 return v4l2_m2m_qbuf(file, fh->m2m_ctx, buf); 1073 } 1074 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_qbuf); 1075 1076 int v4l2_m2m_ioctl_dqbuf(struct file *file, void *priv, 1077 struct v4l2_buffer *buf) 1078 { 1079 struct v4l2_fh *fh = file->private_data; 1080 1081 return v4l2_m2m_dqbuf(file, fh->m2m_ctx, buf); 1082 } 1083 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_dqbuf); 1084 1085 int v4l2_m2m_ioctl_prepare_buf(struct file *file, void *priv, 1086 struct v4l2_buffer *buf) 1087 { 1088 struct v4l2_fh *fh = file->private_data; 1089 1090 return v4l2_m2m_prepare_buf(file, fh->m2m_ctx, buf); 1091 } 1092 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_prepare_buf); 1093 1094 int v4l2_m2m_ioctl_expbuf(struct file *file, void *priv, 1095 struct v4l2_exportbuffer *eb) 1096 { 1097 struct v4l2_fh *fh = file->private_data; 1098 1099 return v4l2_m2m_expbuf(file, fh->m2m_ctx, eb); 1100 } 1101 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_expbuf); 1102 1103 int v4l2_m2m_ioctl_streamon(struct file *file, void *priv, 1104 enum v4l2_buf_type type) 1105 { 1106 struct v4l2_fh *fh = file->private_data; 1107 1108 return v4l2_m2m_streamon(file, fh->m2m_ctx, type); 1109 } 1110 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_streamon); 1111 1112 int v4l2_m2m_ioctl_streamoff(struct file *file, void *priv, 1113 enum v4l2_buf_type type) 1114 { 1115 struct v4l2_fh *fh = file->private_data; 1116 1117 return v4l2_m2m_streamoff(file, fh->m2m_ctx, type); 1118 } 1119 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_streamoff); 1120 1121 int v4l2_m2m_ioctl_try_encoder_cmd(struct file *file, void *fh, 1122 struct v4l2_encoder_cmd *ec) 1123 { 1124 if (ec->cmd != V4L2_ENC_CMD_STOP && ec->cmd != V4L2_ENC_CMD_START) 1125 return -EINVAL; 1126 1127 ec->flags = 0; 1128 return 0; 1129 } 1130 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_try_encoder_cmd); 1131 1132 int v4l2_m2m_ioctl_try_decoder_cmd(struct file *file, void *fh, 1133 struct v4l2_decoder_cmd *dc) 1134 { 1135 if (dc->cmd != V4L2_DEC_CMD_STOP && dc->cmd != V4L2_DEC_CMD_START) 1136 return -EINVAL; 1137 1138 dc->flags = 0; 1139 1140 if (dc->cmd == V4L2_DEC_CMD_STOP) { 1141 dc->stop.pts = 0; 1142 } else if (dc->cmd == V4L2_DEC_CMD_START) { 1143 dc->start.speed = 0; 1144 dc->start.format = V4L2_DEC_START_FMT_NONE; 1145 } 1146 return 0; 1147 } 1148 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_try_decoder_cmd); 1149 1150 /* 1151 * v4l2_file_operations helpers. It is assumed here same lock is used 1152 * for the output and the capture buffer queue. 1153 */ 1154 1155 int v4l2_m2m_fop_mmap(struct file *file, struct vm_area_struct *vma) 1156 { 1157 struct v4l2_fh *fh = file->private_data; 1158 1159 return v4l2_m2m_mmap(file, fh->m2m_ctx, vma); 1160 } 1161 EXPORT_SYMBOL_GPL(v4l2_m2m_fop_mmap); 1162 1163 __poll_t v4l2_m2m_fop_poll(struct file *file, poll_table *wait) 1164 { 1165 struct v4l2_fh *fh = file->private_data; 1166 struct v4l2_m2m_ctx *m2m_ctx = fh->m2m_ctx; 1167 __poll_t ret; 1168 1169 if (m2m_ctx->q_lock) 1170 mutex_lock(m2m_ctx->q_lock); 1171 1172 ret = v4l2_m2m_poll(file, m2m_ctx, wait); 1173 1174 if (m2m_ctx->q_lock) 1175 mutex_unlock(m2m_ctx->q_lock); 1176 1177 return ret; 1178 } 1179 EXPORT_SYMBOL_GPL(v4l2_m2m_fop_poll); 1180 1181