xref: /openbmc/linux/drivers/media/v4l2-core/v4l2-mem2mem.c (revision 2e7c04aec86758e0adfcad4a24c86593b45807a3)
1 /*
2  * Memory-to-memory device framework for Video for Linux 2 and videobuf.
3  *
4  * Helper functions for devices that use videobuf buffers for both their
5  * source and destination.
6  *
7  * Copyright (c) 2009-2010 Samsung Electronics Co., Ltd.
8  * Pawel Osciak, <pawel@osciak.com>
9  * Marek Szyprowski, <m.szyprowski@samsung.com>
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by the
13  * Free Software Foundation; either version 2 of the License, or (at your
14  * option) any later version.
15  */
16 #include <linux/module.h>
17 #include <linux/sched.h>
18 #include <linux/slab.h>
19 
20 #include <media/media-device.h>
21 #include <media/videobuf2-v4l2.h>
22 #include <media/v4l2-mem2mem.h>
23 #include <media/v4l2-dev.h>
24 #include <media/v4l2-device.h>
25 #include <media/v4l2-fh.h>
26 #include <media/v4l2-event.h>
27 
28 MODULE_DESCRIPTION("Mem to mem device framework for videobuf");
29 MODULE_AUTHOR("Pawel Osciak, <pawel@osciak.com>");
30 MODULE_LICENSE("GPL");
31 
32 static bool debug;
33 module_param(debug, bool, 0644);
34 
35 #define dprintk(fmt, arg...)						\
36 	do {								\
37 		if (debug)						\
38 			printk(KERN_DEBUG "%s: " fmt, __func__, ## arg);\
39 	} while (0)
40 
41 
42 /* Instance is already queued on the job_queue */
43 #define TRANS_QUEUED		(1 << 0)
44 /* Instance is currently running in hardware */
45 #define TRANS_RUNNING		(1 << 1)
46 /* Instance is currently aborting */
47 #define TRANS_ABORT		(1 << 2)
48 
49 
50 /* Offset base for buffers on the destination queue - used to distinguish
51  * between source and destination buffers when mmapping - they receive the same
52  * offsets but for different queues */
53 #define DST_QUEUE_OFF_BASE	(1 << 30)
54 
55 enum v4l2_m2m_entity_type {
56 	MEM2MEM_ENT_TYPE_SOURCE,
57 	MEM2MEM_ENT_TYPE_SINK,
58 	MEM2MEM_ENT_TYPE_PROC
59 };
60 
61 static const char * const m2m_entity_name[] = {
62 	"source",
63 	"sink",
64 	"proc"
65 };
66 
67 /**
68  * struct v4l2_m2m_dev - per-device context
69  * @source:		&struct media_entity pointer with the source entity
70  *			Used only when the M2M device is registered via
71  *			v4l2_m2m_unregister_media_controller().
72  * @source_pad:		&struct media_pad with the source pad.
73  *			Used only when the M2M device is registered via
74  *			v4l2_m2m_unregister_media_controller().
75  * @sink:		&struct media_entity pointer with the sink entity
76  *			Used only when the M2M device is registered via
77  *			v4l2_m2m_unregister_media_controller().
78  * @sink_pad:		&struct media_pad with the sink pad.
79  *			Used only when the M2M device is registered via
80  *			v4l2_m2m_unregister_media_controller().
81  * @proc:		&struct media_entity pointer with the M2M device itself.
82  * @proc_pads:		&struct media_pad with the @proc pads.
83  *			Used only when the M2M device is registered via
84  *			v4l2_m2m_unregister_media_controller().
85  * @intf_devnode:	&struct media_intf devnode pointer with the interface
86  *			with controls the M2M device.
87  * @curr_ctx:		currently running instance
88  * @job_queue:		instances queued to run
89  * @job_spinlock:	protects job_queue
90  * @m2m_ops:		driver callbacks
91  */
92 struct v4l2_m2m_dev {
93 	struct v4l2_m2m_ctx	*curr_ctx;
94 #ifdef CONFIG_MEDIA_CONTROLLER
95 	struct media_entity	*source;
96 	struct media_pad	source_pad;
97 	struct media_entity	sink;
98 	struct media_pad	sink_pad;
99 	struct media_entity	proc;
100 	struct media_pad	proc_pads[2];
101 	struct media_intf_devnode *intf_devnode;
102 #endif
103 
104 	struct list_head	job_queue;
105 	spinlock_t		job_spinlock;
106 
107 	const struct v4l2_m2m_ops *m2m_ops;
108 };
109 
110 static struct v4l2_m2m_queue_ctx *get_queue_ctx(struct v4l2_m2m_ctx *m2m_ctx,
111 						enum v4l2_buf_type type)
112 {
113 	if (V4L2_TYPE_IS_OUTPUT(type))
114 		return &m2m_ctx->out_q_ctx;
115 	else
116 		return &m2m_ctx->cap_q_ctx;
117 }
118 
119 struct vb2_queue *v4l2_m2m_get_vq(struct v4l2_m2m_ctx *m2m_ctx,
120 				       enum v4l2_buf_type type)
121 {
122 	struct v4l2_m2m_queue_ctx *q_ctx;
123 
124 	q_ctx = get_queue_ctx(m2m_ctx, type);
125 	if (!q_ctx)
126 		return NULL;
127 
128 	return &q_ctx->q;
129 }
130 EXPORT_SYMBOL(v4l2_m2m_get_vq);
131 
132 void *v4l2_m2m_next_buf(struct v4l2_m2m_queue_ctx *q_ctx)
133 {
134 	struct v4l2_m2m_buffer *b;
