1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Memory-to-memory device framework for Video for Linux 2 and videobuf. 4 * 5 * Helper functions for devices that use videobuf buffers for both their 6 * source and destination. 7 * 8 * Copyright (c) 2009-2010 Samsung Electronics Co., Ltd. 9 * Pawel Osciak, <pawel@osciak.com> 10 * Marek Szyprowski, <m.szyprowski@samsung.com> 11 */ 12 #include <linux/module.h> 13 #include <linux/sched.h> 14 #include <linux/slab.h> 15 16 #include <media/media-device.h> 17 #include <media/videobuf2-v4l2.h> 18 #include <media/v4l2-mem2mem.h> 19 #include <media/v4l2-dev.h> 20 #include <media/v4l2-device.h> 21 #include <media/v4l2-fh.h> 22 #include <media/v4l2-event.h> 23 24 MODULE_DESCRIPTION("Mem to mem device framework for videobuf"); 25 MODULE_AUTHOR("Pawel Osciak, <pawel@osciak.com>"); 26 MODULE_LICENSE("GPL"); 27 28 static bool debug; 29 module_param(debug, bool, 0644); 30 31 #define dprintk(fmt, arg...) \ 32 do { \ 33 if (debug) \ 34 printk(KERN_DEBUG "%s: " fmt, __func__, ## arg);\ 35 } while (0) 36 37 38 /* Instance is already queued on the job_queue */ 39 #define TRANS_QUEUED (1 << 0) 40 /* Instance is currently running in hardware */ 41 #define TRANS_RUNNING (1 << 1) 42 /* Instance is currently aborting */ 43 #define TRANS_ABORT (1 << 2) 44 45 46 /* The job queue is not running new jobs */ 47 #define QUEUE_PAUSED (1 << 0) 48 49 50 /* Offset base for buffers on the destination queue - used to distinguish 51 * between source and destination buffers when mmapping - they receive the same 52 * offsets but for different queues */ 53 #define DST_QUEUE_OFF_BASE (1 << 30) 54 55 enum v4l2_m2m_entity_type { 56 MEM2MEM_ENT_TYPE_SOURCE, 57 MEM2MEM_ENT_TYPE_SINK, 58 MEM2MEM_ENT_TYPE_PROC 59 }; 60 61 static const char * const m2m_entity_name[] = { 62 "source", 63 "sink", 64 "proc" 65 }; 66 67 /** 68 * struct v4l2_m2m_dev - per-device context 69 * @source: &struct media_entity pointer with the source entity 70 * Used only when the M2M device is registered via 71 * v4l2_m2m_unregister_media_controller(). 72 * @source_pad: &struct media_pad with the source pad. 73 * Used only when the M2M device is registered via 74 * v4l2_m2m_unregister_media_controller(). 75 * @sink: &struct media_entity pointer with the sink entity 76 * Used only when the M2M device is registered via 77 * v4l2_m2m_unregister_media_controller(). 78 * @sink_pad: &struct media_pad with the sink pad. 79 * Used only when the M2M device is registered via 80 * v4l2_m2m_unregister_media_controller(). 81 * @proc: &struct media_entity pointer with the M2M device itself. 82 * @proc_pads: &struct media_pad with the @proc pads. 83 * Used only when the M2M device is registered via 84 * v4l2_m2m_unregister_media_controller(). 85 * @intf_devnode: &struct media_intf devnode pointer with the interface 86 * with controls the M2M device. 87 * @curr_ctx: currently running instance 88 * @job_queue: instances queued to run 89 * @job_spinlock: protects job_queue 90 * @job_work: worker to run queued jobs. 91 * @job_queue_flags: flags of the queue status, %QUEUE_PAUSED. 92 * @m2m_ops: driver callbacks 93 */ 94 struct v4l2_m2m_dev { 95 struct v4l2_m2m_ctx *curr_ctx; 96 #ifdef CONFIG_MEDIA_CONTROLLER 97 struct media_entity *source; 98 struct media_pad source_pad; 99 struct media_entity sink; 100 struct media_pad sink_pad; 101 struct media_entity proc; 102 struct media_pad proc_pads[2]; 103 struct media_intf_devnode *intf_devnode; 104 #endif 105 106 struct list_head job_queue; 107 spinlock_t job_spinlock; 108 struct work_struct job_work; 109 unsigned long job_queue_flags; 110 111 const struct v4l2_m2m_ops *m2m_ops; 112 }; 113 114 static struct v4l2_m2m_queue_ctx *get_queue_ctx(struct v4l2_m2m_ctx *m2m_ctx, 115 enum v4l2_buf_type type) 116 { 117 if (V4L2_TYPE_IS_OUTPUT(type)) 118 return &m2m_ctx->out_q_ctx; 119 else 120 return &m2m_ctx->cap_q_ctx; 121 } 122 123 struct vb2_queue *v4l2_m2m_get_vq(struct v4l2_m2m_ctx *m2m_ctx, 124 enum v4l2_buf_type type) 125 { 126 struct v4l2_m2m_queue_ctx *q_ctx; 127 128 q_ctx = get_queue_ctx(m2m_ctx, type); 129 if (!q_ctx) 130 return NULL; 131 132 return &q_ctx->q; 133 } 134 EXPORT_SYMBOL(v4l2_m2m_get_vq); 135 136 struct vb2_v4l2_buffer *v4l2_m2m_next_buf(struct v4l2_m2m_queue_ctx *q_ctx) 137 { 138 struct v4l2_m2m_buffer *b; 139 unsigned long flags; 140 141 spin_lock_irqsave(&q_ctx->rdy_spinlock, flags); 142 143 if (list_empty(&q_ctx->rdy_queue)) { 144 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags); 145 return NULL; 146 } 147 148 b = list_first_entry(&q_ctx->rdy_queue, struct v4l2_m2m_buffer, list); 149 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags); 150 return &b->vb; 151 } 152 EXPORT_SYMBOL_GPL(v4l2_m2m_next_buf); 153 154 struct vb2_v4l2_buffer *v4l2_m2m_last_buf(struct v4l2_m2m_queue_ctx *q_ctx) 155 { 156 struct v4l2_m2m_buffer *b; 157 unsigned long flags; 158 159 spin_lock_irqsave(&q_ctx->rdy_spinlock, flags); 160 161 if (list_empty(&q_ctx->rdy_queue)) { 162 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags); 163 return NULL; 164 } 165 166 b = list_last_entry(&q_ctx->rdy_queue, struct v4l2_m2m_buffer, list); 167 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags); 168 return &b->vb; 169 } 170 EXPORT_SYMBOL_GPL(v4l2_m2m_last_buf); 171 172 struct vb2_v4l2_buffer *v4l2_m2m_buf_remove(struct v4l2_m2m_queue_ctx *q_ctx) 173 { 174 struct v4l2_m2m_buffer *b; 175 unsigned long flags; 176 177 spin_lock_irqsave(&q_ctx->rdy_spinlock, flags); 178 if (list_empty(&q_ctx->rdy_queue)) { 179 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags); 180 return NULL; 181 } 182 b = list_first_entry(&q_ctx->rdy_queue, struct v4l2_m2m_buffer, list); 183 list_del(&b->list); 184 q_ctx->num_rdy--; 185 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags); 186 187 return &b->vb; 188 } 189 EXPORT_SYMBOL_GPL(v4l2_m2m_buf_remove); 190 191 void v4l2_m2m_buf_remove_by_buf(struct v4l2_m2m_queue_ctx *q_ctx, 192 struct vb2_v4l2_buffer *vbuf) 193 { 194 struct v4l2_m2m_buffer *b; 195 unsigned long flags; 196 197 spin_lock_irqsave(&q_ctx->rdy_spinlock, flags); 198 b = container_of(vbuf, struct v4l2_m2m_buffer, vb); 199 list_del(&b->list); 200 q_ctx->num_rdy--; 201 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags); 