1 /* 2 * Memory-to-memory device framework for Video for Linux 2 and videobuf. 3 * 4 * Helper functions for devices that use videobuf buffers for both their 5 * source and destination. 6 * 7 * Copyright (c) 2009-2010 Samsung Electronics Co., Ltd. 8 * Pawel Osciak, <pawel@osciak.com> 9 * Marek Szyprowski, <m.szyprowski@samsung.com> 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by the 13 * Free Software Foundation; either version 2 of the License, or (at your 14 * option) any later version. 15 */ 16 #include <linux/module.h> 17 #include <linux/sched.h> 18 #include <linux/slab.h> 19 20 #include <media/media-device.h> 21 #include <media/videobuf2-v4l2.h> 22 #include <media/v4l2-mem2mem.h> 23 #include <media/v4l2-dev.h> 24 #include <media/v4l2-device.h> 25 #include <media/v4l2-fh.h> 26 #include <media/v4l2-event.h> 27 28 MODULE_DESCRIPTION("Mem to mem device framework for videobuf"); 29 MODULE_AUTHOR("Pawel Osciak, <pawel@osciak.com>"); 30 MODULE_LICENSE("GPL"); 31 32 static bool debug; 33 module_param(debug, bool, 0644); 34 35 #define dprintk(fmt, arg...) \ 36 do { \ 37 if (debug) \ 38 printk(KERN_DEBUG "%s: " fmt, __func__, ## arg);\ 39 } while (0) 40 41 42 /* Instance is already queued on the job_queue */ 43 #define TRANS_QUEUED (1 << 0) 44 /* Instance is currently running in hardware */ 45 #define TRANS_RUNNING (1 << 1) 46 /* Instance is currently aborting */ 47 #define TRANS_ABORT (1 << 2) 48 49 50 /* Offset base for buffers on the destination queue - used to distinguish 51 * between source and destination buffers when mmapping - they receive the same 52 * offsets but for different queues */ 53 #define DST_QUEUE_OFF_BASE (1 << 30) 54 55 enum v4l2_m2m_entity_type { 56 MEM2MEM_ENT_TYPE_SOURCE, 57 MEM2MEM_ENT_TYPE_SINK, 58 MEM2MEM_ENT_TYPE_PROC 59 }; 60 61 static const char * const m2m_entity_name[] = { 62 "source", 63 "sink", 64 "proc" 65 }; 66 67 /** 68 * struct v4l2_m2m_dev - per-device context 69 * @source: &struct media_entity pointer with the source entity 70 * Used only when the M2M device is registered via 71 * v4l2_m2m_unregister_media_controller(). 72 * @source_pad: &struct media_pad with the source pad. 73 * Used only when the M2M device is registered via 74 * v4l2_m2m_unregister_media_controller(). 75 * @sink: &struct media_entity pointer with the sink entity 76 * Used only when the M2M device is registered via 77 * v4l2_m2m_unregister_media_controller(). 78 * @sink_pad: &struct media_pad with the sink pad. 79 * Used only when the M2M device is registered via 80 * v4l2_m2m_unregister_media_controller(). 81 * @proc: &struct media_entity pointer with the M2M device itself. 82 * @proc_pads: &struct media_pad with the @proc pads. 83 * Used only when the M2M device is registered via 84 * v4l2_m2m_unregister_media_controller(). 85 * @intf_devnode: &struct media_intf devnode pointer with the interface 86 * with controls the M2M device. 87 * @curr_ctx: currently running instance 88 * @job_queue: instances queued to run 89 * @job_spinlock: protects job_queue 90 * @m2m_ops: driver callbacks 91 */ 92 struct v4l2_m2m_dev { 93 struct v4l2_m2m_ctx *curr_ctx; 94 #ifdef CONFIG_MEDIA_CONTROLLER 95 struct media_entity *source; 96 struct media_pad source_pad; 97 struct media_entity sink; 98 struct media_pad sink_pad; 99 struct media_entity proc; 100 struct media_pad proc_pads[2]; 101 struct media_intf_devnode *intf_devnode; 102 #endif 103 104 struct list_head job_queue; 105 spinlock_t job_spinlock; 106 107 const struct v4l2_m2m_ops *m2m_ops; 108 }; 109 110 static struct v4l2_m2m_queue_ctx *get_queue_ctx(struct v4l2_m2m_ctx *m2m_ctx, 111 enum v4l2_buf_type type) 112 { 113 if (V4L2_TYPE_IS_OUTPUT(type)) 114 return &m2m_ctx->out_q_ctx; 115 else 116 return &m2m_ctx->cap_q_ctx; 117 } 118 119 struct vb2_queue *v4l2_m2m_get_vq(struct v4l2_m2m_ctx *m2m_ctx, 120 enum v4l2_buf_type type) 121 { 122 struct v4l2_m2m_queue_ctx *q_ctx; 123 124 q_ctx = get_queue_ctx(m2m_ctx, type); 125 if (!q_ctx) 126 return NULL; 127 128 return &q_ctx->q; 129 } 130 EXPORT_SYMBOL(v4l2_m2m_get_vq); 131 132 void *v4l2_m2m_next_buf(struct