135 	unsigned long flags;
136 
137 	spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
138 
139 	if (list_empty(&q_ctx->rdy_queue)) {
140 		spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
141 		return NULL;
142 	}
143 
144 	b = list_first_entry(&q_ctx->rdy_queue, struct v4l2_m2m_buffer, list);
145 	spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
146 	return &b->vb;
147 }
148 EXPORT_SYMBOL_GPL(v4l2_m2m_next_buf);
149 
150 void *v4l2_m2m_last_buf(struct v4l2_m2m_queue_ctx *q_ctx)
151 {
152 	struct v4l2_m2m_buffer *b;
153 	unsigned long flags;
154 
155 	spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
156 
157 	if (list_empty(&q_ctx->rdy_queue)) {
158 		spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
159 		return NULL;
160 	}
161 
162 	b = list_last_entry(&q_ctx->rdy_queue, struct v4l2_m2m_buffer, list);
163 	spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
164 	return &b->vb;
165 }
166 EXPORT_SYMBOL_GPL(v4l2_m2m_last_buf);
167 
168 void *v4l2_m2m_buf_remove(struct v4l2_m2m_queue_ctx *q_ctx)
169 {
170 	struct v4l2_m2m_buffer *b;
171 	unsigned long flags;
172 
173 	spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
174 	if (list_empty(&q_ctx->rdy_queue)) {
175 		spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
176 		return NULL;
177 	}
178 	b = list_first_entry(&q_ctx->rdy_queue, struct v4l2_m2m_buffer, list);
179 	list_del(&b->list);
180 	q_ctx->num_rdy--;
181 	spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
182 
183 	return &b->vb;
184 }
185 EXPORT_SYMBOL_GPL(v4l2_m2m_buf_remove);
186 
187 void v4l2_m2m_buf_remove_by_buf(struct v4l2_m2m_queue_ctx *q_ctx,
188 				struct vb2_v4l2_buffer *vbuf)
189 {
190 	struct v4l2_m2m_buffer *b;
191 	unsigned long flags;
192 
193 	spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
194 	b = container_of(vbuf, struct v4l2_m2m_buffer, vb);
195 	list_del(&b->list);
196 	q_ctx->num_rdy--;
197 	spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
198 }
199 EXPORT_SYMBOL_GPL(v4l2_m2m_buf_remove_by_buf);
200 
201 struct vb2_v4l2_buffer *
202 v4l2_m2m_buf_remove_by_idx(struct v4l2_m2m_queue_ctx *q_ctx, unsigned int idx)
203 
204 {
205 	struct v4l2_m2m_buffer *b, *tmp;
206 	struct vb2_v4l2_buffer *ret = NULL;
207 	unsigned long flags;
208 
209 	spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
210 	list_for_each_entry_safe(b, tmp, &q_ctx->rdy_queue, list) {
211 		if (b->vb.vb2_buf.index == idx) {
212 			list_del(&b->list);
213 			q_ctx->num_rdy--;
214 			ret = &b->vb;
215 			break;
216 		}
217 	}
218 	spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
219 
220 	return ret;
221 }
222 EXPORT_SYMBOL_GPL(v4l2_m2m_buf_remove_by_idx);
223 
224 /*
225  * Scheduling handlers
226  */
227 
228 void *v4l2_m2m_get_curr_priv(struct v4l2_m2m_dev *m2m_dev)
229 {
230 	unsigned long flags;
231 	void *ret = NULL;
232 
233 	spin_lock_irqsave(&m2m_dev->job_spinlock, flags);
234 	if (m2m_dev->curr_ctx)
235 		ret = m2m_dev->curr_ctx->priv;
236 	spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
237 
238 	return ret;
239 }
240 EXPORT_SYMBOL(v4l2_m2m_get_curr_priv);
241 
242 /**
243  * v4l2_m2m_try_run() - select next job to perform and run it if possible
244  * @m2m_dev: per-device context
245  *
246  * Get next transaction (if present) from the waiting jobs list and run it.
247  */
248 static void v4l2_m2m_try_run(struct v4l2_m2m_dev *m2m_dev)
249 {
250 	unsigned long flags;
251 
252 	spin_lock_irqsave(&m2m_dev->job_spinlock, flags);
253 	if (NULL != m2m_dev->curr_ctx) {
254 		spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
255 		dprintk("Another instance is running, won't run now\n");
256 		return;
257 	}
258 
259 	if (list_empty(&m2m_dev->job_queue)) {
260 		spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
261 		dprintk("No job pending\n");
262 		return;
263 	}
264 
265 	m2m_dev->curr_ctx = list_first_entry(&m2m_dev->job_queue,
266 				   struct v4l2_m2m_ctx, queue);
267 	m2m_dev->curr_ctx->job_flags |= TRANS_RUNNING;
268 	spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
269 
270 	dprintk("Running job on m2m_ctx: %p\n", m2m_dev->curr_ctx);
271 	m2m_dev->m2m_ops->device_run(m2m_dev->curr_ctx->priv);
272 }
273 
274 /*
275  * __v4l2_m2m_try_queue() - queue a job
276  * @m2m_dev: m2m device
277  * @m2m_ctx: m2m context
278  *
279  * Check if this context is ready to queue a job.
280  *
281  * This function can run in interrupt context.