202 } 203 EXPORT_SYMBOL_GPL(v4l2_m2m_buf_remove_by_buf); 204 205 struct vb2_v4l2_buffer * 206 v4l2_m2m_buf_remove_by_idx(struct v4l2_m2m_queue_ctx *q_ctx, unsigned int idx) 207 208 { 209 struct v4l2_m2m_buffer *b, *tmp; 210 struct vb2_v4l2_buffer *ret = NULL; 211 unsigned long flags; 212 213 spin_lock_irqsave(&q_ctx->rdy_spinlock, flags); 214 list_for_each_entry_safe(b, tmp, &q_ctx->rdy_queue, list) { 215 if (b->vb.vb2_buf.index == idx) { 216 list_del(&b->list); 217 q_ctx->num_rdy--; 218 ret = &b->vb; 219 break; 220 } 221 } 222 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags); 223 224 return ret; 225 } 226 EXPORT_SYMBOL_GPL(v4l2_m2m_buf_remove_by_idx); 227 228 /* 229 * Scheduling handlers 230 */ 231 232 void *v4l2_m2m_get_curr_priv(struct v4l2_m2m_dev *m2m_dev) 233 { 234 unsigned long flags; 235 void *ret = NULL; 236 237 spin_lock_irqsave(&m2m_dev->job_spinlock, flags); 238 if (m2m_dev->curr_ctx) 239 ret = m2m_dev->curr_ctx->priv; 240 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags); 241 242 return ret; 243 } 244 EXPORT_SYMBOL(v4l2_m2m_get_curr_priv); 245 246 /** 247 * v4l2_m2m_try_run() - select next job to perform and run it if possible 248 * @m2m_dev: per-device context 249 * 250 * Get next transaction (if present) from the waiting jobs list and run it. 251 * 252 * Note that this function can run on a given v4l2_m2m_ctx context, 253 * but call .device_run for another context. 254 */ 255 static void v4l2_m2m_try_run(struct v4l2_m2m_dev *m2m_dev) 256 { 257 unsigned long flags; 258 259 spin_lock_irqsave(&m2m_dev->job_spinlock, flags); 260 if (NULL != m2m_dev->curr_ctx) { 261 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags); 262 dprintk("Another instance is running, won't run now\n"); 263 return; 264 } 265 266 if (list_empty(&m2m_dev->job_queue)) { 267 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags); 268 dprintk("No job pending\n"); 269 return; 270 } 271 272 if (m2m_dev->job_queue_flags & QUEUE_PAUSED) { 273 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags); 274 dprintk("Running new jobs is paused\n"); 275 return; 276 } 277 278 m2m_dev->curr_ctx = list_first_entry(&m2m_dev->job_queue, 279 struct v4l2_m2m_ctx, queue); 280 m2m_dev->curr_ctx->job_flags |= TRANS_RUNNING; 281 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags); 282 283 dprintk("Running job on m2m_ctx: %p\n", m2m_dev->curr_ctx); 284 m2m_dev->m2m_ops->device_run(m2m_dev->curr_ctx->priv); 285 } 286 287 /* 288 * __v4l2_m2m_try_queue() - queue a job 289 * @m2m_dev: m2m device 290 * @m2m_ctx: m2m context 291 * 292 * Check if this context is ready to queue a job. 293 * 294 * This function can run in interrupt context. 295 */ 296 static void __v4l2_m2m_try_queue(struct v4l2_m2m_dev *m2m_dev, 297 struct v4l2_m2m_ctx *m2m_ctx) 298 { 299 unsigned long flags_job; 300 struct vb2_v4l2_buffer *dst, *src; 301 302 dprintk("Trying to schedule a job for m2m_ctx: %p\n", m2m_ctx); 303 304 if (!m2m_ctx->out_q_ctx.q.streaming 305 || !m2m_ctx->cap_q_ctx.q.streaming) { 306 dprintk("Streaming needs to be on for both queues\n"); 307 return; 308 } 309 310 spin_lock_irqsave(&m2m_dev->job_spinlock, flags_job); 311 312 /* If the context is aborted then don't schedule it */ 313 if (m2m_ctx->job_flags & TRANS_ABORT) { 314 dprintk("Aborted context\n"); 315 goto job_unlock; 316 } 317 318 if (m2m_ctx->job_flags & TRANS_QUEUED) { 319 dprintk("On job queue already\n"); 320 goto job_unlock; 321 } 322 323 src = v4l2_m2m_next_src_buf(m2m_ctx); 324 dst = v4l2_m2m_next_dst_buf(m2m_ctx); 325 if (!src && !m2m_ctx->out_q_ctx.buffered) { 326 dprintk("No input buffers available\n"); 327 goto job_unlock; 328 } 329 if (!dst && !m2m_ctx->cap_q_ctx.buffered) { 330 dprintk("No output buffers available\n"); 331 goto job_unlock; 332 } 333 334 m2m_ctx->new_frame = true; 335 336 if (src && dst && dst->is_held && 337 dst->vb2_buf.copied_timestamp && 338 dst->vb2_buf.timestamp != src->vb2_buf.timestamp) { 339 dst->is_held = false; 340 v4l2_m2m_dst_buf_remove(m2m_ctx); 341 v4l2_m2m_buf_done(dst, VB2_BUF_STATE_DONE); 342 dst = v4l2_m2m_next_dst_buf(m2m_ctx); 343 344 if (!dst && !m2m_ctx->cap_q_ctx.buffered) { 345 dprintk("No output buffers available after returning held buffer\n"); 346 goto job_unlock; 347 } 348 } 349 350 if (src && dst && (m2m_ctx->out_q_ctx.q.subsystem_flags & 351 VB2_V4L2_FL_SUPPORTS_M2M_HOLD_CAPTURE_BUF)) 352 m2m_ctx->new_frame = !dst->vb2_buf.copied_timestamp || 353 dst->vb2_buf.timestamp != src->vb2_buf.timestamp; 354 355 if (m2m_ctx->has_stopped) { 356 dprintk("Device has stopped\n"); 357 goto job_unlock; 358 } 359 360 if (m2m_dev->m2m_ops->job_ready 361 && (!m2m_dev->m2m_ops->job_ready(m2m_ctx->priv))) { 362 dprintk("Driver not ready\n"); 363 goto job_unlock; 364 } 365 366 list_add_tail(&m2m_ctx->queue, &m2m_dev->job_queue); 367 m2m_ctx->job_flags |= TRANS_QUEUED; 368 369 job_unlock: 370 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags_job); 371 } 372 373 /** 374 * v4l2_m2m_try_schedule() - schedule and possibly run a job for any context 375 * @m2m_ctx: m2m context 376 * 377 * Check if this context is ready to queue a job. If suitable, 378 * run the next queued job on the mem2mem device. 379 * 380 * This function shouldn't run in interrupt context. 381 * 382 * Note that v4l2_m2m_try_schedule() can schedule one job for this context, 383 * and then run another job for another context. 384 */ 385 void v4l2_m2m_try_schedule(struct v4l2_m2m_ctx *m2m_ctx) 386 { 387 struct v4l2_m2m_dev *m2m_dev = m2m_ctx->m2m_dev; 388 389 __v4l2_m2m_try_queue(m2m_dev, m2m_ctx); 390 v4l2_m2m_try_run(m2m_dev); 391 } 392 EXPORT_SYMBOL_GPL(v4l2_m2m_try_schedule); 393 394 /** 395 * v4l2_m2m_device_run_work() - run pending jobs for the context 396 * @work: Work structure used for scheduling the execution of this function. 