v4l2_m2m_queue_ctx *q_ctx) 133 { 134 struct v4l2_m2m_buffer *b; 135 unsigned long flags; 136 137 spin_lock_irqsave(&q_ctx->rdy_spinlock, flags); 138 139 if (list_empty(&q_ctx->rdy_queue)) { 140 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags); 141 return NULL; 142 } 143 144 b = list_first_entry(&q_ctx->rdy_queue, struct v4l2_m2m_buffer, list); 145 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags); 146 return &b->vb; 147 } 148 EXPORT_SYMBOL_GPL(v4l2_m2m_next_buf); 149 150 void *v4l2_m2m_last_buf(struct v4l2_m2m_queue_ctx *q_ctx) 151 { 152 struct v4l2_m2m_buffer *b; 153 unsigned long flags; 154 155 spin_lock_irqsave(&q_ctx->rdy_spinlock, flags); 156 157 if (list_empty(&q_ctx->rdy_queue)) { 158 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags); 159 return NULL; 160 } 161 162 b = list_last_entry(&q_ctx->rdy_queue, struct v4l2_m2m_buffer, list); 163 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags); 164 return &b->vb; 165 } 166 EXPORT_SYMBOL_GPL(v4l2_m2m_last_buf); 167 168 void *v4l2_m2m_buf_remove(struct v4l2_m2m_queue_ctx *q_ctx) 169 { 170 struct v4l2_m2m_buffer *b; 171 unsigned long flags; 172 173 spin_lock_irqsave(&q_ctx->rdy_spinlock, flags); 174 if (list_empty(&q_ctx->rdy_queue)) { 175 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags); 176 return NULL; 177 } 178 b = list_first_entry(&q_ctx->rdy_queue, struct v4l2_m2m_buffer, list); 179 list_del(&b->list); 180 q_ctx->num_rdy--; 181 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags); 182 183 return &b->vb; 184 } 185 EXPORT_SYMBOL_GPL(v4l2_m2m_buf_remove); 186 187 void v4l2_m2m_buf_remove_by_buf(struct v4l2_m2m_queue_ctx *q_ctx, 188 struct vb2_v4l2_buffer *vbuf) 189 { 190 struct v4l2_m2m_buffer *b; 191 unsigned long flags; 192 193 spin_lock_irqsave(&q_ctx->rdy_spinlock, flags); 194 b = container_of(vbuf, struct v4l2_m2m_buffer, vb); 195 list_del(&b->list); 196 q_ctx->num_rdy--; 197 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags); 198 } 199 EXPORT_SYMBOL_GPL(v4l2_m2m_buf_remove_by_buf); 200 201 struct vb2_v4l2_buffer * 202 v4l2_m2m_buf_remove_by_idx(struct v4l2_m2m_queue_ctx *q_ctx, unsigned int idx) 203 204 { 205 struct v4l2_m2m_buffer *b, *tmp; 206 struct vb2_v4l2_buffer *ret = NULL; 207 unsigned long flags; 208 209 spin_lock_irqsave(&q_ctx->rdy_spinlock, flags); 210 list_for_each_entry_safe(b, tmp, &q_ctx->rdy_queue, list) { 211 if (b->vb.vb2_buf.index == idx) { 212 list_del(&b->list); 213 q_ctx->num_rdy--; 214 ret = &b->vb; 215 break; 216 } 217 } 218 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags); 219 220 return ret; 221 } 222 EXPORT_SYMBOL_GPL(v4l2_m2m_buf_remove_by_idx); 223 224 /* 225 * Scheduling handlers 226 */ 227 228 void *v4l2_m2m_get_curr_priv(struct v4l2_m2m_dev *m2m_dev) 229 { 230 unsigned long flags; 231 void *ret = NULL; 232 233 spin_lock_irqsave(&m2m_dev->job_spinlock, flags); 234 if (m2m_dev->curr_ctx) 235 ret = m2m_dev->curr_ctx->priv; 236 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags); 237 238 return ret; 239 } 240 EXPORT_SYMBOL(v4l2_m2m_get_curr_priv); 241 242 /** 243 * v4l2_m2m_try_run() - select next job to perform and run it if possible 244 * @m2m_dev: per-device context 245 * 246 * Get next transaction (if present) from the waiting jobs list and run it. 247 */ 248 static void v4l2_m2m_try_run(struct v4l2_m2m_dev *m2m_dev) 249 { 250 unsigned long flags; 251 252 spin_lock_irqsave(&m2m_dev->job_spinlock, flags); 253 if (NULL != m2m_dev->curr_ctx) { 254 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags); 255 dprintk("Another instance is running, won't run now\n"); 256 return; 257 } 258 259 if (list_empty(&m2m_dev->job_queue)) { 260 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags); 261 dprintk("No job pending\n"); 262 return; 263 } 264 265 m2m_dev->curr_ctx = list_first_entry(&m2m_dev->job_queue, 266 struct v4l2_m2m_ctx, queue); 267 m2m_dev->curr_ctx->job_flags |= TRANS_RUNNING; 268 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags); 269 270 dprintk("Running job on m2m_ctx: %p\n", m2m_dev->curr_ctx); 271 m2m_dev->m2m_ops->device_run(m2m_dev->curr_ctx->priv); 272 } 273 274 /* 275 * __v4l2_m2m_try_queue() - queue a job 276 * @m2m_dev: m2m device 277 * @m2m_ctx: m2m context 278 * 279 * Check if this context is ready to queue a job. 280 * 281 * This function can run in interrupt context. 