282  */
283 static void __v4l2_m2m_try_queue(struct v4l2_m2m_dev *m2m_dev,
284 				 struct v4l2_m2m_ctx *m2m_ctx)
285 {
286 	unsigned long flags_job, flags_out, flags_cap;
287 
288 	dprintk("Trying to schedule a job for m2m_ctx: %p\n", m2m_ctx);
289 
290 	if (!m2m_ctx->out_q_ctx.q.streaming
291 	    || !m2m_ctx->cap_q_ctx.q.streaming) {
292 		dprintk("Streaming needs to be on for both queues\n");
293 		return;
294 	}
295 
296 	spin_lock_irqsave(&m2m_dev->job_spinlock, flags_job);
297 
298 	/* If the context is aborted then don't schedule it */
299 	if (m2m_ctx->job_flags & TRANS_ABORT) {
300 		spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags_job);
301 		dprintk("Aborted context\n");
302 		return;
303 	}
304 
305 	if (m2m_ctx->job_flags & TRANS_QUEUED) {
306 		spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags_job);
307 		dprintk("On job queue already\n");
308 		return;
309 	}
310 
311 	spin_lock_irqsave(&m2m_ctx->out_q_ctx.rdy_spinlock, flags_out);
312 	if (list_empty(&m2m_ctx->out_q_ctx.rdy_queue)
313 	    && !m2m_ctx->out_q_ctx.buffered) {
314 		spin_unlock_irqrestore(&m2m_ctx->out_q_ctx.rdy_spinlock,
315 					flags_out);
316 		spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags_job);
317 		dprintk("No input buffers available\n");
318 		return;
319 	}
320 	spin_lock_irqsave(&m2m_ctx->cap_q_ctx.rdy_spinlock, flags_cap);
321 	if (list_empty(&m2m_ctx->cap_q_ctx.rdy_queue)
322 	    && !m2m_ctx->cap_q_ctx.buffered) {
323 		spin_unlock_irqrestore(&m2m_ctx->cap_q_ctx.rdy_spinlock,
324 					flags_cap);
325 		spin_unlock_irqrestore(&m2m_ctx->out_q_ctx.rdy_spinlock,
326 					flags_out);
327 		spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags_job);
328 		dprintk("No output buffers available\n");
329 		return;
330 	}
331 	spin_unlock_irqrestore(&m2m_ctx->cap_q_ctx.rdy_spinlock, flags_cap);
332 	spin_unlock_irqrestore(&m2m_ctx->out_q_ctx.rdy_spinlock, flags_out);
333 
334 	if (m2m_dev->m2m_ops->job_ready
335 		&& (!m2m_dev->m2m_ops->job_ready(m2m_ctx->priv))) {
336 		spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags_job);
337 		dprintk("Driver not ready\n");
338 		return;
339 	}
340 
341 	list_add_tail(&m2m_ctx->queue, &m2m_dev->job_queue);
342 	m2m_ctx->job_flags |= TRANS_QUEUED;
343 
344 	spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags_job);
345 }
346 
347 /**
348  * v4l2_m2m_try_schedule() - schedule and possibly run a job for any context
349  * @m2m_ctx: m2m context
350  *
351  * Check if this context is ready to queue a job. If suitable,
352  * run the next queued job on the mem2mem device.
353  *
354  * This function shouldn't run in interrupt context.
355  *
356  * Note that v4l2_m2m_try_schedule() can schedule one job for this context,
357  * and then run another job for another context.
358  */
359 void v4l2_m2m_try_schedule(struct v4l2_m2m_ctx *m2m_ctx)
360 {
361 	struct v4l2_m2m_dev *m2m_dev = m2m_ctx->m2m_dev;
362 
363 	__v4l2_m2m_try_queue(m2m_dev, m2m_ctx);
364 	v4l2_m2m_try_run(m2m_dev);
365 }
366 EXPORT_SYMBOL_GPL(v4l2_m2m_try_schedule);
367 
368 /**
369  * v4l2_m2m_cancel_job() - cancel pending jobs for the context
370  * @m2m_ctx: m2m context with jobs to be canceled
371  *
372  * In case of streamoff or release called on any context,
373  * 1] If the context is currently running, then abort job will be called
374  * 2] If the context is queued, then the context will be removed from
375  *    the job_queue
376  */
377 static void v4l2_m2m_cancel_job(struct v4l2_m2m_ctx *m2m_ctx)
378 {
379 	struct v4l2_m2m_dev *m2m_dev;
380 	unsigned long flags;
381 
382 	m2m_dev = m2m_ctx->m2m_dev;
383 	spin_lock_irqsave(&m2m_dev->job_spinlock, flags);
384 
385 	m2m_ctx->job_flags |= TRANS_ABORT;
386 	if (m2m_ctx->job_flags & TRANS_RUNNING) {
387 		spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
388 		if (m2m_dev->m2m_ops->job_abort)
389 			m2m_dev->m2m_ops->job_abort(m2m_ctx->priv);
390 		dprintk("m2m_ctx %p running, will wait to complete", m2m_ctx);
391 		wait_event(m2m_ctx->finished,