397 */ 398 static void v4l2_m2m_device_run_work(struct work_struct *work) 399 { 400 struct v4l2_m2m_dev *m2m_dev = 401 container_of(work, struct v4l2_m2m_dev, job_work); 402 403 v4l2_m2m_try_run(m2m_dev); 404 } 405 406 /** 407 * v4l2_m2m_cancel_job() - cancel pending jobs for the context 408 * @m2m_ctx: m2m context with jobs to be canceled 409 * 410 * In case of streamoff or release called on any context, 411 * 1] If the context is currently running, then abort job will be called 412 * 2] If the context is queued, then the context will be removed from 413 * the job_queue 414 */ 415 static void v4l2_m2m_cancel_job(struct v4l2_m2m_ctx *m2m_ctx) 416 { 417 struct v4l2_m2m_dev *m2m_dev; 418 unsigned long flags; 419 420 m2m_dev = m2m_ctx->m2m_dev; 421 spin_lock_irqsave(&m2m_dev->job_spinlock, flags); 422 423 m2m_ctx->job_flags |= TRANS_ABORT; 424 if (m2m_ctx->job_flags & TRANS_RUNNING) { 425 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags); 426 if (m2m_dev->m2m_ops->job_abort) 427 m2m_dev->m2m_ops->job_abort(m2m_ctx->priv); 428 dprintk("m2m_ctx %p running, will wait to complete\n", m2m_ctx); 429 wait_event(m2m_ctx->finished, 430 !(m2m_ctx->job_flags & TRANS_RUNNING)); 431 } else if (m2m_ctx->job_flags & TRANS_QUEUED) { 432 list_del(&m2m_ctx->queue); 433 m2m_ctx->job_flags &= ~(TRANS_QUEUED | TRANS_RUNNING); 434 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags); 435 dprintk("m2m_ctx: %p had been on queue and was removed\n", 436 m2m_ctx); 437 } else { 438 /* Do nothing, was not on queue/running */ 439 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags); 440 } 441 } 442 443 /* 444 * Schedule the next job, called from v4l2_m2m_job_finish() or 445 * v4l2_m2m_buf_done_and_job_finish(). 446 */ 447 static void v4l2_m2m_schedule_next_job(struct v4l2_m2m_dev *m2m_dev, 448 struct v4l2_m2m_ctx *m2m_ctx) 449 { 450 /* 451 * This instance might have more buffers ready, but since we do not 452 * allow more than one job on the job_queue per instance, each has 453 * to be scheduled separately after the previous one finishes. 454 */ 455 __v4l2_m2m_try_queue(m2m_dev, m2m_ctx); 456 457 /* 458 * We might be running in atomic context, 459 * but the job must be run in non-atomic context. 460 */ 461 schedule_work(&m2m_dev->job_work); 462 } 463 464 /* 465 * Assumes job_spinlock is held, called from v4l2_m2m_job_finish() or 466 * v4l2_m2m_buf_done_and_job_finish(). 467 */ 468 static bool _v4l2_m2m_job_finish(struct v4l2_m2m_dev *m2m_dev, 469 struct v4l2_m2m_ctx *m2m_ctx) 470 { 471 if (!m2m_dev->curr_ctx || m2m_dev->curr_ctx != m2m_ctx) { 472 dprintk("Called by an instance not currently running\n"); 473 return false; 474 } 475 476 list_del(&m2m_dev->curr_ctx->queue); 477 m2m_dev->curr_ctx->job_flags &= ~(TRANS_QUEUED | TRANS_RUNNING); 478 wake_up(&m2m_dev->curr_ctx->finished); 479 m2m_dev->curr_ctx = NULL; 480 return true; 481 } 482 483 void v4l2_m2m_job_finish(struct v4l2_m2m_dev *m2m_dev, 484 struct v4l2_m2m_ctx *m2m_ctx) 485 { 486 unsigned long flags; 487 bool schedule_next; 488 489 /* 490 * This function should not be used for drivers that support 491 * holding capture buffers. Those should use 492 * v4l2_m2m_buf_done_and_job_finish() instead. 493 */ 494 WARN_ON(m2m_ctx->out_q_ctx.q.subsystem_flags & 495 VB2_V4L2_FL_SUPPORTS_M2M_HOLD_CAPTURE_BUF); 496 spin_lock_irqsave(&m2m_dev->job_spinlock, flags); 497 schedule_next = _v4l2_m2m_job_finish(m2m_dev, m2m_ctx); 498 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags); 499 500 if (schedule_next) 501 v4l2_m2m_schedule_next_job(m2m_dev, m2m_ctx); 502 } 503 EXPORT_SYMBOL(v4l2_m2m_job_finish); 504 505 void v4l2_m2m_buf_done_and_job_finish(struct v4l2_m2m_dev *m2m_dev, 506 struct v4l2_m2m_ctx *m2m_ctx, 507 enum vb2_buffer_state state) 508 { 509 struct vb2_v4l2_buffer *src_buf, *dst_buf; 510 bool schedule_next = false; 511 unsigned long flags; 512 513 spin_lock_irqsave(&m2m_dev->job_spinlock, flags); 514 src_buf = v4l2_m2m_src_buf_remove(m2m_ctx); 515 dst_buf = v4l2_m2m_next_dst_buf(m2m_ctx); 516 517 if (WARN_ON(!src_buf || !dst_buf)) 518 goto unlock; 519 dst_buf->is_held = src_buf->flags & V4L2_BUF_FLAG_M2M_HOLD_CAPTURE_BUF; 520 if (!dst_buf->is_held) { 521 v4l2_m2m_dst_buf_remove(m2m_ctx); 522 v4l2_m2m_buf_done(dst_buf, state); 523 } 524 /* 525 * If the request API is being used, returning the OUTPUT 526 * (src) buffer will wake-up any process waiting on the 527 * request file descriptor. 528 * 529 * Therefore, return the CAPTURE (dst) buffer first, 530 * to avoid signalling the request file descriptor 531 * before the CAPTURE buffer is done. 532 */ 533 v4l2_m2m_buf_done(src_buf, state); 534 schedule_next = _v4l2_m2m_job_finish(m2m_dev, m2m_ctx); 535 unlock: 536 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags); 537 538 if (schedule_next) 539 v4l2_m2m_schedule_next_job(m2m_dev, m2m_ctx); 540 } 541 EXPORT_SYMBOL(v4l2_m2m_buf_done_and_job_finish); 542 543 void v4l2_m2m_suspend(struct v4l2_m2m_dev *m2m_dev) 544 { 545 unsigned long flags; 546 struct v4l2_m2m_ctx *curr_ctx; 547 548 spin_lock_irqsave(&m2m_dev->job_spinlock, flags); 549 m2m_dev->job_queue_flags |= QUEUE_PAUSED; 550 curr_ctx = m2m_dev->curr_ctx; 551 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags); 552 553 if (curr_ctx) 554 wait_event(curr_ctx->finished, 555 !(curr_ctx->job_flags & TRANS_RUNNING)); 556 } 557 EXPORT_SYMBOL(v4l2_m2m_suspend); 558 559 void v4l2_m2m_resume(struct v4l2_m2m_dev *m2m_dev) 560 { 561 unsigned long flags; 562 563 spin_lock_irqsave(&m2m_dev->job_spinlock, flags); 564 m2m_dev->job_queue_flags &= ~QUEUE_PAUSED; 565 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags); 566 567 v4l2_m2m_try_run(m2m_dev); 568 } 569 EXPORT_SYMBOL(v4l2_m2m_resume); 570 571 int v4l2_m2m_reqbufs(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, 572 struct v4l2_requestbuffers *reqbufs) 573 { 574 struct vb2_queue *vq; 575 int ret; 576 577 vq = v4l2_m2m_get_vq(m2m_ctx, reqbufs->type); 578 ret = vb2_reqbufs(vq, reqbufs); 579 /* If count == 0, then the owner has released all buffers and he 580 is no longer owner of the queue. Otherwise we have an owner. */ 581 if (ret == 0) 582 vq->owner = reqbufs->count ? file->private_data : NULL; 583 584 return ret; 585 } 586 EXPORT_SYMBOL_GPL(v4l2_m2m_reqbufs); 587 588 static void v4l2_m2m_adjust_mem_offset(struct vb2_queue *vq, 589 struct v4l2_buffer *buf) 590 { 591 /* Adjust MMAP memory offsets for the CAPTURE queue */ 592 if (buf->memory == V4L2_MEMORY_MMAP && V4L2_TYPE_IS_CAPTURE(vq->type)) { 593 if (V4L2_TYPE_IS_MULTIPLANAR(vq->type)) { 594 unsigned int i; 595 596 for (i = 0; i < buf->length; ++i) 597 buf->m.planes[i].m.mem_offset 598 += DST_QUEUE_OFF_BASE; 599 } else { 600 buf->m.offset += DST_QUEUE_OFF_BASE; 601 } 602 } 603 } 604 605 int v4l2_m2m_querybuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, 606 struct v4l2_buffer *buf) 607 { 608 struct vb2_queue *vq; 609 int ret; 610 611 vq = v4l2_m2m_get_vq(m2m_ctx, buf->type); 612 ret = vb2_querybuf(vq, buf); 613 if (ret) 614 return ret; 615 616 /* Adjust MMAP memory offsets for the CAPTURE queue */ 617 v4l2_m2m_adjust_mem_offset(vq, buf); 618 619 return 0; 620 } 621 EXPORT_SYMBOL_GPL(v4l2_m2m_querybuf); 622 623 /* 624 * This will add the LAST flag and mark the buffer management 625 * state as stopped. 