282 */ 283 static void __v4l2_m2m_try_queue(struct v4l2_m2m_dev *m2m_dev, 284 struct v4l2_m2m_ctx *m2m_ctx) 285 { 286 unsigned long flags_job, flags_out, flags_cap; 287 288 dprintk("Trying to schedule a job for m2m_ctx: %p\n", m2m_ctx); 289 290 if (!m2m_ctx->out_q_ctx.q.streaming 291 || !m2m_ctx->cap_q_ctx.q.streaming) { 292 dprintk("Streaming needs to be on for both queues\n"); 293 return; 294 } 295 296 spin_lock_irqsave(&m2m_dev->job_spinlock, flags_job); 297 298 /* If the context is aborted then don't schedule it */ 299 if (m2m_ctx->job_flags & TRANS_ABORT) { 300 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags_job); 301 dprintk("Aborted context\n"); 302 return; 303 } 304 305 if (m2m_ctx->job_flags & TRANS_QUEUED) { 306 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags_job); 307 dprintk("On job queue already\n"); 308 return; 309 } 310 311 spin_lock_irqsave(&m2m_ctx->out_q_ctx.rdy_spinlock, flags_out); 312 if (list_empty(&m2m_ctx->out_q_ctx.rdy_queue) 313 && !m2m_ctx->out_q_ctx.buffered) { 314 spin_unlock_irqrestore(&m2m_ctx->out_q_ctx.rdy_spinlock, 315 flags_out); 316 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags_job); 317 dprintk("No input buffers available\n"); 318 return; 319 } 320 spin_lock_irqsave(&m2m_ctx->cap_q_ctx.rdy_spinlock, flags_cap); 321 if (list_empty(&m2m_ctx->cap_q_ctx.rdy_queue) 322 && !m2m_ctx->cap_q_ctx.buffered) { 323 spin_unlock_irqrestore(&m2m_ctx->cap_q_ctx.rdy_spinlock, 324 flags_cap); 325 spin_unlock_irqrestore(&m2m_ctx->out_q_ctx.rdy_spinlock, 326 flags_out); 327 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags_job); 328 dprintk("No output buffers available\n"); 329 return; 330 } 331 spin_unlock_irqrestore(&m2m_ctx->cap_q_ctx.rdy_spinlock, flags_cap); 332 spin_unlock_irqrestore(&m2m_ctx->out_q_ctx.rdy_spinlock, flags_out); 333 334 if (m2m_dev->m2m_ops->job_ready 335 && (!m2m_dev->m2m_ops->job_ready(m2m_ctx->priv))) { 336 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags_job); 337 dprintk("Driver not ready\n"); 338 return; 339 } 340 341 list_add_tail(&m2m_ctx->queue, &m2m_dev->job_queue); 342 m2m_ctx->job_flags |= TRANS_QUEUED; 343 344 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags_job); 345 } 346 347 /** 348 * v4l2_m2m_try_schedule() - schedule and possibly run a job for any context 349 * @m2m_ctx: m2m context 350 * 351 * Check if this context is ready to queue a job. If suitable, 352 * run the next queued job on the mem2mem device. 353 * 354 * This function shouldn't run in interrupt context. 355 * 356 * Note that v4l2_m2m_try_schedule() can schedule one job for this context, 357 * and then run another job for another context. 358 */ 359 void v4l2_m2m_try_schedule(struct v4l2_m2m_ctx *m2m_ctx) 360 { 361 struct v4l2_m2m_dev *m2m_dev = m2m_ctx->m2m_dev; 362 363 __v4l2_m2m_try_queue(m2m_dev, m2m_ctx); 364 v4l2_m2m_try_run(m2m_dev); 365 } 366 EXPORT_SYMBOL_GPL(v4l2_m2m_try_schedule); 367 368 /** 369 * v4l2_m2m_cancel_job() - cancel pending jobs for the context 370 * @m2m_ctx: m2m context with jobs to be canceled 371 * 372 * In case of streamoff or release called on any context, 373 * 1] If the context is currently running, then abort job will be called 374 * 2] If the context is queued, then the context will be removed from 375 * the job_queue 376 */ 377 static void v4l2_m2m_cancel_job(struct v4l2_m2m_ctx *m2m_ctx) 378 { 379 struct v4l2_m2m_dev *m2m_dev; 380 unsigned long flags; 381 382 m2m_dev = m2m_ctx->m2m_dev; 383 spin_lock_irqsave(&m2m_dev->job_spinlock, flags); 384 385 m2m_ctx->job_flags |= TRANS_ABORT; 386 if (m2m_ctx->job_flags & TRANS_RUNNING) { 387 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags); 388 if (m2m_dev->m2m_ops->job_abort) 389 m2m_dev->m2m_ops->job_abort(m2m_ctx->priv); 390 dprintk("m2m_ctx %p running, will wait to complete", m2m_ctx); 391 wait_event(m2m_ctx->finished, 392 !