392 				!(m2m_ctx->job_flags & TRANS_RUNNING));
393 	} else if (m2m_ctx->job_flags & TRANS_QUEUED) {
394 		list_del(&m2m_ctx->queue);
395 		m2m_ctx->job_flags &= ~(TRANS_QUEUED | TRANS_RUNNING);
396 		spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
397 		dprintk("m2m_ctx: %p had been on queue and was removed\n",
398 			m2m_ctx);
399 	} else {
400 		/* Do nothing, was not on queue/running */
401 		spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
402 	}
403 }
404 
405 void v4l2_m2m_job_finish(struct v4l2_m2m_dev *m2m_dev,
406 			 struct v4l2_m2m_ctx *m2m_ctx)
407 {
408 	unsigned long flags;
409 
410 	spin_lock_irqsave(&m2m_dev->job_spinlock, flags);
411 	if (!m2m_dev->curr_ctx || m2m_dev->curr_ctx != m2m_ctx) {
412 		spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
413 		dprintk("Called by an instance not currently running\n");
414 		return;
415 	}
416 
417 	list_del(&m2m_dev->curr_ctx->queue);
418 	m2m_dev->curr_ctx->job_flags &= ~(TRANS_QUEUED | TRANS_RUNNING);
419 	wake_up(&m2m_dev->curr_ctx->finished);
420 	m2m_dev->curr_ctx = NULL;
421 
422 	spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
423 
424 	/* This instance might have more buffers ready, but since we do not
425 	 * allow more than one job on the job_queue per instance, each has
426 	 * to be scheduled separately after the previous one finishes. */
427 	v4l2_m2m_try_schedule(m2m_ctx);
428 }
429 EXPORT_SYMBOL(v4l2_m2m_job_finish);
430 
431 int v4l2_m2m_reqbufs(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
432 		     struct v4l2_requestbuffers *reqbufs)
433 {
434 	struct vb2_queue *vq;
435 	int ret;
436 
437 	vq = v4l2_m2m_get_vq(m2m_ctx, reqbufs->type);
438 	ret = vb2_reqbufs(vq, reqbufs);
439 	/* If count == 0, then the owner has released all buffers and he
440 	   is no longer owner of the queue. Otherwise we have an owner. */
441 	if (ret == 0)
442 		vq->owner = reqbufs->count ? file->private_data : NULL;
443 
444 	return ret;
445 }
446 EXPORT_SYMBOL_GPL(v4l2_m2m_reqbufs);
447 
448 int v4l2_m2m_querybuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
449 		      struct v4l2_buffer *buf)
450 {
451 	struct vb2_queue *vq;
452 	int ret = 0;
453 	unsigned int i;
454 
455 	vq = v4l2_m2m_get_vq(m2m_ctx, buf->type);
456 	ret = vb2_querybuf(vq, buf);
457 
458 	/* Adjust MMAP memory offsets for the CAPTURE queue */
459 	if (buf->memory == V4L2_MEMORY_MMAP && !V4L2_TYPE_IS_OUTPUT(vq->type)) {
460 		if (V4L2_TYPE_IS_MULTIPLANAR(vq->type)) {
461 			for (i = 0; i < buf->length; ++i)
462 				buf->m.planes[i].m.mem_offset
463 					+= DST_QUEUE_OFF_BASE;
464 		} else {
465 			buf->m.offset += DST_QUEUE_OFF_BASE;
466 		}
467 	}
468 
469 	return ret;
470 }
471 EXPORT_SYMBOL_GPL(v4l2_m2m_querybuf);
472 
473 int v4l2_m2m_qbuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
474 		  struct v4l2_buffer *buf)
475 {
476 	struct vb2_queue *vq;
477 	int ret;
478 
479 	vq = v4l2_m2m_get_vq(m2m_ctx, buf->type);
480 	ret = vb2_qbuf(vq, buf);
481 	if (!ret)
482 		v4l2_m2m_try_schedule(m2m_ctx);
483 
484 	return ret;
485 }
486 EXPORT_SYMBOL_GPL(v4l2_m2m_qbuf);
487 
488 int v4l2_m2m_dqbuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
489 		   struct v4l2_buffer *buf)
490 {
491 	struct vb2_queue *vq;
492 
493 	vq = v4l2_m2m_get_vq(m2m_ctx, buf->type);
494 	return vb2_dqbuf(vq, buf, file->f_flags & O_NONBLOCK);
495 }
496 EXPORT_SYMBOL_GPL(v4l2_m2m_dqbuf);
497 
498 int v4l2_m2m_prepare_buf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
499 			 struct v4l2_buffer *buf)
500 {
501 	struct vb2_queue *vq;
502 	int ret;
503 
504 	vq = v4l2_m2m_get_vq(m2m_ctx, buf->type);
505 	ret = vb2_prepare_buf(vq, buf);
506 	if (!ret)
507 		v4l2_m2m_try_schedule(m2m_ctx);
508 
509 	return ret;
510 }
511 EXPORT_SYMBOL_GPL(v4l2_m2m_prepare_buf);
512 
513 int v4l2_m2m_create_bufs(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
514 			 struct v4l2_create_buffers *create)
515 {
516 	struct vb2_queue *vq;
517 
518 	vq = v4l2_m2m_get_vq(m2m_ctx, create->format.type);