626 * This is called when the last capture buffer must be flagged as LAST 627 * in draining mode from the encoder/decoder driver buf_queue() callback 628 * or from v4l2_update_last_buf_state() when a capture buffer is available. 629 */ 630 void v4l2_m2m_last_buffer_done(struct v4l2_m2m_ctx *m2m_ctx, 631 struct vb2_v4l2_buffer *vbuf) 632 { 633 vbuf->flags |= V4L2_BUF_FLAG_LAST; 634 vb2_buffer_done(&vbuf->vb2_buf, VB2_BUF_STATE_DONE); 635 636 v4l2_m2m_mark_stopped(m2m_ctx); 637 } 638 EXPORT_SYMBOL_GPL(v4l2_m2m_last_buffer_done); 639 640 /* When stop command is issued, update buffer management state */ 641 static int v4l2_update_last_buf_state(struct v4l2_m2m_ctx *m2m_ctx) 642 { 643 struct vb2_v4l2_buffer *next_dst_buf; 644 645 if (m2m_ctx->is_draining) 646 return -EBUSY; 647 648 if (m2m_ctx->has_stopped) 649 return 0; 650 651 m2m_ctx->last_src_buf = v4l2_m2m_last_src_buf(m2m_ctx); 652 m2m_ctx->is_draining = true; 653 654 /* 655 * The processing of the last output buffer queued before 656 * the STOP command is expected to mark the buffer management 657 * state as stopped with v4l2_m2m_mark_stopped(). 658 */ 659 if (m2m_ctx->last_src_buf) 660 return 0; 661 662 /* 663 * In case the output queue is empty, try to mark the last capture 664 * buffer as LAST. 665 */ 666 next_dst_buf = v4l2_m2m_dst_buf_remove(m2m_ctx); 667 if (!next_dst_buf) { 668 /* 669 * Wait for the next queued one in encoder/decoder driver 670 * buf_queue() callback using the v4l2_m2m_dst_buf_is_last() 671 * helper or in v4l2_m2m_qbuf() if encoder/decoder is not yet 672 * streaming. 673 */ 674 m2m_ctx->next_buf_last = true; 675 return 0; 676 } 677 678 v4l2_m2m_last_buffer_done(m2m_ctx, next_dst_buf); 679 680 return 0; 681 } 682 683 /* 684 * Updates the encoding/decoding buffer management state, should 685 * be called from encoder/decoder drivers start_streaming() 686 */ 687 void v4l2_m2m_update_start_streaming_state(struct v4l2_m2m_ctx *m2m_ctx, 688 struct vb2_queue *q) 689 { 690 /* If start streaming again, untag the last output buffer */ 691 if (V4L2_TYPE_IS_OUTPUT(q->type)) 692 m2m_ctx->last_src_buf = NULL; 693 } 694 EXPORT_SYMBOL_GPL(v4l2_m2m_update_start_streaming_state); 695 696 /* 697 * Updates the encoding/decoding buffer management state, should 698 * be called from encoder/decoder driver stop_streaming() 699 */ 700 void v4l2_m2m_update_stop_streaming_state(struct v4l2_m2m_ctx *m2m_ctx, 701 struct vb2_queue *q) 702 { 703 if (V4L2_TYPE_IS_OUTPUT(q->type)) { 704 /* 705 * If in draining state, either mark next dst buffer as 706 * done or flag next one to be marked as done either 707 * in encoder/decoder driver buf_queue() callback using 708 * the v4l2_m2m_dst_buf_is_last() helper or in v4l2_m2m_qbuf() 709 * if encoder/decoder is not yet streaming 710 */ 711 if (m2m_ctx->is_draining) { 712 struct vb2_v4l2_buffer *next_dst_buf; 713 714 m2m_ctx->last_src_buf = NULL; 715 next_dst_buf = v4l2_m2m_dst_buf_remove(m2m_ctx); 716 if (!next_dst_buf) 717 m2m_ctx->next_buf_last = true; 718 else 719 v4l2_m2m_last_buffer_done(m2m_ctx, 720 next_dst_buf); 721 } 722 } else { 723 v4l2_m2m_clear_state(m2m_ctx); 724 } 725 } 726 EXPORT_SYMBOL_GPL(v4l2_m2m_update_stop_streaming_state); 727 728 static void v4l2_m2m_force_last_buf_done(struct v4l2_m2m_ctx *m2m_ctx, 729 struct vb2_queue *q) 730 { 731 struct vb2_buffer *vb; 732 struct vb2_v4l2_buffer *vbuf; 733 unsigned int i; 734 735 if (WARN_ON(q->is_output)) 736 return; 737 if (list_empty(&q->queued_list)) 738 return; 739 740 vb = list_first_entry(&q->queued_list, struct vb2_buffer, queued_entry); 741 for (i = 0; i < vb->num_planes; i++) 742 vb2_set_plane_payload(vb, i, 0); 743 744 /* 745 * Since the buffer hasn't been queued to the ready queue, 746 * mark is active and owned before marking it LAST and DONE 747 */ 748 vb->state = VB2_BUF_STATE_ACTIVE; 749 atomic_inc(&q->owned_by_drv_count); 750 751 vbuf = to_vb2_v4l2_buffer(vb); 752 vbuf->field = V4L2_FIELD_NONE; 753 754 v4l2_m2m_last_buffer_done(m2m_ctx, vbuf); 755 } 756 757 int v4l2_m2m_qbuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, 758 struct v4l2_buffer *buf) 759 { 760 struct video_device *vdev = video_devdata(file); 761 struct vb2_queue *vq; 762 int ret; 763 764 vq = v4l2_m2m_get_vq(m2m_ctx, buf->type); 765 if (V4L2_TYPE_IS_CAPTURE(vq->type) && 766 (buf->flags & V4L2_BUF_FLAG_REQUEST_FD)) { 767 dprintk("%s: requests cannot be used with capture buffers\n", 768 __func__); 769 return -EPERM; 770 } 771 772 ret = vb2_qbuf(vq, vdev->v4l2_dev->mdev, buf); 773 if (ret) 774 return ret; 775 776 /* Adjust MMAP memory offsets for the CAPTURE queue */ 777 v4l2_m2m_adjust_mem_offset(vq, buf); 778 779 /* 780 * If the capture queue is streaming, but streaming hasn't started 781 * on the device, but was asked to stop, mark the previously queued 782 * buffer as DONE with LAST flag since it won't be queued on the 783 * device. 784 */ 785 if (V4L2_TYPE_IS_CAPTURE(vq->type) && 786 vb2_is_streaming(vq) && !vb2_start_streaming_called(vq) && 787 (v4l2_m2m_has_stopped(m2m_ctx) || v4l2_m2m_dst_buf_is_last(m2m_ctx))) 788 v4l2_m2m_force_last_buf_done(m2m_ctx, vq); 789 else if (!