(m2m_ctx->job_flags & TRANS_RUNNING)); 393 } else if (m2m_ctx->job_flags & TRANS_QUEUED) { 394 list_del(&m2m_ctx->queue); 395 m2m_ctx->job_flags &= ~(TRANS_QUEUED | TRANS_RUNNING); 396 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags); 397 dprintk("m2m_ctx: %p had been on queue and was removed\n", 398 m2m_ctx); 399 } else { 400 /* Do nothing, was not on queue/running */ 401 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags); 402 } 403 } 404 405 void v4l2_m2m_job_finish(struct v4l2_m2m_dev *m2m_dev, 406 struct v4l2_m2m_ctx *m2m_ctx) 407 { 408 unsigned long flags; 409 410 spin_lock_irqsave(&m2m_dev->job_spinlock, flags); 411 if (!m2m_dev->curr_ctx || m2m_dev->curr_ctx != m2m_ctx) { 412 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags); 413 dprintk("Called by an instance not currently running\n"); 414 return; 415 } 416 417 list_del(&m2m_dev->curr_ctx->queue); 418 m2m_dev->curr_ctx->job_flags &= ~(TRANS_QUEUED | TRANS_RUNNING); 419 wake_up(&m2m_dev->curr_ctx->finished); 420 m2m_dev->curr_ctx = NULL; 421 422 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags); 423 424 /* This instance might have more buffers ready, but since we do not 425 * allow more than one job on the job_queue per instance, each has 426 * to be scheduled separately after the previous one finishes. */ 427 v4l2_m2m_try_schedule(m2m_ctx); 428 } 429 EXPORT_SYMBOL(v4l2_m2m_job_finish); 430 431 int v4l2_m2m_reqbufs(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, 432 struct v4l2_requestbuffers *reqbufs) 433 { 434 struct vb2_queue *vq; 435 int ret; 436 437 vq = v4l2_m2m_get_vq(m2m_ctx, reqbufs->type); 438 ret = vb2_reqbufs(vq, reqbufs); 439 /* If count == 0, then the owner has released all buffers and he 440 is no longer owner of the queue. Otherwise we have an owner. */ 441 if (ret == 0) 442 vq->owner = reqbufs->count ? file->private_data : NULL; 443 444 return ret; 445 } 446 EXPORT_SYMBOL_GPL(v4l2_m2m_reqbufs); 447 448 int v4l2_m2m_querybuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, 449 struct v4l2_buffer *buf) 450 { 451 struct vb2_queue *vq; 452 int ret = 0; 453 unsigned int i; 454 455 vq = v4l2_m2m_get_vq(m2m_ctx, buf->type); 456 ret = vb2_querybuf(vq, buf); 457 458 /* Adjust MMAP memory offsets for the CAPTURE queue */ 459 if (buf->memory == V4L2_MEMORY_MMAP && !V4L2_TYPE_IS_OUTPUT(vq->type)) { 460 if (V4L2_TYPE_IS_MULTIPLANAR(vq->type)) { 461 for (i = 0; i < buf->length; ++i) 462 buf->m.planes[i].m.mem_offset 463 += DST_QUEUE_OFF_BASE; 464 } else { 465 buf->m.offset += DST_QUEUE_OFF_BASE; 466 } 467 } 468 469 return ret; 470 } 471 EXPORT_SYMBOL_GPL(v4l2_m2m_querybuf); 472 473 int v4l2_m2m_qbuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, 474 struct v4l2_buffer *buf) 475 { 476 struct vb2_queue *vq; 477 int ret; 478 479 vq = v4l2_m2m_get_vq(m2m_ctx, buf->type); 480 ret = vb2_qbuf(vq, buf); 481 if (!ret) 482 v4l2_m2m_try_schedule(m2m_ctx); 483 484 return ret; 485 } 486 EXPORT_SYMBOL_GPL(v4l2_m2m_qbuf); 487 488 int v4l2_m2m_dqbuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, 489 struct v4l2_buffer *buf) 490 { 491 struct vb2_queue *vq; 492 493 vq = v4l2_m2m_get_vq(m2m_ctx, buf->type); 494 return vb2_dqbuf(vq, buf, file->f_flags & O_NONBLOCK); 495 } 496 EXPORT_SYMBOL_GPL(v4l2_m2m_dqbuf); 497 498 int v4l2_m2m_prepare_buf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, 499 struct v4l2_buffer *buf) 500 { 501 struct vb2_queue *vq; 502 int ret; 503 504 vq = v4l2_m2m_get_vq(m2m_ctx, buf->type); 505 ret = vb2_prepare_buf(vq, buf); 506 if (!ret) 507 v4l2_m2m_try_schedule(m2m_ctx); 508 509 return ret; 510 } 511 EXPORT_SYMBOL_GPL(v4l2_m2m_prepare_buf); 512 513 int v4l2_m2m_create_bufs(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, 514 struct v4l2_create_buffers *create) 515 { 516 struct vb2_queue *vq; 517 518 vq = v4l2_m2m_get_vq(m2m_ctx, create->format.type); 519 return vb2_create_bufs(vq, create); 520 } 521 EXPORT_SYMBOL_GPL(v4l2_m2m_create_bufs); 522 523 int v4l2_m2m_expbuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, 524 struct