519 	return vb2_create_bufs(vq, create);
520 }
521 EXPORT_SYMBOL_GPL(v4l2_m2m_create_bufs);
522 
523 int v4l2_m2m_expbuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
524 		  struct v4l2_exportbuffer *eb)
525 {
526 	struct vb2_queue *vq;
527 
528 	vq = v4l2_m2m_get_vq(m2m_ctx, eb->type);
529 	return vb2_expbuf(vq, eb);
530 }
531 EXPORT_SYMBOL_GPL(v4l2_m2m_expbuf);
532 
533 int v4l2_m2m_streamon(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
534 		      enum v4l2_buf_type type)
535 {
536 	struct vb2_queue *vq;
537 	int ret;
538 
539 	vq = v4l2_m2m_get_vq(m2m_ctx, type);
540 	ret = vb2_streamon(vq, type);
541 	if (!ret)
542 		v4l2_m2m_try_schedule(m2m_ctx);
543 
544 	return ret;
545 }
546 EXPORT_SYMBOL_GPL(v4l2_m2m_streamon);
547 
548 int v4l2_m2m_streamoff(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
549 		       enum v4l2_buf_type type)
550 {
551 	struct v4l2_m2m_dev *m2m_dev;
552 	struct v4l2_m2m_queue_ctx *q_ctx;
553 	unsigned long flags_job, flags;
554 	int ret;
555 
556 	/* wait until the current context is dequeued from job_queue */
557 	v4l2_m2m_cancel_job(m2m_ctx);
558 
559 	q_ctx = get_queue_ctx(m2m_ctx, type);
560 	ret = vb2_streamoff(&q_ctx->q, type);
561 	if (ret)
562 		return ret;
563 
564 	m2m_dev = m2m_ctx->m2m_dev;
565 	spin_lock_irqsave(&m2m_dev->job_spinlock, flags_job);
566 	/* We should not be scheduled anymore, since we're dropping a queue. */
567 	if (m2m_ctx->job_flags & TRANS_QUEUED)
568 		list_del(&m2m_ctx->queue);
569 	m2m_ctx->job_flags = 0;
570 
571 	spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
572 	/* Drop queue, since streamoff returns device to the same state as after
573 	 * calling reqbufs. */
574 	INIT_LIST_HEAD(&q_ctx->rdy_queue);
575 	q_ctx->num_rdy = 0;
576 	spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
577 
578 	if (m2m_dev->curr_ctx == m2m_ctx) {
579 		m2m_dev->curr_ctx = NULL;
580 		wake_up(&m2m_ctx->finished);
581 	}
582 	spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags_job);
583 
584 	return 0;
585 }
586 EXPORT_SYMBOL_GPL(v4l2_m2m_streamoff);
587 
588 __poll_t v4l2_m2m_poll(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
589 			   struct poll_table_struct *wait)
590 {
591 	struct video_device *vfd = video_devdata(file);
592 	__poll_t req_events = poll_requested_events(wait);
593 	struct vb2_queue *src_q, *dst_q;
594 	struct vb2_buffer *src_vb = NULL, *dst_vb = NULL;
595 	__poll_t rc = 0;
596 	unsigned long flags;
597 
598 	if (test_bit(V4L2_FL_USES_V4L2_FH, &vfd->flags)) {
599 		struct v4l2_fh *fh = file->private_data;
600 
601 		if (v4l2_event_pending(fh))
602 			rc = EPOLLPRI;
603 		else if (req_events & EPOLLPRI)
604 			poll_wait(file, &fh->wait, wait);
605 		if (!(req_events & (EPOLLOUT | EPOLLWRNORM | EPOLLIN | EPOLLRDNORM)))
606 			return rc;
607 	}
608 
609 	src_q = v4l2_m2m_get_src_vq(m2m_ctx);
610 	dst_q = v4l2_m2m_get_dst_vq(m2m_ctx);
611 
612 	/*
613 	 * There has to be at least one buffer queued on each queued_list, which
614 	 * means either in driver already or waiting for driver to claim it
615 	 * and start processing.
616 	 */
617 	if ((!src_q->streaming || list_empty(&src_q->queued_list))
618 		&& (!dst_q->streaming || list_empty(&dst_q->queued_list))) {
619 		rc |= EPOLLERR;
620 		goto end;
621 	}
622 
623 	spin_lock_irqsave(&src_q->done_lock, flags);
624 	if (list_empty(&src_q->done_list))
625 		poll_wait(file, &src_q->done_wq, wait);
626 	spin_unlock_irqrestore(&src_q->done_lock, flags);
627 
628 	spin_lock_irqsave(&dst_q->done_lock, flags);
629 	if (list_empty(&dst_q->done_list)) {
630 		/*
631 		 * If the last buffer was dequeued from the capture queue,
632 		 * return immediately. DQBUF will return -EPIPE.
633 		 */
634 		if (dst_q->last_buffer_dequeued) {
635 			spin_unlock_irqrestore(&dst_q->done_lock, flags);
636 			return rc | EPOLLIN | EPOLLRDNORM;
637 		}
638 
639 		poll_wait(file, &dst_q->done_wq, wait);
640 	}
641 	spin_unlock_irqrestore(&dst_q->done_lock, flags);
642 
643 	spin_lock_irqsave(&src_q->done_lock, flags);
