xref: /openbmc/linux/drivers/media/v4l2-core/v4l2-mem2mem.c (revision 4f727ecefefbd180de10e25b3e74c03dce3f1e75)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Memory-to-memory device framework for Video for Linux 2 and videobuf.
4  *
5  * Helper functions for devices that use videobuf buffers for both their
6  * source and destination.
7  *
8  * Copyright (c) 2009-2010 Samsung Electronics Co., Ltd.
9  * Pawel Osciak, <pawel@osciak.com>
10  * Marek Szyprowski, <m.szyprowski@samsung.com>
11  */
12 #include <linux/module.h>
13 #include <linux/sched.h>
14 #include <linux/slab.h>
15 
16 #include <media/media-device.h>
17 #include <media/videobuf2-v4l2.h>
18 #include <media/v4l2-mem2mem.h>
19 #include <media/v4l2-dev.h>
20 #include <media/v4l2-device.h>
21 #include <media/v4l2-fh.h>
22 #include <media/v4l2-event.h>
23 
24 MODULE_DESCRIPTION("Mem to mem device framework for videobuf");
25 MODULE_AUTHOR("Pawel Osciak, <pawel@osciak.com>");
26 MODULE_LICENSE("GPL");
27 
28 static bool debug;
29 module_param(debug, bool, 0644);
30 
31 #define dprintk(fmt, arg...)						\
32 	do {								\
33 		if (debug)						\
34 			printk(KERN_DEBUG "%s: " fmt, __func__, ## arg);\
35 	} while (0)
36 
37 
38 /* Instance is already queued on the job_queue */
39 #define TRANS_QUEUED		(1 << 0)
40 /* Instance is currently running in hardware */
41 #define TRANS_RUNNING		(1 << 1)
42 /* Instance is currently aborting */
43 #define TRANS_ABORT		(1 << 2)
44 
45 
46 /* Offset base for buffers on the destination queue - used to distinguish
47  * between source and destination buffers when mmapping - they receive the same
48  * offsets but for different queues */
49 #define DST_QUEUE_OFF_BASE	(1 << 30)
50 
51 enum v4l2_m2m_entity_type {
52 	MEM2MEM_ENT_TYPE_SOURCE,
53 	MEM2MEM_ENT_TYPE_SINK,
54 	MEM2MEM_ENT_TYPE_PROC
55 };
56 
57 static const char * const m2m_entity_name[] = {
58 	"source",
59 	"sink",
60 	"proc"
61 };
62 
63 /**
64  * struct v4l2_m2m_dev - per-device context
65  * @source:		&struct media_entity pointer with the source entity
66  *			Used only when the M2M device is registered via
67  *			v4l2_m2m_unregister_media_controller().
68  * @source_pad:		&struct media_pad with the source pad.
69  *			Used only when the M2M device is registered via
70  *			v4l2_m2m_unregister_media_controller().
71  * @sink:		&struct media_entity pointer with the sink entity
72  *			Used only when the M2M device is registered via
73  *			v4l2_m2m_unregister_media_controller().
74  * @sink_pad:		&struct media_pad with the sink pad.
75  *			Used only when the M2M device is registered via
76  *			v4l2_m2m_unregister_media_controller().
77  * @proc:		&struct media_entity pointer with the M2M device itself.
78  * @proc_pads:		&struct media_pad with the @proc pads.
79  *			Used only when the M2M device is registered via
80  *			v4l2_m2m_unregister_media_controller().
81  * @intf_devnode:	&struct media_intf devnode pointer with the interface
82  *			with controls the M2M device.
83  * @curr_ctx:		currently running instance
84  * @job_queue:		instances queued to run
85  * @job_spinlock:	protects job_queue
86  * @job_work:		worker to run queued jobs.
87  * @m2m_ops:		driver callbacks
88  */
89 struct v4l2_m2m_dev {
90 	struct v4l2_m2m_ctx	*curr_ctx;
91 #ifdef CONFIG_MEDIA_CONTROLLER
92 	struct media_entity	*source;
93 	struct media_pad	source_pad;
94 	struct media_entity	sink;
95 	struct media_pad	sink_pad;
96 	struct media_entity	proc;
97 	struct media_pad	proc_pads[2];
98 	struct media_intf_devnode *intf_devnode;
99 #endif
100 
101 	struct list_head	job_queue;
102 	spinlock_t		job_spinlock;
103 	struct work_struct	job_work;
104 
105 	const struct v4l2_m2m_ops *m2m_ops;
106 };
107 
108 static struct v4l2_m2m_queue_ctx *get_queue_ctx(struct v4l2_m2m_ctx *m2m_ctx,
109 						enum v4l2_buf_type type)
110 {
111 	if (V4L2_TYPE_IS_OUTPUT(type))
112 		return &m2m_ctx->out_q_ctx;
113 	else
114 		return &m2m_ctx->cap_q_ctx;
115 }
116 
117 struct vb2_queue *v4l2_m2m_get_vq(struct v4l2_m2m_ctx *m2m_ctx,
118 				       enum v4l2_buf_type type)
119 {
120 	struct v4l2_m2m_queue_ctx *q_ctx;
121 
122 	q_ctx = get_queue_ctx(m2m_ctx, type);
123 	if (!q_ctx)
124 		return NULL;
125 
126 	return &q_ctx->q;
127 }
128 EXPORT_SYMBOL(v4l2_m2m_get_vq);
129 
130 struct vb2_v4l2_buffer *v4l2_m2m_next_buf(struct v4l2_m2m_queue_ctx *q_ctx)
131 {
132 	struct v4l2_m2m_buffer *b;
133 	unsigned long flags;
134 
135 	spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
136 