v4l2_exportbuffer *eb) 525 { 526 struct vb2_queue *vq; 527 528 vq = v4l2_m2m_get_vq(m2m_ctx, eb->type); 529 return vb2_expbuf(vq, eb); 530 } 531 EXPORT_SYMBOL_GPL(v4l2_m2m_expbuf); 532 533 int v4l2_m2m_streamon(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, 534 enum v4l2_buf_type type) 535 { 536 struct vb2_queue *vq; 537 int ret; 538 539 vq = v4l2_m2m_get_vq(m2m_ctx, type); 540 ret = vb2_streamon(vq, type); 541 if (!ret) 542 v4l2_m2m_try_schedule(m2m_ctx); 543 544 return ret; 545 } 546 EXPORT_SYMBOL_GPL(v4l2_m2m_streamon); 547 548 int v4l2_m2m_streamoff(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, 549 enum v4l2_buf_type type) 550 { 551 struct v4l2_m2m_dev *m2m_dev; 552 struct v4l2_m2m_queue_ctx *q_ctx; 553 unsigned long flags_job, flags; 554 int ret; 555 556 /* wait until the current context is dequeued from job_queue */ 557 v4l2_m2m_cancel_job(m2m_ctx); 558 559 q_ctx = get_queue_ctx(m2m_ctx, type); 560 ret = vb2_streamoff(&q_ctx->q, type); 561 if (ret) 562 return ret; 563 564 m2m_dev = m2m_ctx->m2m_dev; 565 spin_lock_irqsave(&m2m_dev->job_spinlock, flags_job); 566 /* We should not be scheduled anymore, since we're dropping a queue. */ 567 if (m2m_ctx->job_flags & TRANS_QUEUED) 568 list_del(&m2m_ctx->queue); 569 m2m_ctx->job_flags = 0; 570 571 spin_lock_irqsave(&q_ctx->rdy_spinlock, flags); 572 /* Drop queue, since streamoff returns device to the same state as after 573 * calling reqbufs. */ 574 INIT_LIST_HEAD(&q_ctx->rdy_queue); 575 q_ctx->num_rdy = 0; 576 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags); 577 578 if (m2m_dev->curr_ctx == m2m_ctx) { 579 m2m_dev->curr_ctx = NULL; 580 wake_up(&m2m_ctx->finished); 581 } 582 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags_job); 583 584 return 0; 585 } 586 EXPORT_SYMBOL_GPL(v4l2_m2m_streamoff); 587 588 __poll_t v4l2_m2m_poll(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, 589 struct poll_table_struct *wait) 590 { 591 struct video_device *vfd = video_devdata(file); 592 __poll_t req_events = poll_requested_events(wait); 593 struct vb2_queue *src_q, *dst_q; 594 struct vb2_buffer *src_vb = NULL, *dst_vb = NULL; 595 __poll_t rc = 0; 596 unsigned long flags; 597 598 if (test_bit(V4L2_FL_USES_V4L2_FH, &vfd->flags)) { 599 struct v4l2_fh *fh = file->private_data; 600 601 if (v4l2_event_pending(fh)) 602 rc = EPOLLPRI; 603 else if (req_events & EPOLLPRI) 604 poll_wait(file, &fh->wait, wait); 605 if (!(req_events & (EPOLLOUT | EPOLLWRNORM | EPOLLIN | EPOLLRDNORM))) 606 return rc; 607 } 608 609 src_q = v4l2_m2m_get_src_vq(m2m_ctx); 610 dst_q = v4l2_m2m_get_dst_vq(m2m_ctx); 611 612 /* 613 * There has to be at least one buffer queued on each queued_list, which 614 * means either in driver already or waiting for driver to claim it 615 * and start processing. 616 */ 617 if ((!src_q->streaming || list_empty(&src_q->queued_list)) 618 && (!dst_q->streaming || list_empty(&dst_q->queued_list))) { 619 rc |= EPOLLERR; 620 goto end; 621 } 622 623 spin_lock_irqsave(&src_q->done_lock, flags); 624 if (list_empty(&src_q->done_list)) 625 poll_wait(file, &src_q->done_wq, wait); 626 spin_unlock_irqrestore(&src_q->done_lock, flags); 627 628 spin_lock_irqsave(&dst_q->done_lock, flags); 629 if (list_empty(&dst_q->done_list)) { 630 /* 631 * If the last buffer was dequeued from the capture queue, 632 * return immediately. DQBUF will return -EPIPE. 633 */ 634 if (dst_q->last_buffer_dequeued) { 635 spin_unlock_irqrestore(&dst_q->done_lock, flags); 636 return rc | EPOLLIN | EPOLLRDNORM; 637 } 638 639 poll_wait(file, &dst_q->done_wq, wait); 640 } 641 spin_unlock_irqrestore(&dst_q->done_lock, flags); 642 643 spin_lock_irqsave(&src_q->done_lock, flags); 644 if (!list_empty(&src_q->done_list)) 645 src_vb = list_first_entry(&src_q->done_list, struct vb2_buffer, 646 done_entry); 647 if (src_vb && (src_vb->state == VB2_BUF_STATE_DONE 648 || src_vb->state == VB2_BUF_STATE_ERROR)) 649 rc |= EPOLLOUT | EPOLLWRNORM; 650 spin_unlock_irqrestore(&src_q->done_lock, flags); 651 652 spin_lock_irqsave(&dst_q->done_lock, flags); 653 if (!list_empty(&dst_q->done_list)) 654 