(buf->flags & V4L2_BUF_FLAG_IN_REQUEST)) 790 v4l2_m2m_try_schedule(m2m_ctx); 791 792 return 0; 793 } 794 EXPORT_SYMBOL_GPL(v4l2_m2m_qbuf); 795 796 int v4l2_m2m_dqbuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, 797 struct v4l2_buffer *buf) 798 { 799 struct vb2_queue *vq; 800 int ret; 801 802 vq = v4l2_m2m_get_vq(m2m_ctx, buf->type); 803 ret = vb2_dqbuf(vq, buf, file->f_flags & O_NONBLOCK); 804 if (ret) 805 return ret; 806 807 /* Adjust MMAP memory offsets for the CAPTURE queue */ 808 v4l2_m2m_adjust_mem_offset(vq, buf); 809 810 return 0; 811 } 812 EXPORT_SYMBOL_GPL(v4l2_m2m_dqbuf); 813 814 int v4l2_m2m_prepare_buf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, 815 struct v4l2_buffer *buf) 816 { 817 struct video_device *vdev = video_devdata(file); 818 struct vb2_queue *vq; 819 int ret; 820 821 vq = v4l2_m2m_get_vq(m2m_ctx, buf->type); 822 ret = vb2_prepare_buf(vq, vdev->v4l2_dev->mdev, buf); 823 if (ret) 824 return ret; 825 826 /* Adjust MMAP memory offsets for the CAPTURE queue */ 827 v4l2_m2m_adjust_mem_offset(vq, buf); 828 829 return 0; 830 } 831 EXPORT_SYMBOL_GPL(v4l2_m2m_prepare_buf); 832 833 int v4l2_m2m_create_bufs(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, 834 struct v4l2_create_buffers *create) 835 { 836 struct vb2_queue *vq; 837 838 vq = v4l2_m2m_get_vq(m2m_ctx, create->format.type); 839 return vb2_create_bufs(vq, create); 840 } 841 EXPORT_SYMBOL_GPL(v4l2_m2m_create_bufs); 842 843 int v4l2_m2m_expbuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, 844 struct v4l2_exportbuffer *eb) 845 { 846 struct vb2_queue *vq; 847 848 vq = v4l2_m2m_get_vq(m2m_ctx, eb->type); 849 return vb2_expbuf(vq, eb); 850 } 851 EXPORT_SYMBOL_GPL(v4l2_m2m_expbuf); 852 853 int v4l2_m2m_streamon(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, 854 enum v4l2_buf_type type) 855 { 856 struct vb2_queue *vq; 857 int ret; 858 859 vq = v4l2_m2m_get_vq(m2m_ctx, type); 860 ret = vb2_streamon(vq, type); 861 if (!ret) 862 v4l2_m2m_try_schedule(m2m_ctx); 863 864 return ret; 865 } 866 EXPORT_SYMBOL_GPL(v4l2_m2m_streamon); 867 868 int v4l2_m2m_streamoff(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, 869 enum v4l2_buf_type type) 870 { 871 struct v4l2_m2m_dev *m2m_dev; 872 struct v4l2_m2m_queue_ctx *q_ctx; 873 unsigned long flags_job, flags; 874 int ret; 875 876 /* wait until the current context is dequeued from job_queue */ 877 v4l2_m2m_cancel_job(m2m_ctx); 878 879 q_ctx = get_queue_ctx(m2m_ctx, type); 880 ret = vb2_streamoff(&q_ctx->q, type); 881 if (ret) 882 return ret; 883 884 m2m_dev = m2m_ctx->m2m_dev; 885 spin_lock_irqsave(&m2m_dev->job_spinlock, flags_job); 886 /* We should not be scheduled anymore, since we're dropping a queue. */ 887 if (m2m_ctx->job_flags & TRANS_QUEUED) 888 list_del(&m2m_ctx->queue); 889 m2m_ctx->job_flags = 0; 890 891 spin_lock_irqsave(&q_ctx->rdy_spinlock, flags); 892 /* Drop queue, since streamoff returns device to the same state as after 893 * calling reqbufs. */ 894 INIT_LIST_HEAD(&q_ctx->rdy_queue); 895 q_ctx->num_rdy = 0; 896 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags); 897 898 if (m2m_dev->curr_ctx == m2m_ctx) { 899 m2m_dev->curr_ctx = NULL; 900 wake_up(&m2m_ctx->finished); 901 } 902 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags_job); 903 904 return 0; 905 } 906 EXPORT_SYMBOL_GPL(v4l2_m2m_streamoff); 907 908 static __poll_t v4l2_m2m_poll_for_data(struct file *file, 909 struct v4l2_m2m_ctx *m2m_ctx, 910 struct poll_table_struct *wait) 911 { 912 struct vb2_queue *src_q, *dst_q; 913 __poll_t rc = 0; 914 unsigned long flags; 915 916 src_q = v4l2_m2m_get_src_vq(m2m_ctx); 917 dst_q = v4l2_m2m_get_dst_vq(m2m_ctx); 918 919 /* 920 * There has to be at least one buffer queued on each queued_list, which 921 * means either in driver already or waiting for driver to claim it 922 * and start processing. 923 */ 924 if ((!src_q->streaming || src_q->error || 925 list_empty(&src_q->queued_list)) && 926 (!dst_q->streaming || dst_q->error || 927 list_empty(&dst_q->queued_list))) 928 return EPOLLERR; 929 930 spin_lock_irqsave(&src_q->done_lock, flags); 931 if (!list_empty(&src_q->done_list)) 932 rc |= EPOLLOUT | EPOLLWRNORM; 933 spin_unlock_irqrestore(&src_q->done_lock, flags); 934 935 spin_lock_irqsave(&dst_q->done_lock, flags); 936 /* 937 * If the last buffer was dequeued from the capture queue, signal 938 * userspace. DQBUF(CAPTURE) will return -EPIPE. 939 */ 940 if (!list_empty(&dst_q->done_list) || dst_q->last_buffer_dequeued) 941 rc |= EPOLLIN | EPOLLRDNORM; 942 spin_unlock_irqrestore(&dst_q->done_lock, flags); 943 944 return rc; 945 } 946 947 __poll_t v4l2_m2m_poll(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, 948 struct poll_table_struct *wait) 949 { 950 struct video_device *vfd = video_devdata(file); 951 struct vb2_queue *src_q = v4l2_m2m_get_src_vq(m2m_ctx); 952 struct vb2_queue *dst_q = v4l2_m2m_get_dst_vq(m2m_ctx); 953 __poll_t req_events = poll_requested_events(wait); 954 __poll_t rc = 0; 955 956 /* 957 * poll_wait() MUST be called on the first invocation on all the 958 * potential queues of interest, even if we are not interested in their 959 * events during this first call. Failure to do so will result in 960 * queue's events to be ignored because the poll_table won't be capable 961 * of adding new wait queues thereafter. 962 */ 963 poll_wait(file, &src_q->done_wq, wait); 964 poll_wait(file, &dst_q->done_wq, wait); 965 966 if (req_events & (EPOLLOUT | EPOLLWRNORM | EPOLLIN | EPOLLRDNORM)) 967 rc = v4l2_m2m_poll_for_data(file, m2m_ctx, wait); 968 969 if (test_bit(V4L2_FL_USES_V4L2_FH, &vfd->flags)) { 970 struct v4l2_fh *fh = file->private_data; 971 972 poll_wait(file, &fh->wait, wait); 973 if (v4l2_event_pending(fh)) 974 rc |= EPOLLPRI; 975 } 976 977 return rc; 978 } 979 EXPORT_SYMBOL_GPL(v4l2_m2m_poll); 980 981 int v4l2_m2m_mmap(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, 982 struct vm_area_struct *vma) 983 { 984 unsigned long offset = vma->vm_pgoff << PAGE_SHIFT; 985 struct vb2_queue *vq; 986 987 if (offset < DST_QUEUE_OFF_BASE) { 988 vq = v4l2_m2m_get_src_vq(m2m_ctx); 989 } else { 990 vq = v4l2_m2m_get_dst_vq(m2m_ctx); 991 vma->vm_pgoff -= (DST_QUEUE_OFF_BASE >> PAGE_SHIFT); 992 } 993 994 return vb2_mmap(vq, vma); 995 } 996 EXPORT_SYMBOL(v4l2_m2m_mmap); 997 998 #ifndef CONFIG_MMU 999 unsigned long v4l2_m2m_get_unmapped_area(struct file *file, unsigned long addr, 1000 unsigned long len, unsigned long pgoff, 1001 unsigned long flags) 1002 { 1003 struct v4l2_fh *fh = file->private_data; 1004 unsigned long offset = pgoff << PAGE_SHIFT; 1005 struct vb2_queue *vq; 1006 1007 if (offset < DST_QUEUE_OFF_BASE) { 1008 vq = v4l2_m2m_get_src_vq(fh->m2m_ctx); 1009 } else { 1010 vq = v4l2_m2m_get_dst_vq(fh->m2m_ctx); 1011 pgoff -= (DST_QUEUE_OFF_BASE >> PAGE_SHIFT); 1012 } 1013 1014 return vb2_get_unmapped_area(vq, addr, len, pgoff, flags); 1015 } 1016 EXPORT_SYMBOL_GPL(v4l2_m2m_get_unmapped_area); 1017 #endif 1018 1019 #if defined(CONFIG_MEDIA_CONTROLLER) 1020 void v4l2_m2m_unregister_media_controller(struct v4l2_m2m_dev *m2m_dev) 1021 { 1022 media_remove_intf_links(&m2m_dev->intf_devnode->intf); 1023 media_devnode_remove(m2m_dev->intf_devnode); 1024 1025 media_entity_remove_links(m2m_dev->source); 1026 media_entity_remove_links(&m2m_dev->sink); 1027 media_entity_remove_links(&m2m_dev->proc); 1028 media_device_unregister_entity(m2m_dev->source); 1029 media_device_unregister_entity(&m2m_dev->sink); 1030 media_device_unregister_entity(&m2m_dev->proc); 1031 kfree(m2m_dev->source->name); 1032 kfree(m2m_dev->sink.name); 1033 kfree(m2m_dev->proc.name); 1034 } 1035 EXPORT_SYMBOL_GPL(v4l2_m2m_unregister_media_controller); 1036 1037 static int v4l2_m2m_register_entity(struct media_device *mdev, 1038 struct v4l2_m2m_dev *m2m_dev, enum v4l2_m2m_entity_type type, 1039 struct video_device *vdev, int function) 1040 { 1041 struct media_entity *entity; 1042 struct media_pad *pads; 1043 char *name; 1044 unsigned int len; 1045 int num_pads; 1046 int ret; 1047 1048 switch (type) { 1049 case MEM2MEM_ENT_TYPE_SOURCE: 1050 entity = m2m_dev->source; 1051 pads = &m2m_dev->source_pad; 1052 pads[0].flags = MEDIA_PAD_FL_SOURCE; 1053 num_pads = 1; 1054 break; 1055 case MEM2MEM_ENT_TYPE_SINK: 1056 entity = &m2m_dev->sink; 1057 pads = &m2m_dev->sink_pad; 1058 pads[0].flags = MEDIA_PAD_FL_SINK; 1059 num_pads = 1; 1060 break; 1061 case MEM2MEM_ENT_TYPE_PROC: 1062 entity = &m2m_dev->proc; 1063 pads = m2m_dev->proc_pads; 1064 pads[0].flags = MEDIA_PAD_FL_SINK; 1065 pads[1].flags = MEDIA_PAD_FL_SOURCE; 1066 num_pads = 2; 1067 break; 1068 default: 1069 return -EINVAL; 1070 } 1071 1072 entity->obj_type = MEDIA_ENTITY_TYPE_BASE; 1073 if (type != MEM2MEM_ENT_TYPE_PROC) { 1074 entity->info.dev.major = VIDEO_MAJOR; 1075 entity->info.dev.minor = vdev->minor; 1076 } 1077 len = strlen(vdev->name) + 2 + strlen(m2m_entity_name[type]); 1078 name = kmalloc(len, GFP_KERNEL); 1079 if (!name) 1080 return -ENOMEM; 1081 snprintf(name, len, "%s-%s", vdev->name, m2m_entity_name[type]); 1082 entity->name = name; 1083 entity->function = function; 1084 1085 ret = media_entity_pads_init(entity, num_pads, pads); 1086 if (ret) 1087 return ret; 1088 ret = media_device_register_entity(mdev, entity); 1089 if (ret) 1090 return ret; 1091 1092 return 0; 1093 } 1094 1095 int v4l2_m2m_register_media_controller(struct v4l2_m2m_dev *m2m_dev, 1096 struct video_device *vdev, int function) 1097 { 1098 struct media_device *mdev = vdev->v4l2_dev->mdev; 1099 struct media_link *link; 1100 int ret; 1101 1102 if (!mdev) 1103 return 0; 1104 1105 /* A memory-to-memory device consists in two 1106 * DMA engine and one video processing entities. 1107 * The DMA engine entities are linked to a V4L interface 1108 */ 1109 1110 /* Create the three entities with their pads */ 1111 m2m_dev->source = &vdev->entity; 1112 ret = v4l2_m2m_register_entity(mdev, m2m_dev, 1113 MEM2MEM_ENT_TYPE_SOURCE, vdev, MEDIA_ENT_F_IO_V4L); 1114 if (ret) 1115 return ret; 1116 ret = v4l2_m2m_register_entity(mdev, m2m_dev, 1117 MEM2MEM_ENT_TYPE_PROC, vdev, function); 1118 if (ret) 1119 goto err_rel_entity0; 1120 ret = v4l2_m2m_register_entity(mdev, m2m_dev, 1121 MEM2MEM_ENT_TYPE_SINK, vdev, MEDIA_ENT_F_IO_V4L); 1122 if (ret) 1123 goto err_rel_entity1; 1124 1125 /* Connect the three entities */ 1126 ret = media_create_pad_link(m2m_dev->source, 0, &m2m_dev->proc, 0, 1127 MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED); 1128 if (ret) 1129 goto err_rel_entity2; 1130 1131 ret = media_create_pad_link(&m2m_dev->proc, 1, &m2m_dev->sink, 0, 1132 MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED); 1133 if (ret) 1134 goto err_rm_links0; 1135 1136 /* Create video interface */ 1137 m2m_dev->intf_devnode = media_devnode_create(mdev, 1138 MEDIA_INTF_T_V4L_VIDEO, 0, 1139 VIDEO_MAJOR, vdev->minor); 1140 if (!m2m_dev->intf_devnode) { 1141 ret = -ENOMEM; 1142 goto err_rm_links1; 1143 } 1144 1145 /* Connect the two DMA engines to the interface */ 1146 link = media_create_intf_link(m2m_dev->source, 1147 &m2m_dev->intf_devnode->intf, 1148 MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED); 1149 if (!link) { 1150 ret = -ENOMEM; 1151 goto err_rm_devnode; 1152 } 1153 1154 link = media_create_intf_link(&m2m_dev->sink, 1155 &m2m_dev->intf_devnode->intf, 1156 MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED); 1157 if (!link) { 1158 ret = -ENOMEM; 1159 goto err_rm_intf_link; 1160 } 1161 return 0; 1162 1163 err_rm_intf_link: 1164 media_remove_intf_links(&m2m_dev->intf_devnode->intf); 1165 err_rm_devnode: 1166 media_devnode_remove(m2m_dev->intf_devnode); 1167 err_rm_links1: 1168 media_entity_remove_links(&m2m_dev->sink); 1169 err_rm_links0: 1170 media_entity_remove_links(&m2m_dev->proc); 1171 media_entity_remove_links(m2m_dev->source); 1172 err_rel_entity2: 1173 media_device_unregister_entity(&m2m_dev->proc); 1174 kfree(m2m_dev->proc.name); 1175 err_rel_entity1: 1176 media_device_unregister_entity(&m2m_dev->sink); 1177 kfree(m2m_dev->sink.name); 1178 err_rel_entity0: 1179 media_device_unregister_entity(m2m_dev->source); 1180 kfree(m2m_dev->source->name); 1181 return ret; 1182 return 0; 1183 } 1184 EXPORT_SYMBOL_GPL(v4l2_m2m_register_media_controller); 1185 #endif 1186 1187 struct v4l2_m2m_dev *v4l2_m2m_init(const struct v4l2_m2m_ops *m2m_ops) 1188 { 1189 struct v4l2_m2m_dev *m2m_dev; 1190 1191 if (!m2m_ops || WARN_ON(!m2m_ops->device_run)) 1192 return ERR_PTR(-EINVAL); 1193 1194 m2m_dev = kzalloc(sizeof *m2m_dev, GFP_KERNEL); 1195 if (!m2m_dev) 1196 return ERR_PTR(-ENOMEM); 1197 1198 m2m_dev->curr_ctx = NULL; 1199 m2m_dev->m2m_ops = m2m_ops; 1200 INIT_LIST_HEAD(&m2m_dev->job_queue); 1201 spin_lock_init(&m2m_dev->job_spinlock); 1202 INIT_WORK(&m2m_dev->job_work, v4l2_m2m_device_run_work); 1203 1204 return m2m_dev; 1205 } 1206 EXPORT_SYMBOL_GPL(v4l2_m2m_init); 1207 1208 void v4l2_m2m_release(struct v4l2_m2m_dev *m2m_dev) 1209 { 1210 kfree(m2m_dev); 1211 } 1212 EXPORT_SYMBOL_GPL(v4l2_m2m_release); 1213 1214 struct v4l2_m2m_ctx *v4l2_m2m_ctx_init(struct