137 	if (list_empty(&q_ctx->rdy_queue)) {
138 		spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
139 		return NULL;
140 	}
141 
142 	b = list_first_entry(&q_ctx->rdy_queue, struct v4l2_m2m_buffer, list);
143 	spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
144 	return &b->vb;
145 }
146 EXPORT_SYMBOL_GPL(v4l2_m2m_next_buf);
147 
148 struct vb2_v4l2_buffer *v4l2_m2m_last_buf(struct v4l2_m2m_queue_ctx *q_ctx)
149 {
150 	struct v4l2_m2m_buffer *b;
151 	unsigned long flags;
152 
153 	spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
154 
155 	if (list_empty(&q_ctx->rdy_queue)) {
156 		spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
157 		return NULL;
158 	}
159 
160 	b = list_last_entry(&q_ctx->rdy_queue, struct v4l2_m2m_buffer, list);
161 	spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
162 	return &b->vb;
163 }
164 EXPORT_SYMBOL_GPL(v4l2_m2m_last_buf);
165 
166 struct vb2_v4l2_buffer *v4l2_m2m_buf_remove(struct v4l2_m2m_queue_ctx *q_ctx)
167 {
168 	struct v4l2_m2m_buffer *b;
169 	unsigned long flags;
170 
171 	spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
172 	if (list_empty(&q_ctx->rdy_queue)) {
173 		spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
174 		return NULL;
175 	}
176 	b = list_first_entry(&q_ctx->rdy_queue, struct v4l2_m2m_buffer, list);
177 	list_del(&b->list);
178 	q_ctx->num_rdy--;
179 	spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
180 
181 	return &b->vb;
182 }
183 EXPORT_SYMBOL_GPL(v4l2_m2m_buf_remove);
184 
185 void v4l2_m2m_buf_remove_by_buf(struct v4l2_m2m_queue_ctx *q_ctx,
186 				struct vb2_v4l2_buffer *vbuf)
187 {
188 	struct v4l2_m2m_buffer *b;
189 	unsigned long flags;
190 
191 	spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
192 	b = container_of(vbuf, struct v4l2_m2m_buffer, vb);
193 	list_del(&b->list);
194 	q_ctx->num_rdy--;
195 	spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
196 }
197 EXPORT_SYMBOL_GPL(v4l2_m2m_buf_remove_by_buf);
198 
199 struct vb2_v4l2_buffer *
200 v4l2_m2m_buf_remove_by_idx(struct v4l2_m2m_queue_ctx *q_ctx, unsigned int idx)
201 
202 {
203 	struct v4l2_m2m_buffer *b, *tmp;
204 	struct vb2_v4l2_buffer *ret = NULL;
205 	unsigned long flags;
206 
207 	spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
208 	list_for_each_entry_safe(b, tmp, &q_ctx->rdy_queue, list) {
209 		if (b->vb.vb2_buf.index == idx) {
210 			list_del(&b->list);
211 			q_ctx->num_rdy--;
212 			ret = &b->vb;
213 			break;
214 		}
215 	}
216 	spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
217 
218 	return ret;
219 }
220 EXPORT_SYMBOL_GPL(v4l2_m2m_buf_remove_by_idx);
221 
222 /*
223  * Scheduling handlers
224  */
225 
226 void *v4l2_m2m_get_curr_priv(struct v4l2_m2m_dev *m2m_dev)
227 {
228 	unsigned long flags;
229 	void *ret = NULL;
230 
231 	spin_lock_irqsave(&m2m_dev->job_spinlock, flags);
232 	if (m2m_dev->curr_ctx)
233 		ret = m2m_dev->curr_ctx->priv;
234 	spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
235 
236 	return ret;
237 }
238 EXPORT_SYMBOL(v4l2_m2m_get_curr_priv);
239 
240 /**
241  * v4l2_m2m_try_run() - select next job to perform and run it if possible
242  * @m2m_dev: per-device context
243  *
244  * Get next transaction (if present) from the waiting jobs list and run it.
245  *
246  * Note that this function can run on a given v4l2_m2m_ctx context,
247  * but call .device_run for another context.
248  */
249 static void v4l2_m2m_try_run(struct v4l2_m2m_dev *m2m_dev)
250 {
251 	unsigned long flags;
252 
253 	spin_lock_irqsave(&m2m_dev->job_spinlock, flags);
254 	if (NULL != m2m_dev->curr_ctx) {
255 		spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
256 		dprintk("Another instance is running, won't run now\n");
257 		return;
258 	}
259 
260 	if (list_empty(&m2m_dev->job_queue)) {
261 		spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
262 		dprintk("No job pending\n");
263 		return;
264 	}
265 
266 	m2m_dev->curr_ctx = list_first_entry(&m2m_dev->job_queue,
267 				   struct v4l2_m2m_ctx, queue);
268 	m2m_dev->curr_ctx->job_flags |= TRANS_RUNNING;
269 	spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
270 
271 	dprintk("Running job on m2m_ctx: %p\n", m2m_dev->curr_ctx);
272 	m2m_dev->m2m_ops->device_run(m2m_dev->curr_ctx->priv);
273 }
274 
275 /*
276  * __v4l2_m2m_try_queue() - queue a job
277  * @m2m_dev: m2m device
278  * @m2m_ctx: m2m context
279  *
280  * Check if this context is ready to queue a job.
281  *
282  * This function can run in interrupt context.