644 	if (!list_empty(&src_q->done_list))
645 		src_vb = list_first_entry(&src_q->done_list, struct vb2_buffer,
646 						done_entry);
647 	if (src_vb && (src_vb->state == VB2_BUF_STATE_DONE
648 			|| src_vb->state == VB2_BUF_STATE_ERROR))
649 		rc |= EPOLLOUT | EPOLLWRNORM;
650 	spin_unlock_irqrestore(&src_q->done_lock, flags);
651 
652 	spin_lock_irqsave(&dst_q->done_lock, flags);
653 	if (!list_empty(&dst_q->done_list))
654 		dst_vb = list_first_entry(&dst_q->done_list, struct vb2_buffer,
655 						done_entry);
656 	if (dst_vb && (dst_vb->state == VB2_BUF_STATE_DONE
657 			|| dst_vb->state == VB2_BUF_STATE_ERROR))
658 		rc |= EPOLLIN | EPOLLRDNORM;
659 	spin_unlock_irqrestore(&dst_q->done_lock, flags);
660 
661 end:
662 	return rc;
663 }
664 EXPORT_SYMBOL_GPL(v4l2_m2m_poll);
665 
666 int v4l2_m2m_mmap(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
667 			 struct vm_area_struct *vma)
668 {
669 	unsigned long offset = vma->vm_pgoff << PAGE_SHIFT;
670 	struct vb2_queue *vq;
671 
672 	if (offset < DST_QUEUE_OFF_BASE) {
673 		vq = v4l2_m2m_get_src_vq(m2m_ctx);
674 	} else {
675 		vq = v4l2_m2m_get_dst_vq(m2m_ctx);
676 		vma->vm_pgoff -= (DST_QUEUE_OFF_BASE >> PAGE_SHIFT);
677 	}
678 
679 	return vb2_mmap(vq, vma);
680 }
681 EXPORT_SYMBOL(v4l2_m2m_mmap);
682 
683 #if defined(CONFIG_MEDIA_CONTROLLER)
684 void v4l2_m2m_unregister_media_controller(struct v4l2_m2m_dev *m2m_dev)
685 {
686 	media_remove_intf_links(&m2m_dev->intf_devnode->intf);
687 	media_devnode_remove(m2m_dev->intf_devnode);
688 
689 	media_entity_remove_links(m2m_dev->source);
690 	media_entity_remove_links(&m2m_dev->sink);
691 	media_entity_remove_links(&m2m_dev->proc);
692 	media_device_unregister_entity(m2m_dev->source);
693 	media_device_unregister_entity(&m2m_dev->sink);
694 	media_device_unregister_entity(&m2m_dev->proc);
695 	kfree(m2m_dev->source->name);
696 	kfree(m2m_dev->sink.name);
697 	kfree(m2m_dev->proc.name);
698 }
699 EXPORT_SYMBOL_GPL(v4l2_m2m_unregister_media_controller);
700 
701 static int v4l2_m2m_register_entity(struct media_device *mdev,
702 	struct v4l2_m2m_dev *m2m_dev, enum v4l2_m2m_entity_type type,
703 	struct video_device *vdev, int function)
704 {
705 	struct media_entity *entity;
706 	struct media_pad *pads;
707 	char *name;
708 	unsigned int len;
709 	int num_pads;
710 	int ret;
711 
712 	switch (type) {
713 	case MEM2MEM_ENT_TYPE_SOURCE:
714 		entity = m2m_dev->source;
715 		pads = &m2m_dev->source_pad;
716 		pads[0].flags = MEDIA_PAD_FL_SOURCE;
717 		num_pads = 1;
718 		break;
719 	case MEM2MEM_ENT_TYPE_SINK:
720 		entity = &m2m_dev->sink;
721 		pads = &m2m_dev->sink_pad;
722 		pads[0].flags = MEDIA_PAD_FL_SINK;
723 		num_pads = 1;
724 		break;
725 	case MEM2MEM_ENT_TYPE_PROC:
726 		entity = &m2m_dev->proc;
727 		pads = m2m_dev->proc_pads;
728 		pads[0].flags = MEDIA_PAD_FL_SINK;
729 		pads[1].flags = MEDIA_PAD_FL_SOURCE;
730 		num_pads = 2;
731 		break;
732 	default:
733 		return -EINVAL;
734 	}
735 
736 	entity->obj_type = MEDIA_ENTITY_TYPE_BASE;
737 	if (type != MEM2MEM_ENT_TYPE_PROC) {
738 		entity->info.dev.major = VIDEO_MAJOR;
739 		entity->info.dev.minor = vdev->minor;
740 	}
741 	len = strlen(vdev->name) + 2 + strlen(m2m_entity_name[type]);
742 	name = kmalloc(len, GFP_KERNEL);
743 	if (!name)
744 		return -ENOMEM;
745 	snprintf(name, len, "%s-%s", vdev->name, m2m_entity_name[type]);
746 	entity->name = name;
747 	entity->function = function;
748 
749 	ret = media_entity_pads_init(entity, num_pads, pads);
750 	if (ret)
751 		return ret;
752 	ret = media_device_register_entity(mdev, entity);
753 	if (ret)
754 		return ret;
755 
756 	return 0;
757 }
758 
759 int v4l2_m2m_register_media_controller(struct v4l2_m2m_dev *m2m_dev,
760 		struct video_device *vdev, int function)
761 {
762 	struct media_device *mdev = vdev->v4l2_dev->mdev;
763 	struct media_link *link;
764 	int ret;
765 
766 	if (!mdev)
767 		return 0;
768 
769 	/* A memory-to-memory device consists in two
770 	 * DMA engine and one video processing entities.