v4l2_m2m_dev *m2m_dev, 1215 void *drv_priv, 1216 int (*queue_init)(void *priv, struct vb2_queue *src_vq, struct vb2_queue *dst_vq)) 1217 { 1218 struct v4l2_m2m_ctx *m2m_ctx; 1219 struct v4l2_m2m_queue_ctx *out_q_ctx, *cap_q_ctx; 1220 int ret; 1221 1222 m2m_ctx = kzalloc(sizeof *m2m_ctx, GFP_KERNEL); 1223 if (!m2m_ctx) 1224 return ERR_PTR(-ENOMEM); 1225 1226 m2m_ctx->priv = drv_priv; 1227 m2m_ctx->m2m_dev = m2m_dev; 1228 init_waitqueue_head(&m2m_ctx->finished); 1229 1230 out_q_ctx = &m2m_ctx->out_q_ctx; 1231 cap_q_ctx = &m2m_ctx->cap_q_ctx; 1232 1233 INIT_LIST_HEAD(&out_q_ctx->rdy_queue); 1234 INIT_LIST_HEAD(&cap_q_ctx->rdy_queue); 1235 spin_lock_init(&out_q_ctx->rdy_spinlock); 1236 spin_lock_init(&cap_q_ctx->rdy_spinlock); 1237 1238 INIT_LIST_HEAD(&m2m_ctx->queue); 1239 1240 ret = queue_init(drv_priv, &out_q_ctx->q, &cap_q_ctx->q); 1241 1242 if (ret) 1243 goto err; 1244 /* 1245 * Both queues should use same the mutex to lock the m2m context. 1246 * This lock is used in some v4l2_m2m_* helpers. 1247 */ 1248 if (WARN_ON(out_q_ctx->q.lock != cap_q_ctx->q.lock)) { 1249 ret = -EINVAL; 1250 goto err; 1251 } 1252 m2m_ctx->q_lock = out_q_ctx->q.lock; 1253 1254 return m2m_ctx; 1255 err: 1256 kfree(m2m_ctx); 1257 return ERR_PTR(ret); 1258 } 1259 EXPORT_SYMBOL_GPL(v4l2_m2m_ctx_init); 1260 1261 void v4l2_m2m_ctx_release(struct v4l2_m2m_ctx *m2m_ctx) 1262 { 1263 /* wait until the current context is dequeued from job_queue */ 1264 v4l2_m2m_cancel_job(m2m_ctx); 1265 1266 vb2_queue_release(&m2m_ctx->cap_q_ctx.q); 1267 vb2_queue_release(&m2m_ctx->out_q_ctx.q); 1268 1269 kfree(m2m_ctx); 1270 } 1271 EXPORT_SYMBOL_GPL(v4l2_m2m_ctx_release); 1272 1273 void v4l2_m2m_buf_queue(struct v4l2_m2m_ctx *m2m_ctx, 1274 struct vb2_v4l2_buffer *vbuf) 1275 { 1276 struct v4l2_m2m_buffer *b = container_of(vbuf, 1277 struct v4l2_m2m_buffer, vb); 1278 struct v4l2_m2m_queue_ctx *q_ctx; 1279 unsigned long flags; 1280 1281 q_ctx = get_queue_ctx(m2m_ctx, vbuf->vb2_buf.vb2_queue->type); 1282 if (!q_ctx) 1283 return; 1284 1285 spin_lock_irqsave(&q_ctx->rdy_spinlock, flags); 1286 list_add_tail(&b->list, &q_ctx->rdy_queue); 1287 q_ctx->num_rdy++; 1288 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags); 1289 } 1290 EXPORT_SYMBOL_GPL(v4l2_m2m_buf_queue); 1291 1292 void v4l2_m2m_buf_copy_metadata(const struct vb2_v4l2_buffer *out_vb, 1293 struct vb2_v4l2_buffer *cap_vb, 1294 bool copy_frame_flags) 1295 { 1296 u32 mask = V4L2_BUF_FLAG_TIMECODE | V4L2_BUF_FLAG_TSTAMP_SRC_MASK; 1297 1298 if (copy_frame_flags) 1299 mask |= V4L2_BUF_FLAG_KEYFRAME | V4L2_BUF_FLAG_PFRAME | 1300 V4L2_BUF_FLAG_BFRAME; 1301 1302 cap_vb->vb2_buf.timestamp = out_vb->vb2_buf.timestamp; 1303 1304 if (out_vb->flags & V4L2_BUF_FLAG_TIMECODE) 1305 cap_vb->timecode = out_vb->timecode; 1306 cap_vb->field = out_vb->field; 1307 cap_vb->flags &= ~mask; 1308 cap_vb->flags |= out_vb->flags & mask; 1309 cap_vb->vb2_buf.copied_timestamp = 1; 1310 } 1311 EXPORT_SYMBOL_GPL(v4l2_m2m_buf_copy_metadata); 1312 1313 void v4l2_m2m_request_queue(struct media_request *req) 1314 { 1315 struct media_request_object *obj, *obj_safe; 1316 struct v4l2_m2m_ctx *m2m_ctx = NULL; 1317 1318 /* 1319 * Queue all objects. Note that buffer objects are at the end of the 1320 * objects list, after all other object types. Once buffer objects 1321 * are queued, the driver might delete them immediately (if the driver 1322 * processes the buffer at once), so we have to use 1323 * list_for_each_entry_safe() to handle the case where the object we 1324 * queue is deleted. 1325 */ 1326 list_for_each_entry_safe(obj, obj_safe, &req->objects, list) { 1327 struct v4l2_m2m_ctx *m2m_ctx_obj; 1328 struct vb2_buffer *vb; 1329 1330 if (!obj->ops->queue) 1331 continue; 1332 1333 if (vb2_request_object_is_buffer(obj)) { 1334 /* Sanity checks */ 1335 vb = container_of(obj, struct vb2_buffer, req_obj); 1336 WARN_ON(!V4L2_TYPE_IS_OUTPUT(vb->vb2_queue->type)); 1337 m2m_ctx_obj = container_of(vb->vb2_queue, 1338 struct v4l2_m2m_ctx, 1339 out_q_ctx.q); 1340 WARN_ON(m2m_ctx && m2m_ctx_obj != m2m_ctx); 1341 m2m_ctx = m2m_ctx_obj; 1342 } 1343 1344 /* 1345 * The buffer we queue here can in theory be immediately 1346 * unbound, hence the use of list_for_each_entry_safe() 1347 * above and why we call the queue op last. 1348 */ 1349 obj->ops->queue(obj); 1350 } 1351 1352 WARN_ON(!m2m_ctx); 1353 1354 if (m2m_ctx) 1355 v4l2_m2m_try_schedule(m2m_ctx); 1356 } 1357 EXPORT_SYMBOL_GPL(v4l2_m2m_request_queue); 1358 1359 /* Videobuf2 ioctl helpers */ 1360 1361 int v4l2_m2m_ioctl_reqbufs(struct file *file, void *priv, 1362 struct v4l2_requestbuffers *rb) 1363 { 1364 struct v4l2_fh *fh = file->private_data; 1365 1366 return v4l2_m2m_reqbufs(file, fh->m2m_ctx, rb); 1367 } 1368 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_reqbufs); 1369 1370 int v4l2_m2m_ioctl_create_bufs(struct file *file, void *priv, 1371 struct v4l2_create_buffers *create) 1372 { 1373 struct v4l2_fh *fh = file->private_data; 1374 1375 return v4l2_m2m_create_bufs(file, fh->m2m_ctx, create); 1376 } 1377 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_create_bufs); 1378 1379 int v4l2_m2m_ioctl_querybuf(struct file *file, void *priv, 1380 struct v4l2_buffer *buf) 1381 { 1382 struct v4l2_fh *fh = file->private_data; 1383 1384 return v4l2_m2m_querybuf(file, fh->m2m_ctx, buf); 1385 } 1386 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_querybuf); 1387 1388 int v4l2_m2m_ioctl_qbuf(struct file *file, void *priv, 1389 struct v4l2_buffer *buf) 1390 { 1391 struct v4l2_fh *fh = file->private_data; 1392 1393 return v4l2_m2m_qbuf(file, fh->m2m_ctx, buf); 1394 } 1395 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_qbuf); 1396 1397 int v4l2_m2m_ioctl_dqbuf(struct file *file, void *priv, 1398 struct v4l2_buffer *buf) 1399 { 1400 struct v4l2_fh *fh = file->private_data; 1401 1402 return v4l2_m2m_dqbuf(file, fh->m2m_ctx, buf); 1403 } 1404 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_dqbuf); 1405 1406 int v4l2_m2m_ioctl_prepare_buf(struct file *file, void *priv, 1407 struct v4l2_buffer *buf) 1408 { 1409 struct v4l2_fh *fh = file->private_data; 1410 1411 return v4l2_m2m_prepare_buf(file, fh->m2m_ctx, buf); 1412 } 1413 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_prepare_buf); 