283  */
284 static void __v4l2_m2m_try_queue(struct v4l2_m2m_dev *m2m_dev,
285 				 struct v4l2_m2m_ctx *m2m_ctx)
286 {
287 	unsigned long flags_job, flags_out, flags_cap;
288 
289 	dprintk("Trying to schedule a job for m2m_ctx: %p\n", m2m_ctx);
290 
291 	if (!m2m_ctx->out_q_ctx.q.streaming
292 	    || !m2m_ctx->cap_q_ctx.q.streaming) {
293 		dprintk("Streaming needs to be on for both queues\n");
294 		return;
295 	}
296 
297 	spin_lock_irqsave(&m2m_dev->job_spinlock, flags_job);
298 
299 	/* If the context is aborted then don't schedule it */
300 	if (m2m_ctx->job_flags & TRANS_ABORT) {
301 		dprintk("Aborted context\n");
302 		goto job_unlock;
303 	}
304 
305 	if (m2m_ctx->job_flags & TRANS_QUEUED) {
306 		dprintk("On job queue already\n");
307 		goto job_unlock;
308 	}
309 
310 	spin_lock_irqsave(&m2m_ctx->out_q_ctx.rdy_spinlock, flags_out);
311 	if (list_empty(&m2m_ctx->out_q_ctx.rdy_queue)
312 	    && !m2m_ctx->out_q_ctx.buffered) {
313 		dprintk("No input buffers available\n");
314 		goto out_unlock;
315 	}
316 	spin_lock_irqsave(&m2m_ctx->cap_q_ctx.rdy_spinlock, flags_cap);
317 	if (list_empty(&m2m_ctx->cap_q_ctx.rdy_queue)
318 	    && !m2m_ctx->cap_q_ctx.buffered) {
319 		dprintk("No output buffers available\n");
320 		goto cap_unlock;
321 	}
322 	spin_unlock_irqrestore(&m2m_ctx->cap_q_ctx.rdy_spinlock, flags_cap);
323 	spin_unlock_irqrestore(&m2m_ctx->out_q_ctx.rdy_spinlock, flags_out);
324 
325 	if (m2m_dev->m2m_ops->job_ready
326 		&& (!m2m_dev->m2m_ops->job_ready(m2m_ctx->priv))) {
327 		dprintk("Driver not ready\n");
328 		goto job_unlock;
329 	}
330 
331 	list_add_tail(&m2m_ctx->queue, &m2m_dev->job_queue);
332 	m2m_ctx->job_flags |= TRANS_QUEUED;
333 
334 	spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags_job);
335 	return;
336 
337 cap_unlock:
338 	spin_unlock_irqrestore(&m2m_ctx->cap_q_ctx.rdy_spinlock, flags_cap);
339 out_unlock:
340 	spin_unlock_irqrestore(&m2m_ctx->out_q_ctx.rdy_spinlock, flags_out);
341 job_unlock:
342 	spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags_job);
343 }
344 
345 /**
346  * v4l2_m2m_try_schedule() - schedule and possibly run a job for any context
347  * @m2m_ctx: m2m context
348  *
349  * Check if this context is ready to queue a job. If suitable,
350  * run the next queued job on the mem2mem device.
351  *
352  * This function shouldn't run in interrupt context.
353  *
354  * Note that v4l2_m2m_try_schedule() can schedule one job for this context,
355  * and then run another job for another context.
356  */
357 void v4l2_m2m_try_schedule(struct v4l2_m2m_ctx *m2m_ctx)
358 {
359 	struct v4l2_m2m_dev *m2m_dev = m2m_ctx->m2m_dev;
360 
361 	__v4l2_m2m_try_queue(m2m_dev, m2m_ctx);
362 	v4l2_m2m_try_run(m2m_dev);
363 }
364 EXPORT_SYMBOL_GPL(v4l2_m2m_try_schedule);
365 
366 /**
367  * v4l2_m2m_device_run_work() - run pending jobs for the context
368  * @work: Work structure used for scheduling the execution of this function.
369  */
370 static void v4l2_m2m_device_run_work(struct work_struct *work)
371 {
372 	struct v4l2_m2m_dev *m2m_dev =
373 		container_of(work, struct v4l2_m2m_dev, job_work);
374 
375 	v4l2_m2m_try_run(m2m_dev);
376 }
377 
378 /**
379  * v4l2_m2m_cancel_job() - cancel pending jobs for the context
380  * @m2m_ctx: m2m context with jobs to be canceled
381  *
382  * In case of streamoff or release called on any context,
383  * 1] If the context is currently running, then abort job will be called
384  * 2] If the context is queued, then the context will be removed from
385  *    the job_queue
386  */
387 static void v4l2_m2m_cancel_job(struct v4l2_m2m_ctx *m2m_ctx)
388 {
389 	struct v4l2_m2m_dev *m2m_dev;
390 	unsigned long flags;
391 
392 	m2m_dev = m2m_ctx->m2m_dev;
393 	spin_lock_irqsave(&m2m_dev->job_spinlock, flags);
394 
395 	m2m_ctx->job_flags |= TRANS_ABORT;
396 	if (m2m_ctx->job_flags & TRANS_RUNNING) {
397 		spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
398 		if (m2m_dev->m2m_ops->job_abort)
399 			m2m_dev->m2m_ops->job_abort(m2m_ctx->priv);
400 		dprintk("m2m_ctx %p running, will wait to complete\n", m2m_ctx);
401 		wait_event(m2m_ctx->finished,
402 				!(m2m_ctx->job_flags & TRANS_RUNNING));
403 	} else if (m2m_ctx->job_flags & TRANS_QUEUED) {
404 		list_del(&m2m_ctx->queue);
405 		m2m_ctx->job_flags &= ~(TRANS_QUEUED | TRANS_RUNNING);
406 		spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
407 		dprintk("m2m_ctx: %p had been on queue and was removed\n",
408 			m2m_ctx);
409 	} else {
410 		/* Do nothing, was not on queue/running */
411 		spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
412 	}
413 }
414 
415 void v4l2_m2m_job_finish(struct v4l2_m2m_dev *m2m_dev,
416 			 struct v4l2_m2m_ctx *m2m_ctx)
417 {
418 	unsigned long flags;
419 
420 	spin_lock_irqsave(&m2m_dev->job_spinlock, flags);
421 	if (!m2m_dev->curr_ctx || m2m_dev->curr_ctx != m2m_ctx) {
422 		spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
423 		dprintk("Called by an instance not currently running\n");
424 		return;
425 	}
426 
427 	list_del(&m2m_dev->curr_ctx->queue);
428 	m2m_dev->curr_ctx->job_flags &= ~(TRANS_QUEUED | TRANS_RUNNING);
429 	wake_up(&m2m_dev->curr_ctx->finished);
430 	m2m_dev->curr_ctx = NULL;
431 
432 	spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
433 
434 	/* This instance might have more buffers ready, but since we do not
435 	 * allow more than one job on the job_queue per instance, each has
436 	 * to be scheduled separately after the previous one finishes. */
437 	__v4l2_m2m_try_queue(m2m_dev, m2m_ctx);
438 
439 	/* We might be running in atomic context,
440 	 * but the job must be run in non-atomic context.