dst_vb = list_first_entry(&dst_q->done_list, struct vb2_buffer, 655 done_entry); 656 if (dst_vb && (dst_vb->state == VB2_BUF_STATE_DONE 657 || dst_vb->state == VB2_BUF_STATE_ERROR)) 658 rc |= EPOLLIN | EPOLLRDNORM; 659 spin_unlock_irqrestore(&dst_q->done_lock, flags); 660 661 end: 662 return rc; 663 } 664 EXPORT_SYMBOL_GPL(v4l2_m2m_poll); 665 666 int v4l2_m2m_mmap(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, 667 struct vm_area_struct *vma) 668 { 669 unsigned long offset = vma->vm_pgoff << PAGE_SHIFT; 670 struct vb2_queue *vq; 671 672 if (offset < DST_QUEUE_OFF_BASE) { 673 vq = v4l2_m2m_get_src_vq(m2m_ctx); 674 } else { 675 vq = v4l2_m2m_get_dst_vq(m2m_ctx); 676 vma->vm_pgoff -= (DST_QUEUE_OFF_BASE >> PAGE_SHIFT); 677 } 678 679 return vb2_mmap(vq, vma); 680 } 681 EXPORT_SYMBOL(v4l2_m2m_mmap); 682 683 #if defined(CONFIG_MEDIA_CONTROLLER) 684 void v4l2_m2m_unregister_media_controller(struct v4l2_m2m_dev *m2m_dev) 685 { 686 media_remove_intf_links(&m2m_dev->intf_devnode->intf); 687 media_devnode_remove(m2m_dev->intf_devnode); 688 689 media_entity_remove_links(m2m_dev->source); 690 media_entity_remove_links(&m2m_dev->sink); 691 media_entity_remove_links(&m2m_dev->proc); 692 media_device_unregister_entity(m2m_dev->source); 693 media_device_unregister_entity(&m2m_dev->sink); 694 media_device_unregister_entity(&m2m_dev->proc); 695 kfree(m2m_dev->source->name); 696 kfree(m2m_dev->sink.name); 697 kfree(m2m_dev->proc.name); 698 } 699 EXPORT_SYMBOL_GPL(v4l2_m2m_unregister_media_controller); 700 701 static int v4l2_m2m_register_entity(struct media_device *mdev, 702 struct v4l2_m2m_dev *m2m_dev, enum v4l2_m2m_entity_type type, 703 struct video_device *vdev, int function) 704 { 705 struct media_entity *entity; 706 struct media_pad *pads; 707 char *name; 708 unsigned int len; 709 int num_pads; 710 int ret; 711 712 switch (type) { 713 case MEM2MEM_ENT_TYPE_SOURCE: 714 entity = m2m_dev->source; 715 pads = &m2m_dev->source_pad; 716 pads[0].flags = MEDIA_PAD_FL_SOURCE; 717 num_pads = 1; 718 break; 719 case MEM2MEM_ENT_TYPE_SINK: 720 entity = &m2m_dev->sink; 721 pads = &m2m_dev->sink_pad; 722 pads[0].flags = MEDIA_PAD_FL_SINK; 723 num_pads = 1; 724 break; 725 case MEM2MEM_ENT_TYPE_PROC: 726 entity = &m2m_dev->proc; 727 pads = m2m_dev->proc_pads; 728 pads[0].flags = MEDIA_PAD_FL_SINK; 729 pads[1].flags = MEDIA_PAD_FL_SOURCE; 730 num_pads = 2; 731 break; 732 default: 733 return -EINVAL; 734 } 735 736 entity->obj_type = MEDIA_ENTITY_TYPE_BASE; 737 if (type != MEM2MEM_ENT_TYPE_PROC) { 738 entity->info.dev.major = VIDEO_MAJOR; 739 entity->info.dev.minor = vdev->minor; 740 } 741 len = strlen(vdev->name) + 2 + strlen(m2m_entity_name[type]); 742 name = kmalloc(len, GFP_KERNEL); 743 if (!name) 744 return -ENOMEM; 745 snprintf(name, len, "%s-%s", vdev->name, m2m_entity_name[type]); 746 entity->name = name; 747 entity->function = function; 748 749 ret = media_entity_pads_init(entity, num_pads, pads); 750 if (ret) 751 return ret; 752 ret = media_device_register_entity(mdev, entity); 753 if (ret) 754 return ret; 755 756 return 0; 757 } 758 759 int v4l2_m2m_register_media_controller(struct v4l2_m2m_dev *m2m_dev, 760 struct video_device *vdev, int function) 761 { 762 struct media_device *mdev = vdev->v4l2_dev->mdev; 763 struct media_link *link; 764 int ret; 765 766 if (!mdev) 767 return 0; 768 769 /* A memory-to-memory device consists in two 770 * DMA engine and one video processing entities. 771 * The DMA engine entities are linked to a V4L interface 772 */ 773 774 /* Create the three entities with their pads */ 775 m2m_dev->source = &vdev->entity; 776 ret = v4l2_m2m_register_entity(mdev, m2m_dev, 777 MEM2MEM_ENT_TYPE_SOURCE, vdev, MEDIA_ENT_F_IO_V4L); 778 if (ret) 779 return ret; 780 ret = v4l2_m2m_register_entity(mdev, m2m_dev, 781 MEM2MEM_ENT_TYPE_PROC, vdev, function); 782 if (ret) 783 goto err_rel_entity0; 784 ret = v4l2_m2m_register_entity(mdev, m2m_dev, 785 MEM2MEM_ENT_TYPE_SINK, vdev, MEDIA_ENT_F_IO_V4L); 786 if (ret) 787 goto err_rel_entity1; 788 789 /* Connect the three entities */ 790 ret = media_create_pad_link(m2m_dev->source, 