1414 1415 int v4l2_m2m_ioctl_expbuf(struct file *file, void *priv, 1416 struct v4l2_exportbuffer *eb) 1417 { 1418 struct v4l2_fh *fh = file->private_data; 1419 1420 return v4l2_m2m_expbuf(file, fh->m2m_ctx, eb); 1421 } 1422 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_expbuf); 1423 1424 int v4l2_m2m_ioctl_streamon(struct file *file, void *priv, 1425 enum v4l2_buf_type type) 1426 { 1427 struct v4l2_fh *fh = file->private_data; 1428 1429 return v4l2_m2m_streamon(file, fh->m2m_ctx, type); 1430 } 1431 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_streamon); 1432 1433 int v4l2_m2m_ioctl_streamoff(struct file *file, void *priv, 1434 enum v4l2_buf_type type) 1435 { 1436 struct v4l2_fh *fh = file->private_data; 1437 1438 return v4l2_m2m_streamoff(file, fh->m2m_ctx, type); 1439 } 1440 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_streamoff); 1441 1442 int v4l2_m2m_ioctl_try_encoder_cmd(struct file *file, void *fh, 1443 struct v4l2_encoder_cmd *ec) 1444 { 1445 if (ec->cmd != V4L2_ENC_CMD_STOP && ec->cmd != V4L2_ENC_CMD_START) 1446 return -EINVAL; 1447 1448 ec->flags = 0; 1449 return 0; 1450 } 1451 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_try_encoder_cmd); 1452 1453 int v4l2_m2m_ioctl_try_decoder_cmd(struct file *file, void *fh, 1454 struct v4l2_decoder_cmd *dc) 1455 { 1456 if (dc->cmd != V4L2_DEC_CMD_STOP && dc->cmd != V4L2_DEC_CMD_START) 1457 return -EINVAL; 1458 1459 dc->flags = 0; 1460 1461 if (dc->cmd == V4L2_DEC_CMD_STOP) { 1462 dc->stop.pts = 0; 1463 } else if (dc->cmd == V4L2_DEC_CMD_START) { 1464 dc->start.speed = 0; 1465 dc->start.format = V4L2_DEC_START_FMT_NONE; 1466 } 1467 return 0; 1468 } 1469 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_try_decoder_cmd); 1470 1471 /* 1472 * Updates the encoding state on ENC_CMD_STOP/ENC_CMD_START 1473 * Should be called from the encoder driver encoder_cmd() callback 1474 */ 1475 int v4l2_m2m_encoder_cmd(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, 1476 struct v4l2_encoder_cmd *ec) 1477 { 1478 if (ec->cmd != V4L2_ENC_CMD_STOP && ec->cmd != V4L2_ENC_CMD_START) 1479 return -EINVAL; 1480 1481 if (ec->cmd == V4L2_ENC_CMD_STOP) 1482 return v4l2_update_last_buf_state(m2m_ctx); 1483 1484 if (m2m_ctx->is_draining) 1485 return -EBUSY; 1486 1487 if (m2m_ctx->has_stopped) 1488 m2m_ctx->has_stopped = false; 1489 1490 return 0; 1491 } 1492 EXPORT_SYMBOL_GPL(v4l2_m2m_encoder_cmd); 1493 1494 /* 1495 * Updates the decoding state on DEC_CMD_STOP/DEC_CMD_START 1496 * Should be called from the decoder driver decoder_cmd() callback 1497 */ 1498 int v4l2_m2m_decoder_cmd(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, 1499 struct v4l2_decoder_cmd *dc) 1500 { 1501 if (dc->cmd != V4L2_DEC_CMD_STOP && dc->cmd != V4L2_DEC_CMD_START) 1502 return -EINVAL; 1503 1504 if (dc->cmd == V4L2_DEC_CMD_STOP) 1505 return v4l2_update_last_buf_state(m2m_ctx); 1506 1507 if (m2m_ctx->is_draining) 1508 return -EBUSY; 1509 1510 if (m2m_ctx->has_stopped) 1511 m2m_ctx->has_stopped = false; 1512 1513 return 0; 1514 } 1515 EXPORT_SYMBOL_GPL(v4l2_m2m_decoder_cmd); 1516 1517 int v4l2_m2m_ioctl_encoder_cmd(struct file *file, void *priv, 1518 struct v4l2_encoder_cmd *ec) 1519 { 1520 struct v4l2_fh *fh = file->private_data; 1521 1522 return v4l2_m2m_encoder_cmd(file, fh->m2m_ctx, ec); 1523 } 1524 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_encoder_cmd); 1525 1526 int v4l2_m2m_ioctl_decoder_cmd(struct file *file, void *priv, 1527 struct v4l2_decoder_cmd *dc) 1528 { 1529 struct v4l2_fh *fh = file->private_data; 1530 1531 return v4l2_m2m_decoder_cmd(file, fh->m2m_ctx, dc); 1532 } 1533 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_decoder_cmd); 1534 1535 int v4l2_m2m_ioctl_stateless_try_decoder_cmd(struct file *file, void *fh, 1536 struct v4l2_decoder_cmd *dc) 1537 { 1538 if (dc->cmd != V4L2_DEC_CMD_FLUSH) 1539 return -EINVAL; 1540 1541 dc->flags = 0; 1542 1543 return 0; 1544 } 1545 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_stateless_try_decoder_cmd); 1546 1547 int v4l2_m2m_ioctl_stateless_decoder_cmd(struct file *file, void *priv, 1548 struct v4l2_decoder_cmd *dc) 1549 { 1550 struct v4l2_fh *fh = file->private_data; 1551 struct vb2_v4l2_buffer *out_vb, *cap_vb; 1552 struct v4l2_m2m_dev *m2m_dev = fh->m2m_ctx->m2m_dev; 1553 unsigned long flags; 1554 int ret; 1555 1556 ret = v4l2_m2m_ioctl_stateless_try_decoder_cmd(file, priv, dc); 1557 if (ret < 0) 1558 return ret; 1559 1560 spin_lock_irqsave(&m2m_dev->job_spinlock, flags); 1561 out_vb = v4l2_m2m_last_src_buf(fh->m2m_ctx); 1562 cap_vb = v4l2_m2m_last_dst_buf(fh->m2m_ctx); 1563 1564 /* 1565 * If there is an out buffer pending, then clear any HOLD flag. 1566 * 1567 * By clearing this flag we ensure that when this output 1568 * buffer is processed any held capture buffer will be released. 1569 */ 1570 if (out_vb) { 1571 out_vb->flags &= ~V4L2_BUF_FLAG_M2M_HOLD_CAPTURE_BUF; 1572 } else if (cap_vb && cap_vb->is_held) { 1573 /* 1574 * If there were no output buffers, but there is a 1575 * capture buffer that is held, then release that 1576 * buffer. 1577 */ 1578 cap_vb->is_held = false; 1579 v4l2_m2m_dst_buf_remove(fh->m2m_ctx); 1580 v4l2_m2m_buf_done(cap_vb, VB2_BUF_STATE_DONE); 1581 } 1582 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags); 1583 1584 return 0; 1585 } 1586 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_stateless_decoder_cmd); 1587 1588 /* 1589 * v4l2_file_operations helpers. It is assumed here same lock is used 1590 * for the output and the capture buffer queue. 1591 */ 1592 1593 int v4l2_m2m_fop_mmap(struct file *file, struct vm_area_struct *vma) 1594 { 1595 struct v4l2_fh *fh = file->private_data; 1596 1597 return v4l2_m2m_mmap(file, fh->m2m_ctx, vma); 1598 } 1599 EXPORT_SYMBOL_GPL(v4l2_m2m_fop_mmap); 1600 1601 __poll_t v4l2_m2m_fop_poll(struct file *file, poll_table *wait) 1602 { 1603 struct v4l2_fh *fh = file->private_data; 1604 struct v4l2_m2m_ctx *m2m_ctx = fh->m2m_ctx; 1605 __poll_t ret; 1606 1607 if (m2m_ctx->q_lock) 1608 mutex_lock(m2m_ctx->q_lock); 1609 1610 ret = v4l2_m2m_poll(file, m2m_ctx, wait); 1611 1612 if (m2m_ctx->q_lock) 1613 mutex_unlock(m2m_ctx->q_lock); 1614 1615 return ret; 1616 } 1617 EXPORT_SYMBOL_GPL(v4l2_m2m_fop_poll); 1618 1619