441 	 */
442 	schedule_work(&m2m_dev->job_work);
443 }
444 EXPORT_SYMBOL(v4l2_m2m_job_finish);
445 
446 int v4l2_m2m_reqbufs(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
447 		     struct v4l2_requestbuffers *reqbufs)
448 {
449 	struct vb2_queue *vq;
450 	int ret;
451 
452 	vq = v4l2_m2m_get_vq(m2m_ctx, reqbufs->type);
453 	ret = vb2_reqbufs(vq, reqbufs);
454 	/* If count == 0, then the owner has released all buffers and he
455 	   is no longer owner of the queue. Otherwise we have an owner. */
456 	if (ret == 0)
457 		vq->owner = reqbufs->count ? file->private_data : NULL;
458 
459 	return ret;
460 }
461 EXPORT_SYMBOL_GPL(v4l2_m2m_reqbufs);
462 
463 int v4l2_m2m_querybuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
464 		      struct v4l2_buffer *buf)
465 {
466 	struct vb2_queue *vq;
467 	int ret = 0;
468 	unsigned int i;
469 
470 	vq = v4l2_m2m_get_vq(m2m_ctx, buf->type);
471 	ret = vb2_querybuf(vq, buf);
472 
473 	/* Adjust MMAP memory offsets for the CAPTURE queue */
474 	if (buf->memory == V4L2_MEMORY_MMAP && !V4L2_TYPE_IS_OUTPUT(vq->type)) {
475 		if (V4L2_TYPE_IS_MULTIPLANAR(vq->type)) {
476 			for (i = 0; i < buf->length; ++i)
477 				buf->m.planes[i].m.mem_offset
478 					+= DST_QUEUE_OFF_BASE;
479 		} else {
480 			buf->m.offset += DST_QUEUE_OFF_BASE;
481 		}
482 	}
483 
484 	return ret;
485 }
486 EXPORT_SYMBOL_GPL(v4l2_m2m_querybuf);
487 
488 int v4l2_m2m_qbuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
489 		  struct v4l2_buffer *buf)
490 {
491 	struct video_device *vdev = video_devdata(file);
492 	struct vb2_queue *vq;
493 	int ret;
494 
495 	vq = v4l2_m2m_get_vq(m2m_ctx, buf->type);
496 	if (!V4L2_TYPE_IS_OUTPUT(vq->type) &&
497 	    (buf->flags & V4L2_BUF_FLAG_REQUEST_FD)) {
498 		dprintk("%s: requests cannot be used with capture buffers\n",
499 			__func__);
500 		return -EPERM;
501 	}
502 	ret = vb2_qbuf(vq, vdev->v4l2_dev->mdev, buf);
503 	if (!ret && !(buf->flags & V4L2_BUF_FLAG_IN_REQUEST))
504 		v4l2_m2m_try_schedule(m2m_ctx);
505 
506 	return ret;
507 }
508 EXPORT_SYMBOL_GPL(v4l2_m2m_qbuf);
509 
510 int v4l2_m2m_dqbuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
511 		   struct v4l2_buffer *buf)
512 {
513 	struct vb2_queue *vq;
514 
515 	vq = v4l2_m2m_get_vq(m2m_ctx, buf->type);
516 	return vb2_dqbuf(vq, buf, file->f_flags & O_NONBLOCK);
517 }
518 EXPORT_SYMBOL_GPL(v4l2_m2m_dqbuf);
519 
520 int v4l2_m2m_prepare_buf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
521 			 struct v4l2_buffer *buf)
522 {
523 	struct video_device *vdev = video_devdata(file);
524 	struct vb2_queue *vq;
525 
526 	vq = v4l2_m2m_get_vq(m2m_ctx, buf->type);
527 	return vb2_prepare_buf(vq, vdev->v4l2_dev->mdev, buf);
528 }
529 EXPORT_SYMBOL_GPL(v4l2_m2m_prepare_buf);
530 
531 int v4l2_m2m_create_bufs(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
532 			 struct v4l2_create_buffers *create)
533 {
534 	struct vb2_queue *vq;
535 
536 	vq = v4l2_m2m_get_vq(m2m_ctx, create->format.type);
537 	return vb2_create_bufs(vq, create);
538 }
539 EXPORT_SYMBOL_GPL(v4l2_m2m_create_bufs);
540 
541 int v4l2_m2m_expbuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
542 		  struct v4l2_exportbuffer *eb)
543 {
544 	struct vb2_queue *vq;
545 
546 	vq = v4l2_m2m_get_vq(m2m_ctx, eb->type);
547 	return vb2_expbuf(vq, eb);
548 }
549 EXPORT_SYMBOL_GPL(v4l2_m2m_expbuf);
550 
551 int v4l2_m2m_streamon(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
552 		      enum v4l2_buf_type type)
553 {
554 	struct vb2_queue *vq;
555 	int ret;
556 
557 	vq = v4l2_m2m_get_vq(m2m_ctx, type);
558 	ret = vb2_streamon(vq, type);
559 	if (!ret)
560 		v4l2_m2m_try_schedule(m2m_ctx);
561 
562 	return ret;
563 }
564 EXPORT_SYMBOL_GPL(v4l2_m2m_streamon);
565 
566 int v4l2_m2m_streamoff(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
567 		       enum v4l2_buf_type type)
568 {
569 	struct v4l2_m2m_dev *m2m_dev;
570 	struct v4l2_m2m_queue_ctx *q_ctx;
571 	unsigned long flags_job, flags;
572 	int ret;
573 
574 	/* wait until the current context is dequeued from job_queue */
575 	v4l2_m2m_cancel_job(m2m_ctx);
576 
577 	q_ctx = get_queue_ctx(m2m_ctx, type);
578 	ret = vb2_streamoff(&q_ctx->q, type);
579 	if (ret)
580 		return ret;
581 
582 	m2m_dev = m2m_ctx->m2m_dev;
583 	spin_lock_irqsave(&m2m_dev->job_spinlock, flags_job);
584 	/* We should not be scheduled anymore, since we're dropping a queue. */
585 	if (m2m_ctx->job_flags & TRANS_QUEUED)