0, &m2m_dev->proc, 1, 791 MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED); 792 if (ret) 793 goto err_rel_entity2; 794 795 ret = media_create_pad_link(&m2m_dev->proc, 0, &m2m_dev->sink, 0, 796 MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED); 797 if (ret) 798 goto err_rm_links0; 799 800 /* Create video interface */ 801 m2m_dev->intf_devnode = media_devnode_create(mdev, 802 MEDIA_INTF_T_V4L_VIDEO, 0, 803 VIDEO_MAJOR, vdev->minor); 804 if (!m2m_dev->intf_devnode) { 805 ret = -ENOMEM; 806 goto err_rm_links1; 807 } 808 809 /* Connect the two DMA engines to the interface */ 810 link = media_create_intf_link(m2m_dev->source, 811 &m2m_dev->intf_devnode->intf, 812 MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED); 813 if (!link) { 814 ret = -ENOMEM; 815 goto err_rm_devnode; 816 } 817 818 link = media_create_intf_link(&m2m_dev->sink, 819 &m2m_dev->intf_devnode->intf, 820 MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED); 821 if (!link) { 822 ret = -ENOMEM; 823 goto err_rm_intf_link; 824 } 825 return 0; 826 827 err_rm_intf_link: 828 media_remove_intf_links(&m2m_dev->intf_devnode->intf); 829 err_rm_devnode: 830 media_devnode_remove(m2m_dev->intf_devnode); 831 err_rm_links1: 832 media_entity_remove_links(&m2m_dev->sink); 833 err_rm_links0: 834 media_entity_remove_links(&m2m_dev->proc); 835 media_entity_remove_links(m2m_dev->source); 836 err_rel_entity2: 837 media_device_unregister_entity(&m2m_dev->proc); 838 kfree(m2m_dev->proc.name); 839 err_rel_entity1: 840 media_device_unregister_entity(&m2m_dev->sink); 841 kfree(m2m_dev->sink.name); 842 err_rel_entity0: 843 media_device_unregister_entity(m2m_dev->source); 844 kfree(m2m_dev->source->name); 845 return ret; 846 return 0; 847 } 848 EXPORT_SYMBOL_GPL(v4l2_m2m_register_media_controller); 849 #endif 850 851 struct v4l2_m2m_dev *v4l2_m2m_init(const struct v4l2_m2m_ops *m2m_ops) 852 { 853 struct v4l2_m2m_dev *m2m_dev; 854 855 if (!m2m_ops || WARN_ON(!m2m_ops->device_run)) 856 return ERR_PTR(-EINVAL); 857 858 m2m_dev = kzalloc(sizeof *m2m_dev, GFP_KERNEL); 859 if (!m2m_dev) 860 return ERR_PTR(-ENOMEM); 861 862 m2m_dev->curr_ctx = NULL; 863 m2m_dev->m2m_ops = m2m_ops; 864 INIT_LIST_HEAD(&m2m_dev->job_queue); 865 spin_lock_init(&m2m_dev->job_spinlock); 866 867 return m2m_dev; 868 } 869 EXPORT_SYMBOL_GPL(v4l2_m2m_init); 870 871 void v4l2_m2m_release(struct v4l2_m2m_dev *m2m_dev) 872 { 873 kfree(m2m_dev); 874 } 875 EXPORT_SYMBOL_GPL(v4l2_m2m_release); 876 877 struct v4l2_m2m_ctx *v4l2_m2m_ctx_init(struct v4l2_m2m_dev *m2m_dev, 878 void *drv_priv, 879 int (*queue_init)(void *priv, struct vb2_queue *src_vq, struct vb2_queue *dst_vq)) 880 { 881 struct v4l2_m2m_ctx *m2m_ctx; 882 struct v4l2_m2m_queue_ctx *out_q_ctx, *cap_q_ctx; 883 int ret; 884 885 m2m_ctx = kzalloc(sizeof *m2m_ctx, GFP_KERNEL); 886 if (!m2m_ctx) 887 return ERR_PTR(-ENOMEM); 888 889 m2m_ctx->priv = drv_priv; 890 m2m_ctx->m2m_dev = m2m_dev; 891 init_waitqueue_head(&m2m_ctx->finished); 892 893 out_q_ctx = &m2m_ctx->out_q_ctx; 894 cap_q_ctx = &m2m_ctx->cap_q_ctx; 895 896 INIT_LIST_HEAD(&out_q_ctx->rdy_queue); 897 INIT_LIST_HEAD(&cap_q_ctx->rdy_queue); 898 spin_lock_init(&out_q_ctx->rdy_spinlock); 899 spin_lock_init(&cap_q_ctx->rdy_spinlock); 900 901 INIT_LIST_HEAD(&m2m_ctx->queue); 902 903 ret = queue_init(drv_priv, &out_q_ctx->q, &cap_q_ctx->q); 904 905 if (ret) 906 goto err; 907 /* 908 * If both queues use same mutex assign it as the common buffer 909 * queues lock to the m2m context. This lock is used in the 910 * v4l2_m2m_ioctl_* helpers. 