771 	 * The DMA engine entities are linked to a V4L interface
772 	 */
773 
774 	/* Create the three entities with their pads */
775 	m2m_dev->source = &vdev->entity;
776 	ret = v4l2_m2m_register_entity(mdev, m2m_dev,
777 			MEM2MEM_ENT_TYPE_SOURCE, vdev, MEDIA_ENT_F_IO_V4L);
778 	if (ret)
779 		return ret;
780 	ret = v4l2_m2m_register_entity(mdev, m2m_dev,
781 			MEM2MEM_ENT_TYPE_PROC, vdev, function);
782 	if (ret)
783 		goto err_rel_entity0;
784 	ret = v4l2_m2m_register_entity(mdev, m2m_dev,
785 			MEM2MEM_ENT_TYPE_SINK, vdev, MEDIA_ENT_F_IO_V4L);
786 	if (ret)
787 		goto err_rel_entity1;
788 
789 	/* Connect the three entities */
790 	ret = media_create_pad_link(m2m_dev->source, 0, &m2m_dev->proc, 1,
791 			MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED);
792 	if (ret)
793 		goto err_rel_entity2;
794 
795 	ret = media_create_pad_link(&m2m_dev->proc, 0, &m2m_dev->sink, 0,
796 			MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED);
797 	if (ret)
798 		goto err_rm_links0;
799 
800 	/* Create video interface */
801 	m2m_dev->intf_devnode = media_devnode_create(mdev,
802 			MEDIA_INTF_T_V4L_VIDEO, 0,
803 			VIDEO_MAJOR, vdev->minor);
804 	if (!m2m_dev->intf_devnode) {
805 		ret = -ENOMEM;
806 		goto err_rm_links1;
807 	}
808 
809 	/* Connect the two DMA engines to the interface */
810 	link = media_create_intf_link(m2m_dev->source,
811 			&m2m_dev->intf_devnode->intf,
812 			MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED);
813 	if (!link) {
814 		ret = -ENOMEM;
815 		goto err_rm_devnode;
816 	}
817 
818 	link = media_create_intf_link(&m2m_dev->sink,
819 			&m2m_dev->intf_devnode->intf,
820 			MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED);
821 	if (!link) {
822 		ret = -ENOMEM;
823 		goto err_rm_intf_link;
824 	}
825 	return 0;
826 
827 err_rm_intf_link:
828 	media_remove_intf_links(&m2m_dev->intf_devnode->intf);
829 err_rm_devnode:
830 	media_devnode_remove(m2m_dev->intf_devnode);
831 err_rm_links1:
832 	media_entity_remove_links(&m2m_dev->sink);
833 err_rm_links0:
834 	media_entity_remove_links(&m2m_dev->proc);
835 	media_entity_remove_links(m2m_dev->source);
836 err_rel_entity2:
837 	media_device_unregister_entity(&m2m_dev->proc);
838 	kfree(m2m_dev->proc.name);
839 err_rel_entity1:
840 	media_device_unregister_entity(&m2m_dev->sink);
841 	kfree(m2m_dev->sink.name);
842 err_rel_entity0:
843 	media_device_unregister_entity(m2m_dev->source);
844 	kfree(m2m_dev->source->name);
845 	return ret;
846 	return 0;
847 }
848 EXPORT_SYMBOL_GPL(v4l2_m2m_register_media_controller);
849 #endif
850 
851 struct v4l2_m2m_dev *v4l2_m2m_init(const struct v4l2_m2m_ops *m2m_ops)
852 {
853 	struct v4l2_m2m_dev *m2m_dev;
854 
855 	if (!m2m_ops || WARN_ON(!m2m_ops->device_run))
856 		return ERR_PTR(-EINVAL);
857 
858 	m2m_dev = kzalloc(sizeof *m2m_dev, GFP_KERNEL);
859 	if (!m2m_dev)
860 		return ERR_PTR(-ENOMEM);
861 
862 	m2m_dev->curr_ctx = NULL;
863 	m2m_dev->m2m_ops = m2m_ops;
864 	INIT_LIST_HEAD(&m2m_dev->job_queue);
865 	spin_lock_init(&m2m_dev->job_spinlock);
866 
867 	return m2m_dev;
868 }
869 EXPORT_SYMBOL_GPL(v4l2_m2m_init);
870 
871 void v4l2_m2m_release(struct v4l2_m2m_dev *m2m_dev)
872 {
873 	kfree(m2m_dev);
874 }
875 EXPORT_SYMBOL_GPL(v4l2_m2m_release);
876 
877 struct v4l2_m2m_ctx *v4l2_m2m_ctx_init(struct v4l2_m2m_dev *m2m_dev,
878 		void *drv_priv,
879 		int (*queue_init)(void *priv, struct vb2_queue *src_vq, struct vb2_queue *dst_vq))
880 {
881 	struct v4l2_m2m_ctx *m2m_ctx;
882 	struct v4l2_m2m_queue_ctx *out_q_ctx, *cap_q_ctx;
883 	int ret;
884 
885 	m2m_ctx = kzalloc(sizeof *m2m_ctx, GFP_KERNEL);
886 	if (!m2m_ctx)
887 		return ERR_PTR(-ENOMEM);
888 
889 	m2m_ctx->priv = drv_priv;
890 	m2m_ctx->m2m_dev = m2m_dev;
891 	init_waitqueue_head(&m2m_ctx->finished);
892 
893 	out_q_ctx = &m2m_ctx->out_q_ctx;
894 	cap_q_ctx = &m2m_ctx->cap_q_ctx;
895 
896 	INIT_LIST_HEAD(&out_q_ctx->rdy_queue);
897 	INIT_LIST_HEAD(&cap_q_ctx->rdy_queue);
898 	spin_lock_init(&out_q_ctx->rdy_spinlock);
899 	spin_lock_init(&cap_q_ctx->rdy_spinlock);
900 
901 	INIT_LIST_HEAD(&m2m_ctx->queue);
902 
903 	ret = queue_init(drv_priv, &out_q_ctx->q, &cap_q_ctx->q);
904 
905 	if (ret)
906 		goto err;
907 	/*
908 	 * If both queues use same mutex assign it as the common buffer
909 	 * queues lock to the m2m context. This lock is used in the
910 	 * v4l2_m2m_ioctl_* helpers.