586 		list_del(&m2m_ctx->queue);
587 	m2m_ctx->job_flags = 0;
588 
589 	spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
590 	/* Drop queue, since streamoff returns device to the same state as after
591 	 * calling reqbufs. */
592 	INIT_LIST_HEAD(&q_ctx->rdy_queue);
593 	q_ctx->num_rdy = 0;
594 	spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
595 
596 	if (m2m_dev->curr_ctx == m2m_ctx) {
597 		m2m_dev->curr_ctx = NULL;
598 		wake_up(&m2m_ctx->finished);
599 	}
600 	spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags_job);
601 
602 	return 0;
603 }
604 EXPORT_SYMBOL_GPL(v4l2_m2m_streamoff);
605 
606 __poll_t v4l2_m2m_poll(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
607 			   struct poll_table_struct *wait)
608 {
609 	struct video_device *vfd = video_devdata(file);
610 	__poll_t req_events = poll_requested_events(wait);
611 	struct vb2_queue *src_q, *dst_q;
612 	struct vb2_buffer *src_vb = NULL, *dst_vb = NULL;
613 	__poll_t rc = 0;
614 	unsigned long flags;
615 
616 	src_q = v4l2_m2m_get_src_vq(m2m_ctx);
617 	dst_q = v4l2_m2m_get_dst_vq(m2m_ctx);
618 
619 	poll_wait(file, &src_q->done_wq, wait);
620 	poll_wait(file, &dst_q->done_wq, wait);
621 
622 	if (test_bit(V4L2_FL_USES_V4L2_FH, &vfd->flags)) {
623 		struct v4l2_fh *fh = file->private_data;
624 
625 		poll_wait(file, &fh->wait, wait);
626 		if (v4l2_event_pending(fh))
627 			rc = EPOLLPRI;
628 		if (!(req_events & (EPOLLOUT | EPOLLWRNORM | EPOLLIN | EPOLLRDNORM)))
629 			return rc;
630 	}
631 
632 	/*
633 	 * There has to be at least one buffer queued on each queued_list, which
634 	 * means either in driver already or waiting for driver to claim it
635 	 * and start processing.
636 	 */
637 	if ((!src_q->streaming || src_q->error ||
638 	     list_empty(&src_q->queued_list)) &&
639 	    (!dst_q->streaming || dst_q->error ||
640 	     list_empty(&dst_q->queued_list))) {
641 		rc |= EPOLLERR;
642 		goto end;
643 	}
644 
645 	spin_lock_irqsave(&dst_q->done_lock, flags);
646 	if (list_empty(&dst_q->done_list)) {
647 		/*
648 		 * If the last buffer was dequeued from the capture queue,
649 		 * return immediately. DQBUF will return -EPIPE.
650 		 */
651 		if (dst_q->last_buffer_dequeued) {
652 			spin_unlock_irqrestore(&dst_q->done_lock, flags);
653 			return rc | EPOLLIN | EPOLLRDNORM;
654 		}
655 	}
656 	spin_unlock_irqrestore(&dst_q->done_lock, flags);
657 
658 	spin_lock_irqsave(&src_q->done_lock, flags);
659 	if (!list_empty(&src_q->done_list))
660 		src_vb = list_first_entry(&src_q->done_list, struct vb2_buffer,
661 						done_entry);
662 	if (src_vb && (src_vb->state == VB2_BUF_STATE_DONE
663 			|| src_vb->state == VB2_BUF_STATE_ERROR))
664 		rc |= EPOLLOUT | EPOLLWRNORM;
665 	spin_unlock_irqrestore(&src_q->done_lock, flags);
666 
667 	spin_lock_irqsave(&dst_q->done_lock, flags);
668 	if (!list_empty(&dst_q->done_list))
669 		dst_vb = list_first_entry(&dst_q->done_list, struct vb2_buffer,
670 						done_entry);
671 	if (dst_vb && (dst_vb->state == VB2_BUF_STATE_DONE
672 			|| dst_vb->state == VB2_BUF_STATE_ERROR))
673 		rc |= EPOLLIN | EPOLLRDNORM;
674 	spin_unlock_irqrestore(&dst_q->done_lock, flags);
675 
676 end:
677 	return rc;
678 }
679 EXPORT_SYMBOL_GPL(v4l2_m2m_poll);
680 
681 int v4l2_m2m_mmap(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
682 			 struct vm_area_struct *vma)
683 {
684 	unsigned long offset = vma->vm_pgoff << PAGE_SHIFT;
685 	struct vb2_queue *vq;
686 
687 	if (offset < DST_QUEUE_OFF_BASE) {
688 		vq = v4l2_m2m_get_src_vq(m2m_ctx);
689 	} else {
690 		vq = v4l2_m2m_get_dst_vq(m2m_ctx);
691 		vma->vm_pgoff -= (DST_QUEUE_OFF_BASE >> PAGE_SHIFT);
692 	}
693 
694 	return vb2_mmap(vq, vma);
695 }
696 EXPORT_SYMBOL(v4l2_m2m_mmap);
697 
698 #if defined(CONFIG_MEDIA_CONTROLLER)
699 void v4l2_m2m_unregister_media_controller(struct v4l2_m2m_dev *m2m_dev)
700 {
701 	media_remove_intf_links(&m2m_dev->intf_devnode->intf);
702 	media_devnode_remove(m2m_dev->intf_devnode);
703 
704 	media_entity_remove_links(m2m_dev->source);
705 	media_entity_remove_links(&m2m_dev->sink);
706 	media_entity_remove_links(&m2m_dev->proc);
707 	media_device_unregister_entity(m2m_dev->source);
708 	media_device_unregister_entity(&m2m_dev->sink);
709 	media_device_unregister_entity(&m2m_dev->proc);
710 	kfree(m2m_dev->source->name);
711 	kfree(m2m_dev->sink.name);
712 	kfree(m2m_dev->proc.name);
713 }
714 EXPORT_SYMBOL_GPL(v4l2_m2m_unregister_media_controller);
715 