911 */ 912 if (out_q_ctx->q.lock == cap_q_ctx->q.lock) 913 m2m_ctx->q_lock = out_q_ctx->q.lock; 914 915 return m2m_ctx; 916 err: 917 kfree(m2m_ctx); 918 return ERR_PTR(ret); 919 } 920 EXPORT_SYMBOL_GPL(v4l2_m2m_ctx_init); 921 922 void v4l2_m2m_ctx_release(struct v4l2_m2m_ctx *m2m_ctx) 923 { 924 /* wait until the current context is dequeued from job_queue */ 925 v4l2_m2m_cancel_job(m2m_ctx); 926 927 vb2_queue_release(&m2m_ctx->cap_q_ctx.q); 928 vb2_queue_release(&m2m_ctx->out_q_ctx.q); 929 930 kfree(m2m_ctx); 931 } 932 EXPORT_SYMBOL_GPL(v4l2_m2m_ctx_release); 933 934 void v4l2_m2m_buf_queue(struct v4l2_m2m_ctx *m2m_ctx, 935 struct vb2_v4l2_buffer *vbuf) 936 { 937 struct v4l2_m2m_buffer *b = container_of(vbuf, 938 struct v4l2_m2m_buffer, vb); 939 struct v4l2_m2m_queue_ctx *q_ctx; 940 unsigned long flags; 941 942 q_ctx = get_queue_ctx(m2m_ctx, vbuf->vb2_buf.vb2_queue->type); 943 if (!q_ctx) 944 return; 945 946 spin_lock_irqsave(&q_ctx->rdy_spinlock, flags); 947 list_add_tail(&b->list, &q_ctx->rdy_queue); 948 q_ctx->num_rdy++; 949 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags); 950 } 951 EXPORT_SYMBOL_GPL(v4l2_m2m_buf_queue); 952 953 /* Videobuf2 ioctl helpers */ 954 955 int v4l2_m2m_ioctl_reqbufs(struct file *file, void *priv, 956 struct v4l2_requestbuffers *rb) 957 { 958 struct v4l2_fh *fh = file->private_data; 959 960 return v4l2_m2m_reqbufs(file, fh->m2m_ctx, rb); 961 } 962 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_reqbufs); 963 964 int v4l2_m2m_ioctl_create_bufs(struct file *file, void *priv, 965 struct v4l2_create_buffers *create) 966 { 967 struct v4l2_fh *fh = file->private_data; 968 969 return v4l2_m2m_create_bufs(file, fh->m2m_ctx, create); 970 } 971 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_create_bufs); 972 973 int v4l2_m2m_ioctl_querybuf(struct file *file, void *priv, 974 struct v4l2_buffer *buf) 975 { 976 struct v4l2_fh *fh = file->private_data; 977 978 return v4l2_m2m_querybuf(file, fh->m2m_ctx, buf); 979 } 980 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_querybuf); 981 982 int v4l2_m2m_ioctl_qbuf(struct file *file, void *priv, 983 struct v4l2_buffer *buf) 984 { 985 struct v4l2_fh *fh = file->private_data; 986 987 return v4l2_m2m_qbuf(file, fh->m2m_ctx, buf); 988 } 989 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_qbuf); 990 991 int v4l2_m2m_ioctl_dqbuf(struct file *file, void *priv, 992 struct v4l2_buffer *buf) 993 { 994 struct v4l2_fh *fh = file->private_data; 995 996 return v4l2_m2m_dqbuf(file, fh->m2m_ctx, buf); 997 } 998 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_dqbuf); 999 1000 int v4l2_m2m_ioctl_prepare_buf(struct file *file, void *priv, 1001 struct v4l2_buffer *buf) 1002 { 1003 struct v4l2_fh *fh = file->private_data; 1004 1005 return v4l2_m2m_prepare_buf(file, fh->m2m_ctx, buf); 1006 } 1007 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_prepare_buf); 1008 1009 int v4l2_m2m_ioctl_expbuf(struct file *file, void *priv, 1010 struct v4l2_exportbuffer *eb) 1011 { 1012 struct v4l2_fh *fh = file->private_data; 1013 1014 return v4l2_m2m_expbuf(file, fh->m2m_ctx, eb); 1015 } 1016 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_expbuf); 1017 1018 int v4l2_m2m_ioctl_streamon(struct file *file, void *priv, 1019 enum v4l2_buf_type type) 1020 { 1021 struct v4l2_fh *fh = file->private_data; 1022 1023 return v4l2_m2m_streamon(file, fh->m2m_ctx, type); 1024 } 1025 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_streamon); 1026 1027 int v4l2_m2m_ioctl_streamoff(struct file *file, void *priv, 1028 enum v4l2_buf_type type) 1029 { 1030 struct v4l2_fh *fh = file->private_data; 1031 1032 return v4l2_m2m_streamoff(file, fh->m2m_ctx, type); 1033 } 1034 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_streamoff); 1035 1036 /* 1037 * v4l2_file_operations helpers. It is assumed here same lock is used 1038 * for the output and the capture buffer queue. 1039 */ 1040 1041 int v4l2_m2m_fop_mmap(struct file *file, struct vm_area_struct *vma) 1042 { 1043 struct v4l2_fh *fh = file->private_data; 1044 1045 return v4l2_m2m_mmap(file, fh->m2m_ctx, vma); 1046 } 1047 EXPORT_SYMBOL_GPL(v4l2_m2m_fop_mmap); 1048 1049 __poll_t v4l2_m2m_fop_poll(struct file *file, poll_table *wait) 1050 { 1051 struct v4l2_fh *fh = file->private_data; 1052 struct v4l2_m2m_ctx *m2m_ctx = fh->m2m_ctx; 1053 __poll_t ret; 1054 1055 if (m2m_ctx->q_lock) 1056 mutex_lock(m2m_ctx->q_lock); 1057 1058 ret = v4l2_m2m_poll(file, m2m_ctx, wait); 1059 1060 if (m2m_ctx->q_lock) 1061 mutex_unlock(m2m_ctx->q_lock); 1062 1063 return ret; 1064 } 1065 EXPORT_SYMBOL_GPL(v4l2_m2m_fop_poll); 1066 1067