911 	 */
912 	if (out_q_ctx->q.lock == cap_q_ctx->q.lock)
913 		m2m_ctx->q_lock = out_q_ctx->q.lock;
914 
915 	return m2m_ctx;
916 err:
917 	kfree(m2m_ctx);
918 	return ERR_PTR(ret);
919 }
920 EXPORT_SYMBOL_GPL(v4l2_m2m_ctx_init);
921 
922 void v4l2_m2m_ctx_release(struct v4l2_m2m_ctx *m2m_ctx)
923 {
924 	/* wait until the current context is dequeued from job_queue */
925 	v4l2_m2m_cancel_job(m2m_ctx);
926 
927 	vb2_queue_release(&m2m_ctx->cap_q_ctx.q);
928 	vb2_queue_release(&m2m_ctx->out_q_ctx.q);
929 
930 	kfree(m2m_ctx);
931 }
932 EXPORT_SYMBOL_GPL(v4l2_m2m_ctx_release);
933 
934 void v4l2_m2m_buf_queue(struct v4l2_m2m_ctx *m2m_ctx,
935 		struct vb2_v4l2_buffer *vbuf)
936 {
937 	struct v4l2_m2m_buffer *b = container_of(vbuf,
938 				struct v4l2_m2m_buffer, vb);
939 	struct v4l2_m2m_queue_ctx *q_ctx;
940 	unsigned long flags;
941 
942 	q_ctx = get_queue_ctx(m2m_ctx, vbuf->vb2_buf.vb2_queue->type);
943 	if (!q_ctx)
944 		return;
945 
946 	spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
947 	list_add_tail(&b->list, &q_ctx->rdy_queue);
948 	q_ctx->num_rdy++;
949 	spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
950 }
951 EXPORT_SYMBOL_GPL(v4l2_m2m_buf_queue);
952 
953 /* Videobuf2 ioctl helpers */
954 
955 int v4l2_m2m_ioctl_reqbufs(struct file *file, void *priv,
956 				struct v4l2_requestbuffers *rb)
957 {
958 	struct v4l2_fh *fh = file->private_data;
959 
960 	return v4l2_m2m_reqbufs(file, fh->m2m_ctx, rb);
961 }
962 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_reqbufs);
963 
964 int v4l2_m2m_ioctl_create_bufs(struct file *file, void *priv,
965 				struct v4l2_create_buffers *create)
966 {
967 	struct v4l2_fh *fh = file->private_data;
968 
969 	return v4l2_m2m_create_bufs(file, fh->m2m_ctx, create);
970 }
971 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_create_bufs);
972 
973 int v4l2_m2m_ioctl_querybuf(struct file *file, void *priv,
974 				struct v4l2_buffer *buf)
975 {
976 	struct v4l2_fh *fh = file->private_data;
977 
978 	return v4l2_m2m_querybuf(file, fh->m2m_ctx, buf);
979 }
980 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_querybuf);
981 
982 int v4l2_m2m_ioctl_qbuf(struct file *file, void *priv,
983 				struct v4l2_buffer *buf)
984 {
985 	struct v4l2_fh *fh = file->private_data;
986 
987 	return v4l2_m2m_qbuf(file, fh->m2m_ctx, buf);
988 }
989 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_qbuf);
990 
991 int v4l2_m2m_ioctl_dqbuf(struct file *file, void *priv,
992 				struct v4l2_buffer *buf)
993 {
994 	struct v4l2_fh *fh = file->private_data;
995 
996 	return v4l2_m2m_dqbuf(file, fh->m2m_ctx, buf);
997 }
998 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_dqbuf);
999 
1000 int v4l2_m2m_ioctl_prepare_buf(struct file *file, void *priv,
1001 			       struct v4l2_buffer *buf)
1002 {
1003 	struct v4l2_fh *fh = file->private_data;
1004 
1005 	return v4l2_m2m_prepare_buf(file, fh->m2m_ctx, buf);
1006 }
1007 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_prepare_buf);
1008 
1009 int v4l2_m2m_ioctl_expbuf(struct file *file, void *priv,
1010 				struct v4l2_exportbuffer *eb)
1011 {
1012 	struct v4l2_fh *fh = file->private_data;
1013 
1014 	return v4l2_m2m_expbuf(file, fh->m2m_ctx, eb);
1015 }
1016 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_expbuf);
1017 
1018 int v4l2_m2m_ioctl_streamon(struct file *file, void *priv,
1019 				enum v4l2_buf_type type)
1020 {
1021 	struct v4l2_fh *fh = file->private_data;
1022 
1023 	return v4l2_m2m_streamon(file, fh->m2m_ctx, type);
1024 }
1025 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_streamon);
1026 
1027 int v4l2_m2m_ioctl_streamoff(struct file *file, void *priv,
1028 				enum v4l2_buf_type type)
1029 {
1030 	struct v4l2_fh *fh = file->private_data;
1031 
1032 	return v4l2_m2m_streamoff(file, fh->m2m_ctx, type);
1033 }
1034 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_streamoff);
1035 
1036 /*
1037  * v4l2_file_operations helpers. It is assumed here same lock is used
1038  * for the output and the capture buffer queue.
1039  */
1040 
1041 int v4l2_m2m_fop_mmap(struct file *file, struct vm_area_struct *vma)
1042 {
1043 	struct v4l2_fh *fh = file->private_data;
1044 
1045 	return v4l2_m2m_mmap(file, fh->m2m_ctx, vma);
1046 }
1047 EXPORT_SYMBOL_GPL(v4l2_m2m_fop_mmap);
1048 
1049 __poll_t v4l2_m2m_fop_poll(struct file *file, poll_table *wait)
1050 {
1051 	struct v4l2_fh *fh = file->private_data;
1052 	struct v4l2_m2m_ctx *m2m_ctx = fh->m2m_ctx;
1053 	__poll_t ret;
1054 
1055 	if (m2m_ctx->q_lock)
1056 		mutex_lock(m2m_ctx->q_lock);
1057 
1058 	ret = v4l2_m2m_poll(file, m2m_ctx, wait);
1059 
1060 	if (m2m_ctx->q_lock)
1061 		mutex_unlock(m2m_ctx->q_lock);
1062 
1063 	return ret;
1064 }
1065 EXPORT_SYMBOL_GPL(v4l2_m2m_fop_poll);
1066 
1067