716 static int v4l2_m2m_register_entity(struct media_device *mdev,
717 	struct v4l2_m2m_dev *m2m_dev, enum v4l2_m2m_entity_type type,
718 	struct video_device *vdev, int function)
719 {
720 	struct media_entity *entity;
721 	struct media_pad *pads;
722 	char *name;
723 	unsigned int len;
724 	int num_pads;
725 	int ret;
726 
727 	switch (type) {
728 	case MEM2MEM_ENT_TYPE_SOURCE:
729 		entity = m2m_dev->source;
730 		pads = &m2m_dev->source_pad;
731 		pads[0].flags = MEDIA_PAD_FL_SOURCE;
732 		num_pads = 1;
733 		break;
734 	case MEM2MEM_ENT_TYPE_SINK:
735 		entity = &m2m_dev->sink;
736 		pads = &m2m_dev->sink_pad;
737 		pads[0].flags = MEDIA_PAD_FL_SINK;
738 		num_pads = 1;
739 		break;
740 	case MEM2MEM_ENT_TYPE_PROC:
741 		entity = &m2m_dev->proc;
742 		pads = m2m_dev->proc_pads;
743 		pads[0].flags = MEDIA_PAD_FL_SINK;
744 		pads[1].flags = MEDIA_PAD_FL_SOURCE;
745 		num_pads = 2;
746 		break;
747 	default:
748 		return -EINVAL;
749 	}
750 
751 	entity->obj_type = MEDIA_ENTITY_TYPE_BASE;
752 	if (type != MEM2MEM_ENT_TYPE_PROC) {
753 		entity->info.dev.major = VIDEO_MAJOR;
754 		entity->info.dev.minor = vdev->minor;
755 	}
756 	len = strlen(vdev->name) + 2 + strlen(m2m_entity_name[type]);
757 	name = kmalloc(len, GFP_KERNEL);
758 	if (!name)
759 		return -ENOMEM;
760 	snprintf(name, len, "%s-%s", vdev->name, m2m_entity_name[type]);
761 	entity->name = name;
762 	entity->function = function;
763 
764 	ret = media_entity_pads_init(entity, num_pads, pads);
765 	if (ret)
766 		return ret;
767 	ret = media_device_register_entity(mdev, entity);
768 	if (ret)
769 		return ret;
770 
771 	return 0;
772 }
773 
774 int v4l2_m2m_register_media_controller(struct v4l2_m2m_dev *m2m_dev,
775 		struct video_device *vdev, int function)
776 {
777 	struct media_device *mdev = vdev->v4l2_dev->mdev;
778 	struct media_link *link;
779 	int ret;
780 
781 	if (!mdev)
782 		return 0;
783 
784 	/* A memory-to-memory device consists in two
785 	 * DMA engine and one video processing entities.
786 	 * The DMA engine entities are linked to a V4L interface
787 	 */
788 
789 	/* Create the three entities with their pads */
790 	m2m_dev->source = &vdev->entity;
791 	ret = v4l2_m2m_register_entity(mdev, m2m_dev,
792 			MEM2MEM_ENT_TYPE_SOURCE, vdev, MEDIA_ENT_F_IO_V4L);
793 	if (ret)
794 		return ret;
795 	ret = v4l2_m2m_register_entity(mdev, m2m_dev,
796 			MEM2MEM_ENT_TYPE_PROC, vdev, function);
797 	if (ret)
798 		goto err_rel_entity0;
799 	ret = v4l2_m2m_register_entity(mdev, m2m_dev,
800 			MEM2MEM_ENT_TYPE_SINK, vdev, MEDIA_ENT_F_IO_V4L);
801 	if (ret)
802 		goto err_rel_entity1;
803 
804 	/* Connect the three entities */
805 	ret = media_create_pad_link(m2m_dev->source, 0, &m2m_dev->proc, 1,
806 			MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED);
807 	if (ret)
808 		goto err_rel_entity2;
809 
810 	ret = media_create_pad_link(&m2m_dev->proc, 0, &m2m_dev->sink, 0,
811 			MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED);
812 	if (ret)
813 		goto err_rm_links0;
814 
815 	/* Create video interface */
816 	m2m_dev->intf_devnode = media_devnode_create(mdev,
817 			MEDIA_INTF_T_V4L_VIDEO, 0,
818 			VIDEO_MAJOR, vdev->minor);
819 	if (!m2m_dev->intf_devnode) {
820 		ret = -ENOMEM;
821 		goto err_rm_links1;
822 	}
823 
824 	/* Connect the two DMA engines to the interface */
825 	link = media_create_intf_link(m2m_dev->source,
826 			&m2m_dev->intf_devnode->intf,
827 			MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED);
828 	if (!link) {
829 		ret = -ENOMEM;
830 		goto err_rm_devnode;
831 	}
832 
833 	link = media_create_intf_link(&m2m_dev->sink,
834 			&m2m_dev->intf_devnode->intf,
835 			MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED);
836 	if (!link) {
837 		ret = -ENOMEM;
838 		goto err_rm_intf_link;
839 	}
840 	return 0;
841 
842 err_rm_intf_link:
843 	media_remove_intf_links(&m2m_dev->intf_devnode->intf);
844 err_rm_devnode:
845 	media_devnode_remove(m2m_dev->intf_devnode);
846 err_rm_links1:
847 	media_entity_remove_links(&m2m_dev->sink);
848 err_rm_links0:
849 	media_entity_remove_links(&m2m_dev->proc);
850 	media_entity_remove_links(m2m_dev->source);
851 err_rel_entity2:
852 	media_device_unregister_entity(&m2m_dev->proc);
853 	kfree(m2m_dev->proc.name);
854 err_rel_entity1:
855 	media_device_unregister_entity(&m2m_dev->sink);
856 	kfree(m2m_dev->sink.name);
857 err_rel_entity0:
858 	media_device_unregister_entity(m2m_dev->source);
859 	kfree(m2m_dev->source->name);
860 	return ret;
861 	return 0;
862 }
863 EXPORT_SYMBOL_GPL(v4l2_m2m_register_media_controller);
864 #endif
865 
866 struct v4l2_m2m_dev *v4l2_m2m_init(const struct v4l2_m2m_ops *m2m_ops)
867 {
868 	struct v4l2_m2m_dev *m2m_dev;
869 
870 	if (!m2m_ops || WARN_ON(!m2m_ops->device_run))
871 		return ERR_PTR(-EINVAL);
872 
873 	m2m_dev = kzalloc(sizeof *m2m_dev, GFP_KERNEL);
874 	if (!m2m_dev)
875 		return ERR_PTR(-ENOMEM);
876 
877 	m2m_dev->curr_ctx = NULL;
878 	m2m_dev->m2m_ops = m2m_ops;
879 	INIT_LIST_HEAD(&m2m_dev->job_queue);
880 	spin_lock_init(&m2m_dev->job_spinlock);
881 	INIT_WORK(&m2m_dev->job_work, v4l2_m2m_device_run_work);
882 
883 	return m2m_dev;
884 }
885 EXPORT_SYMBOL_GPL(v4l2_m2m_init);
886 
887 void v4l2_m2m_release(struct v4l2_m2m_dev *m2m_dev)
888 {
889 	kfree(m2m_dev);
890 }
891 EXPORT_SYMBOL_GPL(v4l2_m2m_release);
892 
893 struct v4l2_m2m_ctx *v4l2_m2m_ctx_init(struct v4l2_m2m_dev *m2m_dev,
894 		void *drv_priv,
895 		int (*queue_init)(void *priv, struct vb2_queue *src_vq, struct vb2_queue *dst_vq))
896 {
897 	struct v4l2_m2m_ctx *m2m_ctx;
898 	struct v4l2_m2m_queue_ctx *out_q_ctx, *cap_q_ctx;
899 	int ret;
900 
901 	m2m_ctx = kzalloc(sizeof *m2m_ctx, GFP_KERNEL);
902 	if (!m2m_ctx)
903 		return ERR_PTR(-ENOMEM);
904 
905 	m2m_ctx->priv = drv_priv;
906 	m2m_ctx->m2m_dev = m2m_dev;
907 	init_waitqueue_head(&m2m_ctx->finished);
908 
909 	out_q_ctx = &m2m_ctx->out_q_ctx;
910 	cap_q_ctx = &m2m_ctx->cap_q_ctx;
911 
912 	INIT_LIST_HEAD(&out_q_ctx->rdy_queue);
913 	INIT_LIST_HEAD(&cap_q_ctx->rdy_queue);
914 	spin_lock_init(&out_q_ctx->rdy_spinlock);
915 	spin_lock_init(&cap_q_ctx->rdy_spinlock);
916 
917 	INIT_LIST_HEAD(&m2m_ctx->queue);
918 
919 	ret = queue_init(drv_priv, &out_q_ctx->q, &cap_q_ctx->q);
920 
921 	if (ret)
922 		goto err;
923 	/*
924 	 * Both queues should use same the mutex to lock the m2m context.
925 	 * This lock is used in some v4l2_m2m_* helpers.
926 	 */
927 	if (WARN_ON(out_q_ctx->q.lock != cap_q_ctx->q.lock)) {
928 		ret = -EINVAL;
929 		goto err;
930 	}
931 	m2m_ctx->q_lock = out_q_ctx->q.lock;
932 
933 	return m2m_ctx;
934 err:
935 	kfree(m2m_ctx);
936 	return ERR_PTR(ret);
937 }
938 EXPORT_SYMBOL_GPL(v4l2_m2m_ctx_init);
939 
940 void v4l2_m2m_ctx_release(struct v4l2_m2m_ctx *m2m_ctx)
941 {
942 	/* wait until the current context is dequeued from job_queue */
943 	v4l2_m2m_cancel_job(m2m_ctx);
944 
945 	vb2_queue_release(&m2m_ctx->cap_q_ctx.q);
946 	vb2_queue_release(&m2m_ctx->out_q_ctx.q);
947 
948 	kfree(m2m_ctx);
949 }
950 EXPORT_SYMBOL_GPL(v4l2_m2m_ctx_release);
951 
952 void v4l2_m2m_buf_queue(struct v4l2_m2m_ctx *m2m_ctx,
953 		struct vb2_v4l2_buffer *vbuf)
954 {
955 	struct v4l2_m2m_buffer *b = container_of(vbuf,
956 				struct v4l2_m2m_buffer, vb);
957 	struct v4l2_m2m_queue_ctx *q_ctx;
958 	unsigned long flags;
959 
960 	q_ctx = get_queue_ctx(m2m_ctx, vbuf->vb2_buf.vb2_queue->type);
961 	if (!q_ctx)
962 		return;
963 
964 	spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
965 	list_add_tail(&b->list, &q_ctx->rdy_queue);
966 	q_ctx->num_rdy++;
967 	spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
968 }
969 EXPORT_SYMBOL_GPL(v4l2_m2m_buf_queue);
970 
971 void v4l2_m2m_buf_copy_metadata(const struct vb2_v4l2_buffer *out_vb,
972 				struct vb2_v4l2_buffer *cap_vb,
973 				bool copy_frame_flags)
974 {
975 	u32 mask = V4L2_BUF_FLAG_TIMECODE | V4L2_BUF_FLAG_TSTAMP_SRC_MASK;
976 
977 	if (copy_frame_flags)
978 		mask |= V4L2_BUF_FLAG_KEYFRAME | V4L2_BUF_FLAG_PFRAME |
979 			V4L2_BUF_FLAG_BFRAME;
980 
981 	cap_vb->vb2_buf.timestamp = out_vb->vb2_buf.timestamp;
982 
983 	if (out_vb->flags & V4L2_BUF_FLAG_TIMECODE)
984 		cap_vb->timecode = out_vb->timecode;
985 	cap_vb->field = out_vb->field;
986 	cap_vb->flags &= ~mask;
987 	cap_vb->flags |= out_vb->flags & mask;
988 	cap_vb->vb2_buf.copied_timestamp = 1;
989 }
990 EXPORT_SYMBOL_GPL(v4l2_m2m_buf_copy_metadata);
991 
992 void v4l2_m2m_request_queue(struct media_request *req)
993 {
994 	struct media_request_object *obj, *obj_safe;
995 	struct v4l2_m2m_ctx *m2m_ctx = NULL;
996 
997 	/*
998 	 * Queue all objects. Note that buffer objects are at the end of the
999 	 * objects list, after all other object types. Once buffer objects
1000 	 * are queued, the driver might delete them immediately (if the driver
1001 	 * processes the buffer at once), so we have to use
1002 	 * list_for_each_entry_safe() to handle the case where the object we
1003 	 * queue is deleted.
1004 	 */
1005 	list_for_each_entry_safe(obj, obj_safe, &req->objects, list) {
1006 		struct v4l2_m2m_ctx *m2m_ctx_obj;
1007 		struct vb2_buffer *vb;
1008 
1009 		if (!obj->ops->queue)
1010 			continue;
1011 
1012 		if (vb2_request_object_is_buffer(obj)) {
1013 			/* Sanity checks */
1014 			vb = container_of(obj, struct vb2_buffer, req_obj);
1015 			WARN_ON(!V4L2_TYPE_IS_OUTPUT(vb->vb2_queue->type));
1016 			m2m_ctx_obj = container_of(vb->vb2_queue,
1017 						   struct v4l2_m2m_ctx,
1018 						   out_q_ctx.q);
1019 			WARN_ON(m2m_ctx && m2m_ctx_obj != m2m_ctx);
1020 			m2m_ctx = m2m_ctx_obj;
1021 		}
1022 
1023 		/*
1024 		 * The buffer we queue here can in theory be immediately
1025 		 * unbound, hence the use of list_for_each_entry_safe()
1026 		 * above and why we call the queue op last.
1027 		 */
1028 		obj->ops->queue(obj);
1029 	}
1030 
1031 	WARN_ON(!m2m_ctx);
1032 
1033 	if (m2m_ctx)
1034 		v4l2_m2m_try_schedule(m2m_ctx);
1035 }
1036 EXPORT_SYMBOL_GPL(v4l2_m2m_request_queue);
1037 
1038 /* Videobuf2 ioctl helpers */
1039 
1040 int v4l2_m2m_ioctl_reqbufs(struct file *file, void *priv,
1041 				struct v4l2_requestbuffers *rb)
1042 {
1043 	struct v4l2_fh *fh = file->private_data;
1044 
1045 	return v4l2_m2m_reqbufs(file, fh->m2m_ctx, rb);
1046 }
1047 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_reqbufs);
1048 
1049 int v4l2_m2m_ioctl_create_bufs(struct file *file, void *priv,
1050 				struct v4l2_create_buffers *create)
1051 {
1052 	struct v4l2_fh *fh = file->private_data;
1053 
1054 	return v4l2_m2m_create_bufs(file, fh->m2m_ctx, create);
1055 }
1056 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_create_bufs);
1057 
1058 int v4l2_m2m_ioctl_querybuf(struct file *file, void *priv,
1059 				struct v4l2_buffer *buf)
1060 {
1061 	struct v4l2_fh *fh = file->private_data;
1062 
1063 	return v4l2_m2m_querybuf(file, fh->m2m_ctx, buf);
1064 }
1065 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_querybuf);
1066 
1067 int v4l2_m2m_ioctl_qbuf(struct file *file, void *priv,
1068 				struct v4l2_buffer *buf)
1069 {
1070 	struct v4l2_fh *fh = file->private_data;
1071 
1072 	return v4l2_m2m_qbuf(file, fh->m2m_ctx, buf);
1073 }
1074 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_qbuf);
1075 
1076 int v4l2_m2m_ioctl_dqbuf(struct file *file, void *priv,
1077 				struct v4l2_buffer *buf)
1078 {
1079 	struct v4l2_fh *fh = file->private_data;
1080 
1081 	return v4l2_m2m_dqbuf(file, fh->m2m_ctx, buf);
1082 }
1083 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_dqbuf);
1084 
1085 int v4l2_m2m_ioctl_prepare_buf(struct file *file, void *priv,
1086 			       struct v4l2_buffer *buf)
1087 {
1088 	struct v4l2_fh *fh = file->private_data;
1089 
1090 	return v4l2_m2m_prepare_buf(file, fh->m2m_ctx, buf);
1091 }
1092 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_prepare_buf);
1093 
1094 int v4l2_m2m_ioctl_expbuf(struct file *file, void *priv,
1095 				struct v4l2_exportbuffer *eb)
1096 {
1097 	struct v4l2_fh *fh = file->private_data;
1098 
1099 	return v4l2_m2m_expbuf(file, fh->m2m_ctx, eb);
1100 }
1101 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_expbuf);
1102 
1103 int v4l2_m2m_ioctl_streamon(struct file *file, void *priv,
1104 				enum v4l2_buf_type type)
1105 {
1106 	struct v4l2_fh *fh = file->private_data;
1107 
1108 	return v4l2_m2m_streamon(file, fh->m2m_ctx, type);
1109 }
1110 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_streamon);
1111 
1112 int v4l2_m2m_ioctl_streamoff(struct file *file, void *priv,
1113 				enum v4l2_buf_type type)
1114 {
1115 	struct v4l2_fh *fh = file->private_data;
1116 
1117 	return v4l2_m2m_streamoff(file, fh->m2m_ctx, type);
1118 }
1119 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_streamoff);
1120 
1121 /*
1122  * v4l2_file_operations helpers. It is assumed here same lock is used
1123  * for the output and the capture buffer queue.
1124  */
1125 
1126 int v4l2_m2m_fop_mmap(struct file *file, struct vm_area_struct *vma)
1127 {
1128 	struct v4l2_fh *fh = file->private_data;
1129 
1130 	return v4l2_m2m_mmap(file, fh->m2m_ctx, vma);
1131 }
1132 EXPORT_SYMBOL_GPL(v4l2_m2m_fop_mmap);
1133 
1134 __poll_t v4l2_m2m_fop_poll(struct file *file, poll_table *wait)
1135 {
1136 	struct v4l2_fh *fh = file->private_data;
1137 	struct v4l2_m2m_ctx *m2m_ctx = fh->m2m_ctx;
1138 	__poll_t ret;
1139 
1140 	if (m2m_ctx->q_lock)
1141 		mutex_lock(m2m_ctx->q_lock);
1142 
1143 	ret = v4l2_m2m_poll(file, m2m_ctx, wait);
1144 
1145 	if (m2m_ctx->q_lock)
1146 		mutex_unlock(m2m_ctx->q_lock);
1147 
1148 	return ret;
1149 }
1150 EXPORT_SYMBOL_GPL(v4l2_m2m_fop_poll);
1151 
1152